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ABSTRACT

Micron-sized circumplanetary dust particles are subject to various non-gravitational perturbations,
principally solar radiation pressure and electromagnetic forces, which are typically a few percent as
strong as the planetary gravity. Individually, these perturbations can cause some orbital evolution,
but when the perturbations act in concert the excursions can be much larger. We demonstrate
this effect for a single example, the coupling between resonances and drag forces. Throughout
this work, we emphasize the parallels between satellite-satellite gravitational resonances and their
electromagnetic counterparts (Lorentz resonances).

INTRODUCTION

A dynamical system typically has a set of natural frequencies at which it can rotate or vibrate.
When such a system is forced at one of these natural frequencies (or a multiple of it), the amplitude
of oscillations grows as a result of the cumulative effect of in-phase perturbations; the system is said
to be in resonance. A child on a swing provides a familiar example of a resonant system. If the swing
(initially at rest) is pushed at an arbitrary frequency or at random times, the amplitude of oscillation
is likely to remain small; if, however, the swing is pushed once per period, the oscillation amplitude
will grow quite large. In an entirely similar manner, charged dust grains oscillate wildly near the
locations of “Lorentz resonances” which occur at those positions where the electromagnetic force
sensed by an orbiting particle (and arising from a planet’s spinning magnetic field) has a component
that matches a natural frequency of the orbit /1/. The abrupt vertical expansion of the jovian ring
into its halo and the disappearance of the halo itself /1,2/ have been ascribed to the action of these
Lorentz resonances on orbiting dust grains.

Gravitational resonances occur when the orbital periods of two objects are nearly a simple ratio
of integers. Many features in the main saturnian ring system have been successfully attributed
to gravitational resonances with exterior satellites. For example, the 2:1 resonance with Mimas
defines the inner edge of the Cassini division, which divides the A and B rings, while the sharp
outer edge of the A ring occurs at a 7:6 resonance with the moon Janus. Satellites themselves are
often found in resonances with one another; examples include the saturnian pairs Enceladus/Dione,
Titan/Hyperion and Mimas/Tethys, as well as the jovian triple lo/Europa/Ganymede (see /3/ for
a qualitative physical description of these gravitational resonances).

In this paper we wish to illustrate how resonances couple with drag forces. This idea is not new;
indeed it has been extensively studied in the context of satellite evolution where tidal effects from the
central body create small drags on satellite orbits. This problem has been thoroughly treated using
Hamiltonian mechanics (see e.g., /4/). The purpose of the current paper is twofold. First, we wish to
draw parallels between the extensively studied satellite (gravitational) resonances and their less well
known relatives, Lorentz resonances. Secondly, we will reproduce some results of the Hamiltonian
theory using the Lagrangian orbital perturbation equations /5/, which are written in terms of the
orbital elements. The latter quantities provide a physically meaningful description of an orbit; for
orbits confined to a particular plane, the semimajor axis a, the eccentricity e, and the longitude
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of pericenter & are sufficient. These three elements, respectively, describe the instantaneous size,
shape, and orientation of an elliptical orbit; the Lagrangian equations that describe the time rate
of change of such orbital elements are well suited to visualizing the results of orbital perturbations.
The advantage of our approach is its simplicity: many non-intuitive effects of resonances, such as
resonant trapping and jumps, will be elucidated.

RESONANCE EQUATIONS

The problem of determining the perturbing effects of one satellite on another is fundamental to
celestial mechanics and has been studied for centuries. It is not solvable in closed form, but an
approximate solution can be developed as a power series of small quantities. The typical procedure
(cf. /5/, p. 339) is as follows. First, one evaluates the disturbing function, defined as the negative of
the perturbing satellite’s potential, at the position of the perturbed particle. Next, the disturbing
function is written in terms of the orbital elements; this step requires complicated power series
expansions in eccentricities, inclinations, and the semimajor axis ratio. Finally the changes to the
orbital elements can be calculated with the potential form of Lagrange’s planetary equations (/5/,
p. 336) which relate the time rates of change of the orbital elements to derivatives of the disturbing
function and to instantaneous values of the elements themselves.

We proceed in a similar manner for Lorentz resonances. Because the Lorentz force due to a magnetic
field cannot be derived from a potential, we must calculate the electromagnetic force arising from
an arbitrary magnetic field and express it in terms of orbital elements, an arduous task which
requires power series expansions in the particle’s eccentricity and inclination. These forces are then
inserted into an alternate form of Lagrange’s planetary equations (/5/, p. 327). The results of
this calculation yield, as above, expressions for time derivatives of the orbital elements which are
functions of the instantaneous values of these elements. We plan to submit the details of this
calculation for publication in Icarus.

In both of the above derivations, secular terms (i.e., those that do not depend on satellite longitudes)
as well as periodic terms (with longitude dependence) appear. Secular terms are ubiquitous, whereas
periodic terms, over long times, average to zero at all but a few resonant locations. In this paper
we focus on one of these locations as an example: the 2:1 (first-order) eccentricity resonance. Near
this location, the resonant argument ¢ is given by:

d=A—2)\ 4+, (1)

where A and )’ are the longitudes of the perturbee and perturber, respectively. At the resonant
location (defined by ¢ = 0 - see figure 1), the perturbed body completes approximately two orbits
for every one cycle of the perturbing force (the period of an exterior satellite in the gravitational
case or the planetary spin period for Lorentz resonances). We ignore all periodic terms with different
frequency dependencies (since they average to zero), and the secular perturbations (which are small
compared to the strong 2:1 resonant terms).

The orbital elements most strongly affected by such a resonance are the abovementioned a, e, and
@. Instead of the semimajor axis a, we use the unperturbed orbital mean motion n ~ A, whlch is
related to the semimajor axis via n%a® = GM,, where G is the gravitational constant and M, is the
planetary mass (/5/, p. 131). ertmg out the Lagrange perturbation equations to lowest nrcler in
eccentricity and inclination, we find that the effects of both the gravitational and Lorentz versions
of the 2:1 first-order eccentricity resonance can be represented by a set of equations of the following
form:

% = —3en?fsin ¢ (2a)
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Here t is time, 8 (always positive) measures the appropriate resonance strength and the A; are con-
stants. The quantity 3 is a complicated function of the semimajor axis ratio which must be expanded
as a power series; across the small distance over which the resonance exerts its influence, however,
B can be treated as a constant. In the gravitational case, # is first order in the satellite /planet mass
ratio and A; = A, = 1. In the Lorentz case, 8 depends on the particle’s charge-to-mass ratio, dis-
tance from the planet, and the magnetic field strength. For first-order electromagnetic resonances,
A; = A, = n/n’ — 1, so the 2:1 resonance, like gravity, has A; = A2 ~ 1. The dominant contribution
to this resonance comes from the g3, component of the magnetic field (a non-symmetric octupole
term - see /2/ which gives values for the giant planets).

Although we have specialized equations (2a-c) to the 2:1 eccentricity resonance, the form of the
equations for other first-order eccentricity resonances (2:3, 3:4, 1:2 etc.) is entirely similar - only
the parameters 8 and the A; need to be changed. First-order inclination resonances (which exist for
Lorentz forces but not for satellite gravity) and higher-order resonances are also not too different.
Accordingly, the general behavior discussed below for the 2:1 eccentricity resonance actually applies
to a wide variety of other types of resonances as well; that is to say, the trapping and jumps discussed
below are general phenomena.

Perturbing Satellite

or
Synchronous Orbit

| A

2:1 Resonance
Jumps 1rapping

Planet

Fig. 1. Schematic diagram showing the central planet, the orbiting dust grain, and the 2:1 resonance.
The outermost line represents the location of the perturbing satellite (for a gravitational resonance)
or of synchronous orbit (for a Lorentz resonance). A grain drifting through a first-order resonance
toward this location may become trapped while one drifting away from it will experience a jump.
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DRAG FORCES

Several drag forces operate in the magnetospheres of the giant planets. Most large satellites are
driven slowly outward by tidal forces from the primary while small particles are affected by a host of
processes /6/ including plasma, atmospheric, and Poynting-Robertson drags which, for dust grains,
operate much more rapidly than tidal evolution. Because drag forces are typically much smaller than
many other orbital perturbations, their effects on most orbital elements can often be ignored. Unlike
most other perturbations, however, drag forces systematically affect an orbit’s energy and therefore
its size and mean motion. Furthermore, because of the limited radial extent of the resonance zone,
we can approximate the functional form of the drag rate in this region by a simple constant 74yq,-
The inclusion of drag forces requires that we replace equation (2a) with

dn

e —3en’Fsin ¢ + Ndrag- (3)

RESONANCE TRAPPING

When n4,,, < 0, orbits evolve outward: near the 2:1 resonance, this evolution is toward the perturb-
ing satellite (in the case of gravity) or toward synchronous orbit (in the Lorentz case). For this type
of evolution, resonance trapping, in which the evolution in mean motion ceases, is possible (figure
1). Clearly trapping can occur only if the first term in equation (3) is equal and opposite to the
second for some 4. Solving equation (3) for sin¢ in this case and substituting into equation (2b),
we find

% = _ﬁ;ragﬂlj (4)
trapped ne
which is easily integrated yielding:
Wit Ay N2
o= (- Beeastha) T Q

Linearizing equations (2a-c) around this solution, we find that it is stable against small perturba-
tions. Note the remarkable fact that the rate of growth of the eccentricity given by equation (5) is
independent of the resonance strength 3. This result can also be obtained from equation (7) below,
which expresses the conservation of energy in a rotating reference frame (see /2/ ). Thus the “square
root growth” in time (equation 5) is a property shared by gravitational and Lorentz resonances of all
types and orders. An example of resonant trapping and the associated eccentricity growth is shown
in figure 2; for the parameters given in the figure caption, equation (5) reduces to e ~ 0.00145N1/2
(A is the number of perturber orbits) in rough agreement with the figure. This behavior holds until
e ~ 0.5 at which time higher-order effects become important.

JUMPS AT RESONANCE

When ng4.44 > 0, inner orbits evolve away from the perturbing satellite (or from synchronous orbit).
In this case trapping for low eccentricities is not possible as can be seen from equation (5) which im-
plies that eccentricity becomes imaginary! Instead we shall find a different behavior at the resonant
location.

Because drag forces are so small, the first term in equation (3) is usually far greater than the second;
this fact allows us to obtain an adiabatic invariant. Ignoring the drag term for the moment, we divide
equation (2a) by equation (2b) and find
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Fig. 2. RESONANCE TRAPPING: A plot of the orbital evolution determined by equations (2b,c

and 3) for physically realistic parameters § = 107% A; = A = 1;n4,q, = 107 °n’%. Plotted against
time are the mean motion ratio n/n’, the eccentricity e, and the resonant angle ¢. Initial conditions
are n = 2.03n’,e = 0, and ¢ = 0. Notice that the mean motion is decreasing as the orbit evolves
away from the planet either toward the perturbing satellite (gravitational resonance) or toward
synchronous orbit (Lorentz resonance). The effect of the 2:1 resonance is to change the secular
reduction of the orbit’s mean motion into a secular increase in its eccentricity. The resonant angle
¢ librates with small amplitude around a slightly negative value which can be found by setting
equation (3) to zero and solving for 4.
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Fig. 3. JUMPS AT RESONANCE: A plot of the orbital evolution determined by equations
(2b,c and 3) with the parameters 8 = 10-%;,A; = A3 = 1;n44, = —10~®n"2. Initial conditions
are n = 1.97n',e = 0, and ¢ = 0. Notice that the jumps in semimajor axis and eccentricity occur
simultaneously near n ~ 2n' as required by equations (6) and (9). The resonant argument ¢ librates
around a value near 180° until the jumps occur after which it circulates.
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dn 3en
S B 6
which can be integrated to yield
n 3e?
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where n, is an integration constant. Recalling that equation (2a-c) are accurate to only first order
in eccentricity, we solve this equation to lowest order in e and find that

Je?

n. :n[lmm] (8)

18 a conserved constant of the motion (see /7/). Since the resonance zomne is traversed quickly,
equation (8) remains approximately constant during the passage. The half-width of the librating
zone, dn/2, can be crudely estimated by setting the derivative of equation (1) equal to zero, taking
n = 2n' +dn/2 and cos¢ = 1, and solving for dn. We find dn a2 2n8A,/e. Inserting this into equation
(6), and neglecting the difference between de and e, we find:

1/3
de :(2A1;gﬁ) . (9)

This case is displayed in figure 3; using the parameters from the figure caption, we calculate the
jump amplitudes from equations (9) and (6) and obtain de ~ 0.04 and dn ~ 0.012 - values smaller
than, but in rough agreement with, the figure.

DISCUSSION

Lorentz and gravitational resonances differ primarily in the magnitudes of the resonant strength
B. For micron-sized dust grains around the jovian planets, 3 is orders of magnitude larger in the
Lorentz case; thus Lorentz resonances are more effective at trapping dust particles and are able to
induce larger orbital jumps than resonances due to a satellite’s gravity. Slight additional differences
arise when A; # 1; most first-order Lorentz resonances have A; < 1 which reduces the trapped growth
rate (equation 5) and jump amplitude (equation 9). Despite this small difference between the two
types of resonances, the equations that govern them are remarkably similar and, consequently, it is
not surprising that orbital behavior at Lorentz and gravitational resonances is so alike.
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