ORBITAL DYNAMICS AND THE STRUCTURE OF
FAINT DUSTY RINGS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Douglas Peary Hamilton
January 1994



(© Douglas Peary Hamilton 1994
ALL RIGHTS RESERVED



ORBITAL DYNAMICS AND THE STRUCTURE OF FAINT DUSTY RINGS

Douglas Peary Hamilton, Ph.D.
Cornell University 1994

The orbital perturbations that act on objects circling a planet vary in strength
depending on the sizes of both the particle and its orbit. We examine three
cases that are difficult to treat with the standard tools of celestial mechanics: i)
large distant satellites, i) small objects on distant orbits, and i) tiny particles
orbiting near a planet.

The dominant perturbation in the first case is the tidal component of solar
gravity. Taking as our example an asteroid on a circular orbit about the Sun, we
numerically determine the size and three-dimensional shape of the surface beyond
which circum-asteroidal debris is unlikely to be present. We present scaling laws
that allow this result to be applied to objects with different masses, semimajor
axes, and eccentricities. Small objects on distant orbits are highly perturbed by
radiation pressure, which rapidly causes many of them to escape or to impact the
asteroidal surface. We determine that, for the asteroid Gaspra (radius &~ 10 km),
debris smaller than centimeter-sized will disappear from distant orbits in just a
few years. We generalize our results for application to arbitrary asteroids.

Micron-sized grains, the principal constituents of the many diffuse rings cir-
cling within a few planetary radii of the giant planets, are dominantly perturbed
by electromagnetic and radiation forces. We derive orbit-averaged equations that
govern the evolution of such grains subject to these perturbations; our expres-
sions are valid at all non-resonant locations. Resonant locations are treated by
expanding the electromagnetic perturbation analogously to the derivation of the
disturbing function of celestial mechanics. We compare our electromagnetic ex-
pansion to previous gravitational expansions; similarities lead to the discovery of
simple orbital symmetries that constrain the possible consequences of any per-
turbation.

We use the above expressions to explore the dynamics of the micron-sized
grains that make up Saturn’s E ring and find that a coupling between planetary
oblateness, electromagnetism, and radiation pressure generates highly-eccentric
orbits. The distribution of material along an ensemble of these elliptical orbits
agrees well with the E ring’s observed radial and vertical structure. As a conse-
quence of their highly-elliptical orbits, dust grains strike embedded satellites and



nearby rings at large velocities. We argue that these energetic collisions sustain
the E ring at its current optical depth against the erosive effects of grain-grain
collisions.
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1.1 Modern Celestial Mechanics

The cyclic phases of the moon, the timing and duration of lunar and solar eclipses,
and the motions of the Sun, Moon, and planets are problems that have captivated
the imaginations of all who have witnessed such celestial events; accordingly
predictions thereof have challenged the minds of many of the world’s greatest
thinkers. From the late sixteenth century, when Copernicus’ heliocentric view of
the solar system first vied with Ptolemy’s idea of a geocentric universe, through
the ensuing years during which Kepler, Galileo, Newton and Einstein made their
pivotal contributions, and up to the present era of spacecraft reconnaissance,
our understanding of celestial mechanics has steadily improved. Over the past
few decades, celestial mechanics has undergone a transformation from a largely
theoretical pursuit into a practical discipline. This occurred as planetary and
satellite fly-bys, each requiring accurate descriptions of spacecraft trajectories
and planetary positions, became commonplace. The spectacular images relayed
back to Earth from the Voyager spacecraft, for example, would not have been
possible without the detailed trajectory information necessary for planet and
satellite rendezvouses, and precision camera-pointing. An additional reason to
understand orbital motion is to minimize the danger of debilitating collisions with
tiny, unseen, and rapidly-moving bits of space debris. The thrust of this thesis
— orbital dynamics and the structure of faint dusty rings — is strongly motivated
by such concerns for spacecraft safety.

1.2 Why Study Dust?

Dust is ubiquitous throughout the solar system, being found in orbit around
Earth (McDonnell et al. 1992), Mars (Dubinin et al. 1990), and the giant plan-

ets (Burns et al. 1984, Smith et al. 1989, Esposito et al. 1991), jettisoned from
comets to form elegant tails (Griin and Jessberger 1990) and from the jovian



system in apparently periodic streams (Griin et al. 1993), and strewn throughout
the inner solar system’s zodiacal cloud, where it concentrates in bands near the
most prominent asteroid families (Dermott et al. 1985) and perhaps at certain
resonant locations (Jackson and Zook 1989). Because small particles are espe-
cially sensitive to non-gravitational forces, they can be driven to unusual places.
For example, micron-sized particles make up the wedge-shaped diffuse E ring of
Saturn (Showalter et al. 1991), while the complex and beautifully intricate spokes
of Saturn’s B ring are hypothesized to arise from tiny grains electrostatically lev-
itated off larger ring members (Goertz and Morfill 1983, Griin et al. 1983, Tagger
et al. 1991). Resonant electromagnetic forces acting on small charged dust par-
ticles may provide the explanation for the abrupt transition between Jupiter’s
faint ring and its vertically-extended ethereal halo (Burns et al. 1985). During
Voyager’s Neptune fly-by, the spacecraft’s plasma wave and planetary radio as-
tronomy instruments discovered a tenuous cloud of dust in yet another unlikely
locale, over Neptune’s northern polar region (Gurnett et al. 1991, Warwick et al.
1989).

The facts that small particles are both difficult to detect, but also present
in vast quantities throughout the solar system, greatly enhance the potential
for a catastrophic spacecraft-projectile encounter. The most dangerous locations
are in the vicinity of larger parent objects: amid the ring systems and satellite
retinues of the giant planets, inside cometary halos and tails and, increasingly,
within a few planetary radii of Earth as man-made orbital debris — paint chips,
fuel droplets, pieces of hardware, old spacecraft, and the collisional products
thereof — accumulates (Kessler 1985). While the last locale is undoubtably the
most threatening to Earth-orbiting satellites, Shuttle missions, and the proposed
Space Station Freedom, the first menaces the orbiters Galileo and Cassini, which
will spend long periods of time in the environs of Jupiter and Saturn, respectively.
Because of large relative velocities, and hence energetic collisions, objects only a
centimeter across can annihilate an entire spacecraft while millimeter-sized parti-
cles are capable of inflicting considerable damage, perhaps destroying individual
instruments. The latter fact was dramatically underscored by the crippling of
the European Giotto mission during its traverse of comet Halley’s halo in 1986.
Somewhat smaller particles, in the submicron to tenths of millimeters range, can
scour optical surfaces, interfere with electrical systems, and, over time, degrade
various sensitive components of a spacecraft. Because of the great expense of
planetary missions, the prevalence of orbital debris, and the distinct threat that
such debris represents, considerable planning has been done to insure safe orbital
tours for both Galileo and Cassini (see Section 1.4).

Despite the fact that orbiting debris often stars as the black-robed villain
of celestial mechanics, ever plotting to intercept unwary space-faring vessels, its
other role — that of an instructor — should not be forgotten for much can be learned
from studying the distribution and orbital motion of these tiny motes. Paint chips



and antiquated satellites tell us little of recent terrestrial history that we do not
already know, but samples of cometary and asteroidal particles collected in space
(e.g., from the Long Duration Exposure Facility, McDonnell et al. 1992) and on
the wings of specially outfitted airplanes (Brownlee 1985) hint at the origin of
“shooting stars” occasionally seen flashing across the night sky. Rapidly-moving
dust particles recently detected near Jupiter by the Ulysses spacecraft seem to
be interstellar in origin, bearing clues to events that occurred far beyond the
limits of our robotic exploration (Griin et al. 1993). The organization of dust
into faint ethereal rings highlights various dynamical processes which can be
used to better understand more complex rings dominated by large closely-packed
members, and additional dust within these dense rings provides further tracers
of ongoing processes. Thus the smallest particles carry information pertinent to
some of the most profound questions of celestial mechanics - How do rings form?
What processes govern their structure? And, ultimately, how did the ring-like
primordial planetary nebula originate, condense, and evolve into the solar system
we know today?

To address these questions, an intimate understanding of the relevant forces
acting on dust grains and the consequent orbital evolution that they induce is
essential. Accordingly, a major goal of this thesis is to develop a set of tools
capable of describing orbital motions and then to apply these tools in simple
models of existing phenomena. The knowledge gleaned from such an exercise is
of both practical and philosophical use: practical since, by understanding the
motion of these particles, we can minimize the threat to our spacecraft, and
philosophical in that once we better understand whence these tiny messagers
originate, perhaps we will be able to better decipher the information that they
carry.

1.3 lassical elestial ec anics

Much of the substance of this thesis involves the application of perturbation
theories to determine the evolution of orbiting particles imposed by particular
perturbing accelerations. These theories require accurate descriptions of the ac-
celerations as well as nearly-correct baseline solutions from which to compute
deviations; such schemes were first employed during the eighteenth century de-
velopment of the disturbing function of celestial mechanics. Since many of our
results rely heavily on orbital perturbation theories and, in the case of Chapter
7, closely parallel the derivation of the disturbing function, we briefly summarize
relevant results and place them in historical context.

The first accurate description of planetary orbital motions was found empir-
ically nearly four centuries ago by Johannes Kepler, who made extensive use of
Tycho Brahe’s meticulous naked-eye observations of Mars. Because of the high
ellipticity of Mars’ path around the Sun, Kepler was forced to discard the notion



of perfectly circular orbits and instead formulated the following three laws of
planetary motion:

1. Planets move along elliptical orbits with the Sun at one focus.

2. The radius vector to the planet traces out equal areas in equal time.

3. The square of a planet’s orbital period is proportional to the cube of the

semimajor axis of its elliptical orbit about the Sun.
Later, Sir Isaac Newton showed that these rules followed naturally from the mu-
tual gravitational attractions of two spherical bodies. But although elliptical
motion is an exact solution to the two-body problem, it only approximates the
actual motion of a planet around the Sun or that of a satellite about a planet.
Deviations from purely elliptical motion occur because of the gravitational attrac-
tions of additional objects, the non-spherical shapes of these bodies, and even the
minuscule corrections of Einstein’s general theory of relativity.

In the usual case, perturbations are dominated by the direct gravitational
attraction of the primaries and the orbits are nearly elliptical; thus Keplerian
motion can be used as a baseline solution and the actual path followed can be
determined from perturbative theories. Much of the early work in celestial me-
chanics focused on efforts to describe and approximate the gravitational effects
of one planet on another. High-order expansions of the disturbing function in
terms of the elliptical elements of planetary orbits were first worked out by Peirce
(1849) and Le Verrier (1855) (cf. Brouwer and Clemence 1961): today’s version
uses computer algebra to derive extremely accurate and computationally exten-
sive expansions (Murray and Harper 1993). In another problem of interest, the
perturbations arising from the gravitational attraction of an arbitrarily-shaped
planet can also be modeled by a disturbing function, and this allows the motions
of close planetary satellites to be predicted very accurately (Kaula 1966). With
these techniques, one can, in principle, understand the motions of most planets,
comets, asteroids, and natural and artificial satellites found in our solar system.

1.4 Brief Summary of apters

This thesis addresses two types of problems that fall outside the scope of the
above-mentioned classical tools of celestial mechanics: i) those where large per-
turbing accelerations make expansions inappropriate, and i) those involving mo-
tions of micron-sized dust particles that are strongly influenced by non-gravitational
accelerations.

The first subject is discussed in Chapters 2-4, which investigate the region
where material may stably orbit an asteroid. This study was motivated by con-
cerns for the safe passage of Galileo, which made historic first fly-bys of the as-
teroids 951 Gaspra (October 29, 1991) and 243 Ida (August 28, 1993); the results
of our study were used by the Galileo team to decide how close, and from what
direction, to approach these primordial objects. For distant circum-asteroidal



orbits, the solar tidal force’s pull on a particle is nearly as strong as the asteroid’s
gravitational grip; hence the Sun and the asteroid vie for domination of drifting
debris. Numerical investigations are needed to follow the orbital evolution of
such particles although some analytical constraints do exist. In Chapter 2, we
consider an asteroid on a circular orbit around the Sun, in Chapter 3 we extend
this analysis to arbitrarily elliptical heliocentric orbits, and in Chapter 4 we add
the effects of solar radiation pressure which, due to the asteroid’s weak gravita-
tional field, is a relatively strong perturbation for potentially destructive particles
in the millimeter and centimeter size range. Because objects smaller than these
are rapidly driven from circum-asteroidal orbits by radiation forces, the near-
asteroidal environment is predicted to be relatively free of orbiting debris and
hence benign to passing spacecraft. Galileo’s unscathed fly-by of both Gaspra
and Ida, and the negative results of its onboard dust detector substantiate these
claims (Griin et al. 1992, E. Griin 1993, private communication). Scaling rela-
tions are derived that allow the results of Chapters 2—4 to be applied to asteroids
of different masses, eccentricities, and distances from the Sun.

Chapters 5-7 focus on the dynamics of micron-sized particles in circumplane-
tary orbits, an interesting and challenging problem because of the unusual array
of physical processes that influence the motions of these tiny motes. The strongest
perturbations are radiation forces, which arise from the transfer of momentum
due to the absorption and re-emission of solar photons, and electromagnetic forces
which occur in the spinning magnetospheres of the giant planets. Because of many
uncertainties, particularly in the nature of the plasma surrounding the giant plan-
ets, researchers have usually sought to isolate and model a single perturbation in
order to understand its influence on an orbit. For example, Burns et al. (1979)
Mignard (1982, 1984), and Mignard and Hénon (1984) analytically describe the
influence of radiation pressure and other effects associated with the transfer of
momentum from solar photons and the solar wind. The equilibrium electrical
potential of an isolated dust grain immersed in a plasma has been studied by
Whipple (1981), Meyer-Vernet (1982), Whipple et al. (1985) and others. Various
resonances associated with electromagnetic forces have been identified, among
them “Lorentz resonances” with spatially-periodic magnetic fields (Burns et al.
1985, Schaffer and Burns 1987), “shadow resonances” (Horanyi and Burns 1991),
and “resonant charge variations” (Burns and Schaffer 1989, Northrop et al. 1989).
The dynamics of grains moving through the convected solar wind field about a
planet have been addressed by Horanyi et al. (1990, 1991). Despite the impor-
tant role that small particles may play in various features of the solar system, a
comprehensive treatment of the orbital histories of circumplanetary dust is not
yet available (cf. Schaffer 1989).

A first attempt to comprehensively and simultaneously treat the largest per-
turbative accelerations acting on circumplanetary micron-sized dust, electromag-
netism and radiation pressure, is presented in Chapter 5. Although these non-



gravitational accelerations are large, the planet’s attraction usually dominates
and perturbative schemes are appropriate. We employ the method of orbit-
averaging which has the advantage of suppressing all but the secular terms (those
that are independent of orbital longitudes); in most cases, the secular terms
constitute the perturbation’s dominant long-term effects. The resulting set of
equations determine the orbital evolution of small grains throughout the inner
magnetosphere excepting at certain resonant locations.

In Chapter 6, we use our knowledge of the orbital motions of micron-sized dust
to understand the peculiar three-dimensional structure of the saturnian E ring.
We find that E-ring grains orbit Saturn in unusually elliptic orbits which imply a
previously unsuspected method for the generation and sustenance of faint rings.
We argue that collisions of E-ring particles with the satellites immersed in the
ring are sufficiently energetic to generate new ring material and that this process
sustains the ring. Besides being consistent with the main properties of the E ring
— the radial location of its peak brightness, the numerical value of that brightness,
the ring’s radial extent and its vertical structure — we find that our model agrees
with a number of independent observations — the coloration and surface properties
of the embedded satellites, the presence of large amounts of OH in the inner
magnetosphere, and the high dust content of neighboring rings. Our results
may be useful in planning for, and can be tested by, both the 1995-6 edge-on
appearance of Saturn’s rings and the Cassini mission to Saturn, which will make
multiple passes through the E ring.

Motivated by the strong evidence for electromagnetic resonances causing the
transition between the main jovian ring and its inner halo, we return, in Chapter
7, to systematically expand the electromagnetic perturbation at resonance loca-
tions in a manner similar to that employed in the derivation of the disturbing
function of celestial mechanics. Besides providing a methodology for treating the
motions of dust everywhere in the inner magnetosphere, we investigate similarities
and differences in the properties displayed by electromagnetic and gravitational
resonances. We separate these properties into three groups: i) those shared by
all orbital perturbations, i) those that are common just to mean-motion reso-
nances, and 4ii) those that are unique to individual resonances. Properties in
group i) are shown to follow from simple physical symmetries which apply not
only to the perturbations considered here, but to all quantities that are expressed
in terms of orbital elements, while those in group ii) arise from shared integrals
of the motion. As is often the case in research, study of a new phenomenon (here
Lorentz resonances) gives unexpected insights into a well-researched related area
(gravitational resonances).

Finally, in Chapter 8 we conclude by discussing directions for further study.
A particularly promising line of research that we are currently pursuing is a
re-examination of the dynamics in the jovian ring system. Many of the ideas dis-
cussed in Chapters 5-7 seem to be simultaneously at work in these diffuse rings,



and the upcoming impact of comet Shoemaker-Levy 9 into Jupiter in July 1994
makes our study especially timely. The cometary impact may cause the main
and gossamer rings to brighten, perhaps yielding clues to processes relevant to
their formation. The more distant distributions of dust in the uranian and neptu-
nian magnetospheres are also intriguing and can be studied with the methods of
Chapters 5-7. As each of these new areas are investigated, the need for improved
theories will undoubtably arise, thereby driving the understanding of the orbital
motions of circumplanetary dust yet another step forward.



2.1 Intro uction

While two questions — “How much material is likely to be in orbit around an
asteroid?” and “Exactly where will that material be?” - are interesting to
planetary scientists and celestial mechanicians, they are critically important to
those spacecraft mission planners who must decide how closely to approach such
objects. It is well known that, in the absence of perturbations, orbiting particles
can move on Keplerian paths at all distances from an isolated asteroid. In reality,
however, gravitational perturbations from the Sun and, to a lesser extent, the
planets will limit the zone in which particles can stably orbit.

Since the problem of N gravitationally attracting bodies is well known to be
analytically unsolvable for N > 2, numerical methods must be employed to obtain
quantitative estimates of the motion of a test particle in the vicinity of an asteroid
that itself circles the Sun. We neglect planetary perturbations since these are at
least a thousand times weaker than solar effects (¢f. Chauvineau and Mignard
1990b) and treat a three-body problem consisting of the Sun, an asteroid, and
an orbiting particle. The three-body problem has been numerically integrated
many times previously (consult Szebehely 1967 for historical references while for
more recent work see Zhang and Innanen 1988, Murison 1989b, Chauvineau and
Mignard 1990a,b) but the space of possible parameters is so large that the three-
body problem’s complete solution is, fundamentally, not understood. Fortunately
the problem that we wish to solve is more restricted, although still analytically
intractable.

We treat the case of hierarchical masses since the asteroid’s mass is insignifi-
cant relative to the solar mass, yet is very large in comparison to particles likely

I This chapter is based on the paper: Hamilton, D.P., and J.A. Burns (1991), Orbital stability
zones about asteroids Icarus 92, 118-131 [copyright 1991 by Academic Press, Inc.].



Table 2.1 Parameters of Amphitrite and Gaspra

Object A E Ry 1 p rH
(AU) (km) (g/cm®) (Ra)

Amphitrite 2.55 0.00 100 5x 1072 238 452
Gaspra 220 0.17 10 5x107"® 238 390

to be orbiting it. Hierarchical masses provide a limiting case of both Hill’s prob-
lem and the restricted three-body problem (Hénon and Petit 1986). We further
narrow the space of parameters by giving the asteroid a circular orbit around
the Sun, by choosing to study only those orbits that are weakly bound to the
asteroid, and by starting test particles out on initially circular orbits. The sec-
ond choice is made in order to explore the transition region between bound and
unbound orbits and hence to delineate the zone in which the material could be
stably trapped.

In the numerical examples to follow, we model the asteroid 29 Amphitrite,
a previously planned target of Galileo (see also Zhang and Innanen 1988), as
having a circular orbit of radius A = 2.55 AU, and an asteroid/Sun mass ratio
p = 5.0x 1072 In reality, Amphitrite’s orbit is moderately eccentric (E = 0.07).
For an assumed asteroid radius of R4 = 100 km, the chosen p corresponds to
a reasonable density of p = 2.38 g/cm®. These parameters, as well as ones
appropriate for Gaspra, Galileo’s actual target, are listed in Table 2.1. The final
column in the table lists the radius of the Hill sphere which we define at the end
of the next section. Our investigation confirms and extends the study of Zhang
and Innanen (1988) by using heuristic models to understand the nature of the
observed orbits, by considering motion out of the orbital plane, by illustrating the
shape of the volume filled by particles on stable orbits, by showing how results
can be scaled to other asteroids, and by placing the problem in the context of
modern ideas on chaos (¢f. Chauvineau and Mignard 1990a,b; Murison 1989b).

2.2 Equation of otion

We use two non-inertial coordinate systems (Fig. 2.1), each with its origin on
the asteroid which itself orbits the Sun: non-rotating coordinates that keep their
axes fixed with respect to the distant stars, and rotating coordinates that maintain
their axes fixed relative to the Sun. In each, the asteroid’s orbit lies in the xy
plane. Because the orbits we consider are only weakly bound to the asteroid, solar
perturbation forces are relatively large and, accordingly, most paths are more
easily understood when viewed in a reference frame rotating with the asteroid’s
mean motion Qz around the Sun ((zyz),. in Fig. 2.1). The mean motion is
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Figure 2.1 Two non-inertial coordinate systems are shown as they follow the
asteroid on its circular orbit of radius A about the Sun. The zyz system stays
fixed in its angular orientation while the (zyz),. system rotates uniformly so that
the Sun always is at x,,;, = —A. In the non-rotating system the Sun is initially
at £ = — A and it moves with angular speed €2 around the asteroid in the plane
z = 0. In most integrations the particle starts along the Sun-asteroid line at
(x =d,y =0,z = 0) with a velocity in the non-rotating frame that would put it
on a circular orbit if the Sun were not present.
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a vector that points normal to the orbit (z is the unit vector in the positive z

direction) and has magnitude
GM;
Q= ASO, (2.1)

where G is the gravitational constant, A is the Sun-asteroid distance, and M is
the mass of the Sun. The acceleration of a particle orbiting the asteroid is then
approximately given by Hill’s equation (Szebehely 1967):

dt? r? A3
where r is the vector pointing from the asteroid to the particle, r is the corre-
sponding unit vector, v, is the particle’s velocity measured in the rotating frame,
and M, is the mass of the asteroid. The terms on the right side of Eq. (2.2) are
due to the asteroid’s direct gravity, the combination of solar tidal and centripetal
effects, and the Coriolis effect, respectively. Henceforth, the full second term will
be referred to as the “tidal” term. In the derivation of Eq. (2.2), we have ne-
glected quantities that are second order in r/A. These terms, if included, would
break the symmetry of the tidal term around the (yz),,; plane. We have observed
consequences of this broken symmetry in a few numerically integrated escape or-
bits, but do not judge it to be significant in estimating the trapped region or in
describing most orbits.

In order for the reader to gain insight into the trajectories to be shown later,
we now discuss some of the properties of the accelerations in Eq. (2.2). In these
descriptions we will call an orbit prograde if the particle’s angular velocity around
the asteroid is in the same sense as the asteroid’s angular velocity around the
Sun; for a retrograde orbit, the particle’s angular velocity is in the opposite sense.
Figure 2.2 is a sketch showing how the direction and magnitude of the various
accelerations change along a hypothetical orbit that is coplanar and oval-shaped
in the rotating frame. Notice that the accelerations all act in different directions:
the direct term always points toward the asteroid, the tidal term invariably aligns
parallel or antiparallel to the solar direction, and the Coriolis term is always
perpendicular to the orbit. Furthermore, the direct acceleration is inward and
thus acts to bind particles to the asteroid, while the tidal acceleration, which has
a component that points outward, acts to expel them from the system. Because
the Coriolis acceleration depends on the sign of the velocity, it points outward
for prograde orbits but inward for retrograde ones; thus the Coriolis acceleration
tends to stabilize the latter but disrupt the former.

Finally note that along the orbit the tidal acceleration increases with growing
separation distance, while all other accelerations decrease. Comparing the direc-
tions of the accelerations in the prograde and retrograde cases, we can already
see that retrograde orbits should be stable out to greater distances than prograde

& M M,
r_ GMa, G © (3%,0r — 2) — 2 X Vyor, (2.2)
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Figure 2.2 Sketches of the accelerations (magnitudes and directions) that are
experienced by a particle at various places along a coplanar oval orbit whose long
axis is aligned with the solar direction; the asteroid is at the origin. The direct
acceleration is caused by the asteroid’s gravitational attraction of the particle.
The “tidal” acceleration is due to the local imbalance between the Sun’s attraction
and that needed to cause the asteroid’s circular path (see Eq. 2.2). The sign of
the Coriolis acceleration depends on whether the particle moves in the same
(prograde) or opposite (retrograde) angular sense as the asteroid in its orbit
about the Sun.
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ones since in the former situation the Coriolis acceleration is inward while in the
latter it is outward. Numerical experiments support this statement as does na-
ture’s laboratory: the outermost moons of Jupiter and Saturn are on retrograde
orbits.

In order to quantify the radial dependences of the accelerations, they are
plotted in Fig. 2.3 as functions of distance from the asteroid for the special case
of a circular coplanar orbit. Recall that we’ve used Amphitrite as our model
asteroid (Table 2.1). To adjust the axes of this and all of the following plots to
your favorite asteroid, simply multiply distances measured in R4 by the factor
(p/2.38 gem—3)1/3(A/2.55 AU), where p is the new asteroid’s density and A is
its semimajor axis. The justification for this scaling will be presented in Section
2.3.3; we also note here that differences in asteroid orbital eccentricities cannot
be accommodated although we will have more to say about this in Chapter 3.

All of the curves plotted in Fig. 2.3 are normalized by the local direct accelera-
tion of the asteroid’s gravity. Since the strength of the tidal acceleration depends
on azimuthal position (see Fig. 2.2), it varies along even a circular orbit and thus
here we plot its maximum value. The total accelerations for prograde [curve P]
and retrograde [curve R] orbits, as plotted in Fig. 2.3, were obtained by taking
the various terms and simply adding them; even though this addition ignores the
vector character of these accelerations, we believe that it is instructive.

In the limit of small separations (i.e., on the left side of Fig. 2.3), the per-
turbation accelerations [curves C(P), C(R), and T] tend to zero, and thus both
prograde and retrograde orbits approach the two-body solutions: circles and el-
lipses about the asteroid. Accordingly, the curves of Fig. 2.3 are most applicable
in this inner region, since only there do circular orbits actually exist. Nevertheless,
the curves provide useful guides for estimating magnitudes in more complicated
situations. Of course, care must be exercised in their application, especially when
estimating the magnitude of the Coriolis acceleration which, due to its velocity
dependence, will vary substantially with the actual path taken.

Both the restricted three-body problem and Hill’s problem admit an integral
of the motion that can be derived by integrating, over time, the scalar product of
Eq. (2.2) with the velocity v,,. Chauvineau and Mignard’s (1990a) expression
for this Jacobi integral can be generalized to three dimensions as

2G M4y
r

U72'ot - Q2(3$2 - Z2) -

- C, (2.3)

where C is the Jacobi constant and r = (22 + y? + 22)!/2. The three terms on
the right of Eq. (2.3) are the kinetic, “tidal,” and direct terms respectively. This
Jacobi constant is conserved in a rotating frame centered on the asteroid and is
related to the more usually defined Jacobi constant (see Szebehely 1967) which is
conserved in a rotating frame centered on the Sun. Subsequently we will give the
quantity “—C/2” the name “energy” to distinguish it from the heliocentric energy
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Figure 2.3 The various accelerations acting on a particle as it moves along a
circular coplanar orbit about the asteroid are plotted versus separation from the
asteroid; all accelerations are normalized to G, the local gravitational attraction of
the asteroid, which decreases as the inverse square of the separation. The various
perturbations, shown dotted, are all zero for orbits atop the asteroid (i.e., at
zero separation); T is the maximum “tidal” term, C(P) is the prograde Coriolis
acceleration and C(R) is the retrograde Coriolis acceleration. P and R are the
total perturbations that act on prograde and retrograde particles, respectively,
ignoring the vector nature of the actual forces.
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(energy of a body orbiting the Sun) and the two-body energy (energy of a body
orbiting the asteroid if the Sun were not present). Since a particle’s velocity must
always remain real, and since C' is fixed uniquely by initial conditions (position
and speed), Eq. (2.3) restricts the motion of any particle to lie within those
regions of space where the following inequality is satisfied:

2G My

Q*(32% — 2%) +
r

> C. (2.4)

The lines along which the velocity is zero (i.e., those places where the left-hand
side of Eq. 2.4 equals C) are called zero-velocity or Hill curves. An escape criterion
that can been invoked is that whenever, for given initial conditions, a particle lies
within a zero-velocity surface that is closed about the asteroid, the particle cannot
escape that region. Of course the converse does not hold: there is no guarantee
that, just because the Hill curve is open, the particle will necessarily escape in a
finite time. Diagrams of zero-velocity curves can be found in many basic celestial
mechanics texts (e.g., Danby 1988); particularly nice three-dimensional views
are given in Lundberg et al. (1985). The distance to the positions along the
Z,ro-axis at which the zero-velocity surface first opens can be computed to be
rg = (u/3)Y/3A for Hill's problem (Danby 1988). These points are two of the
three co-linear Lagrange points (the other is on the far side of the Sun) and their
distance from the asteroid defines the radius of the Hill sphere (see Table 2.1).
The co-linear Lagrange points are unstable equilibrium points; a particle placed
with zero velocity in one of these positions will remain there forever, but particles
starting arbitrarily close will depart the neighborhood.

2.3 General Re arks on t e Solution

2.3.1 Integrations

Our numerical integrations call upon an efficient integrator that utilizes both
the Bulirsch-Stoer and Runge-Kutta methods (Press et al. 1987). The routine
takes advantage of the speed of the Bulirsch-Stoer technique, falling back on
the Runge-Kutta scheme during close approaches between the two bodies (cf.
Murison 1989a).

In our integrations the particle was generally started along the Sun-asteroid
line, on the far side of the minor planet (Fig. 2.1). It was usually given a velocity
that would place it on a circular orbit around the asteroid if perturbations from
the Sun were absent. In many simulations the plane of the particle’s orbit was
given an initial inclination ¢ with respect to the plane of the asteroid’s orbit. The
inclination is positive to the heliocentric north, and reaches 180° for a purely
retrograde orbit. With these initial conditions, the ones used most frequently,
the only degrees of freedom are the initial separation distance and the initial



16

inclination. We also explored other initial conditions for the particle (i.e., a
spectrum of starting longitudes, different launch speeds, and arbitrarily-directed
initial velocity vectors) to assess the generality of our results.

2.3.2 Nature of Orbits

Since the relative strengths of the various perturbations change with separa-
tion (Fig. 2.3), orbits may have quite different characteristics depending on their
distances from the asteroid (Chauvineau and Mignard 1990a). Within a few
asteroidal radii, orbits are simple Keplerian ellipses since the asteroid’s gravity
dominates all perturbations (see Fig. 2.3 and the earlier discussion). Farther out,
perturbations become large enough to induce orbital planes and pericenters to
precess noticeably, although the orbits retain their basic Keplerian nature. As
the distance is increased still further we come to a region in which quasiperiodic
stable orbits are intermingled with chaotic paths. An orbit is quasiperiodic if it
contains only a finite number of incommensurate frequencies. In many of our ex-
periments, the period corresponding to the particle’s dominant frequency is seen
to be commensurate with the asteroid’s orbital period; such a commensurate
“locking” between the forcing frequency and the natural response of a system is
a common feature of nonlinear systems (Guckenheimer and Holmes 1983).

This quasiperiodic/chaotic zone gradually gives way to the realm of escape
orbits which we define as those trajectories that depart the vicinity of the aster-
oid, but the division between these regions is not clearly defined; in fact, in the
circular restricted three-body problem the boundary between these regions is self-
similar in a fractal-like manner (Murison 1989b). In an area where escape orbits
predominate, isolated “islands” of stable quasiperiodic orbits can occur (Chau-
vineau and Mignard 1990a). And, likewise, in regions where mostly quasiperiodic
orbits exist, a few escape orbits can be found. Although the regions are not en-
tirely disconnected, we observe that beyond a certain “stability boundary,” the
number of stable orbits drops very sharply. Our goal in this chapter is to under-
stand the shape of this boundary that separates orbits bound to the asteroid from
those that escape its influence. Since chaotic orbits are prevalent in the transi-
tion zone, our results for the size of the stability zone are probably conservative:
longer integrations would have shown additional escapes (Wisdom 1982). But, to
a first approximation, we can determine the locus of points forming the stability
boundary by looking at the outermost regions where the majority of orbits are
stable. Chaos necessarily permeates these outer regions, since a particle’s fate
certainly depends sensitively on initial conditions (Murison 1989b).

Since the results of Chauvineau and Mignard (1990a), which follow on the
pioneering study of Hénon (1970), are so relevant to our findings, they will be
summarized here. These authors use the surface-of-section technique to study
the stability of motions in Hill’s problem. They find that, for prograde orbits
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that have a Jacobi constant much greater than the critical value at which the
Hill curves no longer enclose the asteroid, the motions are regular: trajectories
are nearly periodic, and stable. Employing non-dimensional units, in which the
gravitational constant, the asteroid’s mean motion, and its Hill radius are set to
unity (G = 1,9 = 1, and ry = 1; these choices set M4 = 3), the critical Jacobi
constant occurs at C' = 9. At values somewhat above 9 (from 9.2 to 9.3604 to
be precise), the topological structure of the mapping is such that new periodic
orbits are introduced as C' is lowered; more and more of these periodic islands
appear as C' = 9.2 is approached and the regularity of the mapping is lost.
At 9.2 and below, chaotic trajectories appear in parts of the mapping. These
ergodic regions tend to fill up more and more of the phase space until, with C'
near 9, little of the surface of section is populated with periodic islands; instead
virtually all is a sea of chaos. Note that up to this point, since all the zero-
velocity curves corresponding to C' > 9 encircle the asteroid, the motions are
bounded with the particles remaining about the asteroid, albeit moving along
chaotic paths. However, once the Jacobi constant falls below 9, suddenly the
ergodic region becomes connected with external parts of the phase space. That
is, however, not to say that all particles will necessarily escape in a finite time,
merely that it is energetically possible for particles with C' < 9 to find their way
through the ergodic region and escape. Some regular direct orbits do exist for
8.88 < C' < 9.00, although they cover little of the available phase space. For
retrograde orbits Chauvineau and Mignard (1990a) find quite different results.
With C >> 9 the mapping is usually regular and, as in the prograde case, chaos
appears when C' is a bit larger than 9. The striking difference is that many
regular retrograde orbits are seen to persist for values of C well below the critical
value, unlike the prograde situation. For completeness, we note that there are
also a small number of pathological orbits that oscillate between the direct and
retrograde states.

To help the reader connect the results of Chauvineau and Mignard (1990a)
to the trajectories that we will be plotting later, we now show that a one-to-
one correspondence exists between our usual initial conditions and the Jacobi
constant. Recall that we start a particle at (d, 0, 0), with a velocity that is inclined
at an angle ¢ from the zy plane and whose speed in the non-rotating frame is
(GM4/d)'/?. From Eq. (2.3) the Jacobi constant for this initial condition is:

2GM 4

M\ 1/2 2 M
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(2.5)
Figure 2.4 is a plot of C versus the starting distance d for various inclinations

1; the plotted Jacobi constant is given in the non-dimensional units used by
Chauvineau and Mignard (1990a).
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Figure 2.4 The Jacobi constant, in non-dimensional units (G = 1,Q = 1,ry = 1),
is plotted for the family of orbits studied in this chapter. These orbits are initially
circular, are started from the positive z-axis, and are inclined by an angle i with
respect to the zy plane. The critical Jacobi constant (C' = 9) is also plotted. If
the Jacobi constant of a particular orbit lies above the critical line, that particle
is bound to the asteroid for all time. If, however, it lies below the critical line,
the particle is energetically able to escape, although it is not required to do so.
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2.3.3 Scaling to Other Asteroids

Even though most of our simulations considered a specific case (1 = 5x 10~ '? and
A = 2.55AU), we can apply our results to other asteroids with different semi-
major axes and mass ratios. Consider a system of N gravitationally interacting
bodies viewed from an inertial frame. All forces in the system are gravitational,
so the strength of each interaction varies as the inverse square of distance. In
particular, if all distances are multiplied by a factor (, the forces retain their
directions and are reduced by ¢2. One can then rescale time so that the resulting
system of differential equations is identical to the original set: therefore, as long
as the initial velocities are also appropriately modified, identical orbital paths
will result. So, for example, if the asteroid’s distance from the Sun is doubled,
particle orbits around the asteroid will have the same shape as in the original
case if starting distances from the asteroid are doubled and velocities are reduced
by a factor of 2'/2. Thus, the orbits scale with the asteroid’s semimajor axis A.

Employing similar ideas to a change in the asteroid’s mass, we find that the
orbit scales with u'/3 for the case of the three-body Hill problem with the asteroid-
particle distance much less than the distances to the Sun. This approximation
is well satisfied for the motion of bound satellites of asteroids. For the distant
satellites of the jovian planets, however, higher-order terms in the mass ratio u
are important and the scaling law is less valid. When combined, the distance
and mass scaling laws imply the powerful assertion that for each orbit existing
around one asteroid, a corresponding orbit, differing only in absolute size, exists
around a second asteroid provided that the two asteroids have the same orbital
eccentricity. The ratio of the sizes of the two orbits is equal to the ratio of the
radii of their respective Hill spheres: 7y = (u/3)'/3A. If the sizes are measured
in asteroid radii, as in our plots, they scale as p'/3A. In particular the orbital
stability zone, which is the union of all stable orbits, scales as this ratio. The
sizes of the Hill spheres of Amphitrite and Gaspra are listed in Table 2.1.

At any rate, it is clear that Hill sphere scaling differs from ;?/°A, the size of
the sphere of influence, that has been used by some mission planners to estimate
the region within which material could be stably trapped. We recall that the
sphere of influence is defined as that surface along which it is equally valid to
consider the motion of the particle relative to the Sun with the asteroid as a
perturber as it is to consider the motion of the particle relative to the asteroid
with the Sun as a perturber (Roy 1978). That is to say, the sphere of influence is
the locus of points where the ratios of the perturbing forces to the direct forces in
the two cases are equal. This sphere lies within the Hill sphere for p < 0.004 but
the difference only becomes significant (Chebotarev 1964) when p is very small,
as in the case under consideration here. Amphitrite’s sphere of influence has a
radius of 115R 4.

As an example of scaling, we consider orbits about Galileo’s target asteroid
951 Gaspra. To apply our Amphitrite plots given below to an asteroid with
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Gaspra’s parameters, but zero orbital eccentricity, distances measured in asteroid
radii should simply be multiplied by the ratio of the semimajor axes, namely
2.20/2.55=0.86 (Table 2.1).

2.4 Analytic scape riteria

Many estimates of analytical escape criteria for circular orbits have been made;
most follow either from considering the Jacobi constant that will open the zero-
velocity curves or from equating forces in a rotating frame (see Fig. 2.3). Szebe-
hely (1978) has used the former method to predict that circular orbits will escape
when they are beyond rg /3. Markellos and Roy (1981) refined Szebehely’s treat-
ment by including all of the terms in the Jacobi equation (Eq. 2.5 with ¢ = 0°
and i = 180°) to derive critical distances of ~ 0.49ry for prograde circular orbits
and ~ 0.28ry for retrograde circular orbits (see Fig. 2.4). These distances are
lower limits for escape; particles starting on circular orbits within these distances
are constrained by closed zero-velocity surfaces that encircle the asteroid. Our
numerical results for initially circular orbits are ~ 0.49ry for prograde orbits and
~ ry for retrograde ones (see Section 2.6.1). The agreement of the prograde
results is impressive, while that of the retrograde results is appalling. But there
is a simple explanation: the method outlined above ignores the influence of the
Coriolis acceleration on the particle since the scalar product of the Coriolis term
in Eq. (2.2) with v, is zero. The effect of this omission is abundantly clear in the
results of Markellos and Roy which predict that retrograde orbits are less stable
than prograde ones, even though the directions of prograde and retrograde Cori-
olis accelerations imply the converse (see Fig. 2.2). In fact, we find that prograde
orbits slip away as soon as escape is energetically possible, pushed outward by
the omitted Coriolis acceleration, while retrograde orbits linger, held in by this
acceleration.

Equating forces in a rotating reference frame was originally applied by King
(1962) who showed that direct gravity balances the “tidal” force along the -
axis at a distance rg. Innanen (1979) added the effects of the Coriolis force to
obtain limiting radii for prograde and retrograde orbits of 0.69ry and 1.44rg,
respectively. This work contains a subtle error which involves the translation of
the particle’s velocity into the rotating frame; after correction of this mistake,
we find that the limiting radii calculated via Innanen’s method should be 0.80ry
and 2.60ry, respectively (these distances are the points where the normalized
force curves P and R attain a value of zero in Fig. 2.3). This method shows that
retrograde orbits are stable out to much greater distances than prograde ones,
but gives poor agreement with numerical results (see the discussion of Fig. 2.3
for an explanation of why this method gives poor predictions).

Various arguments (see, e.g., Keenan and Innanen 1975) have been given for
the reason why retrograde orbits are so much more stable than prograde ones, but
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one that we find especially appealing relies on the nature of epicycles, the paths
of particles on elliptical orbits as seen from a coordinate system that moves at the
mean orbital rate; epicyclic motions are retrograde and, for small eccentricities,
take place along a 2:1 ellipse aligned with the long axis in the direction of the
orbital motion. That is to say, if a particle were at a great separation from the
asteroid such that it felt virtually no attraction to the asteroid but it had an
elliptical path of the same semimajor axis as the asteroid’s, it would be observed
in the rotating system to travel along a retrograde path (see Chauvineau and
Mignard 1990a). In a very real sense the retrograde motion is preferred whereas
prograde motion must be forced.

2.5 In ivi ual xa ples

2.5.1 Coplanar Trapped Orbits

Our numerical experiments for the Amphitrite case show that all trajectories that
start as circular prograde orbits within ~ 224R4 (C = 9.0000) are bound, while
most of those outside this range escape from the asteroid. Since we are concerned
with the outer limit where material can still be retained by the asteroid, we show
an orbit (Fig. 2.5) that is close to the stability limit, namely one that was initially
circular at 221R4 (C' = 9.0505). The displayed orbit, is quasiperiodic with two
dominant frequencies: one is the inverse of the synodic period and the other is
about eight times slower. The regular appearance of this orbit in the rotating
frame is due to the fact that the two dominant frequencies are close to a ratio of
integers. Relevant timescales are the asteroid’s orbital period (4.08 Earth years),
and the sidereal period of an unperturbed satellite at 221R4 (0.80 years). The
unit of time in this and the following plots is taken to be an asteroid year (the
period of the asteroid’s orbit around the Sun).

We can qualitatively understand the orbital evolution of Fig. 2.5 by consid-
ering the acceleration (Eq. 2.1) along an initially circular orbit. At first, the
path is elongated into an elliptical shape by the action of the tidal term since
the Coriolis term does not change a circular orbit (an orbit that is circular in the
sidereal frame will also be circular in the synodic frame; the Coriolis acceleration
in this simple case merely accounts for the difference in orbital velocity measured
in the two frames). As the orbit elongates and is flattened further, the Coriolis
acceleration becomes increasingly asymmetrical (see Fig. 2.2); the strengthened
Coriolis acceleration near pericenter enhances radial accelerations there whereas
the corresponding acceleration is diminished near apocenter (Fig. 2.3). In fact,
the direction of the Coriolis acceleration near apocenter can switch sign if the ec-
centricity is high enough (remember that it is the velocity in the rotating frame
that appears in Eq. 2.1); although such a reversal does not occur in any of the
planar orbits displayed in this chapter, we have noticed it in other integrations.
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Figure 2.5 The path of a particle started on a prograde coplanar circular orbit
at 221R4 (C' = 9.0505) as seen in the rotating coordinate system. The asteroid’s
position is given by an x; the particle’s initial location by the small triangle with
one point showing the direction of the initial velocity; and the particle’s location
at the end of the integration by the solid square. The Sun lies out the negative
Troe-axis throughout the integration. The heavy line shows the zero-velocity curve
specified by the initial conditions (see Eq. 2.4) and the stars show the positions
of the nearby Lagrange points (and accordingly the size of the Hill sphere).
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Now the fact that the Coriolis acceleration near apocenter is less than that neces-
sary to maintain a circular orbit allows local gravity to more effectively compete
with the tidal force. This competition is most apparent in highly-eccentric orbits
where the apocenter end of the ellipse appears to be flattened (Fig. 2.5). The
asymmetry of the Coriolis acceleration acts to circularize the orbit, and eventually
it dominates the elongating effect of the tidal force. In the example under discus-
sion, this occurs after the third synodic period. The elongation slows, stops, and
reverses itself. The orbit then becomes more circular until the tidal force again
dominates the Coriolis force and the process repeats. The period of this cycle is
eight times the synodic period as was mentioned above.

The entire orbital path of the prograde satellite shown in Fig. 2.5 lies well
within the zero-velocity curve, defined by Eq. (2.4), that corresponds to the
initial conditions. This occurs because a significant fraction of the “energy”
in the Jacobi integral remains in kinetic “energy”. It is apparent from the zero-
velocity curve that the specified starting conditions have too little initial “energy”
to allow escape.

The dynamical history of an orbiting particle can be described in terms of its
initial position and velocity or, equally well, in terms of its four osculating orbital
elements for a two-dimensional problem (Danby 1988). The osculating orbital
elements for a bound orbit are defined to be those that describe the ellipse that
the particle would follow if all perturbations were turned off. These elements,
which we define in the non-rotating frame, change with time as perturbations
cause the particle to deviate from true elliptical motion. Of the orbital elements,
the orbital semimajor axis a is the most significant when addressing escape since
the size of the orbit, 2a, formally becomes infinite and then attains negative
values as the particle goes through the escape process. The time histories of the
osculating orbital elements that describe the path about the asteroid shown in
Fig. 2.5 are displayed in Fig. 2.6. Here the periodic nature of the solution is
clearly visible. We note that the semimajor axis vs. time curve has local extrema
near the points where the orbit crosses the z,,; and y,,; axes. This feature arises
because orbital energy is directly related to the semimajor axis (Burns 1976) and
because the work done by the tidal force changes sign in each quadrant of the
(zy)rot plane. In general, the work done by the tidal force will change sign four
times in a single orbit, although this need not occur at the points where the orbit
crosses the axes.

In the next example (Fig. 2.7), the particle starts along a retrograde circular
orbit twice as large as the first example; it begins at x,,; = 445R A, Yrot = 0 (C' =
1.5518), very close to the transition between bound and unbound retrograde
orbits. The unperturbed sidereal orbital period is about 2.3 Earth years or nearly
4/7 of an asteroid year. As in the prograde case, quasiperiodic retrograde orbits
are also common; this one has two major frequencies that are not quite a ratio of
integers as can be seen in Fig. 2.8 which presents the histories of the osculating
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Figure 2.6 The time history of the orbit shown in Fig. 2.5. Plotted are the
particle’s osculating orbital semimajor axis a, orbital eccentricity e, and orbital
radius r as functions of time in asteroid years. The orbit is most perturbed when
it is farthest from the asteroid. It is bound and almost periodic.
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Figure 2.7 The path of a particle started on a retrograde coplanar circular orbit
at 445R4 (C = 1.5518) as observed in the rotating coordinate system. See
Fig. 2.5’s caption for a description of the symbols. The orbit is bound and has a
very regular appearance.
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orbital elements a and e. For this retrograde orbit, the zero-velocity curves do
not constrain the motion (Chauvineau and Mignard 1990a) since, as a result of
the small C' (due to the large apparent velocity of a retrograde orbit as measured
in the rotating frame), the curves do not enclose the asteroid. Nevertheless, the
particle is obviously bound; indeed we note that it is strongly influenced by the
asteroid since its orbital shape is not the 2:1 ellipse that would be characteristic
of heliocentric epicyclic motion.

To analyze the particle’s motion, consider the perturbing effects of the tidal
and Coriolis terms on a circular orbit (see Fig. 2.9 which shows the first three
loops about the asteroid of Fig. 2.7). Initially the tidal term dominates, since the
Coriolis acceleration does not change the shape of a circular orbit. This pushes
the particle in the x,,; direction (arc AB) which displaces the orbit as a whole to
the right (positive x,.;). When the particle moves to the left side of the asteroid,
it is much closer to the asteroid due to this displacement (arc BC). Thus at point
C the tidal term, being proportional to z,, (see Fig. 2.2) , is smaller than it was
at A. Hence the total contribution of the tidal force along BC is smaller than
the integrated effect along AB, resulting in a net displacement of the orbit to the
right. In addition, the Coriolis acceleration, which is stronger over arc BC than
over arc AB due to a larger velocity, dominates the weakening tidal force. The
particle then swings around the asteroid (arc CD), mostly under the influence of
the asteroid’s gravity, and out to large r where Monsieur Coriolis starts to tug
it to the left (arc DB). The tidal force switches sign again, and pulls the particle
outward along arc BE to the point E, where it has roughly the negative of its
initial velocity and position: the cycle repeats.

2.5.2 Coplanar Escape Orbits

Figures 2.10 and 2.11 show planar escape orbits that have initial conditions that
are close to the bound orbits of Figs. 2.5 and 2.7; thus all of these orbits lie
near the stability boundary. In those cases where escape is marginal (such as
all those discussed here), the direction of escape is always near the Sun-asteroid
line because the outwardly directed tidal term is maximum there (Fig. 2.2). This
result, which remains valid even for inclined orbits, can also be understood readily
from the zero-velocity surface which opens first along the Sun-asteroid line (see
Fig. 2.10). Of course, with large enough initial “energy” (or, equivalently, small
enough C' for the zero-velocity curves to be wide open), objects can escape in any
direction, but in all of the cases that concern us, objects depart from the asteroid
with little extra energy because the particle is initially bound (i.e., its energy
in the two-body system composed of the asteroid and the particle is initially
negative) and the perturbation forces can modify this energy only slowly. In fact,
the Coriolis acceleration, being perpendicular to the orbital velocity, can do no
work and thus does not alter the orbital energy at all.
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Figure 2.8 The time history of some osculating orbital elements for the retrograde
orbit displayed in Fig. 2.7.
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Figure 2.9 The first few loops of the orbit shown in Fig. 2.7. The letters on
the path are used in the text to describe various arcs along which particular
accelerations dominate the motion.
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Figure 2.10 The trajectory of a coplanar prograde particle that escapes after
starting on a circular orbit at 227.25R4 (C=8.9423). The symbols are defined in
Fig. 2.5’s caption. Note that, in contrast to Fig. 2.5, the initial conditions here
are such that the zero-velocity curve is open to heliocentric space and the parti-
cle, after bouncing chaotically around within the zero-velocity bottle, eventually
slips out the neck to move along an elliptic heliocentric orbit having properties
described in the text.
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Figure 2.11 The trajectory of a coplanar retrograde particle that escapes after
starting on a circular orbit at 450R4 (C=1.5421). See Fig. 2.5’s caption for a
description of the symbols used. Note that on the last loop the path extends well
beyond the radius of the Hill sphere and that the particle transfers to a prograde
orbit before escaping. In this case, the transfer to a prograde orbit occurs in
both the rotating and non-rotating frames. The character of the escape path is
discussed in the text.
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Figure 2.10 shows a chaotic prograde orbit started at 227.25R4 (C = 8.9423)
that escapes inward toward the Sun. The fact that the zero-velocity surface
accurately delimits the accessible region of space is apparent. Note that since, by
definition, speeds must be zero on zero-velocity surfaces, particles approach the
surface perpendicular to it so as to form orbital cusps.

Because the asteroid’s orbit is circular, one can very simply calculate the pa-
rameters of the solar orbit that is attained by particles escaping from it. Since
the particle departs the asteroid with a very low velocity relative to the rotat-
ing frame, we can ignore this velocity as well as later influences of the asteroid
(since it is so small and so distant) when estimating the particle’s heliocentric
energy which determines directly the orbital semimajor axis of the particle in its
new path around the Sun (Burns 1976). The particle’s velocity in the rotating
frame is lowest near the inner Lagrange point (see Fig. 2.10), so at this point its
angular velocity about the Sun closely matches that of the asteroid. Making the
simplification that the particle starts from the inner Lagrange point with zero
velocity in the rotating frame, one can calculate the specific (i.e., per unit mass)
heliocentric kinetic energy of the particle Q%(A—rg)?/2, and its specific potential
energy, —GMy/(A — ry). Equating the sum of these two energies to the total
specific heliocentric energy, —GM/2A,, we find that the semimajor axis of the
particle’s new orbit about the Sun is A; = (A — 4ry). Since the particle’s initial
velocity in the non-rotating frame is perpendicular to the solar direction and the
particle initially falls toward the Sun, the Lagrange point must be aphelion of the
new solar orbit. Solving the equation for aphelion A (1 + E,) = A — ry yields
(to first order) an eccentricity of E, = 3rg/A. Since the escaped particle’s semi-
major axis is smaller than the asteroid’s, the particle’s orbital period is shorter,
so its path trails off to the upper left as viewed in the frame rotating with the
asteroid’s mean motion (Fig. 2.10). Alternatively the direction of departure can
be understood in the rotating frame by considering the effects of the Coriolis
acceleration.

Figure 2.11 shows a retrograde orbit starting at 450R4 (C = 1.5421) that be-
comes prograde just prior to escape. Arguments similar to those for the prograde
orbit can be used to find A; = A+ 4ry and E; = 3ry/A; thus the particle’s
escape path trails off to the lower right. Again, although it is not as clear as in
the prograde case, the point of lowest relative velocity occurs near a Lagrange
point.

2.5.3 Inclined Orbits

Figures 2.12 and 2.13, which are plotted in non-rotating coordinates, show orbits
with initial inclinations of 70°. Fig. 2.12, where the trajectory is seen as projected
onto the zz plane, displays an orbit that starts out roughly circular at a distance
of 230R 4 (C = 7.2747) but changes to an oval shape that becomes narrower and
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Figure 2.12 The trajectory of a particle started on a circular orbit at 230R 4
with an inclination of 70° as viewed in a projection onto the zz plane of the
non-rotating system (C=7.2747). The symbols are defined in Fig. 2.5’s caption.
This particle eventually escapes.
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Figure 2.13 An xz projection of a 50 year integration of a particle started on
a circular orbit at 250R4 with an initial inclination of 70° (C = 6.9306). This
particle, like many others on three-dimensional orbits with inclinations satisfying
60° < 7 < 120°, is seen to reach roughly the same z value regardless of z.
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narrower until, on the last loop, the direction of rotation actually reverses! When
viewed in three dimensions, the ellipse is tilted out of the asteroid’s orbital plane
by approximately 45° and the direction of its major axis is such that the latter’s
projection onto the orbital plane lies along the initial Sun-asteroid line. The
ellipse is not as narrow as it appears in this projection since it also extends in the
y direction. To lessen confusion in the diagram, we have elected not to show the
further evolution of the orbit but will describe it. The highly-eccentric orbit is
seen to broaden slowly until it is approximately circular. At this point, the cycle
begins to repeat with the circular orbit slowly becoming more eccentric, but after
a second close approach to the asteroid, the particle escapes. In many orbits (e.g.,
Fig. 2.13) this cycle continues without an escape. Each time the approximately
circular orbit begins to increase its eccentricity, the major axis of the new ellipse is
found to be tilted at ~ 45° from the zy plane and to lie along the re-oriented Sun-
asteroid line. The axis can be tilted either toward or away from the Sun, and can
lie either primarily above the zy plane or primarily below it due to the symmetry
of the tidal term. Fig. 2.13 shows an orbit started z = 250R4 (C' = 6.9306)
that was followed for ten circuits of the asteroid around the Sun. Notice that
the maximum z values attained by the orbit are approximately independent of x.
This characteristic, which was observed on many orbits started near the critical
distance with 60° < 7 < 120°, has an important influence on the shape of the
stability zone as described below.

In the depicted case, tidal perturbations alone must be responsible for the
motion since the results are plotted in non-rotating coordinates, where no Coriolis
term appears. The form of the tidal acceleration in the non-rotating frame is
0?(3%,0t — 1), which differs from the second term of Eq. (2.2) since that term
included the centrifugal acceleration of the rotating frame. In the following, we
lump the radial part of the tidal term in with the asteroid’s gravity, and consider
only the effects of the x,,; term. Consider a particle that would be on an elliptical
orbit primarily in the zz plane in the absence of perturbations (Fig. 2.14), and
ignore for the moment the fact that the Sun is not always along the z-axis. We
see that, starting from x = 0, the tidal perturbation pushes the particle to larger
values of x than would be experienced in a two-body problem. Because of this
added acceleration, the particle drops along an orbital path that brings it closer
to the asteroid than its unperturbed counterpart. Throughout the region of close
approach, the tidal force is negligible so that we can approximate the motion
there by the solution to the two-body problem. Hence, after one revolution,
the particle emerges on a more highly-eccentric ellipse, and the cycle repeats.
The outcome of the narrowing ellipse is either an impact with the asteroid or
a reversal of the direction of rotation (see Fig. 2.14). If the latter occurs, the
tidal acceleration operates in the opposite way to broaden the orbit out to a
circle where the whole process begins anew. Because of passage through many
of these very narrow ellipses, the probability for a particle on an orbit of this
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Figure 2.14 Effect of tidal forces on an inclined elliptical orbit. Notice that the
actual orbital path for a single revolution around the asteroid is displaced to the
right from where an unperturbed elliptical path would lie. This, of course, is due
to the tidal acceleration. The orbit shown is part of that in Fig. 2.12.
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type to impact the asteroid is very large. We note that the reverse of such an
impact orbit offers a mechanism by which material, blasted from the surface of
the asteroid by a collision, could be put into distant orbits.

The essence of this argument is unchanged when we take into account that
the Sun is not always along the z-axis as measured in the non-rotating frame.
Therefore, in general, the tidal acceleration contains both x and y components
that vary in time. Because the particle’s orbital motion remains primarily in
the zz plane, the direction of the tidal acceleration varies roughly sinusoidally
as this plane moves with the asteroid’s angular frequency around the Sun. Thus
generally the = component of the tidal acceleration dominates the y component
for the simple reason that the orbit never samples large y values. The argument
can be generalized for orbits whose motions are primarily in the z’'z plane where
x' is some linear combination of z and y. Orbits with inclinations in the range
60° < ¢ < 120° have their motions primarily in some z'z plane, and thus exhibit
this type of dynamical motion.

2.6 lobal Structure

2.6.1 Escape as a Function of Inclination

To explore the effects of orbital inclination on the stability of particles, we stud-
ied weakly bound orbits that began at various inclinations but otherwise chose
the same initial conditions for purposes of comparison. We define the critical
distance as the initial displacement within which most orbits remain bound, and
outside of which most escape. We find that the critical distance displays a strong
dependence on initial inclination. Naturally, because of the problem’s fractal-like
nature (Murison 1989b), occasional orbits within the critical distance escape,
while some others outside this distance are bound; in this sense the critical “dis-
tance” represents a very complex structure that cannot be truly represented by
a single line. The number of these exceptions, however, decreases rapidly as one
moves away from the transition region.

Figure 2.15 shows the results of almost seven hundred different integrations
in which the initial distance and initial inclination were varied in increments of
10R4 and 10° respectively. The diagram distinguishes between orbits that es-
cape, those that remain captured, and those that crash into the asteroid. Note
that the collision orbits occur predominantly for inclinations around 90° where
orbits undergo the hazardous “narrowing ellipse” motion described above. It is
apparent that there is a fairly crisp “boundary” between the bound and escape
orbits; this boundary is the critical distance. Most of the graph’s features can be
interpreted as due to the Coriolis acceleration. Taking a circular orbit for illustra-
tion, consider the radial part of the Coriolis term (i.e., toward or away from the
asteroid), which is proportional to cosi and which therefore attains its maximum
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Figure 2.15 The critical distance, which divides stable from unstable orbits, as a
function of initial inclination. All particles are injected on initially unperturbed
circular orbits along the Sun-asteroid line. A large solid dot signifies an orbit
that remains near the asteroid for at least 5 asteroid years, a small dot is an
orbit that escapes in less than this amount of time, and an open circle with a
dot inside is an orbit that strikes the asteroid. Note that orbits with ¢ > 90°,
particularly those that approach purely retrograde orbits, are stable out to much
greater distances than coplanar prograde paths (see text for discussion).
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inward and outward strengths at ¢ = 180° and ¢ = 0°, respectively. This predicts
the upward trend of the critical distance with inclination in Fig. 2.15.

We find a local minimum in the critical distance near ¢ = 90° confirming
previous results of Keenan (1981). This feature and the rough symmetry for
+ 30° around ¢ = 90° can be explained by abrupt inclination shifts that we have
observed in orbits with initial inclinations in the range 60° < 7 < 120°. We have
found that many escape orbits with inclinations ¢ in this range switch to orbits
with an inclination ~ 180° —1 via the narrowing ellipse process outlined in Section
2.5.3, and thus escape for both i and 180° — ¢ orbits can occur at the smaller
inclination where the Coriolis binding acceleration is weaker. Together, these two
effects predict the overall shape of Fig. 2.15. Non-radial Coriolis accelerations,
which are maximum near ¢ = 90°, may also influence the structure and exact
location of the minimum.

2.6.2 The “Stability Boundary”

Figure 2.16 illustrates the shape of the boundary within which stable orbits
lie. The surface represents the maximum 2z value attained by a particle as a
function of z,,; and y,., not for a single orbit, but for the union of nearly 1000
stable orbits lying within the critical distance in Fig. 2.15. The rare stable orbits
found in regions where unstable orbits predominate were not included (see prior
discussion of the fractal-like nature of the stability boundary and Fig. 2.15). The
output of our integration routines is a series of points in the rotating system
(Zrot, Yrot, 2) through which a given orbit passes. We divided the (zy),.; plane up
into a 20 x 20 grid of 60 km x 60 km squares and recorded the maximum 2z value
occurring above each square from the union of all of the points in each of the
stable orbits. The data were then interpolated out to an 80 x 80 grid to optimize
the viewing.

We also exploited two symmetries to quadruple the effective number of input
orbits to Fig. 2.16. It can be shown that the transformation of initial conditions
z — —2z,v, — —u,, results in an orbit that is the reflection of the original orbit
through the zy plane (see Eq. 2.2). This follows most simply from considerations
of the symmetry of the gravitational forces in an inertial frame centered on the
Sun. Thus each of our orbits has a mirror image through the (zy),, plane and
we can incorporate this image by taking not the maximum z, but the maximum
|z| attained. This effectively doubles the number of input orbits. Furthermore,
the transformation (r — —r,v,,; — —V,y) also yields identically shaped orbits
in Hill’s problem, so we can again double the number of input orbits. All told,
there are 4 x 239 ~ 1,000 separate initial conditions incorporated in Fig. 2.16,
each pertaining to an orbit that is stable for at least 5 asteroid years.

Fig. 2.16 shows that the stability surface is roughly flat on top with very
steep sides. The plateau region is at an average height of about 285R, above
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Figure 2.16 Plot of the upper half of the stability surface viewed from pitch=60°,
yaw=10°, and roll=0° as suggested by the reference cube. Note that the scale is
distorted due to the viewing angle. The flattened surface is at an approximate
altitude of z = 285R 4, and the surface drops off precipitously to the roughly
circular base region (r ~ 480R,). To determine this surface we took the exterior
envelope of the orbits of about 1000 particles that were started near the critical
distance but remained captured for 5 asteroid years. Thus, if pathological cases
are ignored, particles found within the surface are generally bound to the asteroid
while those outside are not. See the text’s discussion for more details about how
this figure was constructed. This figure clearly illustrates that stable orbits are
more closely confined in the polar region.
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the zy plane with the highest orbit rising to 307R 4 above the plane; its base is
roughly circular with a radius of about 480R 4. The flattened polar region arises
from the fact that maximum z values attained by orbits with 60° < ¢ < 120° are
roughly independent of x and y (see Fig. 2.12). The plotted surface is not based
on enough different orbits to validate comments on the second order structure
of the surface; in addition, we remind the reader that this surface pertains to
particular initial conditions, and thus the detailed shape may change somewhat
with different modes of injection.
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3.1 nalytic Treat ent

3.1.1 Equation of Motion

The study of orbital stability in Chapter 2 assumes an asteroid on a circular orbit
and although an exact scaling law can connect results for asteroids with different
masses and distances from the Sun, no such scaling to asteroids with other orbital
eccentricities is expected to be possible. Since many asteroids and comets are on
significantly elliptic orbits, this chapter will explore the consequences of non-zero
orbital eccentricity on the stability of circum-asteroidal orbits.

An asteroid on an elliptic orbit moves around the Sun at a non-uniform an-
gular rate which, written as a vector, is:

1

d GM, 2 1
Q= d—zz: “ois (14 Beosv)is, (3.1)
where R is the instantaneous distance from the Sun given by
A(l — E?
= 7( ) ; (3.2)
1+ Ecosv

and A, FE, and v are the asteroid’s semimajor axis, eccentricity and true anomaly,
respectively (see Fig. 3.1). Equation (3.1) reduces to Eq. (2.1) in the limit £ — 0.
The true anomaly v, which gives the angular location of the particle relative to
pericenter, is a periodic function of time; thus €2 and R also vary periodically. To
study orbits in the vicinity of the asteroid, it is desirable to work in a coordinate

LThis chapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stability
zones about asteroids II. The destabilizing effects of eccentric orbits and of solar radiation,
Icarus 96, 43-64 [copyright 1992 by Academic Press, Inc.]
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Figure 3.1 An eccentric orbit showing the definitions of some of the variables
used in the text. The Sun lies at one focus of the ellipse and the asteroid’s true
anomaly v is the angle between the asteroid and pericenter as seen from the Sun.
The instantaneous Sun-asteroid distance R is minimum at pericenter (v = 0)
where it attains the value A(1 — E).
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system centered on the asteroid and rotating with it at the instantaneous angular
velocity © around the Sun. We generalize Eq. (2.2) and find, to first-order in
r /R, the equation of motion for a particle in such a frame:

a2 r2 R3

2
T _ GMAf‘—i— GMo [(Bx—2z)+ Ecosv(x+y)+2Esinv(zy —yX)| — 28 X Vypr.

(3.3)
Recall that r = r# = x+y +z is the vector pointing from the asteroid to the par-
ticle, M, is the mass of the asteroid, and v,; is the particle’s velocity measured
in the rotating frame. We omit “rot” subscripts from position coordinates in this
chapter and the next since in these chapters we work exclusively in the rotating
frame. The velocity in the rotating frame is related to that in the non-rotating
frame by

Vot =V — (2 X 1) (3.4)

where v is the test particle’s velocity relative to non-rotating coordinates; its
magnitude for a circular orbit is simply (GM,/r)"/?. Taking E = 0 in Eq. (3.3),
we recover Hill’s equation (Eq. 2.2). The three terms in Eq. (3.3) without explicit
eccentricity dependence are the asteroid’s gravitational attraction, the “tidal ac-
celeration” and the Coriolis acceleration; these terms are discussed in greater
detail in Section 2.2. The new terms are only present for non-zero eccentricity
and so will be dubbed the “eccentric” terms in the discussion below. The term
with F cos v dependence is a correction to the centrifugal acceleration which arises
from the difference in the asteroid’s actual angular velocity from the angular ve-
locity it would have if it were on a circular orbit at the same distance. Near
pericenter, the asteroid’s angular velocity exceeds that which it would have on a
circular orbit (Eq. 3.1) and hence there is an enhanced centrifugal acceleration
away from the asteroid. Similarly, near the asteroid’s apocenter, the angular ve-
locity is significantly lower than it would be on a corresponding circular orbit;
consequently the “eccentric centrifugal acceleration” is inwardly directed.

The term proportional to E'sin v arises from the non-uniform rate of rotation
of the reference frame; it vanishes at pericenter and apocenter where the angular
acceleration (the time derivative of Eq. 3.1) is zero. This acceleration always lies
in the zy plane and is tangent to a circle surrounding the asteroid. In contrast to
the other accelerations discussed above, this acceleration can have a substantial
component directed parallel or antiparallel to the particle’s velocity; “energy” is
added to the orbit in the former case and removed from it in the latter. Since
the term has a sinv dependence, it causes “energy” to be added to prograde
orbits as the asteroid moves from apocenter to pericenter and removed during
the return to apocenter. Retrograde orbits lose “energy” as the asteroid drops
toward pericenter but regain it over the second half of the cycle. For many orbits,
there is little net change in the “energy” over the asteroid’s complete orbital



44

period. Nevertheless, acting over long times, we expect this acceleration to be
destabilizing since it produces behavior analogous to a random walk in orbital
“energy”. Those orbits whose orbital “energy” is increased may eventually be
driven to escape.

3.1.2 Hill Sphere at Pericenter Scaling

In this section, our goal is to find a simple analytic way to extend results obtained
for an asteroid with a given semimajor axis, eccentricity, and mass to a second
asteroid with different values of these quantities. In Hill’s problem when the as-
teroid’s eccentricity was zero, we found that such an extension was possible and
that distances scale like the radius of the asteroid’s Hill sphere rg = (u/3)'/3 A,
where = M4 /M, is the asteroid-Sun mass ratio. Thus, for example, if an inter-
esting orbit were discovered to exist around one asteroid with zero eccentricity,
an orbit with the same shape exists around all other asteroids which move on
circular paths. This follows from the fact that Hill’s problem in dimensionless
form is parameter free.

These ideas extend readily to the case when the asteroid has non-zero eccen-
tricity. To non-dimensionalize Eq. (3.3), we choose to measure distances in units
of the asteroid’s Hill radius and angular velocities in units of the asteroid’s mean
motion ng = (GMgy/A*)Y/2. With these choices and the definitions given in Egs.
(3.1) and (3.2), we can rewrite Eq. (3.3) as follows:

d? 3 1+ FE 3
d—TZ = _r_2f+ % [(3x —z) + Ecosv(x+y)+ 2Esinv(zy — yX)]
(1+ Ecosv)? . (1+ Ecosv)!

where 7 = ngt is the dimensionless time and v is the particle’s dimensionless ve-
locity measured in the non-rotating frame. Since the only parameter in Eq. (3.5)
is £/ (v is a function of time), it follows that with a given eccentricity, the equa-
tions of motion are identical for asteroids of different sizes and distances from
the Sun; changing these quantities only affect how we define the dimensionless
units. In short, since distances are measured in Hill radii, our results scale with
that distance. The more interesting question, however, is the following: How can
we scale results from one asteroid to another when the two have different orbital
eccentricities?

Clearly an exact scaling of results is impossible given the v dependence of
Eq. (3.5); accordingly we attempt to find an approximation valid for the orbits
that we are most interested in, namely those that narrowly avoid escaping from
the asteroid. Physical intuition and Eq. (3.5) show that the perturbation accel-
erations felt by an orbiting particle are maximum when the asteroid is near the
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pericenter of its orbit. In general, therefore, weakly bound particles have their
closest brush with escape during the asteroid’s pericenter passage and, given
slightly more “energy”, many of these particles would be expected to escape dur-
ing this time. If we are only interested in determining what will happen to the
system in the short term (a few orbits of the asteroid around the Sun), and are
only worried about marginal escapes, which occur near pericenter, then in some
sense we can ignore what happens over the rest of the orbit. Taking v = 0 in
Eq. (3.5), we claim that, apart from small differences in the centrifugal and Cori-
olis terms due to the faster angular velocity at pericenter, the result is just the
equation of motion for orbits around an asteroid with £’ = 0 and A’ = A(1—-E).
In other words, for the purposes of studying marginal escapes on short timescales,
an asteroid moving through its pericenter can be reasonably well approximated
by a second asteroid moving on a circular orbit at the pericenter distance of the
first. A similar tack is taken by Lecar et al. (1992) in quite a different context.

In order to justify this claim, we must show that the perturbation accelerations
arising from the asteroid’s faster angular velocity at pericenter are small compared
to the perturbations due to the asteroid’s closer distance to the Sun. Consider
first the “tidal” acceleration arising from solar tidal and centrifugal effects which
is given by the second term on the right side of Eq. (3.5). Evaluated at pericenter
(v = 0) this term becomes:

A Bx—z+ E(x+y)]
Tidal — (1 _ E)3

Expanding Eq. (3.6) in a Taylor series in E, we find the first-order term is given
by:

(3.6)

E[9x — 3z] + Ex +y], (3.7)

where the first term in brackets arises from the asteroid’s closer distance to the
Sun and the second comes from the increased angular velocity. The distance
terms are significantly larger, especially for particles along the x-axis where es-
cape invariably occurs. This remains true for higher-order terms in the Taylor
expansion although the magnitude of the difference decreases somewhat. Treat-
ing the Coriolis acceleration in the same manner, we find that at pericenter it
can be written in the form

1+ E]z 1+ F] ‘

2[1—E] Zxv 2[1_E]3(x+y), (3.8)
here the terms in the denominators arise from the asteroid’s closer distance to
the Sun while those in the numerators are due to the variation of the asteroid’s
velocity along its elliptic path. As in Eq. (3.7), we find the change in distance
is the dominant effect, accounting for 2 75% of the variance in the Coriolis
acceleration for all values of the eccentricity.

ACoriolis = —

el N|=
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Since the terms arising from the asteroid’s increased angular velocity at peri-
center are small compared to the terms owing to its location closer to the Sun, we
can — as a first approximation — ignore the velocity terms. A particle’s equation
of motion around an asteroid near pericenter is then identical to the equation of
motion of a particle around a second asteroid on a circular orbit at the pericenter
distance of the first. Furthermore, since the stability of weakly bound orbits is
put to the greatest test during the asteroid’s pericenter passage, the most impor-
tant factor determining escape is clearly how closely the asteroid approaches the
Sun. The synthesis of these results suggests that the size of the asteroid’s stabil-
ity zone is simply proportional to the asteroid’s pericenter distance. Combined
with the results for an asteroid on a circular orbit (Section 2.3.3), we have that
the size of an asteroid’s stability zone is roughly proportional to the size of the
Hill sphere calculated at the asteroid’s pericenter (~ (u/3)'/3A(1 — E)).

This is a very strong assertion. It states that, if we can ascertain the size of the
stability zone for one asteroid, we can estimate it for other asteroids with different
masses, semimajor axes and eccentricities. As noted in Section 2.3.3, scaling to
an asteroid with a different semimajor axis is mathematically exact and scaling to
an asteroid with a different mass only errs to the order of the asteroid-Sun mass
ratio which is entirely negligible. Thus any given orbit around one asteroid has a
counterpart around another asteroid with an identical shape if the eccentricities
of the two asteroids are the same. Since the stability surface is composed of
multiple orbits all of which scale in this way, it does too. We have now shown
that for orbits of short duration around asteroids with different eccentricities,
most (perhaps 70 - 80%) of the effects of eccentricity on the size of the stability
surface can be accounted for by scaling the surface as the Hill sphere calculated
at the asteroid’s pericenter. In the sections to follow, we use our £ = 0 results
(Fig. 2.15) to make predictions for asteroids with non-zero eccentricity and then
compare these predictions with actual numerical integrations. We also discuss the
validity of the approximations made for three special cases: prograde, retrograde
and ¢ = 90° orbits.

3.1.3 The Jacobi Integral

First, however, we digress slightly and consider the Jacobi integral which, after
all, is one of the most powerful results available for the circular restricted problem
of three bodies. In the circular case, the Jacobi integral allows the derivation of
zero-velocity curves (ZVCs) which place simple, but often useful, restrictions on
the portion of space accessible to particles starting with given initial conditions.
In Section 2.2, we applied these surfaces to an asteroid on a circular orbit; here
we examine the difficulties inherent in extending this analysis to asteroids on
eccentric orbits.

Attempting to obtain the Jacobi integral in the standard way, we first take
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the scalar product of Eq. (3.3) with v, to obtain

Voot Viot+ Gi\fAT" = G]]%\fca ((3z&—22)+E cosv(zi+yy)+2E sinv(zy—yi)|, (3.9)
where the Coriolis term has vanished since it is perpendicular to v,.;. The next
step is to integrate Eq. (3.9) over time. The terms on the left are directly inte-
grable, but those on the right, especially the last one, are more stubborn. These
right-hand terms are implicit functions of time through both the particle’s coor-
dinates and the asteroid’s true anomaly, and hence they cannot be integrated for
an unknown orbit. Thus we find a Catch-22: although a Jacobi integral exists for
the case where the primaries orbit along ellipses, it is not known how to express
the integral in a useful manner (Szebehely and Giacaglia 1964). That is to say, to
obtain useful information from the Jacobi integral, the trajectory of the particle
must be known but knowledge of the particle’s trajectory makes the information
contained in the integral redundant!

Once again, because we are mainly interested in orbits during the asteroid’s
pericenter passage, we look for a result that can be applied in that region. Taking
v = 0 in Eq. (3.9) eliminates the final term and allows the time integration to
be performed. Carrying out the integration and switching to slightly different
dimensionless units (GMy/r3 = 1, (u/3)"/*r, = 1, where r, = A(1 — E) is the
pericenter distance), we obtain:

6
C=-+32" -2+ E(x* +y°) — v (3.10)
r

rot*

This equation with v,,; = 0 determines the shape of the ZVCs instantaneously
at the asteroid’s pericenter. The application of Eq. (3.10) is approximate, and
even then strictly limited to a small time At near a single passage of an asteroid
through pericenter; similar conclusions are reached through more rigorous deriva-
tions (Szebehely and Giacaglia 1964, Ovenden and Roy 1961). If one attempts
to apply Eq. (3.10) to two successive pericenter passages, unmodeled effects such
as the final term in Eq. (3.9), acting in the interim might alter C, the Jacobi
“constant.” Fortunately, such modifications are usually small for short time peri-
ods, and we can normally apply Eq. (3.10) to orbits followed for a few pericenter
passages of the asteroid.

Comparing Eq. (3.10) to the equivalent expression for a circular orbit we find
that the two differ only by the excess centrifugal potential F(z? + y?). As an
illustration of the slight difference, we calculate the locations where the zero-
velocity surfaces surrounding the asteroid first open up. These positions occur
at saddle points of Eq. (3.10) (with v,,; = 0) which are also equilibrium points
of Eq. (3.3) (with » = 0). Setting the partial derivatives of Eq. (3.10) equal to
zero, we find that the openings of the ZVCs occur at the points (z = +2 i,y =
0,z = 0), where z.,;; and the corresponding Jacobi “constant” are given by:
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As the eccentricity is increased in Eq. (3.11), the opening of the zero-velocity
surfaces occurs closer to the asteroid; this can be qualitatively understood by
noting that the equilibrium points occur nearer the asteroid as a result of the
additional outwardly directed centrifugal acceleration at pericenter. For £ = 0,
we recover the more familiar results z,; = 1 and Cgyy = 9 (see Section 2.3.2
and Chauvineau and Mignard 1990a); while, conversely, taking the extreme case
E = 1, we obtain .4 ~ 0.91 and C.;; ~ 9.9, differences of only ~ 10%. We
conclude, as above, that the influence of the additional centrifugal acceleration

is minimal.

(3.11)

3.2 Integrations

3.2.1 General

Now that some intuition has been developed about the effect of the asteroid’s
orbital eccentricity, we will present the results of our numerical integrations. For
comparison purposes, we take the particle to have the same initial conditions
used in Chapter 2 (initially in the asteroid’s orbital plane on an initially cir-
cular orbit) and use an asteroid like Amphitrite (Table 2.1), but with different
orbital eccentricities. The addition of orbital eccentricity, however, complicates
matters by requiring the specification of two extra items, namely the eccentricity
of the orbit and the asteroid’s position along its orbit at the time the particle
is launched. The second of these complications has lesser significance since we
follow the test particle’s motion during the time it takes the asteroid to complete
five orbits around the Sun (& 20 years); thus usually the influence of different
starting positions should be minimal. For simplicity, therefore, we choose to
start the asteroid at the apocenter of its heliocentric orbit in all of the following
integrations. This choice should provide a stringent test of our neglect of the
“eccentric” terms in the above discussion since these terms are allowed to act for
some time before escape, which generally occurs during the pericenter passage,
is possible. Even with this reduction of the problem, a thorough exploration of
the three-dimensional phase space (asteroid’s eccentricity, particle’s inclination,
particle’s starting distance) would require approximately (10 eccentricities) x (20
inclinations) x (25 starting distances) = 5000 initial conditions. To reduce this
to a more manageable number we will take four two-dimensional slices through
this phase space, three at constant inclinations representing the three impor-
tant classes of orbits (prograde, retrograde, and highly-inclined), and one at the
measured eccentricity of the asteroid Gaspra (Table 2.1).
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3.2.2 Prograde Orbits

Prograde orbits provide the best test of the ideas presented above since, at least
in the circular case, particles on such orbits usually escape very quickly whenever
their ZVCs are open (see Fig 2.10). We might be tempted, therefore, to predict
that escapes will occur when the ZVC evaluated at the asteroid’s pericenter is
open, but before we can confidently make such a prediction, an additional factor
must be considered. Imagine that escape is energetically possible as the asteroid
nears pericenter, but the particle is located at a disadvantageous spot for escape
to occur, say 90° away from the Sun-asteroid line. Then to provide a fair chance
for escape, we must either require that the asteroid remain near pericenter long
enough for the particle to complete a reasonable fraction of one orbit around the
asteroid or, equivalently, we must integrate through multiple pericenter passages
so that many opportunities to escape arise, some of which will find the particle
in a favorable position. The prograde orbits with the longest periods are those
near the limits of stability; these have synodic periods that are about 1/4 of
the asteroid’s period if the minor planet is on a circular orbit. For an eccentric
asteroid orbit with the same semimajor axis, the stability zone is smaller and the
particles orbit even faster. Thus we expect that five pericenter passages of the
asteroid about the Sun should usually allow the particle ample opportunity to
escape.

Figure 3.2 shows the results of nearly two hundred orbital integrations carried
out for initially circular prograde orbits at a variety of distances from asteroids
with differing eccentricities. We treat the full range of possible eccentricities; the
low-to-moderate values are generally applicable to asteroids, while the larger are
more appropriate for comets. The boundary line extends the critical distance
found for ¢ = 0 orbits in Fig. 2.15 to asteroids with non-zero orbital eccentricity
using the scaling result of Section 3.1.2. The division plots as a straight line in the
(e, R4) coordinates used in Fig. 3.2 because the critical distance, like the size of
the stability zone, is proportional to the asteroid’s pericenter distance A(1 — E).
For these prograde orbits, the line also selects the initial condition correspond-
ing to the critical pericenter ZVC (ignoring the small eccentricity dependence
discussed in Section 3.1.3). Thus only particles with initial conditions above the
line have ZVCs that are instantaneously open near pericenter. It is apparent that
no orbits below the line escape; note, however, that this trapping is not neces-
sarily required by the argument of closed ZVCs because accelerations that were
ignored in developing these ZVCs can cause orbits to cross them. Nevertheless, as
we argued above, these accelerations should be small, so the fact that no escapes
are seen to occur from below the boundary is encouraging. Furthermore, there
is only a single bound orbit that lies significantly above the division. This lone
particle was never in the right place to get a boost from M. Coriolis at pericenter;
it would almost certainly escape with increased integration time.

The distribution of orbits that strike the asteroid in Fig. 3.2 displays an in-
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Figure 3.2 The orbital fate of nearly 200 particles on prograde orbits around
an asteroid at 2.55 AU. Each particle was given the velocity that would put it
on an initially circular path around the minor planet. A solid circle signifies a
particle that remains in the asteroid’s vicinity for at least twenty years, a small
dot corresponds to a grain that escapes into heliocentric space, while an open
circle with a dot inside represents a particle that strikes the asteroid’s surface.
The diagonal line is the predicted division between bound and escape orbits; its
derivation is based on scaling the Hill sphere at pericenter as developed in the
text.
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teresting regularity. All of these crash orbits are found above the division line
at which particles become unbound. The lack of crash orbits below the line is
consistent with the character of bound prograde and retrograde orbits which are
usually very regular in appearance and rarely display chaotic behavior (cf. Chau-
vineau and Mignard 1990a). However, as we will see presently, the separation of
bound and crash orbits observed here for prograde orbits is not a result that can
be extended to three-dimensional paths.

3.2.3 Inclined Orbits

Bound orbits with inclinations in the range 60° < ¢ < 120° have many similar
characteristics (Section 2.6.1); accordingly we choose i = 90° orbits as typical
examples of this class. The largest of these orbits is comparable to the largest
of the prograde orbits, so the maximum period for bound, inclined orbits is also
about 1/4 of an asteroid period. By the argument advanced above, five pericenter
passages of the asteroid about the Sun should be enough to allow most particles
that are destined to escape to be dislodged. But we have found that the opening
of the ZVCs is not a good indicator of escape for orbits with ¢ 2 30° since the
Coriolis acceleration for these orbits does not have the large radially outward
component characteristic of that for prograde orbits. We therefore discontinue
our use of critical ZVCs as an escape criterion, instead focusing on Hill sphere
scaling as described in Section 3.1.2 to connect our results for an asteroid on a
circular orbit to those with non-zero eccentricity.

The line in Fig. 3.3 shows the application of this scaling. It does remarkably
well, although not nearly as well as in the prograde case. The reason for this
is clear. A prograde orbit will almost always escape if the corresponding ZVC
is open, and will rarely escape if the ZVC is closed; this idea is reflected in the
sharpness of the empirical boundary seen in Fig. 3.2 (recall, however, that for
eccentric asteroids the ZVC is just an approximation). Inclined orbits, on the
other hand, are not so strictly constrained. Many remain at least temporarily
in the asteroid’s vicinity even if their ZVCs are wide open; hence the division
line between bound and unbound inclined orbits is “fuzzier” than the division in
the prograde case. Several bound orbits are located in the region dominated by
escape orbits and a few escape orbits are even found below the line in the region
where this criterion asserts that orbits should be bound. Notice also that crash
orbits are inextricably interwoven with both bound and escape paths. This result
is consistent with a similar one for the circular case where many inclined crash
orbits are found in the vicinity of the critical distance (Fig. 2.15). The ubiquity
of crash orbits under these circumstances is a direct consequence of the dynamics
of such orbits discussed in Section 2.5.3 in some detail.
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Figure 3.3 Same as Fig. 3.2 for initially circular orbits with inclination ¢ = 90°.
As in Fig. 3.2, the approximate theoretical division separating bound and es-
cape orbits matches the data quite impressively; the decrease of stability with
increasing eccentricity is very evident.
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3.2.4 Retrograde Orbits

The situation for retrograde paths about elliptically orbiting asteroids is not as
good as for the two cases discussed above for several reasons. First, since bound
retrograde orbits are relatively large, their periods are about four times the period
of the biggest prograde orbits; this implies that integrations of five asteroid years
may not be sufficiently long to explore the full dynamical range. In addition,
since these orbits are about twice the size of the ones considered previously, the
asteroid’s gravity is much weaker and the perturbations are significantly larger
(see Fig. 2.3). Consequently the unmodeled parts of these forces are more im-
portant for retrograde orbits than for either prograde or inclined ones. As an
example, the Coriolis acceleration pulls more strongly inward at the asteroid’s
pericenter for retrograde orbits than simple scaling would suggest and this aug-
ments the stability of these orbits around asteroids on eccentric paths. Finally
the point at which the ZVCs first open for retrograde orbits is only about 25% of
the distance to where escapes first occur assuming an asteroid on a circular orbit.
The constraint provided by the retrograde ZVCs, therefore, is almost useless (cf.
Section 2.5.1 and Chauvineau and Mignard 1990a).

Figure 3.4 shows our results for planar retrograde orbits. The scaling law that
worked so well for the prograde and inclined orbits clearly fails here: many bound
orbits are found above the line where the theory predicts only escape orbits. The
behavior is not even linear; notice the abrupt drop in stability that occurs for an
asteroid eccentricity of 0.7. This steep fall-off suggests that longer integrations
would lead to additional escapes, at least near this edge. Furthermore, the finger
of escape orbits extending into the bound orbits at a distance of about 300 asteroid
radii also hints that the bound orbits above the finger will escape given a few more
pericenter passages. But increasing the integration time will not solve all of the
problems encountered here. We recall the results of Zhang and Innanen (1988)
who, after tracking orbits for 1000 years, found that the critical distance for
initially circular retrograde orbits around asteroids with eccentricities of 0.0 and
0.07 were 445 and 358R 4, respectively. The E = 0 result agrees with our finding
for a 20 year integration; thus, scaling to the pericenter of an E = 0.07 orbit
(see Fig. 3.4), we would predict a critical distance of 410R 4, or about 15% larger
than the numerical result. Evidently the analysis of these retrograde orbits is
hampered by both insufficient integration times and inadequate approximations.

3.2.5 Gaspra

As a final test and an independent verification of the ideas addressed above, and
motivated by the destination of a certain spacecraft, we carried out a more thor-
ough investigation of the stability of orbits about an idealization of the asteroid
951 Gaspra. We use values for Amphitrite (Table 2.1) and Gaspra’s true eccentric-
ity £ = 0.17 to facilitate direct comparisons with our previous figures. Because
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Figure 3.4 Same as Fig. 3.2 for initially circular retrograde orbits. Note the
sparsity of orbits that strike the asteroid. For retrograde orbits, the calculated
bound-escape division disagrees with the data for reasons that are discussed in
the text (compare Figs. 3.2 and 3.3).



35

our integrations are for an object at 2.55 AU, the results need to be scaled for
application to the true Gaspra which orbits at 2.20 AU. Distances measured in
R 4, as the ordinates are in the following three figures, must therefore be reduced
by the ratio of the semimajor axes of the two asteroids.

Figure 3.5 shows the fate of particles as a function of their starting dis-
tance and initial inclination for an asteroid with Gaspra’s eccentricity of 0.17
(¢f. Fig. 2.15 which has E = 0). We estimate the critical distance by taking,
for each inclination column, the outermost bound orbit such that there are no
escape orbits below it; this procedure eliminates freak orbits such as the one at
(1 = 70° d = 470R4). The results, critical distance as a function of inclination,
are plotted in Fig. 3.6 along with similar results for an asteroid with £ = 0 (from
Fig. 2.15). The dotted line in Fig. 3.6 is the expected result for £ = 0.17 which
has been scaled from the £ = 0 data; comparing the predictions to the actual
integrations, we see that prograde and inclined orbits actually escape at distances
slightly less than predicted, but well within expected errors arising from the ne-
glected effects. In those regions of Fig. 3.5 where there are many crash orbits, the
division between bound and escape orbits is poorly constrained; this leads to a
“choppiness” in the critical distance which is observed in the £ = 0.17 data near
1 = 90° in Fig. 3.6. Unlike prograde and inclined orbits, retrograde ones exhibit
little loss of stability; once again suspicion falls on insufficient integration times.

To describe the volume in which bound material might be present about as-
teroids on circular heliocentric orbits, we used the “stability surface” (Fig. 2.16)
Note that its typical radius up to latitudes of 35° is nearly constant and is sig-
nificantly larger than its vertical dimension which is approximately constant for
latitudes greater than 35° (i.e., its shape is like a sphere with the poles sliced
off). Because polar orbits are less stable than retrograde ones for asteroids on
elliptic orbits as well as those on circular paths (Fig. 3.6), we anticipate a similar
morphology for the stability surface in the current case. Fig. 3.7 plots the largest
out-of-plane distance (z coordinate) from the union of all orbits with a given
starting inclination that lie within the critical distance; for comparison, we also
plot results for a circular asteroid orbit. We see that the maximum height to
which material around Gaspra can rise is only about 75% the value it would have
above an asteroid on a circular orbit. The dotted line in Fig. 3.7, the prediction
of direct Hill-sphere-scaling of results for £ = 0, suggests that the value should
be 83%. Clearly the correlation between the dotted line and the F = 0.17 data
is worse in Fig. 3.7 than it is in Fig. 3.6; this difference reflects changes in the
orbital evolution of the inclined orbits under accelerations ignored in our analysis.

These numerical experiments indicate that bound debris should not present
beyond about 200R4 above Gaspra’s orbital pole. We remind the reader that
our study has dealt only with the question of which orbits are stable and which
are unstable. To actually estimate the probability that a spacecraft might strike
something would require a knowledge of the population and loss mechanisms
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Figure 3.5 The fate of about 650 particles started at different inclinations for
an asteroid on an orbit with semimajor axis A = 2.55 AU and an eccentricity
E = 0.17; solid circles, open circles, and small dots correspond to bound orbits,
crash orbits, and escape orbits, respectively. Note the prevalence of impacts
for orbits with inclinations near 90 deg (cf. Fig. 2.15 and nearby text). We can
scale this plot for application to Gaspra (A = 2.20 AU and E = 0.17): since the
eccentricities of the two asteroids are identical, and differences in their masses are
accounted for by measuring distances in R 4, the ordinate need only be multiplied
by the ratio of the two semimajor axes, namely 2.20/2.55 = 0.86.
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Figure 3.6 Maximum starting distance for those initially circular orbits that
remained bound to the asteroid (for about 20 years) as a function of the orbiting
particle’s initial inclination. Data are plotted for two values of the asteroid’s
orbital eccentricity, £ = 0 and E = 0.17; in both cases A = 2.55. The dotted line
is the prediction for £ = 0.17 derived from scaling the F = 0 result with the Hill
sphere at pericenter. In this case the two semimajor axes are identical, so scaling
is accomplished by simply multiplying the £ = 0 results by 1 —0.17 = 0.83. The
plot clearly shows the erosion of the zone of stability caused by increasing the
asteroid’s orbital eccentricity.
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Figure 3.7 Maximum height above the asteroid’s orbital plane attained by the
particles from Fig. 3.6; as in that figure, the dotted line is the prediction for the
lower set of data obtained by scaling from the upper set. The data displayed
here show that as the asteroid’s eccentricity is increased, orbits that rise to large
heights above the orbital plane disappear faster than our simple scaling would
suggest.
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for circum-asteroidal orbits. Most discussions of debris sources (Weidenschilling
et al. 1989, Burns and Hamilton 1991) favor the likelihood that circum-asteroidal
debris, if any exists at all, will be produced much closer to the minor planet
than the distant orbits considered here. Thus our criterion is likely to be quite
conservative; that is, a spacecraft should be able to safely pass much closer to
the asteroid than the 200R4 quoted above. In the next chapter, we investigate
the effects of another perturbing acceleration that clears the circum-asteroidal
environment — solar radiation pressure.
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4.1 Intro uction

In Chapters 2 and 3 we discussed distant circum-asteroidal orbits that are strongly
perturbed by the solar tidal force. Because the direct gravitational acceleration
toward the asteroid is so weak in an absolute sense, radiative processes impart
non-trivial perturbations for particles smaller than a few centimeters across. The
spatial distribution of millimeter and centimeter-sized objects around an asteroid
is of considerable practical interest since impacts with such objects are lethal
to a swiftly-passing spacecraft. Accordingly, in this chapter we focus on the
orbital dynamics of radiatively perturbed particles and put limits on the extent
of circum-asteroidal debris in this size range.

The perturbations we consider arise from the absorption and subsequent re-
emission of solar photons and corpuscular radiation. Of the many forces (radia-
tion pressure, Poynting-Robertson drag, Yarkovsky effect, etc. - see the review
by Burns et al. 1979) that arise from this process, radiation pressure is by far
the strongest. Radiation pressure arises primarily from the absorption of the
momentum of solar photons and consequently is directed radially outward from
the Sun. The force’s strength is proportional to the solar flux density which has
the same inverse square radial dependence as the Sun’s gravity; hence radiation
pressure is usually written as a dimensionless quantity 3 times solar gravity. For
spherical particles that obey geometrical optics,

B =517x 10*5@, (4.1)

PgTg

IThis chapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stability
zones about asteroids II. The destabilizing effects of eccentric orbits and of solar radiation,
Icarus 96, 43-64 [copyright 1992 by Academic Press, Inc.]
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where r, and p, are the particle’s radius and density in cgs units and @, is
a constant whose value depends on the optical properties of the grain (Burns
et al. 1979). This result applies to particles larger than about a half-micron, the
wavelength of a photon at the peak of the solar spectrum. When a particle’s
characteristic size is similar to the wavelength of incident light, Mie scattering
occurs, ),y is no longer constant, and 8 becomes a complex function of particle
size. In contradiction to Eq. (4.1), which predicts that the strength of radiation
pressure will increase for smaller particles, it actually decreases (Burns et al.
1979) because most solar photons are in the visible and such photons interact
only weakly with very small grains. In the rest of this work, we will confine
ourselves to large grains that obey Eq. (4.1).

4.2 Heliocentric vs. ircu planetary Or its

The acceleration of an isolated particle on a heliocentric orbit is determined by
the sum of the inward force of solar gravity and the outward force of radiation
pressure, which can be combined into a single 1/r? force with magnitude (1 —
B) times solar gravity. The grain’s orbital dynamics is then identical to the
gravitational two-body problem with a reduced solar mass; if a particle’s size,
and hence its (3, is constant, its orbit will be a conic section. Only if the particle’s
[ changes abruptly, as when a small grain is ejected from a comet, or gradually
as in the case of a subliming grain, will its orbital evolution be non-trivial (Burns
et al. 1979). Radiation pressure, therefore, does not significantly alter the nature
of most heliocentric orbits and, accordingly, it has received scant attention in the
literature.

The situation is quite different for particles that orbit a planet rather than
the Sun (Milani et al. 1987); since the planet itself is essentially uninfluenced by
radiation pressure while small objects orbiting it may be, the problem cannot
be treated by simply reducing the mass of the Sun as in the case of heliocentric
orbits. Furthermore, the dominant forces are different in each problem; in the
case at hand, the important forces are the planet’s gravity and the solar tidal force
rather than direct solar gravity as in the heliocentric problem. In many situations,
therefore, radiation pressure produces stronger effects on circumplanetary orbits
than on solar orbits; we will show the truth of this statement when the “planet”
is actually a large asteroid with a radius of 100 km.

Since radiation pressure typically induces much smaller accelerations than the
asteroid’s gravity, an orbit-averaged perturbation technique is often appropriate.
This analysis, leading to a simplified set of differential equations describing the
evolution of the osculating orbital elements due to an external force which is
constant in magnitude and direction, has been carried out by Burns et al. (1979)
and Chamberlain (1979), among others. The semimajor axis of a circumplane-
tary orbit is found to be unchanged by radiation pressure. Burns et al. solved the
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planar system (i = 0) considering small eccentricity and weak radiation pressure,
assumptions applicable to most situations arising in the solar system. Their
solution was later extended to arbitrary eccentricities and moderate radiation
pressure by Mignard (1982). Both Burns et al. and Mignard find periodic oscil-
lations in the orbital eccentricity that, for weak radiation pressure, vary with the
planet’s orbital period. The solution to the full system with arbitrary inclination,
as derived by Mignard and Hénon (1984), involves complicated coordinate trans-
formations that render the study of an orbit with initial conditions expressed
in orbital elements impractical. The planar solution shows, however, that if ra-
diation pressure is sufficiently strong, it can induce eccentricities large enough
that particles are forced to crash into the asteroid (cf. Peale 1966, Allan and
Cook 1967). This mechanism, which provides the potential to efficiently remove
tightly bound material from circum-asteroidal orbits, will be discussed further in
the sections to follow.

4.3 Zero-Velocity urves

As we noted in Section 3.1.3 above, the existence of the Jacobi integral and its
associated zero-velocity curves proves to be useful in addressing the eventual fate
of loosely bound, prograde orbits. Accordingly, in this section we explore zero-
velocity curves derived with the inclusion of solar radiation pressure; as a first
approach to the problem and to avoid the difficulties encountered in Section 3.1.3,
we treat only the case of circular asteroid orbits. For circular orbits, we will find
that exact results exist; extending the results to eccentrically orbiting asteroids,
however, entails the same approximations discussed in Section 3.1.3.

The existence of a Jacobi integral for the restricted three-body problem with
radiation pressure is anticipated since radiation pressure in the rotating frame
can be derived from a time-independent potential. Indeed, the addition of ra-
diation pressure to solar gravity does not greatly complicate the problem since
these forces are identical in both direction and radial dependence. In fact, the
derivation of the Jacobi integral and the zero-velocity curves in the photogravi-
tational, restricted, circular three-body problem proceeds along almost identical
lines as the “classical” derivation (Schuerman 1980). Extensive analysis of the
stability of the resulting equilibrium points has been carried out by Luk’yanov
(1984,1986,1988). We now apply these ideas to Hill’s problem, which, like the
restricted problem, has an integral of the motion.

Incorporating radiation pressure into the equation of motion (Eq. 2.2), we
obtain the following:

d*r GMy. GM, GM; .

- = i+ —— 9%,

dt? r? A3 A?
where we have taken incoming solar rays to be parallel, an assumption that

[3x — 2] — 20 X Vyot + (4.2)
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is valid in the vicinity of our asteroid. Assuming [ is time-independent, the
final acceleration on the right-hand side of Eq. (4.2) can be integrated to give
the potential S(GMg/A?)z. Taking the scalar product of Eq. (4.2) with v,.,
integrating over time and non-dimensionalizing (G = 1,2 = 1, and ryg = 1), we

find:

1

C’:§+3x2—22+25 3 3x—vfot. (4.3)
r K

Equation (4.3) depends on the parameter 3~ /? and so, as in the case of non-
zero orbital eccentricity, care must be exercised when scaling from one asteroid to
another. In particular, results scale as the Hill sphere only if the parameter G ~"/?
is kept constant. This can be shown more explicitly by examining Eq. (4.2) in the
same manner that we studied Eq. (3.3) in Section 3.1.2. If ), and the particle
and asteroid mass densities are constant, then [ is inversely proportional to the
particle’s radius r, (Eq. 4.1) and p /3 is inversely proportional to the asteroid’s
radius R4. Thus, simply stated, results from a small asteroid can be applied to
a larger one if the product of the asteroid’s radius and the radius of the orbiting
particle is kept constant (i.e., Bu'/® ~ (r,R4)~'= constant).

We can derive zero-velocity curves from Eq. (4.3) by setting v,,; = 0 and
choosing a particular value of C. For weak radiation pressure, the shape of the
resulting zero-velocity curves differs only slightly from the more familiar ZVCs of
Hill’s problem; for stronger radiation pressure, however, the difference is marked.
In an attempt to provide the reader with some insight into the constraints on
escape imposed by the ZVCs, we discuss their shape for a moderate value of
radiation pressure, namely that appropriate for 1-millimeter particles around
Amphitrite. Several ZVCs are drawn in Fig. 4.1; these are simply plots of Eq. (4.3)
with v, = 0 and z = 0 for different values of the Jacobi constant C'. The small
circles that closely surround the asteroid have large Jacobi constants; their shape
is primarily determined by the asteroid’s gravity (cf. discussion by Chauvineau
and Mignard 1990a for ZVCs without radiation pressure). As C' is decreased, the
circles grow larger and begin to distort due to the tidal and radiation-induced
accelerations. Because they both are directed along the z-axis, these perturbation
accelerations cause a distortion of the ZVCs along that axis. The tidal potential
is an even function of x and thus causes an elongation symmetric about z = 0
(see Figs. 2.5 and 2.10). In contrast, radiation pressure, because it always acts
in the X direction, causes a non-symmetric distortion, shifting the ZVCs away
from the Sun. We see that radiation pressure is dominant for 1-mm particles
since the outer curves of Fig. 4.1 are highly asymmetric. One consequence of
this asymmetry is that as the Jacobi constant is decreased, the curves open away
from the Sun before they open toward it. Radiation pressure allows sufficiently
energetic particles to escape in the anti-sunward direction; escape in the sunward
direction, which requires still more “energy,” occurs more rarely.
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Figure 4.1 Zero-velocity curves, including solar radiation, for a 1-mm particle
around Amphitrite. The Sun is located far out along the negative z-axis and the
asteroid is the solid circle (not drawn to scale) at (0,0). Associated with each
curve is a unique value of the Jacobi constant; larger curves have smaller Jacobi
constants. The four-pointed star, located at (370,0), denotes the equilibrium
point where all forces balance for 1-mm particles; a second equilibrium point lies
between the asteroid and the Sun at (-579,0).
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When discussing Fig. 4.1, we carefully avoided quoting any actual numbers
for the Jacobi constants or the location of the point at which the ZVCs open (see,
however, the figure caption). This was done to keep the discussion general and
therefore applicable to a large range of radiation pressure strengths. In reality,
the Jacobi constant and the points where the ZVCs open are all functions of
the relative strength of radiation pressure. To solve for the opening positions,
which occur at the equilibrium points of Eq. (4.2), we set the partial derivatives
of Eq. (4.3) (with v,,; = 0) equal to zero (cf. Danby 1988, p. 260). Thus, defining

B 3 s
I
we find two solutions which lie on the z-axis (y = z = 0) at positions given by
solutions to the cubic:

? + 2 F1=0, (4.5)

where the upper sign refers to the critical point furthest from the Sun and the
lower sign to the one closest to the Sun. Solving Eq. (4.5) for v £ 1 (weak-to-
moderate radiation pressure), we obtain ..y ~ (1 F v/3 +v2/9) and C..iy =~
94+ 6y — v2. We find that there are indeed two critical ZVCs, since the two
opening points occur at different values of the Jacobi constant. Thus if more
curves with ever-decreasing Jacobi constants were plotted in Fig. 4.1, we would
eventually see a tunnel from the asteroid to heliocentric space opening up on the
left side of the figure. For v >> 1 and ey > 0, we find x4 ~ 7 /2, which
tends toward zero, and C,,;; ~ 12v'/2.

4.4 Integrations

Our philosophy in adding the effects of eccentricity and radiation pressure to the
escape problem is to separate the two so that a more direct comparison with
the results of Chapter 2 is possible. Accordingly, in all subsequent numerical
integrations, we place the asteroid on a circular orbit around the Sun. As before,
we model the asteroid 29 Amphitrite with the parameters given in Table 2.1. We
start particles out along the x-axis away from the Sun with a speed such that
the orbit would be circular in the absence of all perturbations. As in Chapter
3, we allow the velocity vector to take on one of three inclinations relative to
the orbital plane: prograde (i = 0°), retrograde (i = 180°), or inclined (i = 90°).
These inclinations are representative of the three basic classes of circum-asteroidal
orbits in the case when radiation pressure is absent. The period of integration was
set at five asteroid years (& 20 years) to facilitate comparison with our previous
results.
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Although these are the same initial conditions used in Chapters 2 and 3,
they are particularly appropriate here for two reasons. First, the radiation and
tidal potentials are maximum in the anti-sunward direction; thus circular orbits
starting on the positive z-axis have larger Jacobi constants than circular orbits
of the same radius starting elsewhere. Our results for circular orbits, therefore,
are conservative in the sense that at each distance, we study the initially circular
orbit that, energetically, has the least chance of escaping. The second reason
that our initial conditions are reasonable is more physical. One of the most
dangerous potential sources for material in the circum-asteroidal environment is
a “feeder” satellite, a small body from which material can be efficiently removed
by meteoroid bombardment (Burns and Hamilton 1991). In contrast to direct
impacts on the central asteroid in which material generally escapes or is re-
accreted, much of the debris blasted from a moonlet can end up in orbit around
the asteroid. We envision the following scenario: a “feeder” satellite uninfluenced
by radiation pressure is continually subjected to a flux of hypervelocity particles
which blasts debris from its surface. Although sufficiently energetic to escape
the weak gravity of the satellite, much of the debris cannot escape the asteroid.
As the clumps of ejected material separate exposing small bodies to solar rays,
radiation pressure begins to exert its influence, preferentially eliminating the
smaller particles. Our integrations begin at the point when mutual gravitational
and shadowing effects can be neglected; further evolution of the debris in the
aftermath of an impact event is governed by Eq. (4.2).

Confining ourselves to an orbit of a given starting inclination, we still must
fix the initial size of the particle’s circular orbit as well as the strength of the
radiation pressure as parameterized by ~; thus we have a two-parameter space
to explore. In order to avoid confusion, we continue to display plots for Am-
phitrite with distances measured in asteroid radii and particle sizes measured in
millimeters; to apply these plots to Gaspra (with E = 0) we simply multiply the
vertical axis by the ratio of the semimajor axes 2.20/2.55 ~ 0.86 (Table 2.1) and
change “millimeters” to “centimeters.” The change in the vertical axis comes
from scaling distances with the size of the Hill sphere (Section 2.3.3) while that
of the horizontal axis arises from the condition that the parameter v, defined in
Eq. (4.4), be unaltered; keeping 7 constant is equivalent to requiring that the
product of the asteroid and particle radii be constant as was discussed immedi-
ately following Eq. (4.3). Most of the equations to follow, however, depend on the
dimensionless quantities r (measured in Hill radii) and ~; use of these quantities
both simplifies the appearance of the equations and facilitates scaling to other
asteroids. The size of the Hill sphere for Amphitrite and Gaspra in asteroid radii
is given in Table 2.1; below we make the connection between v and the parti-
cle’s size more apparent. Assuming spherical particles with the same density as
that assumed for the asteroid (p, = 2.38 g/ cm?*) and a radiation pressure coeffi-
cient of unity (Q, = 1), we find, using Eqgs. (4.1) and (4.4) that v is inversely



67

proportional to the particle’s radius; for Amphitrite

va = 0.0673/ry, (4.6)

while for Gaspra

v¢ = 0.673/r,, (4.7)

where 7, is the particle’s radius in centimeters.

4.4.1 Prograde Orbits

Figure 4.2 shows the fate of several hundred prograde paths followed for five or-
bits of Amphitrite around the Sun. The picture is remarkably regular; orbits that
share a common fate cluster together in one of three distinct regions with few
exceptions. The relative strength of radiation pressure increases from right to left
as the particle’s size is decreased: this causes the rapid disappearance of bound
orbits. For 10-mm particles, the division between bound and escape orbits is in
agreement with that found analytically (Section 2.4) and numerically (Fig. 2.15)
in the absence of radiation pressure: initially circular prograde orbits are stable
out to about 220R 4, or about one-half the radius of the Hill sphere. In this re-
gion, radiation pressure is strong enough to perturb orbits, but does not have the
power to alter the orbital fates of many particles. As particle sizes are decreased,
increased radiation pressure is seen to cause only a few extra escapes at large
distances from the asteroid until we consider particles with radii of a millimeter.
In the 1-mm column of Fig. 4.2 an amazing transition takes place; bound orbits
suddenly extend only half as far from the asteroid as they did for particles twice
as large, their demise being due to the appearance of a large number of orbits
doomed to strike the asteroid. For these particles, radiation pressure is large
enough to induce major oscillations in orbital eccentricity, excursions so large
that e — 1 and a collision with the minor planet is likely. Even more startling
is the disappearance of bound orbits in the next column to the left; all orbits
beyond 20R 4, with one exception, either impact the asteroid or escape from its
gravitational grasp. Particles in this column have radii ~ 0.5 millimeters; around
Gaspra this corresponds to particles nearly a centimeter across! Decreasing par-
ticle sizes still further yields no surprises; bound orbits do not reappear, and the
increasing radiation pressure causes escapes to occur ever closer to the asteroid.
Recall that all of the points plotted in Fig. 4.2 correspond to the fates of par-
ticles followed for just over twenty years; for this problem, radiation pressure
accomplishes much in extraordinarily short times!

Probably the most interesting portion in Fig. 4.2 is the transition region where
orbits first begin to impact the asteroid. Examining the orbits of the eleven 1-mm
grains that crash, we find all but three of them, the one closest to the asteroid
and the two furthest from it, impact in about a third of an asteroid year. Orbital



68

Figure 4.2 The fate of approximately 200 particles of different radii started
about Amphitrite on prograde circular orbits of various sizes that evolve under
the influence of solar radiation pressure; solid circles, open circles, and small dots
correspond to bound orbits, crash orbits, and escape orbits, respectively. The
columns of initial conditions are evenly spaced along the horizontal axis. Orbits
with the same fate tend to cluster, dividing the plot into three distinct regions.
Note the rapid disappearance of bound orbits as the particle sizes are reduced to
1mm and then to ~0.5 mm. This, of course, is due to the increasing strength of
radiation pressure relative to the asteroid’s gravity. For Gaspra, corresponding
particle sizes would be ten times larger.
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eccentricities rise monotonically to a critical value near unity at which point the
pericenter of the orbit dips below the surface of the asteroid and impact occurs.
The three exceptions, however, show that this is not the full story. Two of these
orbits survive one stint of large eccentricity after which the orbit circularizes and
the process begins anew. These orbits crash when the eccentricity rises to values
near one a second time. The third orbit, which is the furthest from the asteroid,
survives no less than eight successive periods of large eccentricity before finally
striking the asteroid during its ninth cycle.

Several effects can cause these deviations from the simple sinusoidal oscilla-
tions of eccentricity predicted by Mignard (1982). Since the orbits under discus-
sion are large, the tidal force from the Sun is significant and cannot be ignored
as it is in the idealized case. This force will also influence the orbital eccentricity
and may either augment or detract from radiation-induced changes. Further-
more, even in the absence of the tidal force, orbits of this size have long periods
for which the orbital averaging employed by Burns et al. (1979) and Mignard
(1982) is generally inappropriate. This will be the case any time the particle’s
orbital elements change significantly during a single circuit around the asteroid.
One important consequence of rapidly varying elements is that if a particle attains
an eccentricity of one at some point far from the asteroid, the eccentricity may
decrease below the critical value necessary for collision before the particle suffers
a close approach. This, in fact, is the reason that the three orbits just discussed
survive several close approaches. A final consideration that does not affect our
integrations, but would alter orbits around a real asteroid, is the non-spherical
shape of typical minor planets. Higher-order gravity terms can significantly al-
ter the evolution of even a large orbit if, as in the case under discussion, the
eccentricity of the orbit is near unity so that close approaches occur.

The fish shape plotted in rotating coordinates in Fig. 4.3 is the amazing or-
bit discussed above that narrowly avoids collision eight times only to impact
the asteroid on the ninth pass. The heavy black line is the zero-velocity curve
appropriate for the initial condition, a 1-mm particle starting on a circular un-
perturbed orbit around the asteroid Amphitrite at 190R4. Although the ZVC
is open, the particle never had the chance to taste the freedom of heliocentric
space. At first sight this is strange, since the orbit extends nearly to the Lagrange
point where forces on a stationary particle balance; prograde orbits that reach
this far invariably escape since the Coriolis acceleration is outwardly directed.
Retrograde particles, however, are stabilized by the Coriolis acceleration and can
safely wander in this region; closer inspection of Fig. 4.3 reveals that although
the orbit begins prograde, it becomes retrograde when farthest from the Sun, at
the very fringes of heliocentric space. In fact, the orbit switches from prograde to
retrograde and back again periodically, as can be seen from the time history of
the inclination displayed in Fig. 4.4. These transitions necessarily take place at
e = 1, when the particle’s velocity vector points either directly toward or away
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Figure 4.3 A 1-mm particle on an initially circular prograde orbit started at
190R4 about Amphitrite. The initial position is marked with a solid triangle
whose upper apex points in the direction of the initial velocity; a filled square
marks the end of the integration, and a solid circle represents the asteroid itself.
In this case, the square and the circle overlap since the grain ends its orbital
evolution on the asteroid’s surface. The four-pointed star is the equilibrium
point, and the heavy curve partially enclosing the orbit is the zero-velocity curve
appropriate for this initial condition; its asymmetry is due to radiation pressure.
Although the ZVC shows that the particle is energetically able to escape, the
grain suffers a more drastic fate.
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Figure 4.4 The time histories of some of the osculating orbital elements for the
path displayed in Fig. 4.3. Plotted are the orbit’s semimajor axis, its eccentricity,
and its inclination. These curves are calculated by integrating the equation of
motion, and transforming the resulting velocity v and position r into orbital
elements (Danby 1988). Note that the particle switches from prograde (i = 0°)
to retrograde (i = 180°) and back again periodically each time the eccentricity
reaches unity.
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from the asteroid; thus the very fact that the orbit survives so long warns us of
the dangers of taking the orbit-averaged equations too seriously.

The history of the osculating elements in Fig. 4.4 is also enlightening, espe-
cially when discussed along with the evolution of the actual orbit. After a single
prograde loop, the orbit switches to retrograde as the eccentricity approaches one;
this first occurs very near the upper part of the zero-velocity surface in Fig. 4.3.
A change in inclinations from ¢ = 0° to ¢ = 180° or vice-versa can, but need
not, involve closely approaching the ZVC; this only occurs if the particle is at
the apocenter of a rectilinear ellipse (e = 1). Indeed, Fig. 4.3 has examples of
transitions at varying distances from the ZVC. The particle then dives in for a
close approach to the asteroid which occurs at the small dip in the center of the
eccentricity peak. The small reduction in eccentricity, which manifests itself in
less than an orbital period, is enough to allow the particle to successfully negoti-
ate the treacherous region. The particle subsequently moves outward toward the
lower part of the ZVC, finally returning to its prograde state to repeat the cycle
anew. The entire cycle, in which the eccentricity changes from zero to unity and
back to zero, takes only four orbits of the particle around the asteroid; clearly an
orbit-averaging technique is invalid here! The inadequacy of orbit-averaging can
also be seen in the semimajor axis history of Fig. 4.4. Orbit-averaging of both
radiation pressure and the tidal acceleration lead to predictions that the semima-
jor axis, a, will remain constant on timescales larger than the particle’s orbital
period; these predictions rely on the fact that the orbital elements, a included,
do not change much during a single orbit. Large variations in the semimajor axis
should, therefore, not occur on any timescale; the extent to which this is untrue
is a measure of the validity of the averaging approximation.

4.4.2 etrograde Orbits

Figure 4.5 is the retrograde counterpart to Fig. 4.2. Qualitatively the two plots are
very similar since radiation pressure acts analogously on prograde and retrograde
orbits as will be seen below; differences in the plots can be explained by the
effects of the Coriolis acceleration. As in Fig. 4.2, orbits in Fig. 4.5 are segregated
into three distinct regions containing bound, escape, and crash orbits. For weak
radiation pressure, such as that acting on 10-mm particles, circular orbits are
stable out to about the Hill sphere in accordance with the results of Chapter 2.
The Coriolis acceleration exerts a powerful influence on these orbits, keeping them
bound at twice the distance of the largest prograde orbits. Retrograde orbits,
like their prograde counterparts, experience a slight degradation of stability as
particle sizes are decreased; but, as with prograde orbits, an abrupt transition
occurs for 1-mm particles: half of the bound orbits are replaced by those that
crash! The rapid erosion of stability is continued for grains &~ 0.5 mm in size for
which bound orbits disappear entirely; comparing Figs. 4.2 and 4.5, we see that
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Figure 4.5 The fate of about 300 particles of different radii started about Am-
phitrite on retrograde circular orbits of various initial sizes; solid circles, open
circles, and small dots correspond to bound orbits, crash orbits, and escape or-
bits, respectively. The columns of As in Fig. 4.2, orbits sharing a common fate
cluster into three distinct regions; bound orbits rapidly disappear as particle sizes
are decreased to 1 mm and then to ~ 0.5 mm. For particles smaller than 0.1 mm,
the differences between Fig. 4.2 and this plot are slight.
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the disappearance of bound orbits in each case occurs for particles of the same
size. As radiation pressure is increased, crash orbits continue to yield to escape
orbits. Comparing with Fig. 4.2 again, we find a few extra crash orbits in the
retrograde case and these rapidly disappear as the strength of radiation pressure
increases; the extra impact orbits can also be attributed to Coriolis effects.

Figure 4.6 shows the most distant bound orbit in the 1-mm column of Fig. 4.5;
its initial conditions are appropriate for a grain started at 180 R4 from Amphitrite.
Although we show only the first eccentricity cycle, which occurs over about an
asteroid year, this orbit was in fact followed for five circuits of the asteroid around
the Sun. The eccentricity behavior is similar to that of the prograde orbits; it
increases to a value near one, remains flat as the “ellipses” in Fig. 4.6 move slowly
clockwise, then decreases back to zero as the particle returns roughly to its initial
position. Because the orbit is almost periodic, subsequent evolution repeats that
described above although the “ellipses” do not fall exactly atop those already
present. In its five-year tour, the particle survives multiple close approaches, the
closest a mere 1.9R4 above the asteroid’s surface! All impact orbits for 1-mm
particles in Fig. 4.5 have the same sunwardly directed petals and general charac-
teristics as the orbit in Fig. 4.6; in the former cases, however, the close approaches
dip below 1R 4 abruptly cutting short the orbital evolution! As with the prograde
orbits discussed above, most of these retrograde orbits impact midway through
their first eccentricity oscillation, although three of the five furthest survive at
least one cycle for reasons similar to those discussed in Section 4.4.1. Moving
closer to the asteroid along the 1-millimeter column, we find that bound orbits
have progressively more distant close approaches (corresponding to smaller eccen-
tricities), although again the orbital shapes are reminiscent of Fig. 4.6. Finally,
we note that all bound orbits, Fig. 4.6 included, are purely retrograde; further
from the asteroid, however, we do encounter orbits that switch between the pro-
grade and retrograde states. These outer orbits have short lifetimes since they
invariably crash while traversing the often fatal e = 1 regime.

4.4.3 Inclined Orbits

The situation for inclined orbits (here the term inclined will refer to orbits with
i = 90°) is somewhat different than for planar ones. In the orbit-averaged equa-
tions of Burns et al. (1979) and Chamberlain (1979) there is a cosi term that
is small for inclinations near 90° but equal to 41 for planar orbits. The change
in this term reflects simple differences in the orbital geometry which we will
illustrate with discussion of a hypothetical circular orbit around the asteroid.
Imagine that a grain is started on a circular orbit fairly close to the asteroid
such that its period is much less than that of the asteroid around the Sun. If
the grain is placed on either a prograde or a retrograde orbit, the angle between
the Sun and the particle as measured from the asteroid will circulate between
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Figure 4.6 A 1-mm particle on an initially circular retrograde path starting at
180R 4; symbols are those defined in Fig. 4.3’s caption. Although the initial
conditions for Figs. 4.3 and this figure are quite similar, the orbital paths have
a very different appearance. The zero-velocity curve for this initial condition is
open even wider than the one in Fig. 4.3; the fact that the particle does not
escape is an example of the poor constraint imposed by retrograde ZVCs. Only
the first several loops of this orbit are shown, but subsequent motion repeats the
pattern shown here.
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0° and 360° every synodic period; recall that the synodic period is the period of
the particle with respect to the Sun. For a path inclined 90° to the asteroid’s
orbital plane, however, the situation is quite different. If the particle is started
on the positive z-axis, then after one quarter of an asteroid orbit, the direction
to the Sun is everywhere perpendicular to our hypothetical unperturbed circular
orbit; at this point, the angle which circulates for the planar cases is constant!
Clearly radiation pressure will act differently on inclined orbits than on planar
ones. Considerations of the averaged equations of motion and the fact that a per-
pendicular perturbing force does not affect the orbital eccentricity (Danby 1988)
lead us to the conclusion that driving orbital eccentricities to large values will be
more difficult in the inclined case.

Figure 4.7 verifies these ideas; bound orbits exist for particles approximately
five times smaller than that where the last bound planar orbits are seen. These
bound orbits in the transition region disappear even more abruptly than in the
planar case; in the column for ~ 0.2-mm particles, stable orbits abound and
there are no crash orbits while in the next column to the left there are no bound
ones! Impact orbits sprinkled throughout the region of weak radiation pressure
are probably not associated with that force at all; recall the large number of such
orbits for inclinations in the near 90° range for our integrations of the purely
gravitational three-body problem (Figs. 2.15 and 3.3). Discounting these excep-
tions, the bound, escape and crash orbits separate nicely into three regions as
before. In Fig. 4.7, as in the planar figures, the right side of the plot smoothly
approaches results found in Fig. 2.15 in the absence of radiation pressure. For
very small particles that are significantly influenced by radiation pressure, results
are in accordance with the planar cases; there are a few more impact orbits than
in the analogous columns in Fig. 4.2 and a few less than in Fig. 4.9 as could
be predicted by considering the Coriolis acceleration. In this region of all three
figures, orbits crash extremely rapidly; few survive more than the time necessary
to increase the eccentricity to one.

4.5 nalytic onsi erations

4.5.1 Bound-Escape Division

For each of the orbital classes (prograde, retrograde, inclined) described above,
we have found that — to a greater or lesser degree — particles with similar char-
acteristics (particle radius, initial orbit size) share similar fates, and that the
boundaries between these fates are sharply defined. This suggests that the out-
comes for such particles are being determined by simple processes; hence we now
seek the mechanisms that segregate orbits into the three separate regions noted
above. In this section and the ones to follow, we discuss the factors that cause a
particle to escape and to crash, and we develop analytical expressions that define
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Figure 4.7 The fate of approximately 200 particles of different sizes started on
circular paths initially inclined at 90°; solid circles, open circles, and small dots
correspond to bound orbits, crash orbits, and escape orbits, respectively. The
columns of These orbits jealously guard their stability until particle sizes are
reduced to 0.1 mm; reasons for this are discussed in the text. Crash orbits in the
upper right of the diagram are of the type seen in Fig. 3.5 and are caused by
the tidal force; those to the lower left, however, are due to radiation pressure.
Comparing this figure to Figs. 4.2 and 4.5, we see few differences for particles
smaller than 0.1 mm.
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the divisions separating these areas from each other and from the region of bound
orbits.

We know — by analogy with the purely gravitational case — that, if orbits lie
within closed ZVCs, they will remain bound. Hence, as a criterion for escape,
the opening of the zero-velocity curves will prove to be useful, at least in the
prograde case. To connect ZVCs to the orbits discussed above, we substitute the
initial conditions, y = z = 0 and the initial circular velocity condition,

3 1/2 2

2 . . 9.
Vit . cosi — dpp dr sin” 1, (4.8)
into Eq. (4.3) to obtain:
3 12 . 2
Cpr = y +2(3dgg) ' cosi + 2dgy + 67dBE, (4.9)
BE

where Cpgg is the Jacobi constant for which the zero-velocity curves first open
and dgg is the critical distance at which we expect the bound-escape division to
occur. We solve this equation numerically in each of the three inclination cases
and plot part of the solution curve in Figs. 4.8, 4.9, and 4.10 (dashed line). If
extended to smaller particles sizes, the curve would also separate the crash orbits
that had the potential to escape from those that did not. Although the theoretical
results in all three inclination cases correctly predict that orbital stability is lost
as particle sizes are decreased, the curves only succeed in fitting the numerical
results for prograde orbits; the match steadily worsens as the inclination is in-
creased. The reason for this is, of course, that the derivation of Eq. (4.9) ignores
the all-important Coriolis acceleration. Not surprisingly, the radial portions of
the neglected Coriolis term, which has a cosi dependence, provides increasing
stability as the inclination is raised from ¢ = 0° to ¢+ = 180°. The situation is
complicated by non-radial parts of the Coriolis acceleration, with a sin: depen-
dence, which tend to destabilize orbits. The two effects combine to explain why
the division between bound and escape orbits, as numerically obtained, occurs
at a similar distance in the prograde and i = 90° cases but much further out for
retrograde orbits (Section 2.6.1).

4.5.2 Bound-Crash Division

Particles risk collision with the asteroid once their orbital eccentricities become so
large that at pericenter their orbits pierce the asteroid’s surface: r, = a(l —e) <
R 4. If we neglect the tidal acceleration — an approximation that is certainly valid
for strong radiation pressure — we can apply Mignard’s expression for the eccen-
tricity produced by radiation pressure (1982, his Eq. 28) to determine when an
impact can occur. More precisely, the tidal acceleration can be ignored in deter-
mining when escapes will occur for orbits with initial semimajor axes < rg /3 since
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Figure 4.8 Prograde orbits. Same as Fig. 4.2 but now including theoretical lines
dividing bound, escape, and crash orbits. The dashed line, discussed in Section
4.5.1, presents a criterion that should separate particles that are bound from
those that escape. Similarly, the heavy and lightweight solid curves are those
that our theory predicts for the bound-crash (Section 4.5.2) and crash-escape
(Section 4.5.3) divisions, respectively.
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Figure 4.9 Retrograde orbits. Same as Fig. 4.5 with theoretical lines dividing
bound, escape, and crash orbits. See Fig. 4.8 and the text for an explanation of
the three curves.
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Figure 4.10 Inclined orbits. Same as Fig. 4.7 with theoretical lines dividing
bound, escape, and crash orbits. See Fig. 4.8 and the text for an explanation of
the three curves.
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tides cause only small eccentricity oscillations in this regime. Furthermore, for
orbits much larger than this, the orbit-averaging procedure employed by Mignard
(1982) is no longer valid. For initially circular prograde orbits, Mignard’s result
for the variation of eccentricity can be rewritten in the useful form

’I’L2 042
(1= ) = 72 o cosl(e? + 02, (4.10)

where « is related to § via the equations: a = 3/(27), and 75 is Chamberlain’s
(1979) expression for the time it takes radiation pressure to produce the circular
velocity, i.e., o = (GM4/r)'/?/(BGMy/R?). Loosely, a is the strength of the so-
lar radiation pressure relative to the asteroid’s local gravity. For weak radiation
pressure (o << 1), the eccentricity simply varies with the solar period, while
for strong radiation pressure e varies more rapidly. Although mathematically
Eq. (4.10) predicts a complex eccentricity when the right-hand side of the equa-
tion is less than zero (i.e., when a > ng and cos < 0), this does not actually occur
in the orbit-averaged perturbation equations from which Eq. (4.10) is derived be-
cause e is prevented from exceeding unity by 1 — e? terms in these equations.
What, then, really happens as e approaches one? There are two possibilities: the
particle either can collide with the asteroid, preventing further evolution of the
orbital elements, or, for longer-lived orbits, a prograde-to-retrograde transition
can take place. Because Mignard’s solution is restricted to prograde orbits, it
is unable to predict the prograde-to-retrograde transition and instead suggests a
complex eccentricity.

It is not difficult to repeat Mignard’s derivation for retrograde orbits. We
begin with the orbit-averaged equations of motion and consider the planar limit
i = 180° (instead of the i = 0° taken by Mignard). With an appropriate choice
of variables, the form of the resulting pair of equations can be made identical to
those for the prograde case; specifically, we find that Eq. (4.10) applies equally
well to retrograde orbits. This is a single example of a more general result: if
the orbital elements, evolving under some perturbation force, are taken to remain
constant over a single sidereal period, then the resulting orbit-averaged equations
will yield similar histories for prograde and retrograde orbits. According to this
model of the effects of radiation pressure, therefore, there should be no difference
in the fate of initially circular prograde and retrograde orbits since Eq. (4.10)
governs the evolution of both. This is true, of course, only as long as the particle
remains close to the asteroid where the Coriolis acceleration, which encapsulates
the differences between prograde and retrograde orbits, can be ignored. Further
from the asteroid, differences in the Coriolis acceleration manifest themselves in
the increased stability of the retrograde particles noted in the discussion of Figs.
4.2 and 4.5. In these regions (e.g., 1-mm crash orbits), Eq. (4.10) does not strictly
apply.

A collision with the asteroid can occur when the pericenter of the osculating
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orbit dips below the asteroid’s surface. For the large orbits under discussion,
this requires an eccentricity that is nearly unity. Accordingly, we solve for the
minimum « that allows e = 1 in Eq. (4.10); although e cannot exceed one,
it must necessarily attain this value during a prograde-to-retrograde transition.
The collision criterion is @ = ng, which can be recast as

4
2742

where dp¢ is the critical distance at which the division between bound and crash
orbits is located. Furthermore, near this division where, by definition, a ~ ng, we
expect that collisions will occur in half the period given by Eq. (4.10), i.e., 27%/2 ~
0.35 asteroid years. This simple estimate is in very good agreement with our
observations for most of the prograde orbits discussed in Section 4.4.1. Equation
(4.11) is also plotted on each of Figs. 4.8, 4.9, and 4.10 as a solid, heavyweight
curve. We find reasonable agreement in the prograde and retrograde figures, but
a rather poor match for the inclined orbits. The fact that inclined orbits are more
resistant to radiation pressure-induced impacts should not be surprising in light of
the discussion in Section 4.4.3. For 1-mm particles around Amphitrite where the
limits of the theory are stretched the most, we see that bound retrograde orbits
extend further from the asteroid than expected (Fig. 4.9), while bound prograde
orbits extend to distances less than predicted (Fig. 4.8). These differences, which
are due to the neglected Coriolis acceleration, only appear for large orbits and
add stability to retrograde orbits as discussed above.

For ~ (0.5-mm particles, bound orbits do not extend as far as predicted in both
the prograde and retrograde cases. This is due to the finite size of the asteroid
which allows impacts to occur for eccentricities less than one. This effect can
be derived from Eq. (4.10) by putting e = €cqsn, Where egqsn = 1 — Ra/dpge.
Setting the cosine to —1, and solving for a/ng as before, we find:

dpc (4.11)

4f2(€crash)
dpo = ——7-"% 4.12
where f(ecrqsn) is given by
1—(1—e2 )3
f(ecrash) — ( crash) : (413)

and f?(1) = 1 so that Eq. (4.11) is recovered. The solution of Egs. (4.12) and
(4.13) is complicated since e..qs, is a function of dgc; in general, the equation
must be numerically solved. In practice, however, an iterative procedure in which
an initial value of dg¢ is substituted into the right-hand side of Eq. (4.12) to
compute an updated value, converges to a reasonable estimate relatively rapidly.
As an example, consider the bound-crash division for ~ 0.5-mm particles which
Eq. (4.11) predicts will occur at about thirty asteroid radii. For this distance, a
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collision takes place when e = eqqsn, = 29/30 &~ 0.97 for which f2(0.97) ~ 0.59!
Thus instead of occurring at 30 asteroid radii, a single iteration of Eq. (4.12)
predicts that the division should happen at about 18 asteroid radii; a few more
iterations show that the division is actually nearer to 14R,4, which is in good
agreement with Figs. 4.8 and 4.9. The surprisingly large change in f2(egqsn) for
ecrash < 1 has its origins in the fact that radiation pressure takes a long time to
further increase the eccentricity of an already highly-eccentric orbit.

To make our results more useful, we instead solve for the minimum-sized par-
ticle found in an asteroid’s neighborhood by applying Eq. (4.12), and employing
Egs. (4.1) and (4.4) to return to more familiar dimensional units. We find that
particles satisfying the following inequality

g o 1 ro1/2
120f(ecrash) 1RA
M pgmphitrite /3 2.55AU 12 Q,, 2.38gcm™?

MAsteroid a 1.0 P
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(4.14)

are removed from circum-asteroidal orbit. This formula is applicable only for
strong radiation pressure where the bound-crash division exists (see Figs. 4.8
through 4.10), roughly where v 2 1. We find for Gaspra that, outside of 10R 4,
no particles with r, < 0.45cm should be found and at Galileo’s fly-by distance
of ~ 200R 4, all particles with r, < 1.4 cm should be absent. Subsequent to the
submission of this work (Hamilton and Burns 1992), Griin et al. (1992) reported
that Galileo’s dust instrument, sensitive to particles larger than 0.1 ym, detected
no hits during its fly-by of Gaspra. There were also no detections during the Ida
fly-by (E. Griin 1993, private communication).

4.5.3 Crash-Escape Division

Although the criteria described in the two preceding sections define the most
interesting boundaries, namely those that separate regions where particles can
freely orbit from regions where they cannot, we now derive, for completeness, an
approximate argument to describe the curve separating orbits that crash from
those that escape. Unlike the boundaries discussed in the previous sections, here
there is no nice theory to appeal to so we make the following somewhat arbitrary
choice. We say that if a highly-perturbed particle can complete a single orbit
around the asteroid, its eventual fate will be to crash into the asteroid. While
this is not always true (some orbits near the actual boundary complete a few
loops before escaping), it does apply to most of our numerical results, especially
those for strong radiation pressure. We approximate further by saying that if
our particle has enough “energy” to complete a quarter of a hypothetical circular
orbit, it will complete a full loop around the asteroid and hence will eventually
crash. This statement is certainly approximate since the path actually followed



85

by the particle is certainly not circular; a look at the shape of the orbits in Figs.
4.3 and 4.6, however, shows that the approximation is fairly reasonable. In any
case, particles with significantly less energy have no hope of swinging around the
asteroid, while those with more “energy” should be able to. Mathematically, we
set the right-hand side of Eq. (4.3), evaluated at (z,y,2) = (dog,0,0) with v,
as given by Eq. (4.8), equal to the same expression evaluated at (0, dcg,0) with
Upot = 0. The result is:

3

- = 2(3dCE)1/2 cos? + Qd%E + 6’7dCE, (415)

dcr
where dog is the distance to the division between crash and escape orbits. We
numerically solve Eq. (4.15) to obtain the last defining curve which is plotted in
Figs. 4.8, 4.9, and 4.10 as a solid, lightweight curve. This approximate division
agrees remarkably well with the actual boundary for strong radiation pressure,
deviating significantly only for large orbits along which the neglected tidal and

Coriolis accelerations are important.

4.6 iscussion

The above calculations and those of other groups have been carried out not so
much to solve new celestial mechanics problems but rather to address a prac-
tical question: will the circum-asteroidal environment be hazardous to a fly-by
spacecraft? Accordingly, a reader might anticipate that we would conclude this
chapter with a probability calculation determining the odds of finding debris of
various types in the asteroid’s neighborhood. Unfortunately such calculations are
fraught with uncertainty since they involve complicated supply and loss mech-
anisms, many of which are poorly constrained. We therefore content ourselves
with a qualitative description of this problem, summarizing possible supply and
loss processes.

As pointed out in Chapter 2, by Chauvineau and Mignard (1990a), and by
many others, the distance within which co-planar prograde material can remain
trapped for short periods about an asteroid circling the Sun is roughly half the
Hill radius; for co-planar retrograde particles the size increases to about a full
Hill radius. In extending these ideas to three dimensions, we showed in Section
2.6.2 that bound out-of-plane material can only rise to about two-thirds of a
Hill radius; we used these results to define a stability surface within which bound
orbiting material might be found. This surface overestimates the zone of stability,
however, because nearly all unmodeled processes, some of which operate on short
timescales and others that take ages, are destabilizing. The former dominate,
since they will overwhelm continuous supply mechanisms, which act on longer
timescales. Accordingly, the focus of Chapters 2, 3, and this one has been to
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discuss the effects that cause changes to the stability of orbits in time intervals
comparable to the asteroid’s orbital period (c¢f. Burns and Hamilton 1991).

In assessing the importance of an asteroid’s elliptical orbit on the size of the
stability zone, we discovered that the dimensions of the zone are roughly pro-
portional to the minimum asteroid-Sun distance. Since the effects of an elliptic
orbit can be quantified, the safety of a passing spacecraft can be assured simply
by avoiding an asteroid’s calculated stability zone. We also found that radiation
pressure was remarkably effective in sweeping small particles rapidly out of the
circum-asteroidal environment. These grains would normally be expected to be
the most numerous and, since the largest of them can severely damage a space-
craft, they pose the greatest threat to a fly-by mission. Since small grains are
removed much more rapidly than they are resupplied, however, our results define
a region of space in which small orbiting debris will not be found.

Many loss mechanisms operate over much longer timescales. In this category
we include the long-term effect of the gravitational tugs of Jupiter and the other
planets (Chauvineau and Mignard 1990b) as well as close approaches of other
asteroids which can disrupt a binary pair (Chauvineau et al. 1991). These effects
cause particles within the stability zone defined above to escape, but their effi-
ciency is critically dependent on the unknown rate at which supply mechanisms
populate the stability zone. Other long-term loss processes — notably Poynting-
Robertson drag, catastrophic fragmentation and sputtering — act most effectively
on small grains. These grains are more efficiently removed by radiation pressure;
collisions, for example, set lifetimes at ~ 10* — 10° years for particles between
tenths of millimeters and a few centimeters in radius while radiation pressure
typically removes such grains in only a few years. The important point to make
is that all of these loss processes cause the actual region of space filled by stable
orbits to be smaller than a simple circular three-body model would suggest.

Several mechanisms (Weidenschilling et al. 1989, Burns and Hamilton 1991)
might supply circum-asteroidal satellites or debris: 7) primordial co-accretion
processes like those that are believed to have produced most planetary satellites;
i1) formation in a nearly catastrophic collision like the event thought to have
generated Earth’s Moon; 4ii) capture of interplanetary debris within the asteroid’s
stability zone; iv) a continuous flux of impact ejecta leaking off the asteroid itself
as the latter is bombarded by micrometeoroids; and v) similar ejecta leaving an
asteroidal “feeder” satellite. The last of these is thought to be the most feasible
supplier of circum-asteroidal debris, since a significant fraction of the ejecta can
remain trapped in this case in contrast to mechanism iv). Unfortunately it is also
the least calculable!

Since none of these processes can be quantified well and since definitive ob-
servations of life-threatening debris can not be made from the ground, mission
planners have been quite anxious about where in the vicinity of an asteroid a
spacecraft could safely fly. Clearly this is a very difficult engineering question.
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Nonetheless, within the assumptions of the models, the recent research sum-
marized above shows that regions beyond a few hundred asteroid radii will not
contain stably trapped particles and that small particles will be entirely absent
from the asteroid’s vicinity. In addition, it is encouraging that no schemes seem
capable of populating the most distant stable orbits. Nevertheless, when entering
unknown territory, one always has a nagging worry that something was ignored,
perhaps a new mechanism to stabilize orbits or one to efficiently generate distant
material. For that reason this Ph.D. candidate, at least, has greeted the un-
scathed flight of the Galileo spacecraft past 951 Gaspra and 243 Ida, at distances
of ~ 230R4 and ~ 170R 4, respectively, with sighs of immense relief.



5.1 eneral e arkson wust an r ital
Pertur ation eory

Although dust particles contain only a tiny fraction of the mass in orbit about a
planet, they far outnumber their macroscopic companions. In planetary systems
these tiny motes are ubiquitous, both interspersed with macroscopic bodies in op-
tically thick rings and organized into tenuous structures of their own. Sensitive
detectors aboard spacecraft have discovered dust strewn throughout planetary
systems, albeit in quantities too faint to be visible (Gurnett et al. 1983, 1987,
1991). Clearly the overall distribution of dust in circumplanetary orbits is com-
plex; yet the distribution, and the fact that it can indicate the presence of larger,
perhaps unseen, source bodies is of interest to diverse groups of researchers (see
Chapter 1). A necessary prerequisite for obtaining such knowledge is a good
understanding of the orbital dynamics of an individual dust grain.

Micron-sized dust grains moving along circumplanetary orbits are subject to
strong non-gravitational perturbations due to scattering of solar photons and due
to Lorentz forces arising from the planet’s rotating magnetic field. The effect of
these perturbations on an orbiting dust particle can be determined by including
the perturbation forces in the left-hand side of Newton’s second law F = ma
(see Chapter 4). In general this equation cannot be solved analytically, so we are
forced to resort to approximate or numerical methods (see Chapters 2-4, Horanyi
et al. 1992, Schaffer and Burns 1992 among others). In many cases, however, we
are interested not in the detailed information of how a particle’s position and
velocity change with time but only in how the character of its orbit varies. In
these cases, the six osculating orbital elements (a, e, i, Q,w, and v) defined in Figs.

!This chapter is based on the paper: Hamilton, D.P. (1993), Motion of dust in a planetary
magnetosphere: Orbit-averaged equations for oblateness, electromagnetic, and radiation forces
with application to Saturn’s E ring. Icarus 101, 244-264 [copyright 1993 by Academic Press,
Inc.]
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5.1 and 5.2 are particularly useful. Other choices for these elements, especially
the sixth, are also possible (Danby 1988, p. 201). We shall often use M = nt,
the mean anomaly, where n = (GM,/a®)'/? is the particle’s mean motion, # is
the time measured from the moment of pericenter passage, G is the gravitational
constant, and M, is the planetary mass.

If the perturbation forces are small compared to the planet’s gravitational
attraction, the first five osculating elements will change slowly over timescales
much longer than the particle’s orbital period. Therein lies the primary advantage
of the orbital elements: because they are connected to the geometry of the orbit
and because they vary slowly with time, the osculating elements allow a direct
visualization of the orbital history of a perturbed body in a way that far surpasses
that possible with a set of positions and velocities. Take, for example, the case of
an orbit around an oblate planet which we will discuss below in Section 5.2. It is
well known that the orbit-averaged solution to this problem is, to high accuracy,
simply a precessing ellipse (Danby 1988, p. 345). The orbit retains its size, shape,
and inclination off the equatorial plane while its node regresses and its pericenter
precesses, each at a constant rate. By calculating these rates from equations given
below and using Figs. 5.1 and 5.2, one can easily picture the resulting orbital
evolution. Attaining the same picture from positions and velocities as functions
of time requires more computation and considerably greater insight!

We note that, technically, the osculating elements differ slightly from geo-
metric elements which describe the true shape of the orbit; these deviations are
of order the dimensionless ratio (¢) of the perturbing force to gravity. For an
oblate planet, therefore, the discrepancies are of order J, (see Greenberg 1981,
Borderies and Longaretti 1987). These differences are especially important when
true eccentricities and inclinations are small compared to € (e.g., the geometrically
circular orbit discussed by Greenberg, 1981, has a small osculating eccentricity
and appears as if it is always at its osculating pericenter), and when other per-
turbations do not strongly affect an element. Similarly, the rate of change of the
mean anomaly is unequal to the mean motion for perturbed orbits; the devia-
tions are of order € and are due both to real changes in a particle’s speed as well
as differences between the osculating and geometric elements. Because we are
primarily interested in how a particle’s orbit evolves, we will not use the mean
anomaly perturbations in this chapter, but merely include them in the equations
to follow for completeness.

The fact that, for modest perturbations, the osculating orbital elements vary
slowly in time is useful both numerically and analytically because it allows the
effects of a perturbation to be averaged over a single (assumed constant) Keple-
rian orbit. The resulting averaged expressions describe how the osculating orbital
elements change in time and are accurate to first-order in €. In the following sec-
tions we treat the strongest perturbation forces acting on close circumplanetary
dust grains — higher-order gravity, radiation pressure, and the electromagnetic
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Figure 5.1 View of an elliptical orbit in the orbital plane. Three of the orbital
elements — the semimajor axis a, eccentricity e, and true anomaly v — are depicted.
Simple geometry shows that the orbit center is offset from the planet by a distance
ae, the semiminor axis is given by b = a(1 — €?)!/? and the semi-latus rectum by
I =a(l—é€?).
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Figure 5.2 Three additional orbital elements that define the orientation of an
elliptical orbit relative to a fixed plane and a reference direction in that plane.
The longitude of the ascending node, €2, measures the angle from the reference
direction to the point where the orbit’s plane intersects the reference plane; the
argument of pericenter, w, defines the angle between that intersection point and
pericenter (the closest approach of the orbit to the central body); and the inclina-
tion, 7, measures the angle between the orbital and reference planes. Inclination
is defined such that 0° <7 < 180°.
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force — and derive the appropriate orbit-averaged equations.

5.2 ig er- r er ravity

Treatments of the orbital perturbations arising from non-spherical terms in a
planet’s gravitational field can be found in many texts (e.g., Danby 1988), but
we include a short discussion of them in this section both for completeness and
to provide a simple example of the orbit-averaging process that can be compared
with the more complicated ones to follow.

Because a planet’s spin is responsible for most of the distortion of its gravity
field, the field can be well represented by adding an axially symmetric perturbing
potential

i j
Ver = Gﬂ N RT

71=2

(cos ), (5.1)

to the standard point source potential; the perturbing force is obtained by taking
the negative gradient: Fgr = —m,VVggr. Throughout this chapter the subscripts
“p” and “¢” stand for “planet” and “grain,” respectively; here R, is the planet’s
radius and my is the mass of the dust grain. The P;j(x) are Legendre polynomials
and the J; are dimensionless coefficients that can be evaluated for a particular
planet to describe its gravity field.

To derive the first-order, orbit-averaged equations, we rewrite the potential
Eq. (5.1) in terms of the orbital elements and average it over time to obtain
the negative of the disturbing function. Inserting the disturbing function into
the potential form of the planetary equations (Danby 1988, p. 336) we find the
following equations for the variation of the elements:

<%>bza (5.2)

<$>ﬁ:a (5.3)

<%>h:0’ (5.4)

ds? 3TLJ2R12, )

— = £ , 5.9
< dt >J2 202(1 — e2)2 " (5:5)

dw 3nJoR; 5 . 5.
) =T 9 T 5.6
< dt >J2 2a2(1 _e2)2 270 " (56)

d 3n.J,R> 3 . .

<W—">h—m L—gsinti (5.7)
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where the angular brackets denote orbit-averaged quantities (cf. Danby 1988, p.
347). Technically, each of the orbital elements on the right-hand side of Egs.
(5.2-5.7) should be encased in angled brackets as we ignore their short-period
fluctuations, but these brackets will be omitted for clarity since we refer only to
the averaged elements throughout this chapter.

Notice that Eqs. (5.2-5.7) are trivially integrable even though the full problem
is not (Kozai 1959). The first three expressions imply that the elements a, e, and
1 are constant and, consequently, the right-hand sides of the final three equations
are also fixed. Thus the angles 2 and w circulate, having values that change
linearly in time. Since the circulation times are ~ (a/R,)?/J> times longer than
the orbital period, the solution to Egs. (5.2-5.6) is simply a slowly rotating
ellipse.

The final equation merely expresses the average rate at which a particle com-
pletes a single osculating orbit from pericenter to pericenter; the rate differs
slightly from the mean motion both because the particle’s average angular speed
is changed and because the position of pericenter slowly shifts. For equatorial
orbits, the right-hand side of Eq. (5.7) is positive and the particle completes its
radial pericenter-to-pericenter oscillation slightly faster than its unperturbed Ke-
plerian counterpart. This is an expected result since, in the equatorial plane,
planetary oblateness augments the inward pull of point-source gravity; the in-
creased force effectively raises the oscillator’s “spring constant” and hence its
frequency.

5.3 a lation ressure

For micron-sized grains in circumplanetary orbit, solar radiation pressure is a
strong perturber. In its simplest form, radiation pressure imparts a force on a
grain given by:

Frp=—p %éa
where Mg is the solar mass, R is the Sun-planet distance, § is a unit vector
pointing from the planet toward the Sun, and f is the dimensionless ratio of the
radiation force to solar gravity given by Eq. 4.1.

This simple expression ignores the anisotropy of re-radiated photons (Poynting-
Robertson drag), grain rotation (Yarkovsky effect), the planetary shadow, and
complications arising from the rotation and finite angular size of the Sun. These
effects are quite small compared to the main force of radiation pressure and
can usually be neglected in a first approximation. Dissipative forces, such as
Poynting-Robertson drag, however, can be important even if they produce slow
changes because they affect the semimajor axis, an element unperturbed by direct
radiation pressure. Similarly, effects of the planet’s shadow makes it possible for

(5.8)
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radiation pressure to alter the semimajor axis of an orbit (Mignard 1984, Horanyi
and Burns 1991). Over the short times considered here, however, the weak drag
forces cannot cause appreciable orbital evolution; and we can ignore the shadow
effects since these are small and periodic.

Orbit-averaged solutions to a particle moving around a spherical planet sub-
ject to that planet’s gravity and solar radiation pressure have been derived by
several authors, including Burns et al. (1979) and Chamberlain (1979), both of
whom used Gauss’ form of Lagrange’s planetary equations for a force constant
in magnitude and direction, and Mignard (1982), who used a disturbing function
approach and included the effects of solar motion. All of the above authors did
their analysis in the plane defined by the orbital motion of the planet around
the Sun (hereafter called the ecliptic plane?) and measured their inclinations
from that plane. In the case of motion about an oblate planet, however, the
planet’s equatorial plane is also important - this is especially true since most
sources of circumplanetary dust (planetary rings and inner satellites) reside near
this plane. It is natural, therefore, to seek an orbit-averaged solution to the or-
bital evolution caused by radiation pressure that can be expressed in the planet’s
equatorial plane; this is equivalent to adding a non-zero planetary obliquity, -,
to the previously derived solutions. In this section we discuss two approaches to
obtaining equatorial equations and then we derive analytical expressions valid for
all obliquities.

One approach, motivated by the fact that orbit-averaged equations valid in
the ecliptic plane are already available (Mignard 1982), is to simply translate
these equations into the equatorial plane; this task can only be accomplished if
the orbital elements themselves can be converted. Since the new set of elements
describe the same elliptical orbit from a different reference plane, only the angles
(7,9, and w) that define the orbit’s orientation relative to the plane will be altered
(Fig. 5.2) - the other elements (a, e, and v) will be identical in both frames. We
seek, therefore, functions that relate the new orientation angles to the old. These
can be obtained either by simple rotations or from spherical trigonometry. As seen
from the planet’s center, the equatorial plane, the ecliptic plane, and a particle’s
orbital path all appear as great circles on the sky (Fig. 5.3); for simplicity we have
chosen to measure each orbital node from the ascending node of the ecliptic on the
equatorial plane. The spherical triangle formed by the intersections of these great
circles implicitly define the equatorial elements in terms of the ecliptic elements.
Unfortunately, the expressions resulting from translating to equatorial elements
are cumbersome enough to defeat the main purpose of orbit-averaging which is to
obtain simple equations for analytic work. Accordingly, we try a different tack.

Since we hope to combine the effects of radiation pressure with other pertur-
bations, we need orbit-averaged expressions referenced to the equatorial plane

2Here we use the term ecliptic somewhat loosely to avoid confusion between the planet and
particle orbital planes. Strictly speaking, the ecliptic refers only to Earth’s orbital plane.
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Figure 5.3 The planet’s equatorial plane, the ecliptic plane, and the dust grain’s
orbital plane, each as projected onto the sky from the planet’s center. Elements
describing the orientation of the grain’s orbital plane relative to either of the
two reference planes are shown; in each case, the inertial reference direction is
the ascending node of the ecliptic on the equatorial plane. Primed quantities
are elements referenced to the ecliptic plane, unprimed ones are measured along
(or from) the equatorial plane, and ~ is the planet’s obliquity. The spherical
triangle formed by the intersections of these three planes implicitly define one set
of elements in terms of the other (7,2, w) — (', Q,w’)].
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and to an inertial direction. We choose a right-hand coordinate system centered
on the planet with X pointing to the ascending node of the ecliptic on the equato-
rial plane (Fig. 5.3), ¥ in the equatorial plane, and z along the spin axis. Since, to
a good approximation, the Sun is motionless during the time it takes the particle
to complete a single orbit (this will only be inaccurate for very distant orbits),
we can average over an orbital period while holding the Sun’s position constant.
The problem breaks down into three pieces: 1) determine the response of the
orbit to a constant force along each of the coordinate axes; 2) solve for the Sun’s
motion in the equatorial frame; and 3) linearly combine these solutions.

Starting the first task, we resolve the solar position in the equatorial frame into
components with magnitudes s,, s,, and s,, the time-variable values of which will
be determined shortly. The solar position as seen from this frame is then simply:
§ = s,X + s,¥ + s,2. The perturbing potential Vgp is obtained from Eq. (5.8)
via the relation Frp = —VVxzp. Since the magnitude and direction of radiation
pressure changes only slightly over a single orbit of the dust grain, we treat the
right-hand side of Eq. (5.8) as a constant and find Vgp = Frp(s,x + s,y + $,2).
To average the disturbing function, —Vgp, over time, we first need to express the
cartesian coordinates z, ¥, z in terms of orbital elements:

z =rsinfcos¢ = r(cosQcosu — sin {2 sin u cos i), (5.9)
y = rsinfsin ¢ = r(sin Q cosu + cos Q2 sinu cosi), (5.10)
z=rcosf = rsinisinu, (5.11)
where
a(l—¢€?)
e’ 5.12
1+ ecosv ( )
and v = w + v is the argument of latitude. Since s,,s,, and s, are nearly

constant during the time it takes to make a single circuit around the planet, only
the following orbital time-averages are needed:

3
(x) = —iea(cochosw — sin Q2 sinw cos i), (5.13)
3 . . .
(y) = —§ea(stcosw + cos Qsinw cos i), (5.14)
and

3
(z) = —§easinisinw. (5.15)
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We note that (y) can be obtained from (z) by subtracting 90° from the node
in Eq. (5.13) and that all expressions reduce appropriately if e or i equals zero.
Inserting these expressions into the potential formulation of the planetary equa-
tions, we obtain (after some algebra) the following expressions for the variation
of the orbital elements:

da _ (5.16)
dt rp '
de _ o 2\1/2 . - -
=a(l — e*)/*[sy(cos Qsinw + sin {2 cos w cos 7)
dt rp
+5,(sin 2sinw — cosQ cosw cosi) — s, cosw sin i, (5.17)
di ae (5, 5100 o
— = —————(s;sinQ coswsini
dt grp (1 — 62)1/2
—s, cos{lcoswsini + s, cosw cosi), (5.18)
d< ae . .
T o m(sm sin Q2 sinw
—sy cos Qsinw + s, sinw cot 1), (5.19)
d 1 — e2)1/2
nd = u[sm(cos Qcosw — sin Q sinw cos 1)
dt grp e
+5,(sin Q2 cosw + cos Qsinw cos i) + s, sinwsin i] — cos i o (5.20)
RP
d 1+ ¢
— - :—M[sx(cosﬂcosw—sianinwcosi)
dt RP e
+5,(sin Q2 cosw + cos QA sinw cos i) + s, sinw sin 7. (5.21)

Here 2a/(3n) = BMya®/(M,R?) is the ratio of the radiation force to the planet’s
gravity at a given semimajor axis. In terms of previous expressions a = 3/(27)
in Chamberlain (1979)’s notation and (1 — e?)'/2 = 3HF/(2mu) in Burns et al.
(1979)’s notation. Egs. (5.16-5.21) are fully three-dimensional, valid for all
eccentricities and inclinations.

It remains only to determine the coefficients s, s,, and s,. Imagine a rotating
ecliptic coordinate system such that the Sun remains fixed along the zg-axis. In
general, at time ¢ = 0, the Sun is located at an angle § from the inertial reference
direction in Fig. 5.3. To find the coordinates of a unit vector pointing toward the
Sun in the equatorial frame, we apply two rotations: first a rotation of —ngt —§
around the normal to the ecliptic back to the mutual node, then a rotation
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around the inertial direction by minus the obliquity to align the reference planes.
In matrix notation, the transformation is:

§ = Ro(—7)R.(—not — 0)%g, (5.22)

where R, () and R, (0) are rotation matrices around the = and z axes, respectively
(see Danby 1988, p. 425). Performing the multiplication, we find:

Sg = cos(net + 0), (5.23)
Sy = cosysin(ngt + 6), (5.24)

and
s, = sinysin(net + ). (5.25)

Notice that for v = 0,ng = 0,6 = 0, we have s, = 1,5, = s, = 0 and Egs. (5.16-
5.20) reduce to those of Burns et al. (1979) or Chamberlain (1979). Mignard
(1982)’s equations are obtained after a little trigonometry, by letting v = 0,6 = 0
and employing the transformation (2 = Qg +ngt. Here 2y is Mignard’s longitude
of the nodes which differs from 2 because the former is measured from a direction
that rotates at an angular speed ny. With a little trigonometry, we find that
Eqgs. (5.16-5.21 and 5.23-5.25) are also in agreement with expressions derived
independently by Smyth and Marconi (1993).

We have derived Egs. (5.23-5.25) last to emphasize the fact that the orbit-
averaging can be performed for arbitrary s,,s,, and s, as long as their time
dependence is slow compared to the particle’s orbital period. For example, we
could easily treat the problem of motion around a planet which orbits the Sun
on an elliptical path by simply replacing the argument in the R, rotation matrix
in Eq. (5.22) by an expression valid for the Sun’s non-uniform rate. Of course,
in such a case it would also be necessary to add a time dependence to a to allow
for the more important fact that radiation pressure weakens as the planet moves
away from the Sun (cf. discussion following Eq. 4.10).

5.4 lectro agnetic Forces

5.4.1 General emarks

The rings and small satellites of the outer planets lie close to their primaries in
environments characterized by swarms of energetic charged particles trapped by
strong magnetic fields. Immersed in this sea of particles, a dust grain quickly
acquires an electric charge by a number of mechanisms (Goertz 1989), the most
important of which are the electron and ion charging that occur as the grain



99

sweeps up these gyrating particles. Uncharged dust grains are impacted by elec-
trons more frequently than by ions because the thermal speed of the former far
exceeds that of the latter - in essence, the electrons get to the grains before the
ions do. As a grain becomes more negatively charged, it is able to electrostatically
ward off some electrons while simultaneously attracting a comparable number of
ions until a balance is attained (Burns and Schaffer 1989, their Fig. 1). For typical
magnetospheric parameters and micron-sized grains, equilibrium is established in
a fraction of an orbital period. The addition of other charging mechanisms, such
as photoelectron currents and secondary electron emission, usually only perturbs
the equilibrium grain charge, although for high secondary yields such processes
can lead to multiple equilibria (Meyer-Vernet 1982). Finally, even the equilib-
rium charge may gradually change as the grain’s orbit takes it into regions where
plasma populations differ and as the grain’s velocity relative to the plasma varies
(c¢f. Burns and Schaffer 1989). Stochastic variations of the grain’s charge, which
are generally relatively small and occur swiftly, have little effect on orbital evo-
lution (Schaffer and Burns 1994).

Despite the complexity of these charging mechanisms, it is often a good ap-
proximation to assume that the equilibrium charge on a grain is constant. Take,
for example, the orbital elements displayed in Fig. 5 of Horanyi et al. (1992)
which show an eccentric orbit that ranges from 1 out to 7 saturnian radii. Al-
though the relative velocity between the grain and the co-rotating plasma varies
tremendously, changes in the equilibrium potential are limited to +5%. This is
in agreement with Burns and Schaffer (1989)’s Fig. 1 which shows a weak de-
pendence of the equilibrium potential on velocity. Potentially more serious are
the fluctuations in a grain’s charge cause by spatial and temporal variations in
the density and temperature of the magnetospheric plasma. Because the plasma
density in the E ring is relatively large, a grain’s charge adjusts to its surround-
ings much more rapidly than it orbits the planet (Horanyi et al. 1992). If we
make the reasonable assumption of cylindrically symmetric spatial variations in
the plasma parameters, it can be shown, with the formalism to be introduced
below, that the semimajor axis and eccentricity of the grain’s orbit change in
almost the same way as they do for a constant charge. Since the purpose of this
section is to account for the first-order effects of the Lorentz force, henceforth we
will make the simplifying assumption of constant charge. In Chapter 6, we will
return to comment further on the validity of this approximation for the specific
case of Saturn’s E ring.

Planetary magnetic fields are responsible not only for trapping the electrons
and ions that charge up a dust grain, but also for the resulting orbital pertur-
bations suffered by such grains. In the standard model, these fields are assumed
to arise from two sources: currents interior to a given radial distance from the
planet and currents exterior to this distance; connections between the regions
are ignored. Because of the assumed lack of currents in the region of interest
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(J ~ V x B = 0), the magnetic field can be derived from a scalar magnetic
potential ® in analogy with the electric potential. The j, k component of the
scalar magnetic potential in the frame rotating with the planet is given by the
usual spherical harmonic expansion:
R, i+ ' .

¢, =R, . (g, cos(kor) + hj sm(quR)]Pj (cosb), (5.26)
where j is an integer ranging from one to infinity, k£ is an integer ranging from
zero to 7, and ¢p = ¢ — (,t, with the subscript 'R’ denoting the rotating co-
ordinate system. Here # and ¢ are the angular spherical coordinates defined in
the non-rotating frame. The g;; and h; are field coefficients with units of gauss
which can be evaluated for each planet (for Saturn see Connerney et al. , 1984;
Schaffer and Burns, 1992, tabulate values for the giant planets and give additional
references). In Eq. (5.26) we have ignored the (usually small) contributions from
the exterior currents; their effects can be readily included (Acuna et al. 1983a)
when necessary (e.g., beyond a few planetary radii in the Jovian system). The
Schmidt-normalized associated Legendre polynomials Pf(z‘) are defined in terms
of the regular Legendre polynomials; the relevant expressions can be found in
Schaffer and Burns (1992). Finally, the magnetic field contribution from the 7, k
component of the potential is

B, = -V, (5.27)

while the total field in the rotating frame is obtained by summing all of the
individual components

oo J
B = B; . (5.28)
j=1k=0
Two ways exist to obtain the Lorentz force valid in a non-rotating frame
centered on the planet. Although the methods give identical results, they are
conceptually quite different and it is instructive to go through each argument.
In the first method, we calculate the force in the rotating frame as Fgy =
q(Vyer/c X B) with v, = v — (2, x r), where v, is the orbital velocity of
the dust grain relative to the rotating frame, v is its velocity relative to a non-
rotating planetocentric coordinate system, €2, is the spin vector of the planet, c is
the speed of light, and ¢ is the charge on the grain. Employing special relativity
to transform the force back to the non-rotating frame, we find that it is unaltered
to first-order in v/c and hence:

Fry = %{[v — (9, x 1)] x B}. (5.29)



101

The preceding discussion makes it quite clear that the Lorentz force vanishes
for an equatorial circular orbit at the synchronous distance: there the velocity
relative to the magnetic field is zero and thus no force is present.

The second way to treat the problem is to transform the magnetic field from
rotating coordinates to non-rotating ones before calculating the force. Utilizing
special relativity again, we find that the magnetic field is unchanged (neglecting
terms of order Q,r/c << 1), and that an electric field E = —(€, x r) x B is
present in the non-rotating frame. This is the so-called “co-rotational electric
field” discussed by Burns and Schaffer (1989) among others. The Lorentz force
is then calculated from Fgy = q[E + (v/c x B)] and Eq. (5.29) is obtained once
more. This discussion highlights the role of the magnetic field; it illustrates that
part of the Lorentz force does no work and, as we shall see, is less able to influence
the orbital elements.

Although the magnetic field can be expressed as a gradient of a potential, the
electromagnetic force, because of its velocity dependence, cannot. We are there-
fore unable to use the disturbing function approach that was applied to radiation
pressure and instead must use Gauss’ form of the planetary equations. These
equations are given in orbital coordinates where the acceleration at a particu-
lar point on the orbit is resolved into orthogonal components which are radial
(R = t), normal to the orbit (N), and tangential (C) to a circle in the orbital
plane that passes through the point. The Lorentz force, Eq. (5.29), is written in
equatorial spherical coordinates which are converted into the orbital coordinates
by use of Egs. (5.9-5.11) and the following expressions:

COS 17 ~ SIN % CoS U »

6= — — C 5.30

sin 6 sin 6 ’ ( )
and

é:_sinicosuN_i_cosiC (5.31)

sin 6 sinf
Carrying out the transformation and keeping track of all terms, we find that the
normal, radial, and tangential components of the Lorentz acceleration can be
represented as:

Bysini B . '
N=-L1 _DrPeSRICOSE BrPe T8 Bue + B,Qyreosi ,  (5.32)

cmyg sin 6 sin 6

voBgcost  voBgsinicosu
r= -1 _VoDeCOSt YcTsS + ByQ,rsinf | (5.33)
cmyg sin 6 sin 6
B . B, sini o

=4 UrPecost U ¢SmZCOSU+Ber7“smzcosu : (5.34)

cmyg sin 6 sin 6
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where v, and v¢ are the radial and circular parts of the velocity and the B; are
the appropriate magnetic field components. These three equations are valid for
any magnetic field. Finally we need to express the radial and circular velocity
components of a Keplerian elliptical orbit in terms of the orbital elements; from
conservation of orbital energy and angular momentum we have:

GM, 12 eginv

w= T (5.35)
and
GM, Y21+ ecosv
o= = e (5.36)

5.4.2 The Aligned Dipole

We begin by discussing the axisymmetric (k = 0) terms in the magnetic field
expansion given by Egs. (5.26-5.28) as they have no time dependence and can
be readily orbit-averaged. Of these, the j = 1 term is the strongest so we focus
on it first. The magnetic field produced by this g term is a spin-axis aligned
dipole which has the following components:

R, 3
B, =2g190 — cosb, (5.37)
r
R 3
By =gio —2 sinf, (5.38)
r
By = 0. (5.39)

for convenience, and in analogy with Eq. (4.1), we define a dimensionless param-
eter, L, as a rough measure of the strength of the electromagnetic force relative
to the planet’s gravity. We take the g; ¢ term of the magnetic field given in Egs.
(5.37-5.39), evaluate Eq. (5.29) in the equatorial plane with v = 0, and divide
by the planet’s gravitational force (note this is similar to the parameter e defined
by Schaffer and Burns 1987). The result is:

. qgl,OR?,Qp

L= .
cGM,m,

(5.40)

Inserting the force resulting from Eqgs. (5.37-5.39) into the planetary perturbation
equations and performing the time-averages we obtain:

da

e — 5.41
dt g, (5:41)
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de nlL

= - _Te(l — €)% 5in% i sin(2w), (5.42)
g1.0
di L
d_jf — ﬁ& sin i cos i sin(2w), (5.43)
91,0 —€
o nL 1 n
v omL g . 1 n 5.44
dt oo (1_e2)i2 [COSZ 1) Q ] (5.44)
dw nlL 9 3cosi n
do oL [ 5. 3cosi n 5.45
dt 91,0 (1 - 62)1/2 cosET (1 - 62) Qp }’ ( )
d onL (5.46)
—_—n = —zZNl. .
dt 910

These expressions have been simplified from exact formulae by dropping terms
of high order in e and i. Nevertheless, Eqs. (5.41-5.46) are quite accurate even
for very large inclinations and eccentricities as we shall soon see.

The electromagnetic force, like radiation pressure, makes non-zero contribu-
tions to variations in the eccentricity and inclination but these contributions
depend on powers of sin? and e; they are therefore quite small unless the or-
bit under consideration is both highly-eccentric and significantly-inclined. Thus,
at least for small inclinations and eccentricities, the effect of the planet’s dipolar
magnetic field is not unlike that of J, (the planet’s quadrupole gravitational field)
since both forces primarily cause precession. This crude similarity should not be
surprising since, at least near the equator plane, both forces have strengths that
diminish rapidly with distance and directions that are predominantly radial. For
electromagnetism, the nodal and apsidal precession rates are dependent on incli-
nation, eccentricity, and the semimajor axis as are their J, counterparts. Unlike
the gravitational case, however, the electromagnetic rates vary considerably rel-
ative to one another for circular orbits of different sizes near the equatorial plane
(compare Eqgs. 5.44-5.45 with 5.5-5.6). Close to synchronous orbit (n = €,), for
example, the nodal rate vanishes, while the apsidal rate is zero further from the
planet near the place where 3n = (2,. Incidentally, as synchronous orbit is ap-
proached in the limit (n — Q,,e — 0,7 — 0), the Lorentz force vanishes as does
the nodal rate, but the pericenter rate does not. How can a force which is zero
all along an orbit cause orbital evolution? The solution to this apparent paradox
is, of course, that it does not; a circular orbit has no unique pericenter so the fact
that an ill-defined angle fails to vanish is unimportant. For small eccentricities,
pericenter exists, the Lorentz force is non-zero, and Eq. (5.45) gives the correct
precession rate.
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5.4.3 The Aligned Quadrupole

As in the gravitational case, inclusion of the higher-order axisymmetric (k = 0)
terms in the magnetic field expansion requires that the lower-order terms be
treated more carefully (i.e., taken out to the next order in L), a task that rapidly
increases in algebraic complexity. For gravity, a treatment including just the Js
term is a good approximation because J; and the other odd harmonics are all
exceedingly small for the giant planets, and because the fields produced by the
larger, even harmonics fall off very quickly with increasing distance. Accord-
ingly, we might hope that higher-order symmetric terms in the electromagnetic
expansion could be ignored as well. We find, however, that the axisymmetric
quadrupole has a non-trivial influence on orbital dynamics; its importance can
be easily understood by noting that near the equator, the radial component of
the dipole magnetic field is small (of order 7). In contrast, the quadrupole field
is primarily radial and its magnitude actually exceeds the radial dipolar field for
orbits with small inclinations. When crossed into a transverse velocity, the radial
field produces a strong normal force which perturbs the inclination, node and
pericenter; hence we expect that quadrupole effects will be important for these
elements. Further expansion to include the symmetric octupole and higher £ = 0
terms is unnecessary, as the radial and theta components of the combined dipole
and quadrupole magnetic field dominate contributions from higher-order terms.

Rather than repeating the derivations of Section 5.4.2 for the symmetric
quadrupole term (an arduous task!), we will treat only the case of small incli-
nations which is of the most interest for planetary applications. For inclinations
smaller than 30°, the theta component of the magnetic field is dominated by
the dipole term and so we ignore the small quadrupole contributions to that
component. The radial component of the quadrupole field

4

B, = ggg,o % (3cos? — 1), (5.47)
however, is important. The largest effect of the radial quadrupole field on a
slightly inclined orbit is to produce a normal force; consequently, we ignore Egs.
(5.33) and (5.34) and consider only Eq. (5.32); this force affects only the incli-
nation, node, and pericenter derivatives. The first two terms of Eq. (5.32) are
identically zero because we have ignored the theta component of the quadrupole
field and there is no phi component. Furthermore, it turns out that the final term
also contributes nothing. Performing the much-simplified averaging calculation,

we obtain:

€ COoS W

n
=0 - 5.48
910 a Q, (1 e2)5% ( )

@ (5.49)
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o osi B (5.50)

dt g0 dt g, '
where approximation signs have been used instead of equal signs to remind the
reader that these equations represent only part of the quadrupole perturbations,
albeit the most important contributions for low-inclination orbits. In this limit,
additional quadrupole perturbations are insignificant when compared to the ef-
fects of the aligned dipole.

Notice that, with a little manipulation, the form of Eqs. (5.48-5.50) is iden-
tical to the s, component of the radiation pressure equations (Eqgs. 5.18-5.20).
This occurs because both sets of equations arise from small, nearly constant ver-
tical forces being applied to an orbit; we will take advantage of this similarity
in Section 5.5 to follow. The sini in the denominators of Egs. (5.19) and (5.49)
simply expresses the fact that, for low inclinations, the orbital node is poorly
defined and small perturbations can force large changes in that element.

5.4.4 Asymmetric Terms

Up to now, we have ignored the non-axisymmetric (k # 0) terms in the magnetic
field expansion; this is a good approximation for the almost perfectly aligned
saturnian field (Connerney et al. 1984), but not for the magnetic fields of the
other giant planets. Thus non-axisymmetric magnetic field terms merit a brief
discussion. First of all, we note that asymmetric terms are more difficult to treat
than the symmetric ones since the planet’s rotation causes the field’s orientation
to change rapidly. Typically, a planet’s spin period is comparable to the orbital
period of an inner orbit; for this type of orbit there is not a unique timespan
over which to average. In contrast, distant orbits have periods that are so long
that we can average the magnetic field first over a single spin period and then
over the orbital motion. Following this procedure, we find that all of the non-
axisymmetric terms in Eq. (5.26) average to zero (i.e., they give no contribution
to orbital evolution in this limit).

Encouraged by this result, we might be tempted to ignore the effects of the
non-axisymmetric terms even close to the planet, arguing that they will only
induce small periodic oscillations. For most orbits this is true, but at specific lo-
cations orbital and spin frequencies are commensurate and the averaging process
is invalid (c¢f. Schaffer and Burns 1992, Burns et al. 1985). These “Lorentz” res-
onances can be treated by isolating the commensurate terms in Eqgs. (5.32-5.34)
for use in the planetary equations, but for now we ignore the non-axisymmetric
terms and accept the fact that the orbit-averaged equations derived in this sec-
tion will not be valid near resonant locations. We analyze Lorentz resonances in
Chapter 7.
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5.5 ouple ertur ations

In the circumplanetary environment, all three perturbation forces discussed above
(higher-order gravity, the electromagnetic force, and radiation pressure) conspire
to perturb the orbits of micron-sized dust grains. Since the forces are generally
small, the orbit-averaged equations derived in the previous sections can be simply
summed to account for the cumulative effect of all perturbations:

o _ A

dt total B j dt j’

(5.51)

where Yy is any of the six osculating orbital elements. The resulting expressions are
cumbersome, but several hundred times faster to numerically integrate than their
Newtonian counterparts. In addition, the output of the Newtonian equations
(vector position and velocity) must be translated into osculating orbital elements.
As a demonstration of the validity of our derivations, we compare numerical
integration of the Newtonian (Fig. 5.4) and orbit-averaged (Fig. 5.5) equations
for a 1-micron grain charged to -5.6 Volts, approximately the potential expected
in the saturnian environment (Horanyi et al. 1992, Fig. 1). The initial conditions
in both cases are appropriate for a grain launched from the moon Enceladus on
an initially circular, coplanar orbit at 3.95R,,; the Sun is initially at its maximum
height above the equatorial plane (90° past the ascending node of the ecliptic on
Saturn’s equator - Fig 5.3). Plotted are the five osculating orbital elements and
the solar angle ¢ (defined below). All six panels of the two plots agree quite
well which reassures us that the approximations made in the previous sections
are valid.

The most notable difference between Figs. 5.4 and 5.5 appears in the semima-
jor axis traces; in the first figure, the semimajor axis displays a peculiar “fuzzi-
ness,” while no evolution whatsoever of this element is apparent in the second.
The discrepancy is due to effects that occur during a single orbital period; in
Fig. 5.4 these effects are clearly visible while in Fig. 5.5 they do not exist because
they have been averaged out. These short-period terms arise when the vector
position and velocity are translated into the osculating orbital elements; in the
presence of perturbations, the values of the elements depend on the point along
an orbit at which they are calculated. The difference in these values over a single
orbit is first-order in the small dimensionless quantities J, a/n, and L, and the
oscillations in osculating semimajor axis are greater for larger eccentricities as can
be readily seen in the plot. By noting the value of a in Fig. 5.4 at points where
e =~ (0, however, we see that no long-term change occurs in the semimajor axis in
agreement with Fig. 5.5. The fact that the rapid and sometimes discontinuous
changes in w and Q that occur at low e and ¢ are not perfectly reproduced (see
Figs. 5.4 and 5.5 at ¢t ~ 8 years for example) is unimportant since these variables
become singular as e and i, respectively, tend toward zero.
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Figure 5.4 Osculating orbital elements plotted against time from integrations of
the full Newtonian equations of motion. The integrations shown in this figure and
in the following one used identical initial conditions: a spherical grain 1 micron
in radius (p, = 1g/em3, @, = 1) charged to a potential of -5.6 Volts initially
released from Enceladus at 3.95R,, on a circular Keplerian orbit in the equatorial
plane. Forces operating on the orbit include: the monopole and J; components
of the gravity field, radiation pressure (no shadowing), and the Lorentz force
from an aligned dipole. The agreement between the two methods is very good
and is discussed further in the text. Other values of interest are the three di-
mensionless parameters J, = 0.01667, a/n = 0.00012, L = —0.00295; the ratio
n/€), = 0.32439, and the initial precession rates, as given by Eqs. (5.59) and
(5.60), Qyy(e ~ 0) = —345°/year and wyy(e ~ 0,¢o = 90°) = 315°/year. The
difference between the two rates is roughly the initial slope of the solar angle
trace in the sixth panel.
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Figure 5.5 Osculating orbital elements plotted against time from integrations of
the orbit-averaged equations of motion. This integration followed the evolution
of an orbit subject to the identical forces, and starting with the same initial
conditions, as the orbit in Fig. 5.4. The agreement between the two figures
is impressive. The most noticeable discrepancy, the semimajor axis history, is
discussed further in the text.
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The agreement between Figs. 5.4 and 5.5 also encourages qualitative and
quantitative descriptions of evolution based on the orbit-averaged equations. To
assist this endeavor, we write out Eq. (5.51) explicitly. As noted above, most
sources for circumplanetary dust are thought to be the small moons and rings
orbiting close to their planet; these objects move on nearly circular orbits in
the equatorial plane. While radiation pressure can cause eccentricities of some
initially circular orbits to grow quite large as we will see in Chapter 6, it is often
difficult for grains to attain orbits significantly inclined to the equatorial plane.
This supposition holds for orbits close to the planet and away from the Lorentz
resonant locations. A useful limit for analytic work, therefore, is that of nearly
equatorial orbits. We keep only the leading terms in sini for each element and
also take i < +, which is a reasonable assumption in most cases (Jupiter is a
possible exception as v ~ 3°). Additionally, we assume that v < 30° so that
cosy = 1; this, of course, is not a good approximation for Uranus with v =~ 98°!
Using Eq. (5.51) to sum the effects of all of the forces discussed in the previous
sections, we find, with the help of some trigonometric identities:

da
— =0, 5.52
dt ’ ( )
d
g a(l — €)' ?sin ¢y, (5.53)
dt
di
d_zlf = Z cosw, (5.54)
ds? sin w .
— =7 Qo 5.55
dt sin ¢ + oy, ( )
dw sin w
— =7 Dzys 5.56
dt sin i + Way (5.56)
where
o =Q+w—negt—20 (5.57)

is the solar angle, approximately the angular difference between the longitudes of
the Sun and the orbit’s pericenter measured in the equatorial plane; the change
in this angle is given by:

bo = Quy + Way — N (5.58)

The precession rates arising from oblateness, electromagnetic, and radiation forces
(excluding the terms proportional to Z, defined immediately below) are:

W 2z T ez L€ g
2a%(1 — e?) (1—e?) Q,

Q (5.59)
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and

. 3nJoR2 nL , 3n a(l — €)% cos ¢
Wy = a2(1—e§)2 - e 1—e —Q—p + . ; (5.60)

the Z terms are excluded for reasons that will become apparent in the following
sections. Finally, the quantity

e 3 g0 R, n
Z = (ESE as, + an go a0 | (5.61)
represents the contributions of the two vertical forces in the problem; the out-
of-plane component of radiation pressure and the force arising from the aligned
quadrupole field. These two forces are small and do not cause substantial orbital
evolution; notice that the terms proportional to Z in Egs. (5.55-5.56) are equal
and opposite so that for small i, the absolute longitude of pericenter w = 2 4+ w
is unaltered. Nevertheless, the forces are important because they influence the
vertical extent of an orbit as will be discussed in greater detail below.

The presence of J5, L, and « in all of the above expressions indicate the effects
of oblateness, electromagnetism, and radiation pressure, respectively; Eq. (5.53),
for example, shows that eccentricity, in this low inclination limit, is driven solely
by radiation pressure. Additional approximations to the set of equations (5.52—
5.56) can be made for specific situations. For example, we can drop the elec-
tromagnetic terms for orbits around bodies with insignificant magnetic fields
(certainly Venus and Mars; and presumably Pluto, asteroids, and comets) or for
small uncharged objects (atoms and molecules) around any planet. In the latter
case, Eq. (4.1) would need to be altered since geometrical optics are not valid for
atoms and molecules (¢f. Smyth and Marconi 1993).

In this chapter we have set up a framework within which the most powerful
non-gravitational forces can be treated. The expressions that we derived are
general and applicable in numerous locales throughout the solar system. In the
next chapter we apply our results to one of these objects: Saturn’s diffuse E ring.




6.1 Intro uction

It is important to understand the dynamics of the very faint rings surrounding
the giant planets since, owing to the rarity of collisions, such entities offer an
excellent opportunity to learn the fundamental processes affecting the motion
of individual ring particles. Because the particles comprising the ethereal rings
are usually small, however, the orbital evolution of even a single particle can be
quite complex: in addition to the usual gravitational perturbations (e.g., due
to planetary oblateness and embedded satellites), small grains are also subject
to radiation pressure and electromagnetic forces (Chapter 5) as well as weaker
variations due to drags, and charge variations (Burns 1991). All these processes
are active to some extent in the dense rings as well, but they are obscured by
other perturbations, especially collisions and collective effects.

Perhaps the best studied of all the ethereal rings is Saturn’s E ring. Much of
the interest in this three-dimensional structure arises because the Cassini space-
craft will make many passes through this region. Recently, Showalter et al. (1991)
have combined spectrophotometric data of the E ring from ground-based mea-
surements with that from the Pioneer 11 and Voyager encounters. Their most
important findings are: the ring extends from <3 to 2 8 Rs (the equatorial radius
of Saturn Rs=60,330 km); its optical depth profile peaks sharply near the orbit
of Enceladus (ag = 3.95Rgs), making this satellite the suspected source of the
ring, with a simple power law decay that is sharper inward [r ~ (r/ag)'®] than
outward [T ~ (ag/r)"] of Enceladus’ orbit; in general, the ring shows a gradual in-

!This chapter is based on three papers: Horanyi, M., J.A. Burns, and D.P. Hamilton (1992),
The dynamics of Saturn’s E ring particles. Icarus 97, 248-259 [copyright 1993 by Academic
Press, Inc.], Hamilton, D.P. (1993), Motion of dust in a planetary magnetosphere: Orbit-
averaged equations for oblateness, electromagnetic, and radiation forces with application to
Saturn’s E ring. Icarus 101, 244-264 [copyright 1993 by Academic Press, Inc.], and Hamilton,
D.P., and J.A. Burns (1993), The origin of Saturn’s E ring: Self-sustained, naturally. Science,
submitted.
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crease in vertical thickness with distance from Saturn, ranging from ~ 6,000 km
at its inner boundary to ~ 40,000 km at its outer edges but has a local mini-
mum at the orbit of Enceladus, where the thickness is only ~ 4,000km; and,
perhaps most puzzling of all, the size distribution of the particles is very nar-
row, being composed mainly of particles with 1(£0.3) um radii. In this chapter
we suggest that many of these observations can be understood in terms of the
short-term dynamics of single particles injected at Enceladus; a schematic of the
E ring, showing its relation to Enceladus and the main rings, is given in Figure
6.1. We will demonstrate that, to some degree, the E ring’s optical depth profile
results from the competing effects of the perturbations due to planetary oblate-
ness and the Lorentz force, which allow solar radiation pressure to induce quite
large eccentricities for a selected particle size range including the micron-sized
grains thought to be present in the ring. This mechanism is capable of spreading
material quite quickly across large radial distances from Saturn and producing
a sharply peaked optical depth profile; its effectiveness is found to be strongly
size-dependent, which is consistent with the E ring’s very narrow particle size dis-
tribution. In the following three sections we use analytic and numerical methods
to understand the radial, azimuthal, and vertical structure of Saturn’s E ring.

6.2 a 1al Structure

In order to understand the first-order radial structure, we begin with a simple
analytical model based on the results of the previous chapter. In order that such
a model be analytically tractable, we make a number of simplifying assumptions.
First, we include only the perturbations from oblateness, solar radiation pressure
and the Lorentz force, neglecting all weaker perturbations (e.g., drag forces). In
addition, we assume that the charge on a dust grain orbiting in the E ring is
nearly constant which is in accord with the findings of Horanyi et al. (1992),
although with a more extreme plasma model, this need not be the case. In this
section, we also neglect variations in the inclination and the node, since for small
inclinations, these elements do not affect the ring’s radial structure. Finally,
we initially assume low eccentricities, although this assumption will be relaxed
shortly. For small eccentricities, Egs. (5.53), (5.58), (5.59), and (5.60) become

de

i asin ¢g (6.1)
do Q )
d—t® = - cos b + Way (6.2)
where ©,,, defined to be
3nJoR2  2n%L
gy = Py ?2 ~ ne, (6.3)

2
2a -



113

Figure 6.1 The saturnian system. The solid central disk represents Saturn and
immediately exterior to it are the optically thick A and B rings (hatched). The
E ring covers the stippled region outside the main rings and encompasses the
orbits of at least four major saturnian satellites: Mimas, Enceladus, Tethys,
and Dione. For clarity, we show only Enceladus’ orbit (the circle of radius
Umoon ~ 3.95Rg) and that of an E-ring grain which originated on Enceladus
(ellipse with aguse = 3.95Rs and eguse = 0.5). The orbital turning points A
(apocenter) and P (pericenter) of the particle’s orbit are located at distances
Aust(1 + €qust) and agusi(1 — €gus) from Saturn. E-ring particles cross the orbit
of Enceladus at the points I; and I, and can venture within the radial distance
of the opaque main rings only if they fly above or below them.
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represents the uniform motion of pericenter relative to the Sun in the absence of
radiation pressure. Before solving Eqs. (6.1) and (6.2), let us qualitatively discuss
the solutions.

The first two terms on the right side of Eq. (6.3) are much larger than ng
and, since the grain charge and hence L is expected to be negative (Horanyi
et al. 1992), these two terms compete against one another. Thus, the pericenter
can be gravitationally dominated (precession with <o, > 0), stopped (cv.,=0)
or electromagnetically dominated (regression with <,, < 0). Which of these
situations occurs will depend on the particle’s size, charge and its position in
the magnetosphere. We now discuss the simple case in which w,, = 0. Since
the second term on the right side of Eq. (6.3) is strongly size-dependent (see
Eq. 5.40), near cancellation of the two terms will occur only for a narrow range
of particle sizes. For the expected conditions in the E ring (& ~ —5V, a=0.2
yr '), the critical grain size is r, = 1 um, very similar to the size of the grains
actually observed in the ring.

In connection with initial conditions, presuming the E-ring particles originate
on Enceladus, we make three observations: 7) the escape velocity from the satellite
is probably less than 1072 times the satellite’s orbital velocity; i1) electromagnetic
perturbations alone do not introduce large orbital velocity changes (Schaffer and
Burns 1987); and ii7) Enceladus’ orbit is nearly circular. Accordingly we assume
that the grain is launched at 3.95 Rg onto an approximately circular Keplerian
orbit. From such a starting condition (e ~ 0), Eq. (6.2) shows that ¢ will
swiftly turn to 7/2 and then will stay locked; simultaneously, by Eq. (6.1), the
eccentricity grows at the constant rate o (Horanyi et al. 1990).

Of course the eccentricity can only increase until the orbit intersects the outer
edge of the A ring at 2.27Rg where collisions with the opaque ring will eliminate
the particle; written in terms of orbital eccentricity, this condition is e..; &~ 0.43.
(Naturally, this applies only to particles staying in the equatorial plane whereas
below we will find that collisions with the main rings are less likely once the
inclination is allowed to be non-zero.) According to Eq. (6.1), such an eccentricity
will be achieved in a little more than 2 years. To summarize, one-micron particles
injected at Enceladus with ® ~ —5 volts, will be rapidly dispersed owing to their
eccentric orbits and then will be lost by collisions with the A ring. We must recall,
however, that it is the fine balance between the perturbations due to oblateness
and the Lorentz force that anchors the pericenter in this case, thereby allowing
solar radiation pressure to induce large eccentricities.

For the general case, where w,, # 0, one can most readily solve Eq. (6.1)
and Eq. (6.2) by transforming to the variables P = esin ¢ and Q = ecos ¢p,
which are found to describe simple harmonic oscillations. In terms of the original
variables, the solution is
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¢ ‘ (6.4)

¢o = modulo @t,w + E,

2 2
assuming the initial condition e(¢ = 0) = 0. The eccentricity changes periodically
as the pericenter moves at a constant rate from /2 to 37/2 (for w,, > 0), at
which point ¢¢ jumps back to 7/2 again (for a geometrical representation of this
solution, see Horanyi and Burns 1991). The period of the eccentricity variation is
P = 271 /w,, and the maximum eccentricity (within the approximation of small
e) 1S emar = 20/ T0yy,.

As seen in Egs. (5.40) and (6.3), t,,, and therefore e,,,,, is very sensitive to
the grain size. For a specific particle size, one can compute the range of voltages
that will produce precession rates such that e.,; is achieved. Larger voltages
cause the Lorentz precession rate to dominate that from the planet’s oblateness
while for smaller voltages the converse holds; both cases mitigate the ability
of solar radiation pressure to produce high eccentricities. Figure 6.2 displays
the maximum eccentricity e,,,, achieved by particles of three sizes and various
voltages near those of the nominal E-ring grains. Particles on 2-D orbits are
lost to the main rings when the pericenter dips into the A ring, which occurs
for e.on = 0.43. As we will see below, three-dimensional orbits survive until the
orbital nodes intersect the A ring (this always happens before the orbit intersects
the planet) which occurs for el ;, = 0.65 (Section 6.4). The curves to the left
(right) of the flat tops in Fig. 6.2 correspond to w,, < 0 (w,, > 0). Because
particles of different sizes are spread in such dramatically different ways, the
population of grains that is present at the outskirts of the E ring could differ
considerably from that introduced at Enceladus. As an illustration of this effect,
consider a population consisting of three sizes (0.5, 1.0, and 1.5 um) injected at
Enceladus. The eccentricity histories of these particles, plotted in Fig. 6.3, differ
significantly and the maximum values achieved are in agreement with Fig. 6.2.

An excellent test of our model can be made by the Cassini spacecraft which
will carry out complete photometric observations of the E ring and in-situ detec-
tions of the dust particles composing it. These data sets will constrain particle
size distributions across the E ring. Indeed, the importance of radiation pressure
will be shown if a wide distribution of particle sizes is found to be present near
the orbit of Enceladus but only a very selected size range is seen elsewhere. A
more direct test involves using Cassini’s dust detector to see whether the particles
sensed at distances from Enceladus are on eccentric orbits.

We now compute the radial optical depth distribution due to grains moving
on elliptical orbits. For diffuse structures like the E ring, the optical depth is
proportional to the time a grain spends within any given radial interval, r to
r+Ar, which in turn is inversely proportional to rv,, where v, is the average radial

(6.5)
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Figure 6.2 The maximum eccentricity €., = 2a/t0,, that is achieved according
to Eq. (6.4), as a function of the assumed (constant) surface potential for various
size grains (heavy lines) introduced at Enceladus (at 3.95Rg). The results from
numerical integration are also shown (dashed lines); the differences between the
curves at large eccentricities clearly signal the breakdown of the assumption that
e < 1. The curves are truncated at e, = 0.65, the eccentricity at which all
three-dimensional orbits with a = 3.95Rg will intersect Saturn’s A ring; particles
confined to the ring plane will be lost once they reach e.,;=0.43 when the orbital
pericenter dips into the outer A ring.
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Figure 6.3 History of orbital eccentricities for 0.5, 1.0, and 1.5 pm particles evolv-
ing under oblateness, electromagnetism, and radiation pressure as they move
about Saturn with orbital semimajor axes of 3.95Rg. In each case, particles are
taken to be icy spheres of density 1.0g/cm? at a potential of -5Volts. For 0.5 ym
particles, the Lorentz force dominates orbital precession and the orbit spins too
rapidly for radiation pressure to create substantial eccentricities. Similarly, for
1.5 um particles, oblateness dominates and the orbit precesses swiftly in the oppo-
site direction with the same outcome. For 1.0 ym particles, however, the Lorentz
and oblateness precessions largely cancel, allowing radiation pressure to greatly
perturb the orbital eccentricity; note that a single eccentricity oscillation occurs
in one precession period. The symbols D, T, and M identify the orbital eccen-
tricities at which particles launched from Enceladus will cross the orbits of the
satellites Dione, Tethys, and Mimas, respectively.
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velocity over the interval considered; the extra r in the denominator appears
because the area of an annulus of width Ar over which these particles are spread
is 2mrAr. In terms of the orbital elements the radial velocity can be written as

o — GMP 1/2 [a2€2 _ (7" _ a)2]1/2. (6.6)
a T

The radial optical depth profile due to a single particle moving along a Keplerian
orbit of a given eccentricity is then

1,
[a2e2 — (r — a)?2]V/?’

where T, is a normalization constant; clearly this is valid only for distances be-
tween the orbit’s radial turning points [i.e., for a(1—e) < r < a(1+e)]; elsewhere
7¢(r) = 0. Fig. 6.4 plots Eq. (6.7) for several eccentric orbits; note the symmetry
about r = a and the enhanced optical depth at the orbital turning points.

A particle evolving under radiation pressure, however, does not have a con-
stant orbital eccentricity as assumed immediately above, but by combining Egs.
(6.4) and (6.7), and integrating over a full cycle of the eccentricity variation, we
find that a single particle contributes to 7 as

T(r) =

(6.7)

27 [Ty

() =T, / r(r)dt | (6.8)
0
where 77 is another normalization constant.

Equation (6.8) describes a distribution sharply peaked at the radial distance
of the source itself (Fig. 6.5). This occurs because the particle i) spends sub-
stantial time at low eccentricity, and i) even when at higher e, always passes
twice through its initial radius on each orbit. We note that the optical depth
distributions in Figs. 6.4 and 6.5 are each symmetric about the source’s orbit
despite the fact that each particle spends more time at apocenter of its orbit than
at pericenter; this possibly counterintuitive result arises because the apocenter
particles are spread over a proportionally larger annulus.

Figure 6.2 shows that our low-eccentricity approximation is reasonable for
e < 0.3 but may not be good for larger eccentricities where nonlinear effects
become important. In Fig. 5.5, for example, the sinusoidal oscillations of the ec-
centricity are noticeably distorted. To extend our results to higher eccentricities,
we numerically integrate particle orbits and use these to infer the ring’s optical
depth as a function of radial distance. In order to construct these ring profiles,
we followed grains of three characteristic sizes (0.5, 1.0, and 1.5um) with iden-
tical initial conditions and noted their radial positions every 10 days. We then
constructed radial optical depth profiles (Fig. 6.6) from the resulting orbits, nor-
malizing the former in the same manner as in Fig. 6.5. For illustrative purposes,
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Figure 6.4 The profile of optical depth vs. radius plotted for grains with orbits
of semimajor axis = 3.95 Rg and various eccentricities. The curves, which are
undefined at each orbit’s pericenter and apocenter, are truncated there for clarity.
The reason for the symmetry about 3.95Rg is discussed in the text.
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Figure 6.5 The radial optical depth contribution of a single particle during a
full period of its eccentricity oscillation for €,,,, = 0.3, 0.5 and 0.7 (solid lines).
These curves were constructed by first subtracting a constant value from the
solution of Eq. (6.8) and then normalizing the peak at Enceladus’ position to
unity; this procedure is similar to the background sky subtraction performed
on photographic plates. This normalization process causes the area under each
curve to differ, but does preserve the symmetry around » = a in each case.
Also plotted (dotted line) is the inferred radial brightness distribution based
on the observations and represented by two power-law drop-offs from Enceladus
(Showalter et al. 1991).
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Figure 6.6 The optical depth profiles (continuous lines) for grains of radii 0.5
(top), 1.0 (middle), and 1.5 (bottom) microns. All grains were given the same
initial conditions, the orbits were sampled every 10 days for 90 years, and the
curves were normalized as in Fig. 6.5. Also plotted for comparison are the Showal-
ter et al. (1991) observations (dashed line). The plot clearly demonstrate the
enhanced mobility enjoyed by the one micron-sized grains. The three maxima
clustered near 4Rg in the central panel are due to the fact that the grain’s orbital

eccentricity does not decrease to exactly zero on every cycle (see second panel of
Fig. 5.5).
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we ignored possible collisions with the inner saturnian rings even though some
of our orbits attain maximum eccentricities dangerously close to €., ~ 0.65.
As with our analytic result (plotted in Fig. 6.5), the optical depths in the three
simulations (Fig. 6.6) have sharp peaks near the source with steep drop-offs on
either side.

The radial range covered by one-micron grains matches the observed width
of the E ring well, arguing convincingly for a population of one-micron grains.
Both our analytic and numerically derived optical depth profiles are symmetric
about Enceladus’ orbit, however, in contradiction to the asymmetry displayed by
the observed ring (Showalter et al. 1992). We will return to address this point in

Section 6.5.

6.3 zi ut al Structure: ccentricity an
Solar ngle

6.3.1 Low Eccentricity Case

As discussed above, the large, almost-periodic variation in the eccentricity dis-
played in Figs. 5.4 and 5.5 is responsible for most of the E ring’s structure.
In contrast, the semimajor axis remains essentially constant and the inclination
stays small. Due to the latter fact, substantial variations in 2 and w do not sig-
nificantly affect the radial or azimuthal structure of the ring. Furthermore, since
the governing equation (Eq. 5.53) for eccentricity in this low-inclination limit
depends only on the solar angle and the eccentricity itself, these two variables
can be decoupled from the rest, as in Section 6.2. Accordingly we discuss the
eccentricity and the solar angle in this section and the elements 7, {2, and w in
the next.

Ideally, we would like to find an exact solution for Eq. (5.53) and Eq. (5.58)
valid for arbitrary eccentricities but, due to the presence of nonlinear 1 — e?
terms, we have been unable to do so. By contrast, for small eccentricities @ is
nearly a constant, and a solution, in which the eccentricity varies sinusoidally,
can easily be found (Burns et al. 1979, Horanyi et al. 1992). In the present case,
however, we are interested in highly-eccentric orbits and so are forced to content
ourselves with a qualitative description of the orbital evolution based on these two
equations. First, as predicted by Eq. (5.53) and seen in Fig. 5.5, the eccentricity
always grows when 0° < ¢n < 180° and shrinks when 180° < ¢p < 360°. When
gﬁQ ~ 0, ¢ in Eq. (5.53) remains nearly constant, the elliptical orbit keeps a given
orientation with respect to the Sun, and the eccentricity changes monotonically.
In the low-eccentricity solution, an exact cancellation of the precession rates
with an associated permanent growth of eccentricity is possible but, as seen in
Egs. (5.59) and (5.60), the rates actually depend on different powers of 1 — e?
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which cause an imperfect cancellation as the eccentricity varies. At large e, these
nonlinear effects are important and significantly influence the azimuthal structure
of the ring.

In order to study the nonlinear effects, we must first understand the simple
case when these terms are absent; this situation is approximated in Fig. 5.5 where
e? is always relatively small. As Fig. 5.5 shows, at t = 0 the solar angle ¢ is
immediately driven to 90° by radiation pressure; this occurs because, for small
eccentricities, the final term in Eq. (5.60) dominates ¢e. After the eccentricity
rises slightly, the final term is less important so that the solar angle regresses con-
tinually from £ = 0 to ¢ ~ 8.5 years under the gravitational and electromagnetic
terms in Egs. (5.59) and (5.60); in this example, the regression rate is nearly
uniform because, for these relatively low eccentricities, nonlinear terms are small.
The vertical “jumps” in ¢4, an example of which occurs at ¢t ~ 5 years in Fig. 5.5,
are simply due to the fact that the angle is plotted modulo 360°. As soon as the
solar angle crosses zero, the eccentricity begins decreasing until eventually it is
sufficiently small that the final term in Eq. (5.60) dominates again. As before, this
term attempts to drive ¢ to 90° causing the angle to become positive and the
eccentricity to increase. The cycle repeats almost periodically with departures
from periodicity arising from the sensitive dependence of (ﬁG on e.

Because of the coupling between e and the solar angle, the largest eccentric-
ities in Fig. 5.5 are attained when the pericenter of the orbit is pointed toward
the Sun (¢ = 0°). At this time, apocenter is directed away from the Sun and,
accordingly, particles reach their maximum distance from the planet in this di-
rection [r = a(1 + e) - see Fig. 5.1]. Thus, if the E ring were composed solely
of such particles, it would be asymmetric in azimuth, extending further in the
antisolar direction than in the solar direction. A less negatively charged grain
or, alternatively, a slightly larger particle, would have an initially precessing solar
angle so that the maximum eccentricity would occur when the apocenter of the
orbit points toward the Sun (¢ = 180°). Since the true E ring is likely composed
of an ensemble of grains with slightly different sizes, shapes, and/or charges, it
will probably include both precessing and regressing orbits with some apocenters
pointing toward and others away from the Sun. This ensemble predicts that the
E ring will be shaped like a Saturn-centered ellipse, extending to equal distances
in the solar and antisolar directions and less far in the perpendicular directions.
Figure 6.7 plots such an ensemble.

A fore-aft bulge of this type could not be identified in the available Voyager
images (M.R. Showalter 1991, private communication). In addition, inbound -
outbound differences in Voyager plasma absorption detections, which have been
interpreted as caused by an asymmetric E ring (Sittler et al. 1981), could not be
due to the E ring studied here because our particles are too small and too widely
separated to be effective absorbers. Although such a distribution would minimize
the ring’s apparent radial extent as viewed from Earth, little or no asymmetry
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Figure 6.7 The Saturn-centered ellipse. The Sun lies off along the negative z-axis
and Saturn (not to scale) is at (0,0). To form this plot, we calculated the orbits of
two different grains (0.97 um and 1.2 um, each charged to -5.5Volts) and plotted
them together on this figure. The sizes were chosen so that the smaller particle’s
solar angle regresses while the larger particle’s precesses; each attains a similar
maximum eccentricity (~ 0.4). Each grain’s orbit lies within a circular shaped
region with its center offset from Saturn. Large grains extend further toward the
Sun while small grains are found preferentially on the far side of Saturn.
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would be visible to terrestrial observers since Saturn’s phase angle (Earth-Saturn-
Sun angle) cannot exceed six degrees. We emphasize, however, that these results
do not include the effects of 1 — €% terms that we now consider.

6.3.2 High Eccentricity Case

To demonstrate how larger eccentricities produce nonlinear effects, we consider
the orbital evolution of a 1 micron grain charged to -5.4 Volts (as opposed to -5.6
Volts for Fig. 5.5); all other initial conditions as well as the operating forces remain
unchanged. The resulting orbital evolution, obtained from numerical integrations
of Egs. (5.52-5.56), is displayed in Fig. 6.8. The only difference between the two
cases is the slightly altered grain charge, yet striking dissimilarities are apparent in
both the eccentricity and solar angle traces. In Fig. 6.8, the solar angle initially
regresses as it does in Fig. 5.5, but the regression is slightly less rapid; this
allows the eccentricity to grow large enough to reverse the sign of éQ before
the solar angle dips below zero. As a result, sin ¢, is larger for a longer period
of time permitting the eccentricity to increase substantially. The augmented
eccentricity causes the solar angle to precess through 180°, at which point the
eccentricity finally begins to decrease and a cycle similar to that discussed above is
established. Azimuthal asymmetry arises because the stronger 1 — e? dependence
of the gravitational precession terms in Eq. (5.59) and (5.60) causes the orbit
to precess for large e which always leads to a maximum extension in the solar
direction (¢o = 180°). Although for this orbit, e is large enough that the grain
would actually be lost to the main saturnian ring system, the orbital evolution
displayed here is typical for a large range of similar initial conditions.

We now summarize the relevance of these results to the E-ring problem. Con-
sider an ensemble of grains with slightly different sizes and voltages, but all
launched from Enceladus on initially circular orbits. A fraction of the grains in
this ensemble will have e,,,, < 0.4; these will be relatively uninfluenced by the
nonlinear 1—e? terms and will lead to a “Saturn-centered ellipse” like Fig. 6.7. In
addition, however, our ensemble will contain grains that achieve large eccentric-
ities. These particles all precess eventually (the orbit in Fig. 5.5 almost attains
the largest eccentricity possible with a strictly regressing solar angle), and so the
maximum eccentricity always occurs when the apocenter is pointed toward the
Sun. Furthermore, because precession is rapid for very large eccentricities, the
most elongated orbits sweep through a large range of pericenter angles (see the
solar angle and eccentricity panels between ¢t = 6 and ¢ = 7 years in Fig. 6.8),
resulting in distant particles in all directions on the sunward side of Saturn. Since
the real ring contains both dynamical classes, an Enceladus-derived E ring might
be expected to extend ~ 1.2 times as far in the solar and perpendicular direc-
tions as in the antisolar direction. In contrast to low eccentricity, this distribution
displays nearly its full radial extent when viewed from Earth.
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Figure 6.8 Osculating orbital elements plotted against time from integrations
of the orbit-averaged equations of motion; these agree well with full Newtonian
integrations (not shown). The same forces operating in Fig. 5.5 are present
here, and the initial conditions are identical to those in Fig. 5.5 except the
grain’s voltage has been changed slightly to -5.4 Volts. This small change in
the voltage decreases the strength of the electromagnetic force (L = —0.00284)
which in turn, changes the precession rates to 2,,(e ~ 0) = —338°/year and
Wey(e ~ 0, 0e = 90°) = 315°/year; all other quantities retain the values noted in
Fig. 5.5’s caption. These slightly different precession rates drastically affect the
eccentricity history.
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The above discussion explicitly assumes that the charge on a grain remains
constant throughout its orbital evolution. Could a varying particle charge disrupt
the behavior seen here? Realistically, small rapid fluctuations in a grain’s voltage
occur as the grain’s position in the magnetosphere (where plasma densities and
temperatures might vary) and its velocity relative to the plasma change. A de-
lay in the response of the grain’s voltage to local conditions can affect long-term
evolution of semimajor axes (Burns and Schaffer 1989), but over the short times
considered here, this process is unlikely to be important. Because the charge
fluctuations are fast compared to the orbital period, however, they should be
treated before averaging the perturbation equations over an orbit. As argued
above, this will not seriously influence the orbital semimajor axis and eccen-
tricity. The inclination and precession equations, however, are more strongly
affected. A difference in the inclination equations only adjusts the magnitude
of Z (Eq. 5.61), however, which does not seriously alter the behavior of Egs.
(5.54-5.56). Slightly different electromagnetic precession rates would still cancel
the gravitational rates, although at a minutely different grain size. Most im-
portantly, the 1 — e dependence of the electromagnetic precession rate could
be changed significantly (exponent < —2); in this case, the nonlinear effect that
favors an E ring with a minimum extension in the antisolar direction would be
reversed; the E ring would then have its small dimension in the solar direction.
In any case, an asymmetry of some sort is likely to persist.

Finally we point out that the surface brightness of the E ring depends not
only on these dynamic considerations but perhaps even more on the distribution
of particle sizes and shapes present in the E ring. This distribution determines
the number of grains in each of the dynamical classes discussed two paragraphs
back. If orbits with lower eccentricities (Fig. 6.8) are most prevalent, for instance,
then the surface brightness will be dominated by the “Saturn-centered ellipse.”
Whatever the size distribution though, the E ring’s surface brightness should
display measurable azimuthal asymmetry.

6.4 ertical Structure: Inclination, No e, an
ericenter

Having completed our discussion of the components responsible for azimuthal
variations, we now focus on the smaller perturbations to the E ring’s vertical
structure. These perturbations arise from weak normal forces which influence
only the elements ¢, €2, and w. We start by discussing Figs. 5.5 and 6.8, simula-
tions that do not include the effects of the aligned quadrupole, for simplicity (i.e.,
go,0 is artificially set to zero), although our derivations are general and will allow
us to return to the important influence of the quadrupole term shortly. Perhaps
the most unusual behavior displayed by the elements 7, €2, and w in Figs. 5.5
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and 6.8 is the fact that the argument of pericenter locks, alternately to w = +90°
when the physical location of pericenter is above the equatorial plane (Fig. 5.2),
and to w = —90° when pericenter is below the plane. This locking is correlated
with the solar position such that the orbital pericenter is always displaced to the
same side of the equatorial plane as the Sun. In all figures, the Sun starts at its
maximum elevation above the equatorial plane (the summer solstice in Saturn’s
northern hemisphere) and remains above the plane for one quarter of its orbital
period of ~ 29.5 years crossing the equatorial plane at t ~ 7.4,22.1, and 36.9
years.

At first sight this locking may seem unimportant: since inclinations are small,
what difference does it make that pericenter is always elevated out of the equato-
rial plane by a few tenths of a degree? There are several answers to this question.
First, since these orbits periodically attain highly-eccentric orbits, an E-ring par-
ticle can dip in very close to the main saturnian ring system. Because the main
rings are so thin (Cuzzi et al. 1979, Sicardy et al. 1982), however, even small incli-
nations cause E-ring grains to rise well above the main rings and hence collisions
with these rings can only take place at orbital nodes. Locking the pericenter to
+90° puts both the nodes along the latus-rectum of the ellipse (Fig. 5.1), max-
imizing the ability of an orbit of a given eccentricity to avoid intersecting the
inner rings. Such orbits can spread E-ring material across the maximum radial
range. A collision with the A ring is inevitable when a(1 — €?) = 2.27Rg from
which, for a = 3.95Rg, €., ~ 0.65; this always occurs before collision with Saturn
[a(l —€,)=1ore!, ~0.75]

Additionally, pericenter locking alters the probability for an impact into a
saturnian satellite since most moons lie at low inclinations relative to Saturn’s
equator. Most notably, this phenomenon enhances the probability of reimpact
into Enceladus since an E-ring particle’s node lies at a radial distance a(1 — €?)
which, for small e, is very close to Enceladus’ orbit at » = a. Finally, and perhaps
most interestingly, this dynamical effect suggests that the vertical structure of
the E ring is time-variable over a single orbit of Saturn around the Sun. Before
discussing the ramifications of this time variability, we wish to understand the
locking analytically.

The behavior of w suggests that the angle is attracted to a stable equilibrium
point, and so we seek such a solution. First, however, we note that there are
several places in Fig. 6.8 (e.g., near t = 7,13,22 ... years) where the argument
of pericenter is not strongly locked to its equilibrium value; in these locales,
oscillations in w are large and circulation can occur. These deviations happen
either when the Sun passes through the equatorial plane (roughly every 15 years)
and the argument of pericenter begins its transfer from one equilibrium value to
the next or when the orbital eccentricity is small, in which case the pericenter
is poorly defined and can circulate rapidly as predicted by the final term in
Eq. (5.60). To avoid these problems, we choose to initially study the locking
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effect for non-zero and constant values of e and s, ignoring the time-dependence
of these parameters. We will return to justify and relax this approximation
shortly. Setting we, = £90° (the subscript “eq” stands for equilibrium) and
remembering that inclination must be positive, we find that Eq. (5.56) is zero
only when

o Z
Sidey = |- (6.9)
Way
which, from Eq. (5.55) leads to
df) : ,
% e = Qxy —|— ujmy_ (610)

Finally, setting Eq. (5.56) equal to zero and utilizing Eq. (6.9) yields an improved
determination of wey:
SiN weq = SigN(Wyy /Z). (6.11)

We check the solution given by Eqs. (5.54-5.56) for stability by linearizing it
about the equilibrium point. Here we set x = x., + Ax, where x is any of 7, €,
and w, to find:

dAq

= gy Aw, (6.12)
dAQ Way Al

—_— = 6.13
dt leg (6.13)

dAw Way Al
= 6.14
dt Geqg (6.14)

which can be trivially solved to yield:

Ai = G eqwp cos(Weyt + (o), (6.15)
AQ = —wg sin(Wgyt + (o), (6.16)
Aw = wy sin(wgyt + (o), (6.17)

where the initial conditions wy and (y are independent of i,€), and w. Thus
oscillations about the equilibrium point are stable and have frequency w,, which,
for the parameters of Fig. 6.8, corresponds to a period of ~ 1 year. The fact that
the oscillation period is short compared to the characteristic periods of e and s,
justifies our earlier treatment of these latter parameters as constants; since e and
s, both change slowly with time, the rapid oscillations are able to stay centered
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on the slowly drifting equilibrium value. These results, Eqs. (6.9-6.17), seem
to be in good agreement with Figs. 5.5 and 6.8. Eq. (6.11) correctly predicts
that pericenter and the Sun always lie on the same side of the equatorial plane
since w,, > 0 and, with no quadrupole term, Z changes sign every time the Sun
crosses the equatorial plane. Furthermore, Eq. (6.9) shows that the inclination
approaches zero when Z is small which occurs either when the Sun is in the ring
plane or when e — 0, as we already inferred from Figs. 5.5 and 6.8. Additionally,
several features of Eqs. (6.15-6.17) can be checked against the full numerical
integrations. As expected, the oscillations in all three elements have eccentricity-
dependent periods of approximately one year and, as predicted by Eq. (5.60), this
period decreases for large eccentricities (the inclination trace in Fig. 6.8 provides
a nice example). Furthermore, since no discernible oscillations appear in the solar
angle, which is basically the sum of €2 and w, the oscillations in these angles must
be equal in magnitude and 180° out of phase as predicted by Egs. (6.16) and
(6.17). Additionally, we find that the i oscillations peak one-quarter of a period
before the w oscillations as predicted by Eqs. (6.15-6.17), although the phase
difference is difficult to detect in these figures.

We now construct vertical profiles in the same manner as the optical depth
profiles (Fig. 6.6) of Section 6.2 and display the results in Fig. 6.9. The charac-
teristic wedge-shape of each plot is due to pericenter locking which keeps orbital
nodes near Enceladus. By definition, vertical offsets are minimum near orbital
nodes and hence the ring is thinnest there. The radial dependence of the ring
thickness from our simulation for one-micron grains (Fig. 6.9) qualitatively imi-
tates Showalter et al. (1991)’s interpretation of the Baum et al. (1981) ground-
based observations described in Section 6.1. Like the actual E ring, our model
for solely one-micron grains has a greater thickness at its outer edge than close
to the planet, and is thinnest at its source. Although the relative proportions
are roughly correct, the magnitude of the predicted thickness is ~ 10 times less
than the observed thickness. In fact, the problem is even worse since these plots
are time averages; a snapshot of the ring at a particular instant in time will find
all orbital apocenters either above or below Saturn’s equatorial plane and hence
the ring will be less thick. We will have more to say about this discrepancy in
Section 6.5.

We now add the effects of the aligned quadrupole term to the array of forces
influencing the dust grain. Figure 6.10 shows the orbital history of a grain with
identical properties and initial conditions as the particle in Fig. 6.8; the only
change is that the magnetic field from which the Lorentz force is calculated now
includes the aligned quadrupole component. The eccentricity and solar angle
traces in Fig. 6.10 are basically unchanged from Fig. 6.8, thus the results of
Sections 6.2 and 6.3 stand, but the 7, {2, and w traces are substantially altered.
Inclinations of nearly a degree (three times larger than in Fig. 6.8) are attained
- the effects of the quadrupole term are definitely important for Saturn’s E ring!
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Figure 6.9 A scatter diagram in the r = (22 + y?)/2, 2 plane for the orbits
discussed in Fig. 6.6. The vertical structure for the one-micron grains is similar
to the structure displayed by the actual E ring, although the heights attained in
our simulations are a factor of ~ 10 too small.
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Figure 6.10 Osculating orbital elements plotted against time from integrations of
the orbit-averaged equations of motion. Again, the results agree well with the full
Newtonian integrations which are not shown. Initial conditions and numerical
quantities are the same as in Fig. 6.8, but the additional effects of the aligned
magnetic quadrupole have been included. Note the striking difference in the i
and w traces in the two figures. The magnetic field coefficients used for Saturn
are gi 0 = 0.2154 gauss and gy o = 0.0164 gauss (c¢f. Connerney et al. 1984).



133

Furthermore, the pericenter favors locking to —90° over locking to 90°; this can
be easily explained by considering how the addition of the quadrupolar term
changes Z. Using the values given in the figure captions, we find that the second
term in Eq. (5.61) is always negative and, for small e, its magnitude is less than
the maximum value of the first. Thus Z will be predominantly negative and,
as predicted by Eq. (6.11), w will usually be found near —90°. When the Sun
is high above the equatorial plane, however, Z is positive and w locks to 90°
as observed in Fig. 6.10. Since the two terms in Z have different eccentricity
dependencies, the time spent with w ~ 90° will vary from one occasion to the
next. This same sharp eccentricity dependence of the quadrupole contribution to
Z is also responsible for the difference in maximum inclinations observed in Figs.
6.8 and 6.10.

If all E-ring particles originated from Enceladus and had parameters like those
chosen for Fig. 6.10, we would expect that inner portions of the ring (the pericen-
ter sides of instantaneously elliptical orbits) would be offset to the south of the
equatorial plane when the Sun is not too far to the north. The outer portions of
the ring, of course, would be offset in the opposite direction. There is not a single
solar position at which orbits transfer from one equilibrium to the next; as the
Sun rises in the northern sky, orbits with low eccentricities switch first, followed
by those with greater eccentricities. In addition, a more realistic ensemble of
different particle sizes and shapes would cause further smear in the time when
orbits switch equilibria since a and L vary significantly with particle properties.
So when the Sun is to the north of the equatorial plane, the situation is difficult
to assess. Conversely, when it is to the south, Z is negative and all orbits in the
ensemble should have their pericenters depressed toward the south. We see that
this is indeed the case in Fig. 6.11 which, like Fig. 6.9, is a time-averaged plot.

The effects of different initial conditions and additional satellite sources for
E-ring particles further complicates the issue; these factors can cause the initial
conditions to be far from the equilibrium point. When this is true, the oscillations
in w can be large enough to cause circulation of that element and this washes
out the asymmetry discussed above. Assuming that dust grains originate from
satellites, they will always start on nearly circular orbits for which the equilib-
rium inclination is i, = 0 (Egs. 5.61 and 6.9). Several effects can cause initial
inclinations to differ from zero most notably the small underlying inclination of
the source satellite itself, and the dispersion of grain launch velocities. We find,
numerically, that initial inclinations of more than about 0.5° for grains launched
from either Enceladus or Tethys cause oscillations large enough to destroy the
locking. This cutoff can also be found analytically from Eq. (5.56). It is reason-
able to assume that most of the grains escape from their source moon with the
minimum possible energy; in this case escape will occur along the Saturn-satellite
line (cf. Figs. 2.10 and 2.11) with minimal change to the initial inclination. The
orbits of Enceladus and Dione are negligibly inclined, but those of Tethys and
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Figure 6.11 Vertical scatter plot. The actual three-dimensional path traced out
by the particle of Fig. 6.10 has been collapsed into this two dimensional figure.
Note that vertical structure has been dramatically altered from that displayed in
Fig. 6.9’s central panel. The asymmetry arises from Saturn’s non-zero symmetric
quadrupolar term (ga).
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Mimas have inclinations that exceed a degree; thus, nominally, grains launched
from Enceladus will have their pericenters locked while those from Tethys will
not. Summing the contributions of several source satellites and different initial
conditions complicates the picture, but we believe that some vertical asymmetry
and time-variability are likely to remain.

6.5 vi ence for itional Satellite Sources

The main problem with our simple model, which assumes a single source at Ence-
ladus, is the fact that we find, in contrast to the actual ring, a radial distribution
that is symmetric about the source satellite (see Fig. 6.6). This symmetry is
quite robust since it arises directly from the geometry of elliptical orbits (Section
6.2). One possible solution is that drag forces, which cause outward evolution
of orbits, are responsible for the asymmetry. This is unlikely, however, since
these forces operate timescales much longer than the typical lifetimes of E-ring
grains (see Section 6.6.1). A more promising hypothesis is that there are addi-
tional sources of E-ring material further out in the ring. Besides Enceladus, the
moons Mimas, Tethys, Dione, and the Lagrangian companions of the two latter
satellites all lie within the E ring. Micrometeoroid collisions or impacts of E-ring
particles themselves into the moons could loft material off these small bodies.
Since micron-sized particles originating from nearby satellites will most likely
have equilibrium potentials similar to that of grains from Enceladus, pericenter
precession rates will match for particles similar in size to those considered here.
As eccentricities grow and material spreads radially, these grains will merge with
those emanating from Enceladus. These sources would create distributions sim-
ilar to those in Fig. 6.5 but peaking at different distances from Saturn; the sum
of these distributions would necessarily be asymmetric and might better match
the observations.

Additional source satellites alleviate another problem, namely that material
introduced from Enceladus cannot reach the outer limits of the known E ring
(8Rg) because, with the orbit’s fixed semimajor axis (see Eq. 5.52), any eccentric
path that reaches beyond about 6.5Rg would also penetrate the opaque inner
rings. Material from outer satellite sources, however, can easily reach the nom-
inal outer limit of the E ring. Furthermore, in contrast to the linear model of
Section 6.3.1, the nonlinearity of the orbit-averaged equations considered in Sec-
tion 6.3.2 causes some orbits with nearly maximum eccentricities to be oriented
perpendicular to the Sun-Saturn line. Thus our model suggests that the E ring,
as seen from Earth, could display nearly its full breadth. This correction may be
enough for a primary source of dust grains at Enceladus and a weaker source at
Tethys or one of its Lagrangian companions (a ~ 4.89R,) to account for the full
width of the E ring as observed from Earth. This additional source at Tethys’
distance is also consistent with the extra material seen in the vicinity of that
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moon (Showalter et al. 1991°s Fig. 11).

Finally, the vertical structure discussed in Section 6.4 may provide further
dynamical evidence for a secondary source of particles from Tethys. If Enceladus
were the ring’s only source, our numerical simulations would predict maximum
thicknesses of about 7,500 km (if orbital pericenters are locked) and 15,000 km
(if pericenters are not locked - see below). As noted above, however, the E ring
is about 40.000 km thick at its outer edge, still quite a bit broader than our
predictions based on Fig. 6.10. Grains launched from Tethys, however, attain
inclinations of ~ 2.5° and, because of Tethys’ relatively large orbital inclination,
the orbital pericenters are not locked. When combined, these effects lead to a
predicted thickness of 2 40,000 km at the outer edge of the E ring, a figure that
is in agreement with the observations.

Could other mechanisms, most notably Lorentz resonances, provide the in-
crease in thickness without an additional Tethys source? While most of the
strongest Lorentz resonances lie very close to Saturn, we note that just interior
to Enceladus there is an important second-order 3:1 resonance driven by the tilted
dipolar field whose strength is proportional to eig;; (Chapter 7). If we assume
a 0.8° tilt in Saturn’s magnetic dipole, which is that initially proposed by Ness
et al. (1982) (c¢f. Acuna et al. 1983b), we find that the resonance is sufficiently
strong to break pericenter locking for some orbits. Numerical simulations indi-
cate that inclinations can subsequently be pumped up to a few degrees. Thus we
conclude that while a Tethys source accounts nicely for the observed inclinations,
the 3:1 Lorentz resonance acting on material launched from Enceladus may also
be able to do so. In either case, however, the breadth of the E ring and its radial
asymmetry about Enceladus’ orbital radius still argue for a Tethys source.

6.6 onsequences of ig ly ccentric r its

6.6.1 Collisions with Embedded Satellites

After the preceding discussion of the detailed dynamics of individual grains
launched from Enceladus, we turn now to the question of the ring’s origin. Several
mechanisms have been suggested for lofting small dust grains off Enceladus into
orbit around Saturn, including volcanoes (Pang et al. 1984a,b) and /or geothermal
activity (Haff et al. 1983), as well as the impact of a comet (McKinnon 1983).
Evidence supporting either of the first two suggestions is scant; the Voyager
spacecraft found no indications of volcanoes or geysers on Enceladus, although
the satellite does have a relatively young surface (< 1 billion years). Furthermore,
the suggestion that Tethys contributes material to the E ring is difficult for all of
these models to accommodate, as it requires activity undetected by Voyager on
two satellites in the former cases, and an improbable pair of cometary impacts
in the latter. In the next few sections, we propose a self-sustaining model of
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the E ring which follows naturally from considering the consequences of highly-
eccentric orbits.

The E ring shares the region between 3 and 8 Rg with an ensemble of moons
that travel along nearly circular paths (Table 6.1); accordingly, once the orbits
of E-ring particles become moderately eccentric, they will cross the paths of
these satellites (see Figs. 6.1 and 6.3). Given a satellite of radius R,;00, On a
low-eccentricity orbit at radial distance aon, & grain on a “crossing” orbit will
strike the moon with an e-folding timescale of:

2
Tt 2 TSI dgust + SIN% drgon) /2 —moom Yr Tors, (6.18)
Rioon U
where T,.p = 2Tagust/Vaust 1S the dust grain’s orbital period, ag,s is its semimajor
axis, and Vg, is its orbital velocity (Opik 1976). In Eq. (6.18), U is the relative
velocity between the moon and the dust grain, U, is its radial component, and
the orbital inclinations ig4,s and 4,00, (Table 6.1) are measured relative to the
plane of the main ring system. The ratio U, /U is nearly independent of eg,s; and,
to within < 20%, equals one. Typical times for dust grains launched from moons
within the E ring to reimpact the source satellite are given in Table 6.1 assuming,
for illustrative purposes, that i4,, = 0.1° and agust = Gmoon. The value chosen
for 1445 does not significantly affect collision timescales for Mimas and Tethys
since these satellites are significantly inclined. Moreover, the orbital nodes of
grains launched from the uninclined satellites (Enceladus, Dione) become locked
near the radial position of the source (Section 6.4), making Eq. (6.18) somewhat
of an overestimate. Since orbital locking tends to enhance impact probabilities
onto the source satellites, we choose a value for 74,4 that is somewhat lower than
typical E-ring inclinations (see Fig. 6.10). Thus the entries in (Table 6.1) apply
reasonably well to the actual E ring.

The albedo patterns of the saturnian satellites may support the notion that
eccentrically-orbiting E-ring grains commonly strike these bodies. A distribution
of eccentric orbits having Enceladus’ semimajor axis will preferentially strike the
leading (trailing) face of exterior (interior) satellites since collisions will occur near
apocenter (pericenter). Hence, assuming that impacts cause surface brightening,
one can explain why Tethys and Dione, satellites exterior to Enceladus, have
brighter leading hemispheres while Mimas, which lies interior to Enceladus, has a
brighter trailing hemisphere (Verbiscer and Veverka 1992). Erosional brightening
of the leading hemisphere is consistent with an enhanced meteoroid flux to the
front faces of the exterior satellites (Clark et al. 1986, Veverka et al. 1986, Buratti
et al. 1990), but cannot account for Mimas’ brighter trailing side. Furthermore,
Enceladus itself is photometrically similar across diverse geologic zones suggesting
the presence of a ubiquitous surface layer of micron-sized grains (Buratti 1988),
perhaps due to a long history of sandblasting by E-ring material.

The grain-moon collision timescales in Table 6.1 are extremely rapid: Ence-
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Table 6.1 Satellites within the E ring

Na‘me amoon emoon imoon Rmoon pmoon vescape vmoon TCOl
(Rs) ®) (km)  (g/em®) (km/s) (km/s) (years)
Mimas 3.08  0.02 153 195 1.17 0.16 143 200
Enceladus 3.95  0.00  0.02 250 1.24 021 126 19
Tethys 4.89  0.00  1.09 525 1.26 044 114 98
Telesto (T+) 4.89  0.00  0.00 12 (1.0) 0.009 114 17,000
Calypso (T-) 4.89 000 000 12 (1.0) 0.009 114 17,000
Dione 6.26  0.00  0.02 560 1.44 0.50  10.0 19
Helene (D+) 6.26 0.0l 020 16 (1.0) 0.012  10.0 51,000
Rhea 874  0.00 035 765 1.33 0.66 85 120

Physical and orbital properties of the satellites are from Burns (1986). The
final three columns are calculated from vZ, ... = 2GMmoon/Rmoon, Vimoon =
GM;/amoon, and Eq. (6.18), respectively; the mass of Saturn is M; = 5.688 x
10%g. The mass densities of the leading and trailing Lagrangian companions of

Tethys (T+, T-) and the leading companion of Dione (D+) are unmeasured.
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ladus, immersed in the heart of the E ring, sweeps up the entire ring in a charac-
teristic time of 20 years. Without a supply of new material, the E ring should have
lost more than 50% of its mass in the interval between its discovery (Feibelman
1967) in 1966 and the Voyager fly-bys in 1981. Since it is unlikely that the E ring
is disappearing so quickly, a mechanism that continuously replenishes the ring
must exist. In particular, a burst of activity in the distant past, — through vol-
canism, geysers, or large impacts — is incapable of accounting for the E ring that
we observe today. Whatever process creates E-ring particles must be occurring
now.

6.6.2 Collisional Yield; a Self-Sustaining ing

What are the consequences of these frequent grain-moon collisions? First we
note that impacts are energetic since dust grains on highly-eccentric orbits strike
embedded satellites at large relative velocities. From expressions for the radial
and tangential velocity components of an elliptic orbit, the relative speed between
a particle traveling on a low-inclination, arbitrarily-sized, eccentric orbit and a
moon moving along a circular, nearly equatorial path is approximately

Veol = €Umoon, (619)

where v,,00n, the orbital speed of the moon, is roughly 10km/s (Table 6.1). Re-
markably, this simple expression is accurate to about 10% for particle orbits of all
sizes and shapes as long as the collision does not occur too near an orbital turn-
ing point (Fig. 6.1). Owing to the large eccentricities of E-ring grains, collision
velocities often surpass 5 km/s, a value far in excess of satellite escape velocities
(Table 6.1). These hypervelocity impacts eject an amount of mass greatly ex-
ceeding that of the impactor (O’Keefe and Ahrens 1977) into circum-saturnian
orbit where it merges with the E ring.

Since micron-sized impacts add material to the E ring, the ring may sustain
itself with these collisions; only a small fraction of the collisional ejecta, however,
is composed of the dynamically-favored, micron-sized grains. As Fig. 6.3 demon-
strates, grains that fall outside this special size window never attain the high
eccentricities necessary for energetic collisions; instead they eventually encounter
the source satellite in low-velocity collisions that liberate little or no mass. Thus
a self-sustaining E ring requires that, on average, the collision of a micron-sized
grain must eject at least one micron-sized fragment.

Can a micron-sized impact accelerate a comparable-sized fragment to escape
velocity? Clearly the answer to this question depends on the nature of the colli-
sion and on the escape velocity of the impacted satellite. The collisional fragments
of interest are similar in size to the projectile and they must survive intact, which
suggests spallation (Melosh 1989). Due to cancellation of the initial compres-
sional and the reflected rarefaction stress waves, spall fragments are only lightly



140

shocked and can exceed the projectile in size. A few experiments (Frisch 1990,
1991, Eichhorn and Koschny 1992), in which small hypervelocity projectiles col-
lide with icy targets, yield large, rapidly-moving spall fragments. Unfortunately,
these experiments give inconclusive answers to our question for Enceladus since
the measured speeds of the fastest projectile-sized collisional fragments are simi-
lar to that satellite’s escape velocity. Perhaps the micron-sized yield of a typical
collision is unusually high owing to Enceladus’ surface regolith of micron-sized
debris (Buratti 1988).

Energetic grain-moon collisions are also suggested by the vast quantity of OH
molecules observed in the E-ring region which seems imply a quantity of HyO
twenty times more than traditional sources can supply (Shemansky et al. 1993).
The collisions that we have argued are capable of lofting a micron-sized object
into space liberate many times that much mass in the form of water molecules and
tiny aggregates. The E-ring source is 10-100 times more efficient than others (e.g.,
micrometeoroid bombardment, sputtering) and can easily generate the observed
population of OH molecules (Hamilton and Burns 1993a).

6.6.3 Collisions with ings

As noted above, some fraction of E-ring material will also interact with the inte-
rior G, F, and A rings of Saturn (Table 6.2) (Showalter and Cuzzi 1993, Showalter
et al. 1992, Dones et al. 1993). The resulting collisions deplete the E ring and
create many small ejecta fragments in the target rings. However, in addition
to bombardment by E-ring grains, the rings of Saturn are also struck by inter-
planetary meteoroids. Which source dominates? We calculate that the mass
flux of E-ring grains onto Enceladus exceeds the interplanetary flux (taken to be
4.5 x 107'"g/cm?s from Cuzzi and Durisen (1990) by 10* (Hamilton and Burns
1993a). At the F and G rings, where E-ring fluxes are reduced, this ratio drops
to 10-100, and for the outer 100km of the A ring, to 1-10. Regions interior to the
outermost A ring are shielded from E-ring grains, and so the interplanetary flux
dominates there.

Most collisionally-dominated rings, like the main rings of Saturn, have power
law size distributions with ¢ ~ 3.0 (Zebker 1985). Interestingly, both the F
and G rings display anomalously high ¢’s, 4.6 and 6, respectively (see Table 6.2),
suggesting an excess of very small dust particles. The dustiness of these rings may
be augmented by high velocity impacts of E-ring motes into the dusty components
of the F and G rings. Such collisions are catastrophic and act to steepen the size
distribution. We suggest that the unique size distributions of the F and G rings
are determined, in part, by the influx of E-ring grains.

The outer few hundred kilometers of the A ring are brighter and dustier than
its inner parts (Dones et al. 1993). The additional flux of small particles to the
exterior part of the ring may brighten large ring members (in the same manner
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Table 6.2 Properties of the outer saturnian rings

Name inner edge outer edge Tsmall  Tiarge q comment
(Rs) (Rs)
A 2.03 2.27 <0.03 0.7 ~3 ~ 100m thick
F 2.32 2.32 0.1 0.02 4.6+0.5 core of >cm objects
G 2.75 2.88 2e6 25e8 6.010.2 coreof >cm objects
E <3.00 >8.00 leb ? - peak at 3.95 Rg

Here 74pq is the optical depth in dust particles with radii in the micron and
submicron range while 74,4, is the optical depth in particles larger than 1mm.
Distributions of particle sizes within a ring are usually well approximated by
power laws of the form r 9, where r, is the particle size and ¢, the power law
index, is listed for the A, F, and G rings. Saturn’s E ring is not well represented
by a power law; it seems to have a monodisperse size distribution (Showalter
et al. 1991)
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that it seems to brighten Mimas, Enceladus, Tethys, and Dione) and/or augment
the production of dust (as in the F and G rings).

6.6.4 Intraparticle Collisions

As mentioned above, the E ring gains mass during typical impacts of micron-sized
grains with embedded satellites. Since the rate of mass increase is proportional
to the number of ring members, the ring would increase in mass exponentially
with time without a mechanism to quench this growth. Intragrain collisions,
where the loss rate is quadratic in the number density of ring members, will
eventually overwhelm a linear source and will stabilize the ring at a particular
optical depth. If the E ring is marginally self-sustaining and intragrain collisions
are catastrophic, then at steady state grain-grain and grain-moon collisions should
occur with roughly similar probabilities. In the actual ring, the cross-sectional
area of E-ring particles is a few times that of Enceladus, and so the intraparticle
collision rate is similar to the grain-moon collision rate as expected.

6.6.5 Computer Simulations

In order to test whether the E ring might be self-sustaining, we use a computer
simulation containing more sophisticated versions of the simple ideas discussed
above. Our model includes all of the moons and rings listed in Tables 6.1 and
6.2, and considers a discrete spectrum of seven particle sizes (0.4 ym - 1.6 um
in steps of 0.2 um). Prior to running our models, we numerically followed the
orbital histories of grains of all sizes launched from each moon, and recorded
the average inclination, maximum eccentricity, and the period of the eccentricity
oscillation (cf. Fig. 6.3). These three parameters are used to approximate the
effects of orbital perturbations and hence serve as the dynamical inputs to our
model.

The collisional yield for a hypervelocity impact into a moon depends only
on the target’s escape velocity and surface properties, and the impactor’s kinetic
energy. We assume that in order to send one projectile-sized fragment into space,
the impact energy must exceed the kinetic energy of the escaping fragment by a
factor of 100-400. We further consider that the amount of escaping ejecta scales
with the impact energy and that intragrain collisions are entirely catastrophic.
Finally, individual collision rates and yields are folded together with dynamical
evolution to calculate a matrix of transition rates (e.g., the rate at which 1.2 ym
grains from Enceladus create 0.8 um grains at Tethys). The differential equations
governing the population of grains of given sizes associated with specific moons
are then numerically integrated (c¢f. Colwell and Esposito 1990).

Table 6.3 shows the results of one of our simulations; we see that, as in the
actual E ring, most particles in the micron-range are localized at Enceladus.



143

Enceladus is selected as the dominant source for several reasons: the non-zero
inclinations of its neighbors substantially reduce their collision probabilities (Ta-
ble 6.1); the large escape velocities of Tethys, Dione, and Rhea limit their colli-
sional yields; and Mimas-derived particles are quickly lost to the inner saturnian
rings. Besides mimicing the radial structure of the true E ring, our simulated
ring has a mass and a peak optical depth within a factor of three of the observed
values; this agreement reinforces our assertion that intraparticle collisions in fact
determine these quantities. The results presented in Table 6.3 are typical; better
apparent agreement could be forced by tweaking parameters.

The only element of our model that stands in contrast to observations is the
size distribution which shows an excess of submicron grains rather than being
monodisperse at 1 um (Showalter et al. 1991). Such a result is not unexpected;
it follows clearly from our assumptions that micron-sized impacts create equal
amounts of mass in each size bin and that smaller grains are swept up at roughly
the same rate as their more massive brethren. Furthermore, since a substantial
population of submicron dust is observed in the F and G rings, it might also be
expected in the E ring. Nevertheless, the presence of many small particles in the
model’s output disagrees with the most straightforward interpretation (Showalter
et al. 1991) of Voyager observations, namely that the E ring has an appreciably
lower optical depth in submicron particles than in micron grains (M.R. Showalter
1993, private communication). The above model is so successful in accounting for
various features of the E ring and its embedded satellites that one might wonder
how this discrepancy can be explained. Our model may incorrectly reproduce
the actual ejecta size distribution or may underestimate loss rates for submicron
grains. Furthermore, the interpretation of the observations assumes that particle
sizes are uniform throughout the E ring (M.R. Showalter 1993, private communi-
cation) and yet we have seen that submicron dust remains confined to a narrow
band around the source’s radial location (Fig. 6.3). Perhaps, micron-sized dust
appears to dominate because it alone is found across the entire E ring.

6.6.6 Implications for Other ings

In the previous sections, we have shown how dusty rings may be generated and
have suggested that the E ring is one member of this class. High-velocity impacts
into satellites sustain the E ring through the addition of ejecta, and ring particles
are lost in catastrophic grain-grain collisions. The resulting steady-state ring has
a calculable mass and optical depth that agree with the measured quantities. In
general a self-sustaining ring of this type requires only i) advantageously-located
source satellites that are proper sizes and i) a mechanism for increasing ring-
particle orbital eccentricities and thereby enhancing collisional yields. The small
jovian satellites Metis and Adrastea satisfy these two conditions; thus the faint
ring surrounding and inward of these two satellites may be similarly generated.
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Table 6.3 Steady-state particle population for the E ring

0.4 pm 0.6 ym 0.8 ym 1.0 ym 1.2 ym 1.4 pm 1.6 um

Mimas 9.3 e+22 1.1e+22 13e+21 1.4e+20 3.4e+20 2.6e+20 2.5e+20

Enceladus 7.5 e4+22 43e4+22 1.1e4+22 14e4+21 1.5e4+21 5.6e4+20 2.1e420

Tethys 6.0 e+22 9.8e+21 21e+21 2.1e+19 3.8e+18 3.6e+16 7.2e+14

Dione 49e+21 4.0e+20 59e+19 11e+16 2.1e+14 3.2e+13 2.5e+12
Rhea 47e+20 16e+18 43e+14d T7.7e+12 3.2 e+11 0 0

Total 23e+23 6.4e+22 15e+22 1.6e+21 1.8e+21 82e+20 4.6e+20

The final, near steady-state population of a simulated E ring. Each size/moon bin
was started with a population of 10'® particles and the ring was allowed to evolve
toward collisional steady state for 500 years. Most changes in the population
occurred over the first hundred years when grain-grain collisions were rare. The
total volume of our steady-state E-ring model is equivalent to a sphere of radius
35 meters which corresponds to a maximum optical depth of about 30% that of
the true E ring. The cumulative cross-sectional area of these ring particles is
1.1 times that of Enceladus. Although we neglect the Lagrangian companions
of Tethys and Dione in this simulation for simplicity, their contributions may be

important.
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6.7 uture servations an re ictions

6.7.1 Ground-Based

The most favorable time for ground-based observations of the E ring occurs when
Saturn’s main rings, as seen from Earth, appear edge-on; this last occurred in
1979-80 and will next happen in 1995-96. At these times, the signal from the
E ring is strong due to the long optical path length through the region, and
scattered light from the main rings is dramatically decreased. Sensitive observa-
tions made during this period should be capable of extending the known inner
and outer limits of the ring since these apparent boundaries (Table 6.2) are most
likely due to the weakening of signal relative to background. This is especially
true in the inner region where the bright glare from the main rings complicates
interpretation. Our model predicts that material should be present inward to the
edge of the A ring.

Because the predicted azimuthal structure of the E ring is symmetric as viewed
from the Sun, it is very unlikely that any asymmetry will be seen from Earth. The
vertical asymmetry should, however, technically be visible to terrestrial observers,
although the magnitude of the effect may be too small to be noticeable. When
the Sun is nearly in the ring plane, the quadrupole dominates pericenter locking
and dust exterior to Enceladus’ orbit (a = 3.95R,,) should be offset slightly to the
north; interior to Enceladus it should be found slightly to the south (Fig. 6.11).
The magnitude of the offset depends on the unknown properties of the ensemble
of grains that make up the E ring; offsets should increase, however, with radial
distance from Enceladus. Grains originating from Tethys, however, will be dis-
tributed more symmetrically about the equatorial plane and so the vertical offset
may disappear at large distances where Tethys-derived grains predominate.

6.7.2 From Spacecraft

There are definite hints of vertical asymmetry from the Voyager fly-by missions.
Showalter et al. (1991) cite evidence from Voyager images centered at about 4R,
for a northern offset of several hundred kilometers - larger than that expected by
differences between the equatorial and Laplace planes. The offset predicted by
Egs. (6.9-6.11) is small at this distance because it is just outside the position
where the orbital nodes lie. Since the Sun was elevated only ~ 4° north of
the equatorial plane at the time of the fly-by, the quadrupole term should still
dominate the solar term and material exterior to the nodes should be elevated
slightly to the north as observed. In addition, Voyager 1 swept through the E ring
at a distance of about 6.1R,, near the Dione “clear zone,” and returned data from
its PWS instrument, which was discovered to be sensitive to dust impacts. These
data imply an offset to the south (W. Kurth 1992, private communication). Most
of the material in this region probably originates from Tethys, in which case the



146

orbital pericenters are not locked; thus we cannot easily predict the sense of the
observed offset.

Questions about the sources of dust and possible asymmetries in the E ring’s
structure are difficult to answer from ground-based observations alone. Because
single particle dynamics dominate collective effects in the E ring, detailed in-
formation on individual particle orbits, which can most easily be obtained from
spacecraft observations, are desirable. The sources of E-ring material should be
easily identified when the Cassini orbiter, with its sophisticated dust detector,
arrives at Saturn and makes repeated passes through the region. The mission
should also be able to determine the nature and extent of any azimuthal and
vertical asymmetry.



7.1 Intro uction

Gravitational orbital resonances, in which the frequency of a perturbing force is
commensurate with a natural orbital frequency, have fundamental importance
in the solar system. Satellites resonate with one another as in the saturnian
Mimas-Tethys and Enceladus-Dione pairs as well as the famous jovian Io-Europa-
Ganymede triple. At resonant locations in the main rings of Saturn, satellites
cause density and bending waves, and sometimes form gaps and ringlets. Some
features in the saturnian rings have even been ascribed to tiny perturbations
from axially asymmetric terms in the planet’s gravitational field (Franklin et al.
1982, Marley and Porco 1993). Since gravitational resonances are so common in
the solar system, might non-gravitational resonances also be prevalent? This is
almost certainly true; however examples of such resonances will only be found
by looking in the right places. Since non-gravitational forces can compete with
gravitational ones solely when particles are small, we expect these resonances for
particles with radii less than a few microns. The faint ring systems of the giant
planets are composed primarily of tiny particles and so such locales are ideal sites
to seek out signs of non-gravitational resonant interactions.

These signs are clearly present both in the main jovian ring (Burns et al.
1985) and in Saturn’s E ring (Chapter 6). In the former location, Lorentz (elec-
tromagnetic) resonances, which arise from Jupiter’s spinning magnetic field, are
capable of pumping up the eccentricity and inclination of ring particles. In par-
ticular, the transition between the main ring and the vertically extended halo
occurs at a location where the ratio of the orbital frequency to the planet’s spin
rate is nearly 3:2 (Burns et al. 1985). Particles drifting inward and across this
strong resonant location increase their inclinations by a factor of several hundred
(see Schaffer and Burns 1992). As we have seen in Chapter 6, the particles in

!This chapter is based on the paper: Hamilton, D.P. (1993), A comparison of Lorentz,
planetary gravitational, and satellite gravitational resonances. Icarus, submitted.
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Saturn’s diffuse E ring are also in nearly resonant orbits although this time the
driving force is radiation pressure instead of electromagnetism. Because E-ring
orbits retain a given orientation with respect to the Sun for an extended period of
time, radiation pressure is able to build up large orbital eccentricities and spread
material across the full breadth of the E ring (Chapter 6).

Other non-gravitational resonances have also been identified, among them
shadow resonances (Horanyi and Burns 1991, Mignard 1984) and resonant charge
variations (Burns and Schaffer 1989, Northrop et al. 1989). In the former, con-
ditions change in the planetary shadow (radiation pressure and the photoelectric
current shut off ) which occurs naturally once per orbit; such orbits are thus intrin-
sically resonant. Shadow resonances may be responsible for the strange azimuthal
asymmetry seen in the main jovian ring and in its halo (for a description of the
asymmetry, see Showalter et al. 1987). Resonant charge variations occur when
the charge on a dust grain changes with a period that is commensurate with the
grain’s orbital period; the termination of the photoelectric current during shadow
passage provides a simple example, while another depends on variations in the
current flow to a grain as its position and velocity change along its orbit.

Because gravitational resonances have been extensively studied, it is valuable
when studying non-gravitational effects to draw from the body of knowledge al-
ready amassed. Accordingly, the primary emphasis of this work is to explore the
similarities of non-gravitational and gravitational orbital resonances by compar-
ing and contrasting their structure and effects on orbiting particles. We choose
to look at two different types of gravitational resonances — those due to an or-
biting satellite and those due to the “lumpiness” of an arbitrarily shaped planet
— and we pick Lorentz resonances both because of their importance at Jupiter
and because of their similarity to gravitational resonances (Hamilton and Burns
1993b). In the interest of brevity, henceforth we adopt the following notation:
LR = Lorentz resonance, SGR = satellite gravity resonance, and PGR = plane-
tary gravity resonance. By comparing three different types of orbital resonances,
we progress in understanding the traits that underlie all orbital resonances and
those that are unique to particular ones.

A second goal of this chapter is the mathematical characterization of the
Lorentz perturbation which is useful for several applications. As noted above,
Lorentz resonances are known to play a key role in the jovian ring (Burns et al.
1985). They are also suspected of being important elsewhere, perhaps account-
ing for dust found over the Neptunian pole (Hamilton et al. 1992), causing larger
inclinations in the saturnian E ring (Chapter 6), and accounting for curious phe-
nomena at the corotation distance (Showalter et al. 1985). These resonances
have been analytically treated by Schaffer and Burns (1987) and more recently
by Schaffer and Burns (1992) who used a perturbed harmonic oscillator model
of resonance. Here we instead follow the standard celestial mechanics approach;
since gravitational perturbations have been treated in this way, similarities and
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differences between resonances might be more readily apparent. Furthermore,
the celestial mechanics approach has several advantages over the harmonic oscil-
lator approach, the most obvious of which is that the results of perturbations are
described by slowly-varying orbital elements which allow graphic visualization of
orbital evolution.

The importance of Lorentz resonances in many of the above applications re-
mains speculative because resonant strengths are poorly known; indeed, even the
structure of these resonances is not well understood. In Section 7.2, we attempt
to rectify this situation by expanding the Lorentz force out to second-order in
small quantities e and ¢. In Section 7.3, we compare SGRs, PGRs, and LRs and
discuss underlying symmetries contained in their expansions. We add the impor-
tant dissipative effects of drag forces in Section 7.4, following which we present
our conclusions.

7.2 xpansion of ertur ing orces

7.2.1 Planetary Gravity

We begin by discussing perturbations to two-body motion arising from small
deviations in a planetary gravity field. This well-studied problem shares many
aspects with the Lorentz perturbation and, accordingly, facilitates our later dis-
cussion of that force. Because we consider only small perturbations, solutions to
the full problem differ only slightly from the exact solution to the two-body prob-
lem. Accordingly, we make use of the orbital elements since these will change
relatively slowly in time. The basic task then, is to write the perturbation in
terms of osculating orbital elements so that the time rate of change of each of
these elements can be determined. We now sketch the derivation following the
comprehensive treatment of Kaula (1966).

Working in a planet-centered reference frame rotating at the planet’s spin
rate €2, the gravitational potential ® outside an arbitrarily-shaped body can be
shown to satisfy Laplace’s equation, V2® = 0 (Danby 1988). The solution of
Laplace’s equation in spherical coordinates for a cylindrically-symmetric planet,
is given by Eq. 5.1. For an asymmetric body, solving Laplace’s equation leads to
the standard spherical harmonic expansion of the gravitational potential:

GM, © R, 7+
R

P =0

b —

. [C2, cos(kgr) + S sin(kgg)] P (cosb), (7.1)
k=0

where, as before, G is the gravitational constant, M, and R, are the planetary
mass and radius, and r, 0, ¢ are the usual spherical coordinates defined in the
rotating frame. These coordinates can be translated into the non-rotating frame
by the identity ¢ = ¢ — X', where X' = Q,t is the longitude of a reference point
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on the rotating planet. The P]k(x) are associated Legendre polynomials (Kaula
1966, Schaffer and Burns 1992). Finally, the coefficients C7; and S}, are di-
mensionless quantities whose values are set by the mass distribution within the
planet. Note, however, that several conventions exist for normalizing the asso-
ciated Legendre polynomials (Stern 1976); because the choice of normalization
alters the numerical values of C7; and 57, care must be taken when these coef-
ficients are evaluated. Kaula (1966) for instance, uses unnormalized polynomials
in the main text, but quotes numerical values for the Earth (through j = k = 6,
his Tables 3 and 4) in which a spherical harmonic normalization (his Eq. 1.34)
has been used. To further complicate matters, the same polynomials arise when
the magnetic field is expanded, but these are conventionally Schmidt-normalized
which differs from both of the above choices (see Schaffer and Burns 1992). We
choose to Schmidt-normalize the gravity coefficients to facilitate the comparison
of PGRs and LRs, and place asterisks on the coefficients as a reminder of this
unconventional choice.

The disturbing function, i.e., the negative of Eq. 7.1 rewritten in terms of or-
bital elements, is found by converting the spherical coordinates to orbital quanti-
ties and substituting into Eq. 7.1; the relevant expressions, Egs. (5.9-5.11), allow
r, 6, and ¢ to be replaced by a, e,7,€), u, and v. As in the previous chapters, a and
e are the semimajor axis and eccentricity of the elliptical orbit, 7 is the orbital
inclination, and € is the longitude of the ascending node; the argument of lati-
tude, u, and the true anomaly, v, vary rapidly and nonlinearly in time (Fig. 7.1).
We therefore replace these latter two quantities with the longitude of pericenter
w, which changes slowly, and the mean longitude of the particle A\, which varies
nearly linearly in time. In addition, this choice causes all reference angles to be
measured from the same zero-point in space which makes the symmetries of the
expansion most apparent (see Section 7.3.1 below). The elements employed in
our expansions are therefore: a,e, 7,2, w, and .

We eliminate the argument of latitude with the expression

u=w—-Q+v (7.2)

(Fig. 7.1), leaving only the true anomaly v, which always appears inside trigono-
metric functions, to be translated. Because expressions relating cos v and sin v
to trigonometric functions of the mean anomaly M are available (e.g., Smart
1953, p. 41), we proceed by using multiple-angle identities to first write our series
(Eq. 7.1) in terms of sums and products of cosv and sinv. We do this using a
symbolic algebra program (MACSYMA), although with care it can be done an-
alytically (Kaula 1966). Next the substitutions for cos v and sin v are employed;
these expressions are complex, involving Bessel functions and their derivatives,
but can be reduced to the form 3", Bje’ cos(jM) where the B; are constants
(Smart 1953, p. 41). These expressions converge only for e < 0.66, a constraint
of little importance since most applications are to low-eccentricity orbits. Finally,
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Figure 7.1 Orbital elements. The symbols A and P stand for apoapse and peri-
apse, respectively, while AN and DN refer to the ascending and descending nodes.
Longitude angles (e.g., A\, @, and 1) are measured from a specified reference di-
rection in space. Node angles (e.g., 1) are measured to the ascending node while
arguments (e.g., © and w) are measured from this point. Similarly, pericenter
angles (e.g., w and w) are measured to periapse while anomalies (e.g., v) are
measured from there.
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we complete the transformation to our orbital elements by replacing M via the
identity M = A\ — w.

The resulting expression is quite complex, containing products and quotients
of infinite power series in the eccentricity. We simplify by formally multiplying
and dividing the various series so that each term in the full expression contains
only a single power of the eccentricity. Next, we replace all products and pow-
ers of trigonometric functions with multiple-angle expressions; these steps are
computationally intensive and tedious, and therefore are best left to symbolic
programs. The final result is the disturbing function, a series containing terms
of the following form:

fla,e,i,..)cos(A\+ Ay N + Agw + AgQ + Ay), (7.3)

where the A; are integer constants and f is a function of a,e,i and the field
coefficients C7, and S7,. Readers interested in more explicit analytic results for
the disturbing function relevant to planetary gravity fields should consult Kaula
(1966)’s Section 3.3.

We wish to compare these results with those that arise from the Lorentz
force considered in the next section, but because a disturbing function cannot be
defined for the Lorentz force, we must derive time rates of change of the orbital
elements in both cases. These rates are obtained by inserting the disturbing
function into Danby (1988)’s Eq. (11.9.9) which gives six new series, one for the
rate of change of each orbital element, each of which contains terms of the form
of Eq. (7.3). We use expressions for dn/dt, de/dt, di/dt, d2/dt, dw/dt, and
de/dt where the mean motion is given by

GMp 1/2
a3 '

n =

(7.4)

The variable de/dt encapsulates all perturbative changes to a particle’s orbital
mean motion; it is equivalent to Danby (1988)’s de;/dt, and satisfies de/dt =
d\/dt—n. To facilitate the comparison of inclination and eccentricity resonances,
we Taylor-expand the six series in e and ¢ and truncate so that only terms second-
order in small quantities remain. Our results for selected quadrupole and octupole
components of the planetary gravity field are presented in Table 7.1. Many of the
patterns seen in Table 7.1 [e.g., the similarity of the coefficients of the time rates
of change of the eccentricity (inclination) and the pericenter (node)| follow from
the fact that these expressions are derived from a single disturbing function.

7.2.2 The Lorentz Force

In addition to planetary gravity, a charged dust grain in orbit around a planet
responds to the Lorentz force arising from the rotating magnetic field associ-
ated with the planet (Section 5.4.1). Close in, the magnetic field B rotates at the
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Table 7.1 The second-order expansion of perturbations due to the C3, and C3,
components of the planetary gravitational field. The first column contains the
resonant argument, ¥ = A\ + Ay N + Apw + A [see Egs. (7.3) and (7.8)].
When the disturbing function is expanded to second-order in the small quantities
(e and i), dn/dt is given to second-order, de/dt and di/dt to first-order, and the
angular quantities d€)/dt, dw/dt, and de/dt to zeroth-order. The response for the
S35 and S3, components (Eq. 7.1) are obtained from these by the transformation
C* — S*and ¥ — ¥ — /2. Section 7.4.1 gives an example of how to use this
table.
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planet’s constant spin rate €2,,, and the Lorentz force is given by Eq. 5.29. Assum-
ing that the magnetic field is evaluated in a current-free region (J ~ V x B = 0),
the only remaining constraint that must be satisfied is Maxwell’s equation V-B =
0 (Stern 1976, Section 5.4.1). Taking B = —V®,,,,, we find that Vx B = 0
is automatically satisfied, and V?®,,,, = 0 with solutions like Eq. (7.1) above.
Hence

o0 Rp Jj+1 7

B=-RV (g, cos(kdr) + hjy sin(kdr)]| P (cosb), (7.5)

r

j=1 k=0

which is merely a combination of Eqgs. (5.26-5.28). Recall that the g;, and h;
are planetary magnetic field coefficients with units of gauss [Schaffer and Burns
(1992) tabulate values for the giant planets and give additional references].

A measure of the relative strength of the Lorentz force is given by the param-
eter L defined in Eq. 5.40; the Lorentz force can be treated as a perturbation to
gravity for grains satisfying L << 1. Assuming typical grain potentials of a few
Volts (e.g., Horanyi et al. 1992), this inequality translates to grains larger than
several tenths of a micron in radius. For many applications, including the jovian
ring (Showalter et al. 1987) and the saturnian E ring (Showalter et al. 1991),
dust grains are inferred to be micron-sized and gravitationally dominated; hence
a perturbation approach is appropriate.

Since the Lorentz force depends on velocity, it cannot be written as the gradi-
ent of a potential and thus an electromagnetic disturbing function does not exist.
Therefore, in order to obtain the time rates of change of the orbital elements for
a general force, we proceed as follows:

1. Resolve the force into three orthogonal components: one normal to the orbital
plane, the second oriented radially, and the third perpendicular to the others.

2. Insert these components into the perturbation equations of celestial mechanics
(e.g., Danby 1988, Eq. 11.5.13).

3. Convert all quantities into orbital elements.

The first step has already been accomplished for the Lorentz force in Section 5.4.1
(Egs. 5.32-5.34). Next we insert the expressions for B,, By, and B, from Eq. (7.5)
into the force components which are in turn substituted into the perturbation
equations.

Finally, we rewrite the perturbation equations in terms of our set of orbital el-
ements; this step closely parallels that discussed above for the planetary gravity
disturbing function. For each of the six perturbation equations, we first con-
vert the spherical quantities (r,6,¢) to orbital elements using Egs. (5.9-5.11),
after which we replace v and v with Q,w, and M (see Eq. 7.2 and the follow-
ing discussion). After simplification, we are again left with a series of terms of
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Eq. (7.3)’s form. Our result for the response of a charged grain to magnetic
dipole, quadrupole, octupole, and select higher-order terms, truncated to second-
order in e and ¢, is given in Table 7.2. The (g1 : ¥ = 0) and (g2 : ¥ = 0) terms
agree with low-order expansions of Egs. (5.41-5.46) and Eqgs.(5.48-5.50) as they
should.

7.3 roperties of t e xpansions

7.3.1 Orbital Symmetries

Despite the fact that the expansions listed in Tables 7.1 and 7.2 arise from very
different perturbations, remarkably similar patterns are evident in each case. For
instance, in both expansions the power of the eccentricity in a given term is related
to the coefficient of the pericenter angle, and the same holds for inclinations and
nodes. Furthermore, in both cases, the coefficients of the angular quantities in ev-
ery resonant argument sum to zero. These patterns are reminiscent of d’Alembert
relations which constrain the form of SGRs, imposing symmetries that have been
recognized for as long as the satellite disturbing function has been expanded. Ac-
cording to Brown and Shook (1933), the relation between pericenter coefficients
and eccentricity powers was first discussed by d’Alembert (1754); a more com-
plete list of symmetries present in the secular part of the disturbing function can
be found in Applegate et al. (1986). We now present simple physical arguments
for the origin of four of these symmetries; our first argument is not new (e.g.,
Applegate et al. 1986, Message 1991), but we have found no reference for the
following three. The constraints imposed by the symmetries are quite general,
applying not only to SGRs, PGRs, and LRs, but to any orbital perturbation and,
indeed, to any quantity that can be written in terms of orbital elements.

Any physical quantity, @, (e.g., a position, velocity, or perturbing force com-
ponent, the disturbing function, a perturbation equation, etc.) that is expressed
in terms of orbital elements can be written as a function of many variables,

Q:F(Xbx%x&"'7¢1a¢27¢3a"')ﬂ (76)

some of which are longitude angles (¢;) and some of which are not (x;). For the
Lorentz perturbation (see Section 7.2.2 and Table 7.2), the set of x; include the
quantities {a,e,i, L, gj, h;x} while the set of ¢; is simply {Q,w, A\, \'}. Since
the longitudes are angular quantities, F' must be periodic in each of them. A
well-behaved periodic function can be expanded as a Fourier series in each of
its cyclic variables; performing this expansion of Eq. (7.6) yields a series whose
terms have the following form:

f(x1, x2, X3, ---) cos(¥), (7.7)
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Table 7.2 The second-order expansion of perturbations due to the Lorentz force
with £ = n/Q,. All dipole, quadrupole, and octupole as well as a few of the
important higher-order terms are given in separate subtables. The first column
contains the resonant argument, ¥ = A\ + Ay N + A w + Ao [see Egs. (7.3)
and (7.8)]. As with planetary gravity, we expand dn/dt to second order in e and
i, de/dt and di/dt to first order, and the angular quantities d2/dt, dw/dt, and
de/dt to zeroth order. By convention, the h are taken to be zero; the response
to the other h;; terms can be obtained from this table by substituting A, in for
g;.x and subtracting 7/2 from W. An example illustrating the proper use of this
table for the g3 3 component is given in Eqs. (7.26-7.28) of Section 7.4.1.
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where the function f plays the role of an amplitude and

U=A+ Ao, (7.8)
j
This series is summed over all possible unique sets of integer A;’s. Now, although
all quantities pertaining to an arbitrary orbit may be expressed in the general
form of Eq. (7.7), the converse is not true; not all functions of this form represent
valid physical quantities. We now discuss constraints on the form of Eq. (7.7)
that all physical quantities must obey.

The first and best-known constraint arises from the fact that all longitude
angles are measured from the same reference direction, or zero-point, in space
(e.g., Applegate et al. 1986). Because space is isotropic, the choice of reference
direction is arbitrary, and hence its selection can in no way affect a given orbit
or the perturbations acting on it. We choose a new zero-point of longitude by
adding an angular quantity ¢ to each of the longitude terms and require that
Eq. (7.6) be invariant under the transformation

longitude angles — longitude angles + ¢ (7.9)

(Fig. 7.1). Since the invariance holds for arbitrary values of the variables x; and
®;, the constraint applies separately to each term in the Fourier series. If @) is
unaltered by Eq. (7.9), then combining Eqs. (7.7-7.9) yields:

fla,e,i,...)cos(¥) = f(a,e,i,...)cos(¥ + 0 | Aj). (7.10)

Now since ¢ is arbitrary,

A; = 0. (7.11)
j
Thus the longitude coefficients contained within each term of any physical quan-
tity must sum to zero. Notice in particular that this rule is strictly obeyed by
each term of the perturbation expansions listed in Tables 7.1 and 7.2.

Unlike the zero-point of longitude, the line of nodes for a given orbit is
uniquely determined by the intersection of the orbital plane with a given refer-
ence plane. Nevertheless, it is an arbitrary choice to measure angles with respect
to an orbit’s ascending node rather than its descending node. If we adopt the
unconventional choice of using the descending node, the following modifications
must be made to the usual orbital elements:

node angles — node angles 4+ m

arguments — arguments — m
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i — —i. (7.12)

The first two transformations adjust the angles so that they are measured relative
to the new reference point, the descending node (Fig. 7.1). As seen from the
descending node, the orbit dips below the reference plane in the direction of
orbital motion and thus the new inclination is negative. Since the transformation
merely amounts to describing the same orbit from a different reference point,
as with the zero-point of longitude, no analytic expression can depend on this
choice.

In an entirely analogous manner, the line of apsides is determined for an
eccentric orbit, but one can measure angles from either pericenter or from apoc-
enter. By choosing to measure from apocenter, the usual orbital elements must
be modified as follows:

periapse angles — periapse angles + 7
anomalies — anomalies — 7

e — —e. (7.13)

As with the node above, the first two transformations adjust angles so that they
are measured relative to the new reference point (Fig. 7.1). The third transfor-
mation, in which the sign of the eccentricity is reversed, is necessary so that the
transformed distance and velocity components along the elliptical orbit retain
their original values. If @ is unaltered by the transformations, as are dn/dt,
dQ/dt, dw/dt, and de/dt, then the following expressions constrain the form of
Eq. (7.7):

fla,e,i,...)cos(V) = f(a,e,—i,...)cos(¥ + 7 Agq) (7.14)

and
fla,e,i,...)cos(¥) = f(a,—e,i,..)cos(¥ + 7 Ay), (7.15)
which reduce to

fla,e,i,..) = (=1)"f(a,e,—1,...) (7.16)

and

fla,e,i,...) = (=1)*= f(a, —e,i,...). (7.17)

When @ is de/dt [di/dt], it changes sign under the transformation Eq. (7.13)
[Eq. (7.12)] and an extra minus sign appears on the left-hand side of Eq. (7.17)
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[Eq. (7.16)]. Thus the function f is not arbitrary; indeed, it must be either even
or odd in each of the variables e and i. Furthermore, the parity of f with respect
to e or ¢ determines the parity of the corresponding angular quantity’s coefficient.
This constraint is clearly evident for each of the entries in Tables 7.1 and 7.2; the
time derivatives of the mean motion and the angular quantities obey Eqgs. (7.16)
and (7.17) while de/dt and di/dt differ by a minus sign). The symmetries also
require that power series expansions of f contain all even (or all odd) powers of
e and ¢, a fact that is apparent in high-order expansions of SGRs (Murray and
Harper 1993), PGRs (Kaula 1966), and LRs (Hamilton, unpublished).

The final simple symmetry that we discuss arises from reflection of a system
through the xy plane. Imagine working in a left-handed coordinate system in
which angles are measured from the negative z axis rather than the positive one
(Fig. 7.2). The orbital elements are affected by the change; the ascending node
of an orbit in the original xyz coordinate system becomes the descending node
in the new system. Since the usual orbital elements include the longitude of
the ascending node, changing to the new system necessitates adding 7 to angles
that measure the location of the node and subtracting 7 from arguments mea-
sured from that location (i.e., the first two lines of the transformation given by
Eq. 7.12). With this transformation, we succeed in describing the same orbit
from two different reference frames. For SGRs, the transformation must be per-
formed on all satellite orbits and the requirement that Eq. (7.7) be unaltered by
the transformation implies that the sum of the node coefficients must be even.
Taken together with Eq. (7.16), this in turn implies the well-known result that
no first-order inclination resonances exist for SGRs.

For PGRs and LRs, the situation is more complicated since the gravitational
and magnetic fields must also be described in the new coordinate system. In-
deed, 2 — —2 implies § — —0, 8 — 7 — 0, and Pf(cosf) — (—1)7*PF(cos )
(Fig. 7.2). To retain the original configuration of the gravity field, the quantity

*«PF(cosf) must be unaltered and hence we also change the field coefficients

Tk (—1)]'““0;’,6. With these transformations, we succeed in describing the
identical problem from two different coordinate systems; and, as before, the re-
sults of a perturbation cannot depend on the choice of reference directions. For
PGRs, f is proportional to one of the C7; and if @) is invariant under the change
of coordinate systems, then the constraint on Eq. (7.7) takes the form:

C7p cos(¥) = (—1)j+kC;k cos(¥ + 1Agq) (7.18)

or (—1)42 = (—1)7**. The above discussion applies equally well to LRs, but an
additional minus sign is introduced when the final cross product in the Lorentz
force is calculated in the left-handed coordinate system (Eq. 5.29). Summarizing
our results for the three resonances, we have:

SGRs : Sum of node coefficients is always even;
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Figure 7.2 An orbit seen from two coordinate systems. In the xyz system, AN
marks the position of the ascending node since the polar angle 6 decreases as
the satellite moves away from this point (i.e., the orbit ascends above the zy
reference plane). As seen from the zy(—z) system, however, the polar angle is
m — 6 and AN is the descending node since the polar angle increases in the
direction of orbital motion.
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PGRs :j+ k4 Agq is always even;
LRs:j+ k+ Agq is always odd. (7.19)

Notice that the results for PGRs and LRs do not exclude first-order inclination
resonances. In fact, first-order inclination resonances occur for PGRs when j + &
is odd and for LRs when j + k is even (cf. C3, term in Table 7.1 and gy term
in Table 7.2).

The symmetries presented in Egs. (7.9), (7.12), (7.13) and (7.19) are widely
applicable. Besides constraining the form of the expansions of SGRs, PGRs, and
LRs presented here, they apply directly to any form of an arbitrary perturbation
(e.g., each of the orbit-averaged perturbations given in Chapter 5). Moreover,
the symmetries hold for all physical quantities that are written in terms of orbital
elements which can be especially useful for spot-checking complicated expressions.
For instance, the expansions for sin v and sin E in Danby (1988, p. 437) do not
manifest the symmetry implied by Eq. (7.13) and hence cannot be correct; valid
expressions can be found in Smart (1953).

7.3.2 The Hamiltonian

The properties discussed above are shared by all perturbations simply because
of the nature of orbital elements. The resulting rules explain many of the pat-
terns that are apparent in Tables 7.1 and 7.2. Additional similarities are present
because in each of the problems there is a unique rotating frame in which the per-
turbation is constant in time; for SGRs the frame rotates at the angular rate of
the perturbing satellite, while for PGRs and LRs, it rotates at the planetary spin
rate. When expressed in this rotating frame, F = ma contains both a centrifugal
term and a Coriolis term. Nevertheless, a conserved quantity of the motion (en-
ergy) can be found by taking the dot product of the equation of motion with v,
(vyer s the velocity relative to the rotating field) and integrating over time; for
SGRs, this procedure yields the classical Jacobi constant (Danby 1988, p. 253).
To zeroth-order in the perturbing force, the conserved quantity H is given by:

GM 1 1
H = —T — 5@;(1’2 + y2) + 5/072‘6“ (720)

where, for SGRs, €2, here and below is understood to be the mean motion of
the perturbing satellite. The first term is the gravitational potential energy, the
second is the potential corresponding to the centrifugal force, and the final term
represents the particle’s kinetic energy. Because of its perpendicularity to v,
the Coriolis force does not contribute to Eq. (7.20). In applying Eq. (7.20) to
SGRs, we neglect the small contribution of the perturbing satellite which is a
good approximation when one is not too close to the satellite (c¢f. Roy 1978, p.
129). For PGRs, we neglect the higher-order gravitational coefficients which is
a reasonable approximation. Finally, the Lorentz perturbation, like the Coriolis
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acceleration, is perpendicular to v, (see the discussion immediately prior to
Eq. 5.29) and so its term disappears when dotted with the velocity, leaving the
energy integral unaltered. This is true even if the particle’s charge varies with
time (Horanyi and Burns 1991). Thus Eq. (7.20) is the exact integral of the
motion for the Lorentz perturbation. We now convert this constant of the motion
into orbital elements to see how it constrains the form of our expansions. This
conversion was first accomplished by Tisserand (Roy 1978, Eq. 5.50). We find

1/2

RS n .
= ? (1—e®)Y2cosi = C, (7.21)

+ 2
a Ryyn

where Ry, is the radial position of synchronous orbit and C' is a constant. We
use

GM. 1/2
Q= S (7.22)

syn

and Eq. (7.4) to replace the distances in Eq. (7.21) with frequencies. Since we
are interested in expressing the constraint in terms of our derived time rates of
change, we differentiate and obtain

dn 3ecos? de

di
Gn __9€cost e a0 o120 B 9
i (-7 3(1—e”)/*sini o 0 (7.23)

S|

Qi—(l—GQ)l/2 cos i
P

which, to lowest-order in e and i, reduces to

3ne% + 3m’% + 1- Q% Z—? — 0. (7.24)
Equations (7.23) and (7.24) provide a link between variations in a, e, and 7 which
can be used in a number of applications. For example, Burns and Schaffer (1989)
and Horanyi and Burns (1991) have used planar versions of Eq. (7.23) in elec-
tromagnetic problems to obtain de/dt when da/dt (or dn/dt) is known, while
Schaffer and Burns (1992) were the first to apply a variant of Eq. (7.24) to eluci-
date properties of Lorentz resonances. The expressions can also be used to check
derivations; the orbit-averaged electromagnetic expressions (Eqgs. 5.41-5.43), for
instance, obey Eq. (7.23) as they must. Indeed, it is not difficult to see what
the eccentricity counterpart to Eq. 5.48 must be. We now discuss how Eq. (7.23)
constrains the form of our expansions given in Tables 7.1 and 7.2.

For any orbit, the changes in the orbital elements imposed by the full pertur-
bation must satisfy Eq. (7.23). In general, many terms add together to produce
these changes, but at resonant locations the effects of a single term dominate
all others. At these locations, the resonant term itself must obey Eq. (7.23),
but elsewhere it need not. The expansion of PGRs (Table 7.1) illustrates this
property nicely; only at resonance, where n/€, ~ |Ay /A,|, do single resonant
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terms satisfy Eq. (7.24). The situation for Lorentz resonances is even simpler.
As can be seen in Table 7.2, each term satisfies Eq. (7.24), regardless of the value
of £(=n/Q,), and thus the cumulative perturbation automatically does too.

7.3.3 Additional Patterns

In the previous few sections we have discussed simple physical ideas that put
strong constraints on the form of all resonances; here we investigate rules of a
more limited scope. Some of these apply to just one type of resonance while
others follow from mathematical properties of the expansions rather than from
simple physical arguments.

Several additional physical rules further constrain the form of Lorentz reso-
nances. First, the Lorentz force must vanish for a circular uninclined orbit at
the synchronous distance, since there the velocity relative to the magnetic field
is zero (Eq. 5.29). This fact is reflected in the expansion of Table 7.2; all dn/dt,
de/dt, di/dt and de/dt terms disappear in the limit n — Q,,e — 0,7 — 0 (see
Section 5.4.2). The d§2/dt and dw/dt terms need not vanish in this limit as these
orbital elements are undefined for planar and circular orbits, respectively (Sec-
tion 5.4.2). Furthermore, consideration of Eqgs. (5.29) shows that the Lorentz
expansion splits into two pieces, one arising from the v x B component of the
force (¢ terms in Table 7.2), and one due to (2, x r) x B (constant terms in
Table 7.2). Since the v x B force can do no work in the non-rotating frame,
the orbital energy, and hence dn/dt, is unaltered. Thus there are no £ terms in
Table 7.2’s dn/dt entries.

Some patterns can best be explained mathematically. One such regularity seen
in both Tables 7.1 and 7.2 is that the powers of the eccentricity and inclination in
the dn/dt equation equal or exceed the arguments of the corresponding angular
quantities in W. This property can be shown to be true by carefully following
through the expansion of the perturbing forces; it stems from the fact that each
appearance of a v or u is accompanied by an e or ¢ respectively. Furthermore, the
structure of the perturbation equations (Danby 1988, Eq. 11.5.13) also insures
that the power of e in the de/dt and dw/dt equations are, at most, one and two
lower than A, while the power of ¢ in the di/dt and dQ2/dt terms follow the same
pattern with respect to Ag. Finally, the fact that the numerical coefficient in the
de/dt and dw/dt (di/dt and dQ2/dt) terms are usually identical, to first order,
also follows from the structure of the perturbation equations.

For typical resonant arguments, the equality in the patterns discussed in
the above paragraph holds exactly. The only exceptions are resonances at syn-
chronous orbit which have arguments of the form A\ — A)'. Additionally, these
strange resonances are the only ones that influence the de/dt equation, although
the effect is weak since £ ~ 1. Examining the 2\ — 2\’ resonant argument (see
the C5, entries of Table 7.1 and in the g3, entries of Table 7.2), we see that the
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gravitational version of this resonance has more influence on the orbital elements
than the Lorentz version does. This manifests the fact that the Lorentz force
weakens in the vicinity of synchronous orbit.

The resonant arguments of Tables 7.1 and 7.2 all have |Ay| = k, which
follows directly from the fact that the gravitational and magnetic fields for the
appropriate coefficients have k-fold longitudinal symmetry. This constraint, taken
together with Egs. (7.11) and (7.19) and the above discussion, allows us to predict
which resonant arguments will appear for a given field coefficient. In comparing
Table 7.1’s C5, and Table 7.2’s g5 entries, for example, we see that all possible
first- and second-order resonant arguments (those for which |Aq| + [A| < 2) are
present. The g3 5 entries also contain all possible arguments of order two, but a few
are missing from the €3, entries. The missing arguments are best explained by
looking at the mathematical expansion of the planetary gravity resonances (Kaula
1966). Properties of the series expansions for PGRs show that all arguments with
Ay =0and A, = £2 as well as those that satisfy j — k + Aq < 0 cannot appear
in the expansion. The missing term (C3,: ¥ = —2\' +2w) is an example of the
former constraint while (C3, : ¥ = 4\ — 2\ —2Q)’s absence illustrates the latter.

7.3.4 Global Structure; Considerations of esonance
Strength

Although the ideas discussed above significantly constrain the structure of indi-
vidual resonances, they put few restrictions on the global properties of the entire
expansions. Accordingly, in this section we address the distribution and relative
strengths of resonances in each of the three cases.

To a first approximation, the distributions of SGRs, PGRs, and LRs relative to
synchronous orbit are almost identical because the nodal and apsidal frequencies
are slow compared to the mean motions and, consequently, can be ignored when
calculating rough resonance positions. For all three problems, Nth-order reso-
nances (N = |Aq| + |Aw|) are located inside synchronous orbit when |A,| < |Ay]|
and outside that position when |A,| > |Ay|. The radial location of resonance, a,
is determined by

a Q, 2/3_ Ay 2/3

Rsyn n A)\’

As in Section 7.3.2, for SGRs R,,, and €, are understood to be the perturbing
satellite’s distance and mean motion, respectively. We use Eq. (7.25) to plot
the positions of several first-order resonances (N = 1) and two second-order ones
(N = 2) in Fig. 7.3. These resonances cluster together most tightly in the vicinity
of synchronous orbit — adjacent resonances become arbitrarily close for large A,.
Higher-order resonances behave similarly although Eq. (7.25) shows that they
extend further from synchronous orbit than their first-order cousins.

(7.25)
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Figure 7.3 Location of the several strong first-order (solid lines) and two rep-
resentative second-order (dashed lines) Lorentz resonances around Jupiter. For
Jupiter, Ry, = 2.24 planetary radii. The figure applies equally well to planetary
gravity resonances and, if the perturbing satellite is at Ry, to satellite reso-
nances. In Section 7.4, we find that dust grains spiraling toward synchronous
orbit can become trapped at resonant locations while those dragged away from
synchronous orbit experience resonant jumps in either the inclination or eccentric-
ity. Both of the displayed second-order resonances arise from the g4 3 component
of the magnetic field. Since the second-order 1:3 resonance is found far beyond
the 1:2 resonance (Eq. 7.25), we see that higher-order resonances cover a broader
radial range than first-order ones do.
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Although resonances lie in similar positions for each perturbation, their strengths

relative to one another vary depending on the details of the perturbing force. For
example, each field coefficient (e.g., g22) produces two first-order resonances, one
inside Ry, (¥ = A —2X +Q) and one outside (¥ = 3X — 2X" — ). For LRs, the
strengths of these two resonances are related since, to a sign, they have identical
entries (Table 7.2); for PGRs, though, the entries differ (Table 7.1). More im-
portant, however, is the morphology of resonances in the vicinity of synchronous
orbit. For SGRs, synchronous orbit is occupied by the perturbing satellite and
so resonant strengths rise as this location is approached. Since resonances both
increase in strength and decrease in separation as synchronous orbit is neared,
it is inevitable that resonance overlap eventually occurs. At this point, single-
resonance models of orbital motion are inappropriate and chaotic motions pre-
dominate; Wisdom (1980) has shown that resonance overlap occurs at a distance
proportional to p?/7, where p is the satellite-to-planetary mass ratio. Unlike
SGRs, PGRs and LRs tend to weaken as synchronous orbit is approached since
these resonances depend on successively larger powers of R,/a (Fig. 7.3, and Ta-
bles 7.1 and 7.2). Thus the spacing and strength effects compete, and it is not
immediately obvious which dominates; Schaffer and Burns (1987), however, argue
that this variety of resonance overlap does not occur for Lorentz resonances.

Instead, a different type of resonant overlap happens for PGRs and LRs. Just
as the main energy levels of the hydrogen atom resolve into a multiplet of closely-
spaced levels, so a detailed examination of resonant locations reveals a similar fine
structure. Each individual resonant location (e.g., 3:2 in Fig. 7.3) resolves into
a cluster of resonances with a fixed ratio Ay/Ay and different nodal and apsidal
coefficients. These resonances lie at slightly different locations due to the non-
zero secular precession rates d)/dt and dw/dt which arise from the axisymmetric
components of SGRs, PGRs, and LRs (e.g., the g, terms of Table 7.2). For SGRs
and PGRs, inclination resonances lie further from synchronous orbit than eccen-
tricity resonances; this is due to the fact that secular gravitational perturbations
cause orbital nodes to regress and orbital pericenters to precess. For LRs, the
situations is more complicated because both gravitational and electromagnetic
perturbations influence the precession rates. In some cases, the Lorentz force can
cause the opposite behavior, i.e., nodal precession and apsidal regression
(see the g1 and ¢3¢ components of Table 7.2). Thus inclination resonances may
be closer to synchronous orbit than eccentricity resonances. Finally, since the
electromagnetic precession rate depends on L, and hence on the charge-to-mass
ratio of a dust grain, an ensemble of particles of different sizes will experience res-
onances in a range of slightly different locations. For some charge-to-mass ratios,
the strong first-order inclination and eccentricity resonances are close enough to
interfere with one another, leading to resonant overlap and chaos (see Schaffer
and Burns 1992’s Fig. 5).

In the expansions of PGRs and LRs presented in Tables 7.1 and 7.2, we
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have assumed that the gravitational and magnetic field coefficients are time-
independent and thus the fields rotate as rigid objects (i.e., at a single fre-
quency). In reality, however, these coefficients probably change slowly [cf. Levy
(1989) for LRs at Jupiter| and, in some cases, even rapidly [cf. Marley (1991),
Marley and Porco (1993) for PGRs at Saturn|. Unfortunately, the physics driv-
ing these changes, especially those of the magnetic field, are poorly understood
which precludes a quantitative discussion. Nevertheless, we can determine the
qualitative effects of gradual changes in the fields by analogy with satellite reso-
nances. In SGRs, the perturbing satellite has three distinct orbital frequencies:
its rapid mean motion and slower nodal and apsidal precession rates. If the pre-
cession rates are suppressed, all corotation resonances (whose arguments depend
on quantities of the perturber that are gradually changing) disappear from the
disturbing function. In an entirely similar manner, the inclusion of slow drift
frequencies to both the PGR and LR problems introduces corotation resonances
that are slightly separated from the nominal resonant locations (Fig. 7.3).

Because corotation resonances affect only the perturbee’s mean motion, they
are often of minor importance. When a satellite is the perturber, however, the
paired interactions of a corotation resonance and a nearby eccentricity resonance
are capable of longitudinally confining ring arcs (Goldreich et al. 1986, Porco
1991). Thus the existence of corotation resonances in the other two cases may not
be entirely academic. In particular, we suggest that similar trapping mechanisms
may operate in some faint rings that are influenced by Lorentz forces.

7.4 oupling wit rag orces

7.4.1 esonant Equations

Acting alone, mean-motion resonances are capable of inducing moderately-large,
periodic changes in the orbital elements of nearby particles. Nonetheless, because
the majority of possible orbits are far from resonant locations, resonant effects
might seem to be unimportant. Not so! When coupled with a drag force, which
causes secular evolution of an orbit’s mean motion, the importance of resonances
is greatly enhanced since drag forces will inevitably transport distant particles
into resonant locations where they can be strongly perturbed. Furthermore, drag
forces allow resonant perturbations to secularly change orbital eccentricities and
inclinations as we will demonstrate below. Depending on the direction of the drift,
drag forces acting at resonance can cause jumps in the value of e and/or i as well
as resonant trapping with an associated sustained growth in those elements.
The importance of the coupling between drag forces and resonances was first
recognized by Goldreich (1965) who argued that tidal drags cause satellites to
evolve into, and subsequently become stably trapped in, satellite mean-motion
resonances. Since then, the capture process has been reexamined (Greenberg
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1973a), individual examples have been analyzed (e.g., Sinclair 1975, Greenberg
1973b), and Hamiltonian methods have been applied to the process (Peale 1976,
Henrard 1982, Borderies and Goldreich 1984, Dermott et al. 1988, Malhotra
1991). In these next few sections we argue that particles drifting into PGRs and
LRs display similar dynamic behavior to that seen at SGRs. We also illustrate
how our LR expansion can be applied to the study of particular resonances.

Small particles that make up diffuse ring systems are not significantly in-
fluenced by tidal forces; instead several additional drag forces operate on these
particles. Plasma and atmospheric drags arise from motion through swarms of
charged and neutral molecules that corotate with the planet; accordingly, these
drags slow particles inside of Ry, and speed up those outside of this position.
Orbital evolution, therefore, is away from the synchronous location. Poynting-
Robertson drag arises from the asymmetric scattering and re-radiation of photons
(Burns et al. 1979) and always causes orbits to lose energy and evolve inward.
Finally, resonant charge variations arise from the lag in the response of a grain’s
charge as its orbital motion takes it into regions with different charging currents.
Depending on the plasma parameters, resonant charge variations can cause the
semimajor axis to either increase or decrease (Burns and Schaffer 1989, Northrop
et al. 1989). Although these drag forces only operate on small particles they,
like tidal evolution, can bring material to resonances and influence the subse-
quent dynamics. The analogous process for interplanetary dust — evolution under
Poynting-Robertson drag into resonances with the planets — was first recognized
by Gold (1975) and later numerically studied by Gonczi et al. (1982). Several
recent papers revisit and extend the early results (e.g., Jackson and Zook 1989,
1992, Weidenschilling and Jackson 1993, Roques et al. 1993, Lazzaro et al. 1993).

After the discussion of Section 7.3, it should not be surprising that LRs and
PGRs behave almost identically to SGRs when coupled with a drag force. The
main difference is due to the existence of strong first-order inclination-type PGRs
and LRs. In fact for LRs, inclination resonances are usually stronger than the
corresponding eccentricity ones (Table 7.2). Thus, while a distribution of dust
evolving through a set of SGRs might be expected to remain roughly planar due
to the dominance of eccentricity-type resonances, this will not be the case for
PGRs and especially LRs as the jovian halo so elegantly demonstrates (Burns
et al. 1985). To emphasize this point, we treat a first-order inclination-type
resonance in this section although the structure of the equations, and hence the
resonant dynamics, is identical for an eccentricity resonance (see Table 7.2 and
Hamilton and Burns 1993b).

In writing a set of equations valid for the passage of a grain through an
isolated resonance, we include the drag force as well as the perturbation’s resonant
and secular terms. We specialize the equations to the 3:2 first-order Lorentz
inclination resonance which is thought to cause the transition from the main
jovian ring to its interior halo (Burns et al. 1985). Since a first-order inclination
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resonance does not strongly affect e, w, and e (see Table 7.2), we ignore changes in
these elements. The governing equations come from the (g3 3 : ¥ = 2XA — 3\ +Q)
entry of Table 7.2. Taking £ = n/Q, ~ 3/2, the appropriate expressions are

(2—7; = —3in’Bcos(2A — 3N + Q) + fgraq (7.26)
di ;
—Z = —@ COS(Q)\ — 3)\, -+ Q) + Idrag (727)
dt 2
ds? B TLB . / -
P sin(2A — 3\ + Q) + Qe (7.28)

where .. is the nearly constant secular precession rate arising from electromag-
netic and gravitational forces; its presence slightly alters the physical location of
resonance. Drag terms influence each of Eqs. (7.26-7.28), but contributions to
dQ/dt are neglected as they are dominated by Qyee. Finally, the limited radial
extent of the resonance zone justifies treating 74,44 as a constant. We define the
resonance strength to be

2 2 \1/2 9
B~ VIOL (gt Mis)'” Ry (0.05)L, (7.29)
2 g1,0 a

or one-third of the dn/dt coefficient taken from the (g3 3 : ¥ = 2XA -3\ +Q) entry
of Table 7.2. In the final approximation, we have used parameters appropriate for
the jovian 3:2 resonance, namely g1 ~ 4.218 G, g3 3 ~ —0.231 G, h33 ~ —0.294
G (Acuna et al. 1983a), and a/R, ~ 1.7. At Jupiter, a micron-sized grain charged
to a potential of +5V, has L ~ 0.028 and hence § =~ 0.0014, a value orders of
magnitude greater than typical SGR strengths. Furthermore, since drag forces
act on small particles much faster than tidal forces influence large ones, evolution
of dust particles in Lorentz resonances proceeds correspondingly more rapidly.

To improve our calculation of 3, we would need to include additional contri-
butions from the ¢;3 and h;3 (7 =5,7,9,...) field coefficients, but unfortunately,
the values of these coefficients are unknown for all non-terrestrial magnetic fields.
Nevertheless, we can get a rough upper bound on the error in 8 by assuming that
the higher-order field coefficients are roughly equal in magnitude to the octupole
coefficients [for the terrestrial magnetic field, the coefficients decrease in magni-
tude with increasing order — (Stern 1976)]. In this case, the higher-order terms
contribute < 0.5 to the resonance strength. There are also terms in Eqs. (7.26—
7.28) that depend on larger powers of e and ¢, but these contributions amount to
< 0.13 for conditions present in the Jovian ring.

Finally, we note that the structure of the equations (7.26-7.28) is appropriate
for all first-order inclination resonances; only the constant coefficients in each
equation differ from one resonance to the next (Table 7.2). Second-order (Nth-
order) resonances differ only in that the power of i in each of the dn/dt, di/dt,
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and dQ)/dt equations is (N — 1) larger. The (gs3 : ¥ = 5X — 3\ — 2Q) and
(a3 : U = XA — 3N + 2Q) entries of Table 7.2 are each second-order inclination
resonances; their positions relative to Jupiter are given in Fig. 7.3. Eccentricity
resonances of all orders are identical in form to inclination resonances if all i’s are
replaced by e’s. Because all of these different types of resonances have a similar
structure, we expect the same type of dynamic behavior at each of them.

7.4.2 esonance Trapping

What happens to particles that drift into resonance? The question is most exactly
treated by transforming Eqs. (7.26-7.28) into canonical variables from which a
pendulum-like Hamiltonian can be defined (cf. Peale 1976). Such an analysis
shows that for an isolated resonance there are two possibilities depending on
the direction from which the resonance is approached: resonance trapping and
resonant jumps. A trapping probability, which depends on the relative strengths
of the resonance and the drag force, is associated with the former. Unfortunately,
the Hamiltonian results are awkward to interpret in terms of the orbital elements,
the variables that have geometric meaning. Accordingly, the purpose of this and
the following section is to give simple descriptions and approximate formulae
in terms of orbital elements without resorting to a Hamiltonian analysis. In so
doing, we further emphasize the similarities between SGRs, PGRs, and LRs.

When a particle enters the resonance zone and subsequently is stable against
perturbations that attempt to dislodge it, the particle is said to have been trapped
into resonance. For the particle to remain trapped, its orbital period must stay
nearly commensurate with the forcing period, and hence the average value of
dn/dt must be zero. This can only occur when the first term in Eq. (7.26)
balances the second. Thus very large drag rates preclude trapping or, put another
way, for a given drag rate many resonances, especially higher-order ones, are
too weak to trap passing particles. In Fig. 7.4, we show what happens to a
grain that encounters the 3:2 inclination resonance while slowly drifting toward
synchronous orbit. Resonant perturbations stop the evolution of the mean motion
and simultaneously cause the inclination to grow. The latter growth can be easily
explained with the energy constraint, Eq. (7.24).

Although drag forces need not produce changes in the orbital elements that
satisfy Eq. (7.24) (resonant charge variations are an exception and will be dis-
cussed separately below), the resonant portion of the perturbation must. Since
the cumulative perturbations for n, e, and ¢ are written as sums of resonant and
drag terms (Eqgs. 7.26 and 7.27), we solve for the resonant terms and substitute
these into Eq. (7.24). The energy constraint takes the form

de . di  Ngrag n _ s
e Ll - rap + iTirag- 7.30
‘@ '@ T q, T CCdrag T drag (7.30)
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Figure 7.4 Resonance Trapping. A plot of the orbital evolution numerically
determined by Eqs. (7.26-7.28) for jovian parameters 8 = 1.4 x 10~% and
Ndrag = —10*592. Plotted against N,, the number of jovian rotations, are the
mean motion ratio n/€2,, the inclination i, and the resonant angle W. Initial
conditions are n = 1.62,,¢ = 0.01, and ¥ = 0. The resonant angle ¥ librates
with small amplitude around a value slightly less than 270° as could have been
anticipated by setting equation (7.26) to zero and solving for W. The dashed
line comes from Eq. (7.32) and, for these parameters, is i ~ 0.0037]\7[}/2. It has
been offset slightly to the left for clarity. Integrations of the full equations of
motion, both for SGRs (¢f. Dermott et al. 1988’s Fig. 11) and LRs (Hamilton,
unpublished), show behavior qualitatively similar to this.
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As it stands, Eq. (7.30) is directly applicable to mixed resonances (all of the
second-order resonances with g;, coefficients satisfying j + k=odd), which influ-
ence both e and 7. For nearly circular orbits at inclination resonances, however,
eccentricities are only weakly perturbed and can usually be ignored. Further-
more, drag forces typically do not strongly affect orbital inclinations so the fdrag
term can be dropped. Taking these approximations yields

d’t h'drag n

R 1 — — 31
Ydt ~ 3n Q, (7.31)

which can be directly integrated to

thragt 1 n
3n Q, ’

where i is the initial inclination and ¢ = N,(27/€2,) is time, with NNV, the number
of jovian rotations (cf. Hamilton and Burns 1993b). The prediction of Eq. (7.32)
agrees well with the numerical integration of Eqs. (7.26-7.28) presented in
Fig. 7.4. We note that Eqgs. (7.31) and (7.32) are applicable to inclination
resonances of all orders and that similar expressions apply to nearly planar orbits
at eccentricity resonances. Incidentally, Eq. (7.31) can also be obtained directly
for the 3:2 inclination resonance by setting dn/dt = 0 in Eqs. (7.26-7.28) and
solving for i di/dt.

As an interesting aside, consider the case where resonant charge variations
cause evolution through a Lorentz resonance. Because the drag force is entirely
electromagnetic, the full perturbation satisfies Eq. (7.24). If a particle becomes
trapped in a resonance, then dn/dt is zero and hence e de/dt +i di/dt = 0. Thus
there can be no secular increase in one element without a corresponding decrease
in another.

Equation (7.30) shows that particles trapped in resonances systematically
change their inclinations and/or eccentricities. Evolution toward synchronous
orbit makes 7 increase while evolution in the opposite sense causes it to decrease
(Eq. 7.32). Because Eq. (7.32) gives nonsensical results for shrinking inclinations
(the quantity inside the square root becomes negative), particles drifting away
from synchronous orbit cannot stay in resonance forever. In fact, by linearizing
Eqgs. (7.26-7.28) around the equilibrium inclination, it can be shown that solu-
tions in which ¢ decreases are unstable and so particles do not become trapped
at all. Conversely, when drifts are toward synchronous orbit, i increases and the
linearization yields stable solutions.

Thus we find that trapping into pure inclination-type and eccentricity-type
SGRs, PGRs, or LRs occurs only when drifts are toward the synchronous location
(Fig. 7.3); in such cases, the energy integral Eq. (7.24) requires that there be an
associated “square root” growth in e or ¢ (Eq. 7.32 and Fig. 7.4).

i= i3+

(7.32)
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7.4.3 Jumps at esonance

When drifts are away from synchronous orbit, or when the drag rate is too high
for resonant trapping to occur, discrete jumps in the inclination (or eccentricity)
happen instead. In this section we discuss the mechanism that leads to resonant
jumps and derive a simple expression to approximate the jump amplitude in the
limiting case of slow drag (c¢f. Hamilton and Burns 1993b).

Figure 7.5 shows the orbital history of a dust grain drifting away from syn-
chronous orbit and through the jovian 3:2 inclination resonance. Far from res-
onance, the angle ¥ is seen to circulate rapidly and the resonance has little
influence on the motion of an orbiting dust particle. As drags bring the particle
closer to resonance, however, ¥ starts librating about a value near 90°; because of
their cos ¥ dependence, however, dn/dt and di/dt are still not strongly perturbed
(Egs. 7.26 and 7.27). Eventually, the equilibrium point about which libration
occurs becomes unstable (one can solve for the point at which this occurs from
Egs. 7.26-7.28). The resonance variable ¥ drifts away from 90°, and resonant
perturbations to dn/dt overwhelm the drag force, quickly pushing orbits across
the resonance zone. At this point U starts circulating rapidly in the opposite
sense, resonant perturbations dwindle in strength, and drag forces dominate or-
bital evolution once again.

It is clear from Fig. 7.5 that both n and 7 experience jumps during pas-
sage through resonance. Since the jumps are caused by resonant forces, their
magnitudes are necessarily related by Eq. (7.24). In particular, for inclination
resonances, eccentricities are unaffected and so

idi=— — 1—— | (7.33)

where dn and di are the jump amplitudes; the former can be approximated simply
from the width of the region over which resonant perturbations are significant,
which we estimate to be roughly the resonance’s libration width. We obtain
the libration width by setting d¥/dt = 0 and using Eqgs. (7.26-7.28) to solve
separately for the largest possible mean motion (7,,,,) and the smallest (7,,,);
the libration width is then simply |dn| & Nae — Nmin. For grains drifting away
from synchronous orbit through a first-order inclination resonance, we find the
mean motion jump,

2np n n
dn ~ — 1——] 11— — 7.34
n Z ‘ Qp Qp Y ( )
which, combined with Eq. (7.33), yields the inclination jump,
203 n 3
di ~ —|1— — 7.35
B TEI ) (7.35)

P
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Figure 7.5 Jumps at resonance. A plot of the orbital evolution deter-
mined by Eqgs. (7.26-7.28) with parameters appropriate for a 1-micron grain:
B =1.4%10"%n04ay = 10*5Q12,. Initial conditions are n = 1.4€2,,7 = 0.01, and
U = 0. Notice that the jumps in mean motion (semimajor axis) and inclination
occur simultaneously near n ~ 32,/2 as required by Eq. (7.33). The resonant
argument W librates around a value near 90° until passage through the resonance
occurs, after which it circulates. Integrations of the full equations of motion, both
for SGRs (c¢f. Dermott et al. 1988’s Fig. 5) and LRs (Hamilton, unpublished),
show behavior qualitatively similar to this.
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As they stand, these expressions are ambiguous since it is unclear what value
1 has. For nearly circular orbits that drift into strong first-order resonances,
however, di ~ iy, where i; is the inclination immediately after the jump. We
approximate the inclination during resonant passage with i ~ i;/2 ~ di/2, which
allows us to express each jump amplitude purely as a function of the resonance’s
location and strength:

1/3
gi~2 2o (7.36)
3 Q,
dn ~ —2n(36%)3 1 Qi . (7.37)

P
As usual, the above discussion applies equally well to all first-order eccentricity
resonances. Applying Egs. (7.37) and (7.36) to our jovian example and taking
the appropriate parameters from Fig. 7.5’s caption, we estimate dn = 0.03(2,, and
di = 0.08, values lower than, but in reasonable agreement with, the numerically
determined jumps observed in Fig. 7.5. We have also verified the functional
dependence of di on f and 1 — n/Q, in additional numerical experiments. The
numerically-determined final inclination in Fig. 7.5 is &~ 5.5° which corresponds
to particles rising ~ 10,000 km above the jovian equatorial plane, a value in
agreement with the ring’s observed half-thickness of 8, 000 — 10,000 km measured
by Showalter et al. (1987). Thus the vertical thickness of the jovian halo is
consistent with micron-sized grains drifting through the 3:2 Lorentz first-order
inclination resonance.

Here, and in the preceding section, we have demonstrated that when drag
forces bring particles to mean-motion resonances, either trapping or resonant
jumps can occur. Because the results of a particular encounter depend so strongly
on the direction of drag-induced orbital evolution, however, certain resonance-
drag combinations manifest only a single type of behavior. For instance, tidal
forces typically drive inner satellites toward outer ones and so the most common
resonant phenomena for SGRs is trapping (cf. Goldreich 1965). Conversely, at
Lorentz resonances, plasma and atmospheric drags cause orbits to evolve away
from the synchronous location which leads to resonant jumps. In Table 7.3, we
summarize the typical outcome of couplings between each of the resonances and
drag forces discussed above. In all cases, the dynamical outcome of an interaction
depends on the direction of drag-induced orbital evolution at a given resonant
location, not on the structure of the particular resonance. This serves to re-
emphasize the fact that resonances arising from very different perturbations are
dynamically similar.



179

7.5 Su ary

In this chapter, we present the first disturbing-function-style expansion of the
Lorentz force (Table 7.2). Our expansion, which is to second order in eccen-
tricities and inclinations, provides simple equations valid for first-order e and ¢
resonances as well as for second-order €2, i2, and ei resonances. To lowest-order,
our equations for Lorentz resonances have the same form as those derived for
gravitational resonances which accounts nicely for the similar dynamical behav-
ior that we have observed in numerical integrations.

We trace many of the similarities between different types of resonances to basic
orbital symmetries that constrain the functional form of all quantities — and hence
all perturbations — expressed in terms of orbital elements. In particular, these
orbital symmetries account for several of the patterns long noticed in expansions
of the satellite disturbing function. Additional regularities are due to the fact that
the three perturbations considered in this chapter — SGRs, PGRs, and LRs — are
all constrained by a nearly identical integral of the motion. This integral exists
for an arbitrary orbital perturbation provided that a rotating frame can be found
in which the perturbation, or at least the resonant part thereof, is independent
of time.

Our results imply that the orbital dynamics displayed at mean-motion reso-
nances are fundamental. The first-order structure of a given resonance is deter-
mined primarily by orbital symmetries and by the integral of the motion. The
character of the perturbing force is important only in determining absolute reso-
nance strengths.



180

Table 7.3 Results of resonance-drag interactions

Resonance Drag Force Typical Dynamics
SGR Tidal Trapping

SGR Plasma & Atmos. & Poynt.-Rob. Trapping & Jumps
PGRj{ Tidal & Plasma & Atmospheric ~ Jumps

PGR Poynting-Robertson Trapping & Jumps
LR Tidal (Incompatible)

LR Plasma & Atmospheric Jumps

LR Poynting-Robertson Trapping & Jumps
All Resonant Charge Variations 777

T Here we have assumed a static gravity field for PGRs which is a good approxi-
mation for the terrestrial planets. Since gravitational modes of the giant planets
can rotate rapidly (cf. Marley 1991), resonant locations are significantly altered
and, hence, both types of dynamical behavior can occur.



In the preceding chapters, we have developed analytical and numerical tools that
are useful for treating the orbital motions of dust particles circling asteroids,
comets, and planets that themselves move on orbits around the Sun. We have
applied our methods to several particular objects, demonstrating the importance
of non-gravitational forces for hypothetical centimeter-sized satellites of an aster-
oid, for particles that make up Saturn’s wedge-shaped E ring, and for those that
orbit within the main jovian ring. These examples, however, are just a few of the
solar system’s many dusty features and we hope to apply the intuition gained
from the problems considered within these chapters to these additional faint ring
structures. In this final chapter, we briefly tour the various planetary systems,
discussing the dusty environments of each in turn and highlighting problems in
which dust plays an important role. Because planets differ in their sizes, oblate-
nesses, satellite retinues, magnetic environments, and distances from the Sun,
particular dynamical effects vary greatly in importance. Indeed, we maintain
that it is the variations in the interplay of dynamical forces that cause the great
diversity found in faint ring structures throughout the solar system.

8.1 e Inner Solar Syste

The circumplanetary environments of Mercury and Venus are likely to be among
the most pristine in the solar system since each planet is devoid of satellites (Burns
1973) and, hence, of major sources capable of supporting populations of circum-
planetary dust. Although impacts with the planetary surface can theoretically
loft material into bound orbits, such impacts are necessarily large, and relatively
rare. Furthermore, the process itself is very inefficient since bound material typ-
ically reimpacts the surface swiftly (see Chapters 2-4 and Burns and Hamilton
1991). Even this meager production mechanism is unavailable at Venus, whose
dense atmosphere prevents most — if not all — impact ejecta from escaping into
space.

181



182

Several decades ago, the terrestrial environment, with its single large and
distant Moon, was almost as pure. Scaling the results of Chapter 4 to lunar
ejecta, we find that particles with radii < 1 um are flung from the Earth-Moon
system by radiation pressure, while objects with radii up to ~ 10 um are rapidly
forced onto highly-eccentric orbits which penetrate Earth’s atmosphere (cf. Peale
1966, Allan and Cook 1967). More massive ejecta is swept up by the Moon in low
velocity collisions that occur with characteristic timescales of thousands of years.
Since large-impact events are necessary to raise significant amounts of debris off
the lunar surface and such impacts are rare, the inferred ring of lunar debris is
very sparsely populated.

Probably the dominant sources of debris near Earth today, however, are the
myriad artificial satellites circling our world and the fuel-spraying booster rockets
that put them there. The most crowded regions are in low-Earth orbit, where
most manned missions have flown, and geosynchronous orbit, which is becoming
increasingly crowded with communication satellites (cf. Kessler and Cour-Palais
1978, Kessler 1985, and Hechler 1985). These orbiting objects act as sources for
small particles as paint chips flake off, and additional material is more forcefully
removed by high velocity impacts of orbital debris and interplanetary micromete-
oroids. Debris in the ~ 1 —10 um range is highly perturbed by radiation pressure
and electromagnetic effects; much of this debris is forced to enter Earth’s at-
mosphere within a few years (Horanyi et al. 1988). This dynamical effect has
interesting ramifications for the current population of orbital debris in the near
Earth environment, some of which was sampled by the Long Duration Exposure
Facility, a satellite that was recovered in early 1990 after spending nearly six
years in low-Earth orbit (c¢f. McDonnell et al. 1992).

Most distant of the terrestrial planets, Mars is attended by two small moons,
Phobos and Deimos, that orbit at several planetary radii. Such moonlets are
ideal sources for circumplanetary dust since velocities needed for debris to escape
their surfaces are slight (Soter 1971). Dubinin et al. (1990) reported evidence
for a putative ring of debris around Mars, and several papers have subsequently
addressed the issue theoretically (Horanyi et al. 1990, 1991, Juhdsz et al. 1993).
These efforts explored the dynamics displayed by orbiting grains, and predicted
the size distribution and number density of particles in the martian dust halo.
We can improve our understanding of the martian environment by adding several
important effects neglected by previous works.

First, the earlier papers ignore the precession induced by Mars’ oblateness
which is particularly important for grains launched from Phobos. There, the
apsidal precession rate (2.78 rad/yr.) is similar to Mars’ orbital motion (3.34
rad/yr.) resulting in a close cancellation of the motion of pericenter relative
to the Sun. Just as in Saturn’s E ring (¢f. Chapter 6), this near cancellation
allows radiation pressure to substantially increase orbital eccentricities. Without
the oblateness term, Juhdsz et al. (1993) calculate that grains with radii in the
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1 — 7 pm range launched from Phobos will crash into Mars (¢f. Chapter 6); with
oblateness, this range increases to 1 — 40 um. Additionally, the expressions used
for the rates at which moonlets sweep up particles are inaccurate for grains highly
perturbed by radiation pressure; this makes the calculated dust densities further
suspect. Finally, the possibility that a significant population of dust is raised by
collisions of ring particles with the tiny martian moons should be considered (cf.
Chapter 6). Since orbits are highly-perturbed, collisions at speeds of 1-3 km/s
are common; and because escape velocities from the moonlets are of order 5 m/s,
such impacts can liberate significant amounts of debris.

8.2 e uter Solar Syste

Because their extensive retinues of tiny satellites serve as excellent sources, the
giant planets rule significantly dustier environments than their terrestrial counter-
parts. Satellites vary tremendously in their dust production rates; large objects,
such as the Galilean satellites of Jupiter, Saturn’s Titan, and Neptune’s Triton,
are poor sources because they retain nearly all impact ejecta. Rather than dis-
cussing each satellite source individually, however, in this section we will instead
focus on the expected dynamical behavior in specific regions that are common
to all planets, noting possible applications when appropriate. In this manner,
we hope to highlight points of particular interest without becoming unnecessarily
tedious.

Approaching any planet from the edge of its Hill sphere, the first regime
encountered is one in which micron- and larger-sized dust particles are domi-
nated by three forces: planetary gravity, solar gravity, and radiation pressure.
The results of Chapters 2-4 are thus directly applicable to grains launched from
distant satellites, many of which orbit at significant fractions of a Hill Sphere:
Jupiter’s retrograde cluster at ~ 0.4rp, its prograde group and Saturn’s Phoebe
at ~ 0.2rg, and Saturn’s lapetus and Neptune’s Nereid at ~ 0.05ry. Grains
launched from these objects achieve large eccentricities, but can also attain very
high inclinations relative to the planet’s equatorial plane since they are not in-
fluenced by forces that cause precession about this plane. This class of orbits
seems capable of explaining some of the micron-sized debris detected by the Voy-
ager spacecraft’s Planetary Radio Astronomy (Warwick et al. 1982, 1986, 1989)
and Plasma Wave Science (Gurnett et al. 1983, 1987, 1991) instruments in the
saturnian, uranian, and neptunian systems. Although most impacts occurred
near the respective ring plane crossings, some circumplanetary material was also
found at large inclinations at Saturn (Gurnett et al. 1983) and Neptune (D. Tsin-
tikidis 1992, private communication), and perhaps at Uranus. It seems likely that
this material originates from exterior satellites and is distributed along highly-
eccentric and inclined orbits.

Such a distribution of very eccentric orbits can also transfer material radially;
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in the saturnian system, the observable consequences of this are striking. Dust
blasted off Saturn’s retrograde Phoebe, for instance, is transported inward to
lapetus, preferentially hitting that satellite’s leading hemisphere (Soter 1974,
Mignard et al. 1994). If we accept an external origin for Iapetus’ color, it is not
surprising that the satellite’s leading side is very dark, much like Phoebe. The
trailing side of lapetus, however, is icy in composition and exceedingly bright.
Thus it seems likely that the gradual contamination of icy Iapetus by tiny grains
originating from Phoebe has, over billions of years, produced the greatest albedo
variation present on any satellite in the solar system.

At distances of typically ~ 5 — 30 planetary radii, the effects of planetary
oblateness and the electromagnetic force become important. Radiation pressure
is still reasonably influential, orbital velocities are larger, and material recol-
lides with source satellites on rapid timescales. Lorentz resonances are relatively
unimportant since only very weak, high-order ones are present this far from the
planet. These dynamical forces are similar to those dominant in Saturn’s E ring
(c¢f. Chapter 6), and hence the possibility for E-ring-like objects elsewhere in
the solar system should be investigated. At Jupiter, the equivalent region lies
amid the Galilean satellites which are too large to be effective sources of dust.
Moreover, recollision timescales are rapid and relative velocities are too small
to support a self-sustaining ring. For similar reasons, the classical satellites of
Uranus, and Neptune’s giant moon Triton also prove to be inadequate sources.
Ironically, the closest analog to the saturnian E ring may encircle a terrestrial
planet — Mars. Maximum orbital eccentricities in the two rings are comparable,
and as noted above, the martian ring may be self-generated through energetic
grain-moon collisions. Additional types of self-sustaining rings may form prefer-
entially in regimes closer to the central planet.

Approaching to within a few radii of the giant planets, oblateness and elec-
tromagnetic forces strengthen, the importance of radiation pressure wanes, and
orbital velocities increase as do recollision frequencies. This is the domain domi-
nated by Lorentz resonances, the most powerful bullies of the planetary neighbor-
hood. Charged dust particles drifting into areas controlled by these strong reso-
nances, are forcefully ejected from the resonance zone with a strong kick in their
orbital eccentricity or inclination. The most dramatic example of a Lorentz reso-
nance is, of course, the transition between the main jovian ring and its vertically
extended inner halo, but Lorentz resonances — both the eccentricity and inclina-
tion varieties — are almost certainly important elsewhere in the jovian system, and
at Uranus and Neptune (Fig. 8.1). Several opaque rings in the latter two systems
are located near strong Lorentz resonances; resonantly perturbed eccentricities
may augment relative velocities, collisional yields, and perhaps even cause the
dusty component of some rings to be self-sustaining like Saturn’s E ring. Great
swaths of dust enshroud Uranus and Neptune, and several dusty ring features are
found near Lorentz resonances too. Uranus’ A ring nominally lies a few thousand
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Figure 8.1 Radial locations of rings and Lorentz resonances at Uranus and Nep-
tune. Rings are drawn as solid arcs and are labeled near the figure’s edges while
Lorentz resonances are signified by dashed arcs that are labeled in the center of
the figure. The stippled regions in Neptune’s system represent dust sheets; dust
is also found in complex structures throughout the region occupied by the main
uranian rings. Solid circles represent satellites: Cordelia at Uranus and (heading
inward) Galatea, Thalassa, Despoina, and Naiad at Neptune. Several ring struc-
tures are located suggestively near Lorentz resonances: the Adams and Leverrier
rings, and the inner and outer boundaries of both the 1989N4R and the uranian
ring system. Many of these associations may be coincidental, especially since
rings and resonances each inhabit the region of space near the central planet.
Nevertheless, Lorentz resonances almost certainly influence the orbital motions
of the dusty components at both planets.
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kilometers from the strong 2:1 Lorentz resonance, and the ring’s five-fold den-
sity fluctuation advertises that interesting dynamics are involved (Fig. 8.1). The
neptunian ring arcs are in a 42:43 gravitational resonance with the small satellite
Galitea, but they are also near the 3:2 Lorentz resonance. The latter may cause
dust to leak out of the arc sites into the much fainter Adams ring that completely
encircles the planet. A dust sheet begins near the 5:3 Lorentz resonance, only to
terminate just short of the 2:1 resonance in an opaque condensation of material
that comprises the Leverrier ring (Fig. 8.1).

Back at Jupiter, a more complete analysis of the main ring and the halo
is warranted, especially considering the forthcoming observations of the Galileo
orbiter. The structure of the vertically extended halo contains information on
the properties of the particles passing through the 3:2 resonance — primarily their
size distribution and electric potential, Since jump amplitudes depend on particle
sizes, halo grains should be non-uniformly layered, with larger ones tending to be
found closer to the equatorial plane. Given the optically determined particle size
distribution of Showalter et al. (1987) and the details of the resonance interaction
discussed in Chapter 7, the vertical structure of the halo should be calculable.
Such a derivation would provide an independent dynamical check of Showalter
(1987)’s optically-derived size distribution, and could also constrain the grain
potential.

Finally, particles somewhat smaller than those considered in this thesis are
strongly influenced by electromagnetic effects and can exhibit non-intuitive be-
havior. Neither the perturbations schemes employed in Chapters 5-7, nor the
adiabatic theory of charged particles are appropriate for the motions of these
submicron grains since the forces of gravity and electromagnetism are compara-
ble in strength. At Jupiter, these forces combine to cause rapid radial ejection
of positively charged dust grains. Those interior to synchronous orbit are sent to
fiery deaths in the jovian atmosphere, while those exterior are accelerated to high
velocities that take them rapidly away from Jupiter into interplanetary, and then
interstellar, space. Such high-velocity dust streams have recently been detected
by the Ulysses spacecraft, and models assuming a gossamer ring (an outward
extension of the main jovian ring) source (Hamilton and Burns 1993c) and an
Io source (Horanyi et al. 1993a,b) have recently been developed. The motions of
neutral atoms and molecules in circumplanetary orbits are dominated by gravity
and the resonant scattering of sunlight (Smyth and Marconi 1993); consequently
the dynamics displayed by such atoms is akin to the dynamics that we have inves-
tigated here. Additional surprises certainly await investigations of the dynamics
of atoms and submicron-sized dust.

In these past few pages, we have taken a rapid tour of the solar system,
seeking out particular areas where dust is common and where the methods of this
thesis might successfully be applied. The results of any such exercise depends
strongly on perspectives which are continually changing as progress is made;
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thus an area emphasized here may later prove less interesting than another that
was overlooked. A thorough study of one area leads to new insights into entirely
different problems, and it is the anticipation of these insights that fuels continued
investigations of dynamical phenomena.



Computer algebra systems are increasingly useful tools in scientific research as
advances in both hardware and software design continue to vastly improve the
performance of these symbolic packages. A striking example of this trend is
Murray and Harper (1993)’s recent expansion of the planetary disturbing function
to eighth-order in eccentricities and inclinations; the information contained in
each of this volume’s 436 pages is generated entirely symbolically. With the aid
of computer algebra, the authors improved on the presentation of previous works
(Peirce 1849, Le Verrier 1855, Brouwer and Clemence 1961), ferreted out insidious
errors made in these earlier expansions, and extended their analysis beyond the
limits of human endurance.

In a less dramatic way, the symbolic program used to generate the entries
listed in Table 7.2 saved this author weeks of calculations and tedious error check-
ing. It is the purpose of this appendix to encourage and assist those interested
in applying symbolic methods to similar problems by presenting and explaining
the relatively simple MACSYMA code used in Chapter 7.

As entire books have been written about symbolic algebra (Harper et al.
1991 give a wonderful comparison of the main computer algebra packages; for an
introduction to MACSYMA, consult Rand 1984), our purpose is not to teach the
language, but rather to demonstrate the power of symbolic methods and to clarify
the process employed in our orbital expansions. Nevertheless, a certain amount
of explanation is necessary. In the sample MACSYMA session that follows, lines
beginning with C constitute MACSYMA input (the program) while those starting
with D are MACSYMA output. The input lines can be typed interactively, or
submitted all at once in a batch mode. Within a single line, “:=" is used to define
a function (e.g., line C2) while a single colon sets up a rule for later substitution
(e.g., line C22 — here line D22 merely echoes the input).

The particular example under consideration expands the gy aligned dipolar
portion of the magnetic field, but the extension to the other field components
is straightforward. The program’s flow roughly follows the explanation given in
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section 7.2.2. Here, we first obtain equations that define the magnetic field, which
we then substitute into expressions for the force components. These, in turn, are
plugged into expressions for the time rates of change of the orbital elements.
Finally, the rates of change are Taylor-expanded out to the desired order. We
now give specific line-by-line comments, following which we present the program
itself.

Lines C2 and C3 define the Legendre polynomials and lines C4 and C5 select
the symmetric dipole term (TH= 6). The program then performs additional
substitution steps and prints the appropriate Legendre polynomial, “P,” and
its derivative with respect to 6, “dP,” in lines D9 and D13. Lines 14-21 are
unimportant here, since these pertain to the associated Legendre polynomials
necessary for asymmetric magnetic fields (MLON= X', PHI= ¢). Lines D22, D23,
D32, and D33 simply translate the spherical coordinates into orbital elements
[cf. Egs. (5.9), (5.10), and (5.11), BW= ] and lines D24-D26 give the r, 0,
and ¢ components of an aligned dipolar magnetic field [c¢f. Eqgs. (5.37), (5.38),
and (5.39), RP= R,|. Various expressions for elliptic orbital motion appear in
lines D27-D33; [cf. Egs. (5.12), (5.35), (5.36), and (5.40), WP= Q,]. In lines
D34 through D36, the magnetic field components are written in terms of orbital
elements.

Lines C37—-C42 define the acceleration components in the orbital coordinate
system [see Eqgs. (5.32), (5.33), and (5.34)], and lines C43-C52 define the rates of
change of the orbital elements (Danby 1988, p. 327). The next three lines replace
the variables M, u, and v with the orbital elements that appear in Table 7.2; here
PLON= X\ and CW= w. The equation of center, expanded out to fourth-order in
eccentricity is used for v; for higher-order expansions this equation would have to
be modified. Line C56 determines the order of the expansion; typical runs take
from several minutes to several hours on a Sun SPARC 1 workstation, depending
on this quantity and on the particular field component being expanded. Each
time derivative is then Taylor-expanded to order “EPOW=2" in both of the
small quantities E and I. We avoid E?I? terms while retaining E? and 12 terms
by employing a trick: we substitute E¥*IOE in for I and do the Taylor expansion
to second-order in E; since the IOE’s flag the places where I's belong, the reverse
substitution (I replacing E¥*IOE) is employed after the expansion to correct the
expression. Finally, we call trigreduce, which uses identities to eliminate powers
of trigonometric functions in favor of trigonometric functions of sums of angles.
Lines D63, D70, D77, D84, D99, and D130 give the final output for dn/dt, de/dt,
di/dt, dQ)/dt, dw/dt, and de/dt, respectively. These lines contain all of the data
found in the g, o subtable of Table 7.2.
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