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The orbital perturbations that a
t on obje
ts 
ir
ling a planet vary in strengthdepending on the sizes of both the parti
le and its orbit. We examine three
ases that are diÆ
ult to treat with the standard tools of 
elestial me
hani
s: i)large distant satellites, ii) small obje
ts on distant orbits, and iii) tiny parti
lesorbiting near a planet.The dominant perturbation in the �rst 
ase is the tidal 
omponent of solargravity. Taking as our example an asteroid on a 
ir
ular orbit about the Sun, wenumeri
ally determine the size and three-dimensional shape of the surfa
e beyondwhi
h 
ir
um-asteroidal debris is unlikely to be present. We present s
aling lawsthat allow this result to be applied to obje
ts with di�erent masses, semimajoraxes, and e

entri
ities. Small obje
ts on distant orbits are highly perturbed byradiation pressure, whi
h rapidly 
auses many of them to es
ape or to impa
t theasteroidal surfa
e. We determine that, for the asteroid Gaspra (radius � 10 km),debris smaller than 
entimeter-sized will disappear from distant orbits in just afew years. We generalize our results for appli
ation to arbitrary asteroids.Mi
ron-sized grains, the prin
ipal 
onstituents of the many di�use rings 
ir-
ling within a few planetary radii of the giant planets, are dominantly perturbedby ele
tromagneti
 and radiation for
es. We derive orbit-averaged equations thatgovern the evolution of su
h grains subje
t to these perturbations; our expres-sions are valid at all non-resonant lo
ations. Resonant lo
ations are treated byexpanding the ele
tromagneti
 perturbation analogously to the derivation of thedisturbing fun
tion of 
elestial me
hani
s. We 
ompare our ele
tromagneti
 ex-pansion to previous gravitational expansions; similarities lead to the dis
overy ofsimple orbital symmetries that 
onstrain the possible 
onsequen
es of any per-turbation.We use the above expressions to explore the dynami
s of the mi
ron-sizedgrains that make up Saturn's E ring and �nd that a 
oupling between planetaryoblateness, ele
tromagnetism, and radiation pressure generates highly-e

entri
orbits. The distribution of material along an ensemble of these ellipti
al orbitsagrees well with the E ring's observed radial and verti
al stru
ture. As a 
onse-quen
e of their highly-ellipti
al orbits, dust grains strike embedded satellites and



nearby rings at large velo
ities. We argue that these energeti
 
ollisions sustainthe E ring at its 
urrent opti
al depth against the erosive e�e
ts of grain-grain
ollisions.
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Chapter 1
Introdu
tion
1.1 Modern Celestial Me
hani
sThe 
y
li
 phases of the moon, the timing and duration of lunar and solar e
lipses,and the motions of the Sun, Moon, and planets are problems that have 
aptivatedthe imaginations of all who have witnessed su
h 
elestial events; a

ordinglypredi
tions thereof have 
hallenged the minds of many of the world's greatestthinkers. From the late sixteenth 
entury, when Coperni
us' helio
entri
 view ofthe solar system �rst vied with Ptolemy's idea of a geo
entri
 universe, throughthe ensuing years during whi
h Kepler, Galileo, Newton and Einstein made theirpivotal 
ontributions, and up to the present era of spa
e
raft re
onnaissan
e,our understanding of 
elestial me
hani
s has steadily improved. Over the pastfew de
ades, 
elestial me
hani
s has undergone a transformation from a largelytheoreti
al pursuit into a pra
ti
al dis
ipline. This o

urred as planetary andsatellite 
y-bys, ea
h requiring a

urate des
riptions of spa
e
raft traje
toriesand planetary positions, be
ame 
ommonpla
e. The spe
ta
ular images relayedba
k to Earth from the Voyager spa
e
raft, for example, would not have beenpossible without the detailed traje
tory information ne
essary for planet andsatellite rendezvouses, and pre
ision 
amera-pointing. An additional reason tounderstand orbital motion is to minimize the danger of debilitating 
ollisions withtiny, unseen, and rapidly-moving bits of spa
e debris. The thrust of this thesis{ orbital dynami
s and the stru
ture of faint dusty rings { is strongly motivatedby su
h 
on
erns for spa
e
raft safety.
1.2 Why Study Dust?Dust is ubiquitous throughout the solar system, being found in orbit aroundEarth (M
Donnell et al. 1992), Mars (Dubinin et al. 1990), and the giant plan-ets (Burns et al. 1984, Smith et al. 1989, Esposito et al. 1991), jettisoned from
omets to form elegant tails (Gr�un and Jessberger 1990) and from the jovian

1
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system in apparently periodi
 streams (Gr�un et al. 1993), and strewn throughoutthe inner solar system's zodia
al 
loud, where it 
on
entrates in bands near themost prominent asteroid families (Dermott et al. 1985) and perhaps at 
ertainresonant lo
ations (Ja
kson and Zook 1989). Be
ause small parti
les are espe-
ially sensitive to non-gravitational for
es, they 
an be driven to unusual pla
es.For example, mi
ron-sized parti
les make up the wedge-shaped di�use E ring ofSaturn (Showalter et al. 1991), while the 
omplex and beautifully intri
ate spokesof Saturn's B ring are hypothesized to arise from tiny grains ele
trostati
ally lev-itated o� larger ring members (Goertz and Mor�ll 1983, Gr�un et al. 1983, Taggeret al. 1991). Resonant ele
tromagneti
 for
es a
ting on small 
harged dust par-ti
les may provide the explanation for the abrupt transition between Jupiter'sfaint ring and its verti
ally-extended ethereal halo (Burns et al. 1985). DuringVoyager's Neptune 
y-by, the spa
e
raft's plasma wave and planetary radio as-tronomy instruments dis
overed a tenuous 
loud of dust in yet another unlikelylo
ale, over Neptune's northern polar region (Gurnett et al. 1991, Warwi
k et al.1989).The fa
ts that small parti
les are both diÆ
ult to dete
t, but also presentin vast quantities throughout the solar system, greatly enhan
e the potentialfor a 
atastrophi
 spa
e
raft-proje
tile en
ounter. The most dangerous lo
ationsare in the vi
inity of larger parent obje
ts: amid the ring systems and satelliteretinues of the giant planets, inside 
ometary halos and tails and, in
reasingly,within a few planetary radii of Earth as man-made orbital debris { paint 
hips,fuel droplets, pie
es of hardware, old spa
e
raft, and the 
ollisional produ
tsthereof { a

umulates (Kessler 1985). While the last lo
ale is undoubtably themost threatening to Earth-orbiting satellites, Shuttle missions, and the proposedSpa
e Station Freedom, the �rst mena
es the orbiters Galileo and Cassini, whi
hwill spend long periods of time in the environs of Jupiter and Saturn, respe
tively.Be
ause of large relative velo
ities, and hen
e energeti
 
ollisions, obje
ts only a
entimeter a
ross 
an annihilate an entire spa
e
raft while millimeter-sized parti-
les are 
apable of in
i
ting 
onsiderable damage, perhaps destroying individualinstruments. The latter fa
t was dramati
ally unders
ored by the 
rippling ofthe European Giotto mission during its traverse of 
omet Halley's halo in 1986.Somewhat smaller parti
les, in the submi
ron to tenths of millimeters range, 
ans
our opti
al surfa
es, interfere with ele
tri
al systems, and, over time, degradevarious sensitive 
omponents of a spa
e
raft. Be
ause of the great expense ofplanetary missions, the prevalen
e of orbital debris, and the distin
t threat thatsu
h debris represents, 
onsiderable planning has been done to insure safe orbitaltours for both Galileo and Cassini (see Se
tion 1.4).Despite the fa
t that orbiting debris often stars as the bla
k-robed villainof 
elestial me
hani
s, ever plotting to inter
ept unwary spa
e-faring vessels, itsother role { that of an instru
tor { should not be forgotten for mu
h 
an be learnedfrom studying the distribution and orbital motion of these tiny motes. Paint 
hips
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and antiquated satellites tell us little of re
ent terrestrial history that we do notalready know, but samples of 
ometary and asteroidal parti
les 
olle
ted in spa
e(e.g., from the Long Duration Exposure Fa
ility, M
Donnell et al. 1992) and onthe wings of spe
ially out�tted airplanes (Brownlee 1985) hint at the origin of\shooting stars" o

asionally seen 
ashing a
ross the night sky. Rapidly-movingdust parti
les re
ently dete
ted near Jupiter by the Ulysses spa
e
raft seem tobe interstellar in origin, bearing 
lues to events that o

urred far beyond thelimits of our roboti
 exploration (Gr�un et al. 1993). The organization of dustinto faint ethereal rings highlights various dynami
al pro
esses whi
h 
an beused to better understand more 
omplex rings dominated by large 
losely-pa
kedmembers, and additional dust within these dense rings provides further tra
ersof ongoing pro
esses. Thus the smallest parti
les 
arry information pertinent tosome of the most profound questions of 
elestial me
hani
s - How do rings form?What pro
esses govern their stru
ture? And, ultimately, how did the ring-likeprimordial planetary nebula originate, 
ondense, and evolve into the solar systemwe know today?To address these questions, an intimate understanding of the relevant for
esa
ting on dust grains and the 
onsequent orbital evolution that they indu
e isessential. A

ordingly, a major goal of this thesis is to develop a set of tools
apable of des
ribing orbital motions and then to apply these tools in simplemodels of existing phenomena. The knowledge gleaned from su
h an exer
ise isof both pra
ti
al and philosophi
al use: pra
ti
al sin
e, by understanding themotion of these parti
les, we 
an minimize the threat to our spa
e
raft, andphilosophi
al in that on
e we better understand when
e these tiny messagersoriginate, perhaps we will be able to better de
ipher the information that they
arry.
1.3 Classi
al Celestial Me
hani
sMu
h of the substan
e of this thesis involves the appli
ation of perturbationtheories to determine the evolution of orbiting parti
les imposed by parti
ularperturbing a

elerations. These theories require a

urate des
riptions of the a
-
elerations as well as nearly-
orre
t baseline solutions from whi
h to 
omputedeviations; su
h s
hemes were �rst employed during the eighteenth 
entury de-velopment of the disturbing fun
tion of 
elestial me
hani
s. Sin
e many of ourresults rely heavily on orbital perturbation theories and, in the 
ase of Chapter7, 
losely parallel the derivation of the disturbing fun
tion, we brie
y summarizerelevant results and pla
e them in histori
al 
ontext.The �rst a

urate des
ription of planetary orbital motions was found empir-i
ally nearly four 
enturies ago by Johannes Kepler, who made extensive use ofTy
ho Brahe's meti
ulous naked-eye observations of Mars. Be
ause of the highellipti
ity of Mars' path around the Sun, Kepler was for
ed to dis
ard the notion
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of perfe
tly 
ir
ular orbits and instead formulated the following three laws ofplanetary motion:1. Planets move along ellipti
al orbits with the Sun at one fo
us.2. The radius ve
tor to the planet tra
es out equal areas in equal time.3. The square of a planet's orbital period is proportional to the 
ube of thesemimajor axis of its ellipti
al orbit about the Sun.Later, Sir Isaa
 Newton showed that these rules followed naturally from the mu-tual gravitational attra
tions of two spheri
al bodies. But although ellipti
almotion is an exa
t solution to the two-body problem, it only approximates thea
tual motion of a planet around the Sun or that of a satellite about a planet.Deviations from purely ellipti
al motion o

ur be
ause of the gravitational attra
-tions of additional obje
ts, the non-spheri
al shapes of these bodies, and even theminus
ule 
orre
tions of Einstein's general theory of relativity.In the usual 
ase, perturbations are dominated by the dire
t gravitationalattra
tion of the primaries and the orbits are nearly ellipti
al; thus Keplerianmotion 
an be used as a baseline solution and the a
tual path followed 
an bedetermined from perturbative theories. Mu
h of the early work in 
elestial me-
hani
s fo
used on e�orts to des
ribe and approximate the gravitational e�e
tsof one planet on another. High-order expansions of the disturbing fun
tion interms of the ellipti
al elements of planetary orbits were �rst worked out by Peir
e(1849) and Le Verrier (1855) (
f. Brouwer and Clemen
e 1961): today's versionuses 
omputer algebra to derive extremely a

urate and 
omputationally exten-sive expansions (Murray and Harper 1993). In another problem of interest, theperturbations arising from the gravitational attra
tion of an arbitrarily-shapedplanet 
an also be modeled by a disturbing fun
tion, and this allows the motionsof 
lose planetary satellites to be predi
ted very a

urately (Kaula 1966). Withthese te
hniques, one 
an, in prin
iple, understand the motions of most planets,
omets, asteroids, and natural and arti�
ial satellites found in our solar system.
1.4 Brief Summary of ChaptersThis thesis addresses two types of problems that fall outside the s
ope of theabove-mentioned 
lassi
al tools of 
elestial me
hani
s: i) those where large per-turbing a

elerations make expansions inappropriate, and ii) those involving mo-tions of mi
ron-sized dust parti
les that are strongly in
uen
ed by non-gravitationala

elerations.The �rst subje
t is dis
ussed in Chapters 2{4, whi
h investigate the regionwhere material may stably orbit an asteroid. This study was motivated by 
on-
erns for the safe passage of Galileo, whi
h made histori
 �rst 
y-bys of the as-teroids 951 Gaspra (O
tober 29, 1991) and 243 Ida (August 28, 1993); the resultsof our study were used by the Galileo team to de
ide how 
lose, and from whatdire
tion, to approa
h these primordial obje
ts. For distant 
ir
um-asteroidal
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orbits, the solar tidal for
e's pull on a parti
le is nearly as strong as the asteroid'sgravitational grip; hen
e the Sun and the asteroid vie for domination of driftingdebris. Numeri
al investigations are needed to follow the orbital evolution ofsu
h parti
les although some analyti
al 
onstraints do exist. In Chapter 2, we
onsider an asteroid on a 
ir
ular orbit around the Sun, in Chapter 3 we extendthis analysis to arbitrarily ellipti
al helio
entri
 orbits, and in Chapter 4 we addthe e�e
ts of solar radiation pressure whi
h, due to the asteroid's weak gravita-tional �eld, is a relatively strong perturbation for potentially destru
tive parti
lesin the millimeter and 
entimeter size range. Be
ause obje
ts smaller than theseare rapidly driven from 
ir
um-asteroidal orbits by radiation for
es, the near-asteroidal environment is predi
ted to be relatively free of orbiting debris andhen
e benign to passing spa
e
raft. Galileo's uns
athed 
y-by of both Gaspraand Ida, and the negative results of its onboard dust dete
tor substantiate these
laims (Gr�un et al. 1992, E. Gr�un 1993, private 
ommuni
ation). S
aling rela-tions are derived that allow the results of Chapters 2{4 to be applied to asteroidsof di�erent masses, e

entri
ities, and distan
es from the Sun.Chapters 5{7 fo
us on the dynami
s of mi
ron-sized parti
les in 
ir
umplane-tary orbits, an interesting and 
hallenging problem be
ause of the unusual arrayof physi
al pro
esses that in
uen
e the motions of these tiny motes. The strongestperturbations are radiation for
es, whi
h arise from the transfer of momentumdue to the absorption and re-emission of solar photons, and ele
tromagneti
 for
eswhi
h o

ur in the spinning magnetospheres of the giant planets. Be
ause of manyun
ertainties, parti
ularly in the nature of the plasma surrounding the giant plan-ets, resear
hers have usually sought to isolate and model a single perturbation inorder to understand its in
uen
e on an orbit. For example, Burns et al. (1979)Mignard (1982, 1984), and Mignard and H�enon (1984) analyti
ally des
ribe thein
uen
e of radiation pressure and other e�e
ts asso
iated with the transfer ofmomentum from solar photons and the solar wind. The equilibrium ele
tri
alpotential of an isolated dust grain immersed in a plasma has been studied byWhipple (1981), Meyer-Vernet (1982), Whipple et al. (1985) and others. Variousresonan
es asso
iated with ele
tromagneti
 for
es have been identi�ed, amongthem \Lorentz resonan
es" with spatially-periodi
 magneti
 �elds (Burns et al.1985, S
ha�er and Burns 1987), \shadow resonan
es" (Horanyi and Burns 1991),and \resonant 
harge variations" (Burns and S
ha�er 1989, Northrop et al. 1989).The dynami
s of grains moving through the 
onve
ted solar wind �eld about aplanet have been addressed by Horanyi et al. (1990, 1991). Despite the impor-tant role that small parti
les may play in various features of the solar system, a
omprehensive treatment of the orbital histories of 
ir
umplanetary dust is notyet available (
f. S
ha�er 1989).A �rst attempt to 
omprehensively and simultaneously treat the largest per-turbative a

elerations a
ting on 
ir
umplanetary mi
ron-sized dust, ele
tromag-netism and radiation pressure, is presented in Chapter 5. Although these non-
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gravitational a

elerations are large, the planet's attra
tion usually dominatesand perturbative s
hemes are appropriate. We employ the method of orbit-averaging whi
h has the advantage of suppressing all but the se
ular terms (thosethat are independent of orbital longitudes); in most 
ases, the se
ular terms
onstitute the perturbation's dominant long-term e�e
ts. The resulting set ofequations determine the orbital evolution of small grains throughout the innermagnetosphere ex
epting at 
ertain resonant lo
ations.In Chapter 6, we use our knowledge of the orbital motions of mi
ron-sized dustto understand the pe
uliar three-dimensional stru
ture of the saturnian E ring.We �nd that E-ring grains orbit Saturn in unusually ellipti
 orbits whi
h imply apreviously unsuspe
ted method for the generation and sustenan
e of faint rings.We argue that 
ollisions of E-ring parti
les with the satellites immersed in thering are suÆ
iently energeti
 to generate new ring material and that this pro
esssustains the ring. Besides being 
onsistent with the main properties of the E ring{ the radial lo
ation of its peak brightness, the numeri
al value of that brightness,the ring's radial extent and its verti
al stru
ture { we �nd that our model agreeswith a number of independent observations { the 
oloration and surfa
e propertiesof the embedded satellites, the presen
e of large amounts of OH in the innermagnetosphere, and the high dust 
ontent of neighboring rings. Our resultsmay be useful in planning for, and 
an be tested by, both the 1995-6 edge-onappearan
e of Saturn's rings and the Cassini mission to Saturn, whi
h will makemultiple passes through the E ring.Motivated by the strong eviden
e for ele
tromagneti
 resonan
es 
ausing thetransition between the main jovian ring and its inner halo, we return, in Chapter7, to systemati
ally expand the ele
tromagneti
 perturbation at resonan
e lo
a-tions in a manner similar to that employed in the derivation of the disturbingfun
tion of 
elestial me
hani
s. Besides providing a methodology for treating themotions of dust everywhere in the inner magnetosphere, we investigate similaritiesand di�eren
es in the properties displayed by ele
tromagneti
 and gravitationalresonan
es. We separate these properties into three groups: i) those shared byall orbital perturbations, ii) those that are 
ommon just to mean-motion reso-nan
es, and iii) those that are unique to individual resonan
es. Properties ingroup i) are shown to follow from simple physi
al symmetries whi
h apply notonly to the perturbations 
onsidered here, but to all quantities that are expressedin terms of orbital elements, while those in group ii) arise from shared integralsof the motion. As is often the 
ase in resear
h, study of a new phenomenon (hereLorentz resonan
es) gives unexpe
ted insights into a well-resear
hed related area(gravitational resonan
es).Finally, in Chapter 8 we 
on
lude by dis
ussing dire
tions for further study.A parti
ularly promising line of resear
h that we are 
urrently pursuing is are-examination of the dynami
s in the jovian ring system. Many of the ideas dis-
ussed in Chapters 5{7 seem to be simultaneously at work in these di�use rings,
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and the up
oming impa
t of 
omet Shoemaker-Levy 9 into Jupiter in July 1994makes our study espe
ially timely. The 
ometary impa
t may 
ause the mainand gossamer rings to brighten, perhaps yielding 
lues to pro
esses relevant totheir formation. The more distant distributions of dust in the uranian and neptu-nian magnetospheres are also intriguing and 
an be studied with the methods ofChapters 5{7. As ea
h of these new areas are investigated, the need for improvedtheories will undoubtably arise, thereby driving the understanding of the orbitalmotions of 
ir
umplanetary dust yet another step forward.



Chapter 2
Orbital Stability Zones aboutAsteroids with Zero E

entri
ity1
2.1 Introdu
tionWhile two questions { \How mu
h material is likely to be in orbit around anasteroid?" and \Exa
tly where will that material be?" { are interesting toplanetary s
ientists and 
elestial me
hani
ians, they are 
riti
ally important tothose spa
e
raft mission planners who must de
ide how 
losely to approa
h su
hobje
ts. It is well known that, in the absen
e of perturbations, orbiting parti
les
an move on Keplerian paths at all distan
es from an isolated asteroid. In reality,however, gravitational perturbations from the Sun and, to a lesser extent, theplanets will limit the zone in whi
h parti
les 
an stably orbit.Sin
e the problem of N gravitationally attra
ting bodies is well known to beanalyti
ally unsolvable forN > 2, numeri
al methods must be employed to obtainquantitative estimates of the motion of a test parti
le in the vi
inity of an asteroidthat itself 
ir
les the Sun. We negle
t planetary perturbations sin
e these are atleast a thousand times weaker than solar e�e
ts (
f. Chauvineau and Mignard1990b) and treat a three-body problem 
onsisting of the Sun, an asteroid, andan orbiting parti
le. The three-body problem has been numeri
ally integratedmany times previously (
onsult Szebehely 1967 for histori
al referen
es while formore re
ent work see Zhang and Innanen 1988, Murison 1989b, Chauvineau andMignard 1990a,b) but the spa
e of possible parameters is so large that the three-body problem's 
omplete solution is, fundamentally, not understood. Fortunatelythe problem that we wish to solve is more restri
ted, although still analyti
allyintra
table.We treat the 
ase of hierar
hi
al masses sin
e the asteroid's mass is insigni�-
ant relative to the solar mass, yet is very large in 
omparison to parti
les likely1This 
hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1991), Orbital stabilityzones about asteroids I
arus 92, 118{131 [
opyright 1991 by A
ademi
 Press, In
.℄.
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Table 2.1 Parameters of Amphitrite and GaspraObje
t A E RA � � rH(AU) ( km) (g/
m3) (RA)Amphitrite 2.55 0.00 100 5� 10�12 2.38 452Gaspra 2.20 0.17 10 5� 10�15 2.38 390

to be orbiting it. Hierar
hi
al masses provide a limiting 
ase of both Hill's prob-lem and the restri
ted three-body problem (H�enon and Petit 1986). We furthernarrow the spa
e of parameters by giving the asteroid a 
ir
ular orbit aroundthe Sun, by 
hoosing to study only those orbits that are weakly bound to theasteroid, and by starting test parti
les out on initially 
ir
ular orbits. The se
-ond 
hoi
e is made in order to explore the transition region between bound andunbound orbits and hen
e to delineate the zone in whi
h the material 
ould bestably trapped.In the numeri
al examples to follow, we model the asteroid 29 Amphitrite,a previously planned target of Galileo (see also Zhang and Innanen 1988), ashaving a 
ir
ular orbit of radius A = 2:55AU, and an asteroid/Sun mass ratio� = 5:0�10�12. In reality, Amphitrite's orbit is moderately e

entri
 (E = 0:07).For an assumed asteroid radius of RA = 100 km, the 
hosen � 
orresponds toa reasonable density of � = 2.38 g/
m3. These parameters, as well as onesappropriate for Gaspra, Galileo's a
tual target, are listed in Table 2.1. The �nal
olumn in the table lists the radius of the Hill sphere whi
h we de�ne at the endof the next se
tion. Our investigation 
on�rms and extends the study of Zhangand Innanen (1988) by using heuristi
 models to understand the nature of theobserved orbits, by 
onsidering motion out of the orbital plane, by illustrating theshape of the volume �lled by parti
les on stable orbits, by showing how results
an be s
aled to other asteroids, and by pla
ing the problem in the 
ontext ofmodern ideas on 
haos (
f. Chauvineau and Mignard 1990a,b; Murison 1989b).
2.2 Equation of MotionWe use two non-inertial 
oordinate systems (Fig. 2.1), ea
h with its origin onthe asteroid whi
h itself orbits the Sun: non-rotating 
oordinates that keep theiraxes �xed with respe
t to the distant stars, and rotating 
oordinates that maintaintheir axes �xed relative to the Sun. In ea
h, the asteroid's orbit lies in the xyplane. Be
ause the orbits we 
onsider are only weakly bound to the asteroid, solarperturbation for
es are relatively large and, a

ordingly, most paths are moreeasily understood when viewed in a referen
e frame rotating with the asteroid'smean motion 
ẑ around the Sun ((xyz)rot in Fig. 2.1). The mean motion is
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Figure 2.1 Two non-inertial 
oordinate systems are shown as they follow theasteroid on its 
ir
ular orbit of radius A about the Sun. The xyz system stays�xed in its angular orientation while the (xyz)rot system rotates uniformly so thatthe Sun always is at xrot = �A. In the non-rotating system the Sun is initiallyat x = �A and it moves with angular speed 
 around the asteroid in the planez = 0. In most integrations the parti
le starts along the Sun-asteroid line at(x = d; y = 0; z = 0) with a velo
ity in the non-rotating frame that would put iton a 
ir
ular orbit if the Sun were not present.
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a ve
tor that points normal to the orbit (ẑ is the unit ve
tor in the positive zdire
tion) and has magnitude


 = sGM�A3 ; (2.1)where G is the gravitational 
onstant, A is the Sun-asteroid distan
e, and M� isthe mass of the Sun. The a

eleration of a parti
le orbiting the asteroid is thenapproximately given by Hill's equation (Szebehely 1967):d2rdt2 = �GMAr2 r̂+ GM�A3 (3xrot � z)� 2
� vrot; (2.2)where r is the ve
tor pointing from the asteroid to the parti
le, r̂ is the 
orre-sponding unit ve
tor, vrot is the parti
le's velo
ity measured in the rotating frame,and MA is the mass of the asteroid. The terms on the right side of Eq. (2.2) aredue to the asteroid's dire
t gravity, the 
ombination of solar tidal and 
entripetale�e
ts, and the Coriolis e�e
t, respe
tively. Hen
eforth, the full se
ond term willbe referred to as the \tidal" term. In the derivation of Eq. (2.2), we have ne-gle
ted quantities that are se
ond order in r=A. These terms, if in
luded, wouldbreak the symmetry of the tidal term around the (yz)rot plane. We have observed
onsequen
es of this broken symmetry in a few numeri
ally integrated es
ape or-bits, but do not judge it to be signi�
ant in estimating the trapped region or indes
ribing most orbits.In order for the reader to gain insight into the traje
tories to be shown later,we now dis
uss some of the properties of the a

elerations in Eq. (2.2). In thesedes
riptions we will 
all an orbit prograde if the parti
le's angular velo
ity aroundthe asteroid is in the same sense as the asteroid's angular velo
ity around theSun; for a retrograde orbit, the parti
le's angular velo
ity is in the opposite sense.Figure 2.2 is a sket
h showing how the dire
tion and magnitude of the variousa

elerations 
hange along a hypotheti
al orbit that is 
oplanar and oval-shapedin the rotating frame. Noti
e that the a

elerations all a
t in di�erent dire
tions:the dire
t term always points toward the asteroid, the tidal term invariably alignsparallel or antiparallel to the solar dire
tion, and the Coriolis term is alwaysperpendi
ular to the orbit. Furthermore, the dire
t a

eleration is inward andthus a
ts to bind parti
les to the asteroid, while the tidal a

eleration, whi
h hasa 
omponent that points outward, a
ts to expel them from the system. Be
ausethe Coriolis a

eleration depends on the sign of the velo
ity, it points outwardfor prograde orbits but inward for retrograde ones; thus the Coriolis a

elerationtends to stabilize the latter but disrupt the former.Finally note that along the orbit the tidal a

eleration in
reases with growingseparation distan
e, while all other a

elerations de
rease. Comparing the dire
-tions of the a

elerations in the prograde and retrograde 
ases, we 
an alreadysee that retrograde orbits should be stable out to greater distan
es than prograde
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Figure 2.2 Sket
hes of the a

elerations (magnitudes and dire
tions) that areexperien
ed by a parti
le at various pla
es along a 
oplanar oval orbit whose longaxis is aligned with the solar dire
tion; the asteroid is at the origin. The dire
ta

eleration is 
aused by the asteroid's gravitational attra
tion of the parti
le.The \tidal" a

eleration is due to the lo
al imbalan
e between the Sun's attra
tionand that needed to 
ause the asteroid's 
ir
ular path (see Eq. 2.2). The sign ofthe Coriolis a

eleration depends on whether the parti
le moves in the same(prograde) or opposite (retrograde) angular sense as the asteroid in its orbitabout the Sun.
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ones sin
e in the former situation the Coriolis a

eleration is inward while in thelatter it is outward. Numeri
al experiments support this statement as does na-ture's laboratory: the outermost moons of Jupiter and Saturn are on retrogradeorbits.In order to quantify the radial dependen
es of the a

elerations, they areplotted in Fig. 2.3 as fun
tions of distan
e from the asteroid for the spe
ial 
aseof a 
ir
ular 
oplanar orbit. Re
all that we've used Amphitrite as our modelasteroid (Table 2.1). To adjust the axes of this and all of the following plots toyour favorite asteroid, simply multiply distan
es measured in RA by the fa
tor(�=2:38 g 
m�3)1=3(A=2:55AU), where � is the new asteroid's density and A isits semimajor axis. The justi�
ation for this s
aling will be presented in Se
tion2.3.3; we also note here that di�eren
es in asteroid orbital e

entri
ities 
annotbe a

ommodated although we will have more to say about this in Chapter 3.All of the 
urves plotted in Fig. 2.3 are normalized by the lo
al dire
t a

elera-tion of the asteroid's gravity. Sin
e the strength of the tidal a

eleration dependson azimuthal position (see Fig. 2.2), it varies along even a 
ir
ular orbit and thushere we plot its maximum value. The total a

elerations for prograde [
urve P℄and retrograde [
urve R℄ orbits, as plotted in Fig. 2.3, were obtained by takingthe various terms and simply adding them; even though this addition ignores theve
tor 
hara
ter of these a

elerations, we believe that it is instru
tive.In the limit of small separations (i.e., on the left side of Fig. 2.3), the per-turbation a

elerations [
urves C(P), C(R), and T℄ tend to zero, and thus bothprograde and retrograde orbits approa
h the two-body solutions: 
ir
les and el-lipses about the asteroid. A

ordingly, the 
urves of Fig. 2.3 are most appli
ablein this inner region, sin
e only there do 
ir
ular orbits a
tually exist. Nevertheless,the 
urves provide useful guides for estimating magnitudes in more 
ompli
atedsituations. Of 
ourse, 
are must be exer
ised in their appli
ation, espe
ially whenestimating the magnitude of the Coriolis a

eleration whi
h, due to its velo
itydependen
e, will vary substantially with the a
tual path taken.Both the restri
ted three-body problem and Hill's problem admit an integralof the motion that 
an be derived by integrating, over time, the s
alar produ
t ofEq. (2.2) with the velo
ity vrot. Chauvineau and Mignard's (1990a) expressionfor this Ja
obi integral 
an be generalized to three dimensions as

v2rot � 
2(3x2 � z2)� 2GMAr = �C; (2.3)where C is the Ja
obi 
onstant and r = (x2 + y2 + z2)1=2. The three terms onthe right of Eq. (2.3) are the kineti
, \tidal," and dire
t terms respe
tively. ThisJa
obi 
onstant is 
onserved in a rotating frame 
entered on the asteroid and isrelated to the more usually de�ned Ja
obi 
onstant (see Szebehely 1967) whi
h is
onserved in a rotating frame 
entered on the Sun. Subsequently we will give thequantity \�C=2" the name \energy" to distinguish it from the helio
entri
 energy
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Figure 2.3 The various a

elerations a
ting on a parti
le as it moves along a
ir
ular 
oplanar orbit about the asteroid are plotted versus separation from theasteroid; all a

elerations are normalized to G, the lo
al gravitational attra
tion ofthe asteroid, whi
h de
reases as the inverse square of the separation. The variousperturbations, shown dotted, are all zero for orbits atop the asteroid (i.e., atzero separation); T is the maximum \tidal" term, C(P) is the prograde Coriolisa

eleration and C(R) is the retrograde Coriolis a

eleration. P and R are thetotal perturbations that a
t on prograde and retrograde parti
les, respe
tively,ignoring the ve
tor nature of the a
tual for
es.
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(energy of a body orbiting the Sun) and the two-body energy (energy of a bodyorbiting the asteroid if the Sun were not present). Sin
e a parti
le's velo
ity mustalways remain real, and sin
e C is �xed uniquely by initial 
onditions (positionand speed), Eq. (2.3) restri
ts the motion of any parti
le to lie within thoseregions of spa
e where the following inequality is satis�ed:


2(3x2 � z2) + 2GMAr � C: (2.4)The lines along whi
h the velo
ity is zero (i.e., those pla
es where the left-handside of Eq. 2.4 equals C) are 
alled zero-velo
ity or Hill 
urves. An es
ape 
riterionthat 
an been invoked is that whenever, for given initial 
onditions, a parti
le lieswithin a zero-velo
ity surfa
e that is 
losed about the asteroid, the parti
le 
annotes
ape that region. Of 
ourse the 
onverse does not hold: there is no guaranteethat, just be
ause the Hill 
urve is open, the parti
le will ne
essarily es
ape in a�nite time. Diagrams of zero-velo
ity 
urves 
an be found in many basi
 
elestialme
hani
s texts (e.g., Danby 1988); parti
ularly ni
e three-dimensional viewsare given in Lundberg et al. (1985). The distan
e to the positions along thexrot-axis at whi
h the zero-velo
ity surfa
e �rst opens 
an be 
omputed to berH = (�=3)1=3A for Hill's problem (Danby 1988). These points are two of thethree 
o-linear Lagrange points (the other is on the far side of the Sun) and theirdistan
e from the asteroid de�nes the radius of the Hill sphere (see Table 2.1).The 
o-linear Lagrange points are unstable equilibrium points; a parti
le pla
edwith zero velo
ity in one of these positions will remain there forever, but parti
lesstarting arbitrarily 
lose will depart the neighborhood.
2.3 General Remarks on the Solution2.3.1 IntegrationsOur numeri
al integrations 
all upon an eÆ
ient integrator that utilizes boththe Bulirs
h-Stoer and Runge-Kutta methods (Press et al. 1987). The routinetakes advantage of the speed of the Bulirs
h-Stoer te
hnique, falling ba
k onthe Runge-Kutta s
heme during 
lose approa
hes between the two bodies (
f.Murison 1989a).In our integrations the parti
le was generally started along the Sun-asteroidline, on the far side of the minor planet (Fig. 2.1). It was usually given a velo
itythat would pla
e it on a 
ir
ular orbit around the asteroid if perturbations fromthe Sun were absent. In many simulations the plane of the parti
le's orbit wasgiven an initial in
lination i with respe
t to the plane of the asteroid's orbit. Thein
lination is positive to the helio
entri
 north, and rea
hes 180o for a purelyretrograde orbit. With these initial 
onditions, the ones used most frequently,the only degrees of freedom are the initial separation distan
e and the initial
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in
lination. We also explored other initial 
onditions for the parti
le (i.e., aspe
trum of starting longitudes, di�erent laun
h speeds, and arbitrarily-dire
tedinitial velo
ity ve
tors) to assess the generality of our results.
2.3.2 Nature of OrbitsSin
e the relative strengths of the various perturbations 
hange with separa-tion (Fig. 2.3), orbits may have quite di�erent 
hara
teristi
s depending on theirdistan
es from the asteroid (Chauvineau and Mignard 1990a). Within a fewasteroidal radii, orbits are simple Keplerian ellipses sin
e the asteroid's gravitydominates all perturbations (see Fig. 2.3 and the earlier dis
ussion). Farther out,perturbations be
ome large enough to indu
e orbital planes and peri
enters topre
ess noti
eably, although the orbits retain their basi
 Keplerian nature. Asthe distan
e is in
reased still further we 
ome to a region in whi
h quasiperiodi
stable orbits are intermingled with 
haoti
 paths. An orbit is quasiperiodi
 if it
ontains only a �nite number of in
ommensurate frequen
ies. In many of our ex-periments, the period 
orresponding to the parti
le's dominant frequen
y is seento be 
ommensurate with the asteroid's orbital period; su
h a 
ommensurate\lo
king" between the for
ing frequen
y and the natural response of a system isa 
ommon feature of nonlinear systems (Gu
kenheimer and Holmes 1983).This quasiperiodi
/
haoti
 zone gradually gives way to the realm of es
apeorbits whi
h we de�ne as those traje
tories that depart the vi
inity of the aster-oid, but the division between these regions is not 
learly de�ned; in fa
t, in the
ir
ular restri
ted three-body problem the boundary between these regions is self-similar in a fra
tal-like manner (Murison 1989b). In an area where es
ape orbitspredominate, isolated \islands" of stable quasiperiodi
 orbits 
an o

ur (Chau-vineau and Mignard 1990a). And, likewise, in regions where mostly quasiperiodi
orbits exist, a few es
ape orbits 
an be found. Although the regions are not en-tirely dis
onne
ted, we observe that beyond a 
ertain \stability boundary," thenumber of stable orbits drops very sharply. Our goal in this 
hapter is to under-stand the shape of this boundary that separates orbits bound to the asteroid fromthose that es
ape its in
uen
e. Sin
e 
haoti
 orbits are prevalent in the transi-tion zone, our results for the size of the stability zone are probably 
onservative:longer integrations would have shown additional es
apes (Wisdom 1982). But, toa �rst approximation, we 
an determine the lo
us of points forming the stabilityboundary by looking at the outermost regions where the majority of orbits arestable. Chaos ne
essarily permeates these outer regions, sin
e a parti
le's fate
ertainly depends sensitively on initial 
onditions (Murison 1989b).Sin
e the results of Chauvineau and Mignard (1990a), whi
h follow on thepioneering study of H�enon (1970), are so relevant to our �ndings, they will besummarized here. These authors use the surfa
e-of-se
tion te
hnique to studythe stability of motions in Hill's problem. They �nd that, for prograde orbits
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that have a Ja
obi 
onstant mu
h greater than the 
riti
al value at whi
h theHill 
urves no longer en
lose the asteroid, the motions are regular: traje
toriesare nearly periodi
, and stable. Employing non-dimensional units, in whi
h thegravitational 
onstant, the asteroid's mean motion, and its Hill radius are set tounity (G = 1;
 = 1, and rH = 1; these 
hoi
es set MA = 3), the 
riti
al Ja
obi
onstant o

urs at C = 9. At values somewhat above 9 (from 9.2 to 9.3604 tobe pre
ise), the topologi
al stru
ture of the mapping is su
h that new periodi
orbits are introdu
ed as C is lowered; more and more of these periodi
 islandsappear as C = 9:2 is approa
hed and the regularity of the mapping is lost.At 9.2 and below, 
haoti
 traje
tories appear in parts of the mapping. Theseergodi
 regions tend to �ll up more and more of the phase spa
e until, with Cnear 9, little of the surfa
e of se
tion is populated with periodi
 islands; insteadvirtually all is a sea of 
haos. Note that up to this point, sin
e all the zero-velo
ity 
urves 
orresponding to C > 9 en
ir
le the asteroid, the motions arebounded with the parti
les remaining about the asteroid, albeit moving along
haoti
 paths. However, on
e the Ja
obi 
onstant falls below 9, suddenly theergodi
 region be
omes 
onne
ted with external parts of the phase spa
e. Thatis, however, not to say that all parti
les will ne
essarily es
ape in a �nite time,merely that it is energeti
ally possible for parti
les with C < 9 to �nd their waythrough the ergodi
 region and es
ape. Some regular dire
t orbits do exist for8:88 < C < 9:00, although they 
over little of the available phase spa
e. Forretrograde orbits Chauvineau and Mignard (1990a) �nd quite di�erent results.With C >> 9 the mapping is usually regular and, as in the prograde 
ase, 
haosappears when C is a bit larger than 9. The striking di�eren
e is that manyregular retrograde orbits are seen to persist for values of C well below the 
riti
alvalue, unlike the prograde situation. For 
ompleteness, we note that there arealso a small number of pathologi
al orbits that os
illate between the dire
t andretrograde states.To help the reader 
onne
t the results of Chauvineau and Mignard (1990a)to the traje
tories that we will be plotting later, we now show that a one-to-one 
orresponden
e exists between our usual initial 
onditions and the Ja
obi
onstant. Re
all that we start a parti
le at (d; 0; 0), with a velo
ity that is in
linedat an angle i from the xy plane and whose speed in the non-rotating frame is(GMA=d)1=2. From Eq. (2.3) the Ja
obi 
onstant for this initial 
ondition is:

C = ���GMAd �1=2 
os i� 
d�2 � GMAd sin2 i+ 3d2
2 + 2GMAd : (2.5)
Figure 2.4 is a plot of C versus the starting distan
e d for various in
linationsi; the plotted Ja
obi 
onstant is given in the non-dimensional units used byChauvineau and Mignard (1990a).
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Figure 2.4 The Ja
obi 
onstant, in non-dimensional units (G = 1;
 = 1; rH = 1),is plotted for the family of orbits studied in this 
hapter. These orbits are initially
ir
ular, are started from the positive x-axis, and are in
lined by an angle i withrespe
t to the xy plane. The 
riti
al Ja
obi 
onstant (C = 9) is also plotted. Ifthe Ja
obi 
onstant of a parti
ular orbit lies above the 
riti
al line, that parti
leis bound to the asteroid for all time. If, however, it lies below the 
riti
al line,the parti
le is energeti
ally able to es
ape, although it is not required to do so.
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2.3.3 S
aling to Other AsteroidsEven though most of our simulations 
onsidered a spe
i�
 
ase (� = 5�10�12 andA = 2:55AU), we 
an apply our results to other asteroids with di�erent semi-major axes and mass ratios. Consider a system of N gravitationally intera
tingbodies viewed from an inertial frame. All for
es in the system are gravitational,so the strength of ea
h intera
tion varies as the inverse square of distan
e. Inparti
ular, if all distan
es are multiplied by a fa
tor �, the for
es retain theirdire
tions and are redu
ed by �2. One 
an then res
ale time so that the resultingsystem of di�erential equations is identi
al to the original set: therefore, as longas the initial velo
ities are also appropriately modi�ed, identi
al orbital pathswill result. So, for example, if the asteroid's distan
e from the Sun is doubled,parti
le orbits around the asteroid will have the same shape as in the original
ase if starting distan
es from the asteroid are doubled and velo
ities are redu
edby a fa
tor of 21=2. Thus, the orbits s
ale with the asteroid's semimajor axis A.Employing similar ideas to a 
hange in the asteroid's mass, we �nd that theorbit s
ales with �1=3 for the 
ase of the three-body Hill problem with the asteroid-parti
le distan
e mu
h less than the distan
es to the Sun. This approximationis well satis�ed for the motion of bound satellites of asteroids. For the distantsatellites of the jovian planets, however, higher-order terms in the mass ratio �are important and the s
aling law is less valid. When 
ombined, the distan
eand mass s
aling laws imply the powerful assertion that for ea
h orbit existingaround one asteroid, a 
orresponding orbit, di�ering only in absolute size, existsaround a se
ond asteroid provided that the two asteroids have the same orbitale

entri
ity. The ratio of the sizes of the two orbits is equal to the ratio of theradii of their respe
tive Hill spheres: rH = (�=3)1=3A. If the sizes are measuredin asteroid radii, as in our plots, they s
ale as �1=3A. In parti
ular the orbitalstability zone, whi
h is the union of all stable orbits, s
ales as this ratio. Thesizes of the Hill spheres of Amphitrite and Gaspra are listed in Table 2.1.At any rate, it is 
lear that Hill sphere s
aling di�ers from �2=5A, the size ofthe sphere of in
uen
e, that has been used by some mission planners to estimatethe region within whi
h material 
ould be stably trapped. We re
all that thesphere of in
uen
e is de�ned as that surfa
e along whi
h it is equally valid to
onsider the motion of the parti
le relative to the Sun with the asteroid as aperturber as it is to 
onsider the motion of the parti
le relative to the asteroidwith the Sun as a perturber (Roy 1978). That is to say, the sphere of in
uen
e isthe lo
us of points where the ratios of the perturbing for
es to the dire
t for
es inthe two 
ases are equal. This sphere lies within the Hill sphere for � < 0:004 butthe di�eren
e only be
omes signi�
ant (Chebotarev 1964) when � is very small,as in the 
ase under 
onsideration here. Amphitrite's sphere of in
uen
e has aradius of 115RA.As an example of s
aling, we 
onsider orbits about Galileo's target asteroid951 Gaspra. To apply our Amphitrite plots given below to an asteroid with
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Gaspra's parameters, but zero orbital e

entri
ity, distan
es measured in asteroidradii should simply be multiplied by the ratio of the semimajor axes, namely2.20/2.55=0.86 (Table 2.1).
2.4 Analyti
 Es
ape CriteriaMany estimates of analyti
al es
ape 
riteria for 
ir
ular orbits have been made;most follow either from 
onsidering the Ja
obi 
onstant that will open the zero-velo
ity 
urves or from equating for
es in a rotating frame (see Fig. 2.3). Szebe-hely (1978) has used the former method to predi
t that 
ir
ular orbits will es
apewhen they are beyond rH=3. Markellos and Roy (1981) re�ned Szebehely's treat-ment by in
luding all of the terms in the Ja
obi equation (Eq. 2.5 with i = 0oand i = 180o) to derive 
riti
al distan
es of � 0:49rH for prograde 
ir
ular orbitsand � 0:28rH for retrograde 
ir
ular orbits (see Fig. 2.4). These distan
es arelower limits for es
ape; parti
les starting on 
ir
ular orbits within these distan
esare 
onstrained by 
losed zero-velo
ity surfa
es that en
ir
le the asteroid. Ournumeri
al results for initially 
ir
ular orbits are � 0:49rH for prograde orbits and� rH for retrograde ones (see Se
tion 2.6.1). The agreement of the prograderesults is impressive, while that of the retrograde results is appalling. But thereis a simple explanation: the method outlined above ignores the in
uen
e of theCoriolis a

eleration on the parti
le sin
e the s
alar produ
t of the Coriolis termin Eq. (2.2) with vrot is zero. The e�e
t of this omission is abundantly 
lear in theresults of Markellos and Roy whi
h predi
t that retrograde orbits are less stablethan prograde ones, even though the dire
tions of prograde and retrograde Cori-olis a

elerations imply the 
onverse (see Fig. 2.2). In fa
t, we �nd that progradeorbits slip away as soon as es
ape is energeti
ally possible, pushed outward bythe omitted Coriolis a

eleration, while retrograde orbits linger, held in by thisa

eleration.Equating for
es in a rotating referen
e frame was originally applied by King(1962) who showed that dire
t gravity balan
es the \tidal" for
e along the x-axis at a distan
e rH . Innanen (1979) added the e�e
ts of the Coriolis for
e toobtain limiting radii for prograde and retrograde orbits of 0:69rH and 1:44rH ,respe
tively. This work 
ontains a subtle error whi
h involves the translation ofthe parti
le's velo
ity into the rotating frame; after 
orre
tion of this mistake,we �nd that the limiting radii 
al
ulated via Innanen's method should be 0:80rHand 2:60rH , respe
tively (these distan
es are the points where the normalizedfor
e 
urves P and R attain a value of zero in Fig. 2.3). This method shows thatretrograde orbits are stable out to mu
h greater distan
es than prograde ones,but gives poor agreement with numeri
al results (see the dis
ussion of Fig. 2.3for an explanation of why this method gives poor predi
tions).Various arguments (see, e.g., Keenan and Innanen 1975) have been given forthe reason why retrograde orbits are so mu
h more stable than prograde ones, but
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one that we �nd espe
ially appealing relies on the nature of epi
y
les, the pathsof parti
les on ellipti
al orbits as seen from a 
oordinate system that moves at themean orbital rate; epi
y
li
 motions are retrograde and, for small e

entri
ities,take pla
e along a 2:1 ellipse aligned with the long axis in the dire
tion of theorbital motion. That is to say, if a parti
le were at a great separation from theasteroid su
h that it felt virtually no attra
tion to the asteroid but it had anellipti
al path of the same semimajor axis as the asteroid's, it would be observedin the rotating system to travel along a retrograde path (see Chauvineau andMignard 1990a). In a very real sense the retrograde motion is preferred whereasprograde motion must be for
ed.
2.5 Individual Examples2.5.1 Coplanar Trapped OrbitsOur numeri
al experiments for the Amphitrite 
ase show that all traje
tories thatstart as 
ir
ular prograde orbits within � 224RA (C = 9:0000) are bound, whilemost of those outside this range es
ape from the asteroid. Sin
e we are 
on
ernedwith the outer limit where material 
an still be retained by the asteroid, we showan orbit (Fig. 2.5) that is 
lose to the stability limit, namely one that was initially
ir
ular at 221RA (C = 9:0505). The displayed orbit, is quasiperiodi
 with twodominant frequen
ies: one is the inverse of the synodi
 period and the other isabout eight times slower. The regular appearan
e of this orbit in the rotatingframe is due to the fa
t that the two dominant frequen
ies are 
lose to a ratio ofintegers. Relevant times
ales are the asteroid's orbital period (4.08 Earth years),and the sidereal period of an unperturbed satellite at 221RA (0.80 years). Theunit of time in this and the following plots is taken to be an asteroid year (theperiod of the asteroid's orbit around the Sun).We 
an qualitatively understand the orbital evolution of Fig. 2.5 by 
onsid-ering the a

eleration (Eq. 2.1) along an initially 
ir
ular orbit. At �rst, thepath is elongated into an ellipti
al shape by the a
tion of the tidal term sin
ethe Coriolis term does not 
hange a 
ir
ular orbit (an orbit that is 
ir
ular in thesidereal frame will also be 
ir
ular in the synodi
 frame; the Coriolis a

elerationin this simple 
ase merely a

ounts for the di�eren
e in orbital velo
ity measuredin the two frames). As the orbit elongates and is 
attened further, the Coriolisa

eleration be
omes in
reasingly asymmetri
al (see Fig. 2.2); the strengthenedCoriolis a

eleration near peri
enter enhan
es radial a

elerations there whereasthe 
orresponding a

eleration is diminished near apo
enter (Fig. 2.3). In fa
t,the dire
tion of the Coriolis a

eleration near apo
enter 
an swit
h sign if the e
-
entri
ity is high enough (remember that it is the velo
ity in the rotating framethat appears in Eq. 2.1); although su
h a reversal does not o

ur in any of theplanar orbits displayed in this 
hapter, we have noti
ed it in other integrations.
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Figure 2.5 The path of a parti
le started on a prograde 
oplanar 
ir
ular orbitat 221RA (C = 9:0505) as seen in the rotating 
oordinate system. The asteroid'sposition is given by an x; the parti
le's initial lo
ation by the small triangle withone point showing the dire
tion of the initial velo
ity; and the parti
le's lo
ationat the end of the integration by the solid square. The Sun lies out the negativexrot-axis throughout the integration. The heavy line shows the zero-velo
ity 
urvespe
i�ed by the initial 
onditions (see Eq. 2.4) and the stars show the positionsof the nearby Lagrange points (and a

ordingly the size of the Hill sphere).
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Now the fa
t that the Coriolis a

eleration near apo
enter is less than that ne
es-sary to maintain a 
ir
ular orbit allows lo
al gravity to more e�e
tively 
ompetewith the tidal for
e. This 
ompetition is most apparent in highly-e

entri
 orbitswhere the apo
enter end of the ellipse appears to be 
attened (Fig. 2.5). Theasymmetry of the Coriolis a

eleration a
ts to 
ir
ularize the orbit, and eventuallyit dominates the elongating e�e
t of the tidal for
e. In the example under dis
us-sion, this o

urs after the third synodi
 period. The elongation slows, stops, andreverses itself. The orbit then be
omes more 
ir
ular until the tidal for
e againdominates the Coriolis for
e and the pro
ess repeats. The period of this 
y
le iseight times the synodi
 period as was mentioned above.The entire orbital path of the prograde satellite shown in Fig. 2.5 lies wellwithin the zero-velo
ity 
urve, de�ned by Eq. (2.4), that 
orresponds to theinitial 
onditions. This o

urs be
ause a signi�
ant fra
tion of the \energy"in the Ja
obi integral remains in kineti
 \energy". It is apparent from the zero-velo
ity 
urve that the spe
i�ed starting 
onditions have too little initial \energy"to allow es
ape.The dynami
al history of an orbiting parti
le 
an be des
ribed in terms of itsinitial position and velo
ity or, equally well, in terms of its four os
ulating orbitalelements for a two-dimensional problem (Danby 1988). The os
ulating orbitalelements for a bound orbit are de�ned to be those that des
ribe the ellipse thatthe parti
le would follow if all perturbations were turned o�. These elements,whi
h we de�ne in the non-rotating frame, 
hange with time as perturbations
ause the parti
le to deviate from true ellipti
al motion. Of the orbital elements,the orbital semimajor axis a is the most signi�
ant when addressing es
ape sin
ethe size of the orbit, 2a, formally be
omes in�nite and then attains negativevalues as the parti
le goes through the es
ape pro
ess. The time histories of theos
ulating orbital elements that des
ribe the path about the asteroid shown inFig. 2.5 are displayed in Fig. 2.6. Here the periodi
 nature of the solution is
learly visible. We note that the semimajor axis vs. time 
urve has lo
al extremanear the points where the orbit 
rosses the xrot and yrot axes. This feature arisesbe
ause orbital energy is dire
tly related to the semimajor axis (Burns 1976) andbe
ause the work done by the tidal for
e 
hanges sign in ea
h quadrant of the(xy)rot plane. In general, the work done by the tidal for
e will 
hange sign fourtimes in a single orbit, although this need not o

ur at the points where the orbit
rosses the axes.In the next example (Fig. 2.7), the parti
le starts along a retrograde 
ir
ularorbit twi
e as large as the �rst example; it begins at xrot = 445RA; yrot = 0 (C =1:5518), very 
lose to the transition between bound and unbound retrogradeorbits. The unperturbed sidereal orbital period is about 2.3 Earth years or nearly4/7 of an asteroid year. As in the prograde 
ase, quasiperiodi
 retrograde orbitsare also 
ommon; this one has two major frequen
ies that are not quite a ratio ofintegers as 
an be seen in Fig. 2.8 whi
h presents the histories of the os
ulating
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Figure 2.6 The time history of the orbit shown in Fig. 2.5. Plotted are theparti
le's os
ulating orbital semimajor axis a, orbital e

entri
ity e, and orbitalradius r as fun
tions of time in asteroid years. The orbit is most perturbed whenit is farthest from the asteroid. It is bound and almost periodi
.
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Figure 2.7 The path of a parti
le started on a retrograde 
oplanar 
ir
ular orbitat 445RA (C = 1:5518) as observed in the rotating 
oordinate system. SeeFig. 2.5's 
aption for a des
ription of the symbols. The orbit is bound and has avery regular appearan
e.



26
orbital elements a and e. For this retrograde orbit, the zero-velo
ity 
urves donot 
onstrain the motion (Chauvineau and Mignard 1990a) sin
e, as a result ofthe small C (due to the large apparent velo
ity of a retrograde orbit as measuredin the rotating frame), the 
urves do not en
lose the asteroid. Nevertheless, theparti
le is obviously bound; indeed we note that it is strongly in
uen
ed by theasteroid sin
e its orbital shape is not the 2:1 ellipse that would be 
hara
teristi
of helio
entri
 epi
y
li
 motion.To analyze the parti
le's motion, 
onsider the perturbing e�e
ts of the tidaland Coriolis terms on a 
ir
ular orbit (see Fig. 2.9 whi
h shows the �rst threeloops about the asteroid of Fig. 2.7). Initially the tidal term dominates, sin
e theCoriolis a

eleration does not 
hange the shape of a 
ir
ular orbit. This pushesthe parti
le in the xrot dire
tion (ar
 AB) whi
h displa
es the orbit as a whole tothe right (positive xrot). When the parti
le moves to the left side of the asteroid,it is mu
h 
loser to the asteroid due to this displa
ement (ar
 BC). Thus at pointC the tidal term, being proportional to xrot (see Fig. 2.2) , is smaller than it wasat A. Hen
e the total 
ontribution of the tidal for
e along BC is smaller thanthe integrated e�e
t along AB, resulting in a net displa
ement of the orbit to theright. In addition, the Coriolis a

eleration, whi
h is stronger over ar
 BC thanover ar
 AB due to a larger velo
ity, dominates the weakening tidal for
e. Theparti
le then swings around the asteroid (ar
 CD), mostly under the in
uen
e ofthe asteroid's gravity, and out to large r where Monsieur Coriolis starts to tugit to the left (ar
 DB). The tidal for
e swit
hes sign again, and pulls the parti
leoutward along ar
 BE to the point E, where it has roughly the negative of itsinitial velo
ity and position: the 
y
le repeats.
2.5.2 Coplanar Es
ape OrbitsFigures 2.10 and 2.11 show planar es
ape orbits that have initial 
onditions thatare 
lose to the bound orbits of Figs. 2.5 and 2.7; thus all of these orbits lienear the stability boundary. In those 
ases where es
ape is marginal (su
h asall those dis
ussed here), the dire
tion of es
ape is always near the Sun-asteroidline be
ause the outwardly dire
ted tidal term is maximum there (Fig. 2.2). Thisresult, whi
h remains valid even for in
lined orbits, 
an also be understood readilyfrom the zero-velo
ity surfa
e whi
h opens �rst along the Sun-asteroid line (seeFig. 2.10). Of 
ourse, with large enough initial \energy" (or, equivalently, smallenough C for the zero-velo
ity 
urves to be wide open), obje
ts 
an es
ape in anydire
tion, but in all of the 
ases that 
on
ern us, obje
ts depart from the asteroidwith little extra energy be
ause the parti
le is initially bound (i.e., its energyin the two-body system 
omposed of the asteroid and the parti
le is initiallynegative) and the perturbation for
es 
an modify this energy only slowly. In fa
t,the Coriolis a

eleration, being perpendi
ular to the orbital velo
ity, 
an do nowork and thus does not alter the orbital energy at all.
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Figure 2.8 The time history of some os
ulating orbital elements for the retrogradeorbit displayed in Fig. 2.7.
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Figure 2.9 The �rst few loops of the orbit shown in Fig. 2.7. The letters onthe path are used in the text to des
ribe various ar
s along whi
h parti
ulara

elerations dominate the motion.



29

Figure 2.10 The traje
tory of a 
oplanar prograde parti
le that es
apes afterstarting on a 
ir
ular orbit at 227.25RA (C=8.9423). The symbols are de�ned inFig. 2.5's 
aption. Note that, in 
ontrast to Fig. 2.5, the initial 
onditions hereare su
h that the zero-velo
ity 
urve is open to helio
entri
 spa
e and the parti-
le, after boun
ing 
haoti
ally around within the zero-velo
ity bottle, eventuallyslips out the ne
k to move along an ellipti
 helio
entri
 orbit having propertiesdes
ribed in the text.
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Figure 2.11 The traje
tory of a 
oplanar retrograde parti
le that es
apes afterstarting on a 
ir
ular orbit at 450RA (C=1.5421). See Fig. 2.5's 
aption for ades
ription of the symbols used. Note that on the last loop the path extends wellbeyond the radius of the Hill sphere and that the parti
le transfers to a progradeorbit before es
aping. In this 
ase, the transfer to a prograde orbit o

urs inboth the rotating and non-rotating frames. The 
hara
ter of the es
ape path isdis
ussed in the text.
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Figure 2.10 shows a 
haoti
 prograde orbit started at 227.25RA (C = 8:9423)that es
apes inward toward the Sun. The fa
t that the zero-velo
ity surfa
ea

urately delimits the a

essible region of spa
e is apparent. Note that sin
e, byde�nition, speeds must be zero on zero-velo
ity surfa
es, parti
les approa
h thesurfa
e perpendi
ular to it so as to form orbital 
usps.Be
ause the asteroid's orbit is 
ir
ular, one 
an very simply 
al
ulate the pa-rameters of the solar orbit that is attained by parti
les es
aping from it. Sin
ethe parti
le departs the asteroid with a very low velo
ity relative to the rotat-ing frame, we 
an ignore this velo
ity as well as later in
uen
es of the asteroid(sin
e it is so small and so distant) when estimating the parti
le's helio
entri
energy whi
h determines dire
tly the orbital semimajor axis of the parti
le in itsnew path around the Sun (Burns 1976). The parti
le's velo
ity in the rotatingframe is lowest near the inner Lagrange point (see Fig. 2.10), so at this point itsangular velo
ity about the Sun 
losely mat
hes that of the asteroid. Making thesimpli�
ation that the parti
le starts from the inner Lagrange point with zerovelo
ity in the rotating frame, one 
an 
al
ulate the spe
i�
 (i.e., per unit mass)helio
entri
 kineti
 energy of the parti
le 
2(A�rH)2=2, and its spe
i�
 potentialenergy, �GM�=(A � rH). Equating the sum of these two energies to the totalspe
i�
 helio
entri
 energy, �GM�=2Ag, we �nd that the semimajor axis of theparti
le's new orbit about the Sun is Ag = (A� 4rH). Sin
e the parti
le's initialvelo
ity in the non-rotating frame is perpendi
ular to the solar dire
tion and theparti
le initially falls toward the Sun, the Lagrange point must be aphelion of thenew solar orbit. Solving the equation for aphelion Ag(1 + Eg) = A � rH yields(to �rst order) an e

entri
ity of Eg = 3rH=A. Sin
e the es
aped parti
le's semi-major axis is smaller than the asteroid's, the parti
le's orbital period is shorter,so its path trails o� to the upper left as viewed in the frame rotating with theasteroid's mean motion (Fig. 2.10). Alternatively the dire
tion of departure 
anbe understood in the rotating frame by 
onsidering the e�e
ts of the Coriolisa

eleration.Figure 2.11 shows a retrograde orbit starting at 450RA (C = 1:5421) that be-
omes prograde just prior to es
ape. Arguments similar to those for the progradeorbit 
an be used to �nd Ag = A + 4rH and Eg = 3rH=A; thus the parti
le'ses
ape path trails o� to the lower right. Again, although it is not as 
lear as inthe prograde 
ase, the point of lowest relative velo
ity o

urs near a Lagrangepoint.

2.5.3 In
lined OrbitsFigures 2.12 and 2.13, whi
h are plotted in non-rotating 
oordinates, show orbitswith initial in
linations of 70o. Fig. 2.12, where the traje
tory is seen as proje
tedonto the xz plane, displays an orbit that starts out roughly 
ir
ular at a distan
eof 230RA (C = 7:2747) but 
hanges to an oval shape that be
omes narrower and
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Figure 2.12 The traje
tory of a parti
le started on a 
ir
ular orbit at 230RAwith an in
lination of 70o as viewed in a proje
tion onto the xz plane of thenon-rotating system (C=7.2747). The symbols are de�ned in Fig. 2.5's 
aption.This parti
le eventually es
apes.
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Figure 2.13 An xz proje
tion of a 50 year integration of a parti
le started ona 
ir
ular orbit at 250RA with an initial in
lination of 70o (C = 6:9306). Thisparti
le, like many others on three-dimensional orbits with in
linations satisfying60o < i < 120o, is seen to rea
h roughly the same z value regardless of x.
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narrower until, on the last loop, the dire
tion of rotation a
tually reverses! Whenviewed in three dimensions, the ellipse is tilted out of the asteroid's orbital planeby approximately 45o and the dire
tion of its major axis is su
h that the latter'sproje
tion onto the orbital plane lies along the initial Sun-asteroid line. Theellipse is not as narrow as it appears in this proje
tion sin
e it also extends in theŷ dire
tion. To lessen 
onfusion in the diagram, we have ele
ted not to show thefurther evolution of the orbit but will des
ribe it. The highly-e

entri
 orbit isseen to broaden slowly until it is approximately 
ir
ular. At this point, the 
y
lebegins to repeat with the 
ir
ular orbit slowly be
oming more e

entri
, but aftera se
ond 
lose approa
h to the asteroid, the parti
le es
apes. In many orbits (e.g.,Fig. 2.13) this 
y
le 
ontinues without an es
ape. Ea
h time the approximately
ir
ular orbit begins to in
rease its e

entri
ity, the major axis of the new ellipse isfound to be tilted at � 45o from the xy plane and to lie along the re-oriented Sun-asteroid line. The axis 
an be tilted either toward or away from the Sun, and 
anlie either primarily above the xy plane or primarily below it due to the symmetryof the tidal term. Fig. 2.13 shows an orbit started x = 250RA (C = 6:9306)that was followed for ten 
ir
uits of the asteroid around the Sun. Noti
e thatthe maximum z values attained by the orbit are approximately independent of x.This 
hara
teristi
, whi
h was observed on many orbits started near the 
riti
aldistan
e with 60o < i < 120o, has an important in
uen
e on the shape of thestability zone as des
ribed below.In the depi
ted 
ase, tidal perturbations alone must be responsible for themotion sin
e the results are plotted in non-rotating 
oordinates, where no Coriolisterm appears. The form of the tidal a

eleration in the non-rotating frame is
2(3xrot � r), whi
h di�ers from the se
ond term of Eq. (2.2) sin
e that termin
luded the 
entrifugal a

eleration of the rotating frame. In the following, welump the radial part of the tidal term in with the asteroid's gravity, and 
onsideronly the e�e
ts of the xrot term. Consider a parti
le that would be on an ellipti
alorbit primarily in the xz plane in the absen
e of perturbations (Fig. 2.14), andignore for the moment the fa
t that the Sun is not always along the x-axis. Wesee that, starting from x = 0, the tidal perturbation pushes the parti
le to largervalues of x than would be experien
ed in a two-body problem. Be
ause of thisadded a

eleration, the parti
le drops along an orbital path that brings it 
loserto the asteroid than its unperturbed 
ounterpart. Throughout the region of 
loseapproa
h, the tidal for
e is negligible so that we 
an approximate the motionthere by the solution to the two-body problem. Hen
e, after one revolution,the parti
le emerges on a more highly-e

entri
 ellipse, and the 
y
le repeats.The out
ome of the narrowing ellipse is either an impa
t with the asteroid ora reversal of the dire
tion of rotation (see Fig. 2.14). If the latter o

urs, thetidal a

eleration operates in the opposite way to broaden the orbit out to a
ir
le where the whole pro
ess begins anew. Be
ause of passage through manyof these very narrow ellipses, the probability for a parti
le on an orbit of this
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Figure 2.14 E�e
t of tidal for
es on an in
lined ellipti
al orbit. Noti
e that thea
tual orbital path for a single revolution around the asteroid is displa
ed to theright from where an unperturbed ellipti
al path would lie. This, of 
ourse, is dueto the tidal a

eleration. The orbit shown is part of that in Fig. 2.12.
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type to impa
t the asteroid is very large. We note that the reverse of su
h animpa
t orbit o�ers a me
hanism by whi
h material, blasted from the surfa
e ofthe asteroid by a 
ollision, 
ould be put into distant orbits.The essen
e of this argument is un
hanged when we take into a

ount thatthe Sun is not always along the x-axis as measured in the non-rotating frame.Therefore, in general, the tidal a

eleration 
ontains both x and y 
omponentsthat vary in time. Be
ause the parti
le's orbital motion remains primarily inthe xz plane, the dire
tion of the tidal a

eleration varies roughly sinusoidallyas this plane moves with the asteroid's angular frequen
y around the Sun. Thusgenerally the x 
omponent of the tidal a

eleration dominates the y 
omponentfor the simple reason that the orbit never samples large y values. The argument
an be generalized for orbits whose motions are primarily in the x0z plane wherex0 is some linear 
ombination of x and y. Orbits with in
linations in the range60o < i < 120o have their motions primarily in some x0z plane, and thus exhibitthis type of dynami
al motion.
2.6 Global Stru
ture2.6.1 Es
ape as a Fun
tion of In
linationTo explore the e�e
ts of orbital in
lination on the stability of parti
les, we stud-ied weakly bound orbits that began at various in
linations but otherwise 
hosethe same initial 
onditions for purposes of 
omparison. We de�ne the 
riti
aldistan
e as the initial displa
ement within whi
h most orbits remain bound, andoutside of whi
h most es
ape. We �nd that the 
riti
al distan
e displays a strongdependen
e on initial in
lination. Naturally, be
ause of the problem's fra
tal-likenature (Murison 1989b), o

asional orbits within the 
riti
al distan
e es
ape,while some others outside this distan
e are bound; in this sense the 
riti
al \dis-tan
e" represents a very 
omplex stru
ture that 
annot be truly represented bya single line. The number of these ex
eptions, however, de
reases rapidly as onemoves away from the transition region.Figure 2.15 shows the results of almost seven hundred di�erent integrationsin whi
h the initial distan
e and initial in
lination were varied in in
rements of10RA and 10o respe
tively. The diagram distinguishes between orbits that es-
ape, those that remain 
aptured, and those that 
rash into the asteroid. Notethat the 
ollision orbits o

ur predominantly for in
linations around 90o whereorbits undergo the hazardous \narrowing ellipse" motion des
ribed above. It isapparent that there is a fairly 
risp \boundary" between the bound and es
apeorbits; this boundary is the 
riti
al distan
e. Most of the graph's features 
an beinterpreted as due to the Coriolis a

eleration. Taking a 
ir
ular orbit for illustra-tion, 
onsider the radial part of the Coriolis term (i.e., toward or away from theasteroid), whi
h is proportional to 
os i and whi
h therefore attains its maximum
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Figure 2.15 The 
riti
al distan
e, whi
h divides stable from unstable orbits, as afun
tion of initial in
lination. All parti
les are inje
ted on initially unperturbed
ir
ular orbits along the Sun-asteroid line. A large solid dot signi�es an orbitthat remains near the asteroid for at least 5 asteroid years, a small dot is anorbit that es
apes in less than this amount of time, and an open 
ir
le with adot inside is an orbit that strikes the asteroid. Note that orbits with i > 90o,parti
ularly those that approa
h purely retrograde orbits, are stable out to mu
hgreater distan
es than 
oplanar prograde paths (see text for dis
ussion).
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inward and outward strengths at i = 180o and i = 0o, respe
tively. This predi
tsthe upward trend of the 
riti
al distan
e with in
lination in Fig. 2.15.We �nd a lo
al minimum in the 
riti
al distan
e near i = 90o 
on�rmingprevious results of Keenan (1981). This feature and the rough symmetry for� 30o around i = 90o 
an be explained by abrupt in
lination shifts that we haveobserved in orbits with initial in
linations in the range 60o < i < 120o. We havefound that many es
ape orbits with in
linations i in this range swit
h to orbitswith an in
lination� 180o�i via the narrowing ellipse pro
ess outlined in Se
tion2.5.3, and thus es
ape for both i and 180o � i orbits 
an o

ur at the smallerin
lination where the Coriolis binding a

eleration is weaker. Together, these twoe�e
ts predi
t the overall shape of Fig. 2.15. Non-radial Coriolis a

elerations,whi
h are maximum near i = 90o, may also in
uen
e the stru
ture and exa
tlo
ation of the minimum.
2.6.2 The \Stability Boundary"Figure 2.16 illustrates the shape of the boundary within whi
h stable orbitslie. The surfa
e represents the maximum z value attained by a parti
le as afun
tion of xrot and yrot, not for a single orbit, but for the union of nearly 1000stable orbits lying within the 
riti
al distan
e in Fig. 2.15. The rare stable orbitsfound in regions where unstable orbits predominate were not in
luded (see priordis
ussion of the fra
tal-like nature of the stability boundary and Fig. 2.15). Theoutput of our integration routines is a series of points in the rotating system(xrot; yrot; z) through whi
h a given orbit passes. We divided the (xy)rot plane upinto a 20� 20 grid of 60 km� 60 km squares and re
orded the maximum z valueo

urring above ea
h square from the union of all of the points in ea
h of thestable orbits. The data were then interpolated out to an 80� 80 grid to optimizethe viewing.We also exploited two symmetries to quadruple the e�e
tive number of inputorbits to Fig. 2.16. It 
an be shown that the transformation of initial 
onditionsz ! �z; vz ! �vz, results in an orbit that is the re
e
tion of the original orbitthrough the xy plane (see Eq. 2.2). This follows most simply from 
onsiderationsof the symmetry of the gravitational for
es in an inertial frame 
entered on theSun. Thus ea
h of our orbits has a mirror image through the (xy)rot plane andwe 
an in
orporate this image by taking not the maximum z, but the maximumjzj attained. This e�e
tively doubles the number of input orbits. Furthermore,the transformation (r ! �r;vrot ! �vrot) also yields identi
ally shaped orbitsin Hill's problem, so we 
an again double the number of input orbits. All told,there are 4 � 239 � 1; 000 separate initial 
onditions in
orporated in Fig. 2.16,ea
h pertaining to an orbit that is stable for at least 5 asteroid years.Fig. 2.16 shows that the stability surfa
e is roughly 
at on top with verysteep sides. The plateau region is at an average height of about 285RA above
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Figure 2.16 Plot of the upper half of the stability surfa
e viewed from pit
h=60o,yaw=10o, and roll=0o as suggested by the referen
e 
ube. Note that the s
ale isdistorted due to the viewing angle. The 
attened surfa
e is at an approximatealtitude of z = 285RA, and the surfa
e drops o� pre
ipitously to the roughly
ir
ular base region (r � 480RA). To determine this surfa
e we took the exteriorenvelope of the orbits of about 1000 parti
les that were started near the 
riti
aldistan
e but remained 
aptured for 5 asteroid years. Thus, if pathologi
al 
asesare ignored, parti
les found within the surfa
e are generally bound to the asteroidwhile those outside are not. See the text's dis
ussion for more details about howthis �gure was 
onstru
ted. This �gure 
learly illustrates that stable orbits aremore 
losely 
on�ned in the polar region.
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the xy plane with the highest orbit rising to 307RA above the plane; its base isroughly 
ir
ular with a radius of about 480RA. The 
attened polar region arisesfrom the fa
t that maximum z values attained by orbits with 60o < i < 120o areroughly independent of x and y (see Fig. 2.12). The plotted surfa
e is not basedon enough di�erent orbits to validate 
omments on the se
ond order stru
tureof the surfa
e; in addition, we remind the reader that this surfa
e pertains toparti
ular initial 
onditions, and thus the detailed shape may 
hange somewhatwith di�erent modes of inje
tion.



Chapter 3
Orbital Stability Zones aboutAsteroids on E

entri
 Orbits1
3.1 Analyti
 Treatment3.1.1 Equation of MotionThe study of orbital stability in Chapter 2 assumes an asteroid on a 
ir
ular orbitand although an exa
t s
aling law 
an 
onne
t results for asteroids with di�erentmasses and distan
es from the Sun, no su
h s
aling to asteroids with other orbitale

entri
ities is expe
ted to be possible. Sin
e many asteroids and 
omets are onsigni�
antly ellipti
 orbits, this 
hapter will explore the 
onsequen
es of non-zeroorbital e

entri
ity on the stability of 
ir
um-asteroidal orbits.An asteroid on an ellipti
 orbit moves around the Sun at a non-uniform an-gular rate whi
h, written as a ve
tor, is:


 = d�dt ẑ = �GM�R3 � 12 (1 + E 
os �) 12 ẑ; (3.1)where R is the instantaneous distan
e from the Sun given by
R = A(1� E2)1 + E 
os � ; (3.2)and A, E, and � are the asteroid's semimajor axis, e

entri
ity and true anomaly,respe
tively (see Fig. 3.1). Equation (3.1) redu
es to Eq. (2.1) in the limit E ! 0.The true anomaly �, whi
h gives the angular lo
ation of the parti
le relative toperi
enter, is a periodi
 fun
tion of time; thus 
 and R also vary periodi
ally. Tostudy orbits in the vi
inity of the asteroid, it is desirable to work in a 
oordinate1This 
hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stabilityzones about asteroids II. The destabilizing e�e
ts of e

entri
 orbits and of solar radiation,I
arus 96, 43{64 [
opyright 1992 by A
ademi
 Press, In
.℄
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Figure 3.1 An e

entri
 orbit showing the de�nitions of some of the variablesused in the text. The Sun lies at one fo
us of the ellipse and the asteroid's trueanomaly � is the angle between the asteroid and peri
enter as seen from the Sun.The instantaneous Sun-asteroid distan
e R is minimum at peri
enter (� = 0)where it attains the value A(1� E).
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system 
entered on the asteroid and rotating with it at the instantaneous angularvelo
ity 
 around the Sun. We generalize Eq. (2.2) and �nd, to �rst-order inr=R, the equation of motion for a parti
le in su
h a frame:
d2rdt2 = �GMAr2 r̂+GM�R3 [(3x�z)+E 
os �(x+y)+2E sin �(xŷ�yx̂)℄�2
�vrot:(3.3)Re
all that r = rr̂ = x+y+z is the ve
tor pointing from the asteroid to the par-ti
le, MA is the mass of the asteroid, and vrot is the parti
le's velo
ity measuredin the rotating frame. We omit \rot" subs
ripts from position 
oordinates in this
hapter and the next sin
e in these 
hapters we work ex
lusively in the rotatingframe. The velo
ity in the rotating frame is related to that in the non-rotatingframe by vrot = v � (
� r) (3.4)where v is the test parti
le's velo
ity relative to non-rotating 
oordinates; itsmagnitude for a 
ir
ular orbit is simply (GMA=r)1=2. Taking E = 0 in Eq. (3.3),we re
over Hill's equation (Eq. 2.2). The three terms in Eq. (3.3) without expli
ite

entri
ity dependen
e are the asteroid's gravitational attra
tion, the \tidal a
-
eleration" and the Coriolis a

eleration; these terms are dis
ussed in greaterdetail in Se
tion 2.2. The new terms are only present for non-zero e

entri
ityand so will be dubbed the \e

entri
" terms in the dis
ussion below. The termwith E 
os � dependen
e is a 
orre
tion to the 
entrifugal a

eleration whi
h arisesfrom the di�eren
e in the asteroid's a
tual angular velo
ity from the angular ve-lo
ity it would have if it were on a 
ir
ular orbit at the same distan
e. Nearperi
enter, the asteroid's angular velo
ity ex
eeds that whi
h it would have on a
ir
ular orbit (Eq. 3.1) and hen
e there is an enhan
ed 
entrifugal a

elerationaway from the asteroid. Similarly, near the asteroid's apo
enter, the angular ve-lo
ity is signi�
antly lower than it would be on a 
orresponding 
ir
ular orbit;
onsequently the \e

entri
 
entrifugal a

eleration" is inwardly dire
ted.The term proportional to E sin � arises from the non-uniform rate of rotationof the referen
e frame; it vanishes at peri
enter and apo
enter where the angulara

eleration (the time derivative of Eq. 3.1) is zero. This a

eleration always liesin the xy plane and is tangent to a 
ir
le surrounding the asteroid. In 
ontrast tothe other a

elerations dis
ussed above, this a

eleration 
an have a substantial
omponent dire
ted parallel or antiparallel to the parti
le's velo
ity; \energy" isadded to the orbit in the former 
ase and removed from it in the latter. Sin
ethe term has a sin � dependen
e, it 
auses \energy" to be added to progradeorbits as the asteroid moves from apo
enter to peri
enter and removed duringthe return to apo
enter. Retrograde orbits lose \energy" as the asteroid dropstoward peri
enter but regain it over the se
ond half of the 
y
le. For many orbits,there is little net 
hange in the \energy" over the asteroid's 
omplete orbital
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period. Nevertheless, a
ting over long times, we expe
t this a

eleration to bedestabilizing sin
e it produ
es behavior analogous to a random walk in orbital\energy". Those orbits whose orbital \energy" is in
reased may eventually bedriven to es
ape.
3.1.2 Hill Sphere at Peri
enter S
alingIn this se
tion, our goal is to �nd a simple analyti
 way to extend results obtainedfor an asteroid with a given semimajor axis, e

entri
ity, and mass to a se
ondasteroid with di�erent values of these quantities. In Hill's problem when the as-teroid's e

entri
ity was zero, we found that su
h an extension was possible andthat distan
es s
ale like the radius of the asteroid's Hill sphere rH = (�=3)1=3A,where � �MA=M� is the asteroid-Sun mass ratio. Thus, for example, if an inter-esting orbit were dis
overed to exist around one asteroid with zero e

entri
ity,an orbit with the same shape exists around all other asteroids whi
h move on
ir
ular paths. This follows from the fa
t that Hill's problem in dimensionlessform is parameter free.These ideas extend readily to the 
ase when the asteroid has non-zero e

en-tri
ity. To non-dimensionalize Eq. (3.3), we 
hoose to measure distan
es in unitsof the asteroid's Hill radius and angular velo
ities in units of the asteroid's meanmotion n� � (GM�=A3)1=2. With these 
hoi
es and the de�nitions given in Eqs.(3.1) and (3.2), we 
an rewrite Eq. (3.3) as follows:
d2rd� 2 = � 3r2 r̂+�1 + E 
os �1� E2 �3[(3x� z) + E 
os �(x+ y) + 2E sin �(xŷ � yx̂)℄

�2(1 + E 
os �)2(1� E2)1:5 (ẑ� v)� 2(1 + E 
os �)4(1� E2)3 (x+ y); (3.5)where � = n�t is the dimensionless time and v is the parti
le's dimensionless ve-lo
ity measured in the non-rotating frame. Sin
e the only parameter in Eq. (3.5)is E (� is a fun
tion of time), it follows that with a given e

entri
ity, the equa-tions of motion are identi
al for asteroids of di�erent sizes and distan
es fromthe Sun; 
hanging these quantities only a�e
t how we de�ne the dimensionlessunits. In short, sin
e distan
es are measured in Hill radii, our results s
ale withthat distan
e. The more interesting question, however, is the following: How 
anwe s
ale results from one asteroid to another when the two have di�erent orbitale

entri
ities?Clearly an exa
t s
aling of results is impossible given the � dependen
e ofEq. (3.5); a

ordingly we attempt to �nd an approximation valid for the orbitsthat we are most interested in, namely those that narrowly avoid es
aping fromthe asteroid. Physi
al intuition and Eq. (3.5) show that the perturbation a

el-erations felt by an orbiting parti
le are maximum when the asteroid is near the
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peri
enter of its orbit. In general, therefore, weakly bound parti
les have their
losest brush with es
ape during the asteroid's peri
enter passage and, givenslightly more \energy", many of these parti
les would be expe
ted to es
ape dur-ing this time. If we are only interested in determining what will happen to thesystem in the short term (a few orbits of the asteroid around the Sun), and areonly worried about marginal es
apes, whi
h o

ur near peri
enter, then in somesense we 
an ignore what happens over the rest of the orbit. Taking � = 0 inEq. (3.5), we 
laim that, apart from small di�eren
es in the 
entrifugal and Cori-olis terms due to the faster angular velo
ity at peri
enter, the result is just theequation of motion for orbits around an asteroid with E 0 = 0 and A0 = A(1�E).In other words, for the purposes of studying marginal es
apes on short times
ales,an asteroid moving through its peri
enter 
an be reasonably well approximatedby a se
ond asteroid moving on a 
ir
ular orbit at the peri
enter distan
e of the�rst. A similar ta
k is taken by Le
ar et al. (1992) in quite a di�erent 
ontext.In order to justify this 
laim, we must show that the perturbation a

elerationsarising from the asteroid's faster angular velo
ity at peri
enter are small 
omparedto the perturbations due to the asteroid's 
loser distan
e to the Sun. Consider�rst the \tidal" a

eleration arising from solar tidal and 
entrifugal e�e
ts whi
his given by the se
ond term on the right side of Eq. (3.5). Evaluated at peri
enter(� = 0) this term be
omes:

aT idal = [3x� z+ E(x+ y)℄(1� E)3 : (3.6)Expanding Eq. (3.6) in a Taylor series in E, we �nd the �rst-order term is givenby: E[9x� 3z℄ + E[x+ y℄; (3.7)where the �rst term in bra
kets arises from the asteroid's 
loser distan
e to theSun and the se
ond 
omes from the in
reased angular velo
ity. The distan
eterms are signi�
antly larger, espe
ially for parti
les along the x-axis where es-
ape invariably o

urs. This remains true for higher-order terms in the Taylorexpansion although the magnitude of the di�eren
e de
reases somewhat. Treat-ing the Coriolis a

eleration in the same manner, we �nd that at peri
enter it
an be written in the form
aCoriolis = �2[1 + E℄ 12[1� E℄ 32 ẑ� v � 2 [1 + E℄[1� E℄3 (x+ y); (3.8)here the terms in the denominators arise from the asteroid's 
loser distan
e tothe Sun while those in the numerators are due to the variation of the asteroid'svelo
ity along its ellipti
 path. As in Eq. (3.7), we �nd the 
hange in distan
eis the dominant e�e
t, a

ounting for >� 75% of the varian
e in the Coriolisa

eleration for all values of the e

entri
ity.
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Sin
e the terms arising from the asteroid's in
reased angular velo
ity at peri-
enter are small 
ompared to the terms owing to its lo
ation 
loser to the Sun, we
an { as a �rst approximation { ignore the velo
ity terms. A parti
le's equationof motion around an asteroid near peri
enter is then identi
al to the equation ofmotion of a parti
le around a se
ond asteroid on a 
ir
ular orbit at the peri
enterdistan
e of the �rst. Furthermore, sin
e the stability of weakly bound orbits isput to the greatest test during the asteroid's peri
enter passage, the most impor-tant fa
tor determining es
ape is 
learly how 
losely the asteroid approa
hes theSun. The synthesis of these results suggests that the size of the asteroid's stabil-ity zone is simply proportional to the asteroid's peri
enter distan
e. Combinedwith the results for an asteroid on a 
ir
ular orbit (Se
tion 2.3.3), we have thatthe size of an asteroid's stability zone is roughly proportional to the size of theHill sphere 
al
ulated at the asteroid's peri
enter (� (�=3)1=3A(1� E)).This is a very strong assertion. It states that, if we 
an as
ertain the size of thestability zone for one asteroid, we 
an estimate it for other asteroids with di�erentmasses, semimajor axes and e

entri
ities. As noted in Se
tion 2.3.3, s
aling toan asteroid with a di�erent semimajor axis is mathemati
ally exa
t and s
aling toan asteroid with a di�erent mass only errs to the order of the asteroid-Sun massratio whi
h is entirely negligible. Thus any given orbit around one asteroid has a
ounterpart around another asteroid with an identi
al shape if the e

entri
itiesof the two asteroids are the same. Sin
e the stability surfa
e is 
omposed ofmultiple orbits all of whi
h s
ale in this way, it does too. We have now shownthat for orbits of short duration around asteroids with di�erent e

entri
ities,most (perhaps 70 - 80%) of the e�e
ts of e

entri
ity on the size of the stabilitysurfa
e 
an be a

ounted for by s
aling the surfa
e as the Hill sphere 
al
ulatedat the asteroid's peri
enter. In the se
tions to follow, we use our E = 0 results(Fig. 2.15) to make predi
tions for asteroids with non-zero e

entri
ity and then
ompare these predi
tions with a
tual numeri
al integrations. We also dis
uss thevalidity of the approximations made for three spe
ial 
ases: prograde, retrogradeand i = 90o orbits.

3.1.3 The Ja
obi IntegralFirst, however, we digress slightly and 
onsider the Ja
obi integral whi
h, afterall, is one of the most powerful results available for the 
ir
ular restri
ted problemof three bodies. In the 
ir
ular 
ase, the Ja
obi integral allows the derivation ofzero-velo
ity 
urves (ZVCs) whi
h pla
e simple, but often useful, restri
tions onthe portion of spa
e a

essible to parti
les starting with given initial 
onditions.In Se
tion 2.2, we applied these surfa
es to an asteroid on a 
ir
ular orbit; herewe examine the diÆ
ulties inherent in extending this analysis to asteroids one

entri
 orbits.Attempting to obtain the Ja
obi integral in the standard way, we �rst take
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the s
alar produ
t of Eq. (3.3) with vrot to obtain
vrot� _vrot+GMAr2 _r = GM�R3 [(3x _x�z _z)+E 
os �(x _x+y _y)+2E sin �(x _y�y _x)℄; (3.9)where the Coriolis term has vanished sin
e it is perpendi
ular to vrot. The nextstep is to integrate Eq. (3.9) over time. The terms on the left are dire
tly inte-grable, but those on the right, espe
ially the last one, are more stubborn. Theseright-hand terms are impli
it fun
tions of time through both the parti
le's 
oor-dinates and the asteroid's true anomaly, and hen
e they 
annot be integrated foran unknown orbit. Thus we �nd a Cat
h-22: although a Ja
obi integral exists forthe 
ase where the primaries orbit along ellipses, it is not known how to expressthe integral in a useful manner (Szebehely and Gia
aglia 1964). That is to say, toobtain useful information from the Ja
obi integral, the traje
tory of the parti
lemust be known but knowledge of the parti
le's traje
tory makes the information
ontained in the integral redundant!On
e again, be
ause we are mainly interested in orbits during the asteroid'speri
enter passage, we look for a result that 
an be applied in that region. Taking� = 0 in Eq. (3.9) eliminates the �nal term and allows the time integration tobe performed. Carrying out the integration and swit
hing to slightly di�erentdimensionless units (GM�=r3p � 1; (�=3)1=3rp � 1, where rp = A(1 � E) is theperi
enter distan
e), we obtain:

C = 6r + 3x2 � z2 + E(x2 + y2)� v2rot: (3.10)This equation with vrot = 0 determines the shape of the ZVCs instantaneouslyat the asteroid's peri
enter. The appli
ation of Eq. (3.10) is approximate, andeven then stri
tly limited to a small time �t near a single passage of an asteroidthrough peri
enter; similar 
on
lusions are rea
hed through more rigorous deriva-tions (Szebehely and Gia
aglia 1964, Ovenden and Roy 1961). If one attemptsto apply Eq. (3.10) to two su

essive peri
enter passages, unmodeled e�e
ts su
has the �nal term in Eq. (3.9), a
ting in the interim might alter C, the Ja
obi\
onstant." Fortunately, su
h modi�
ations are usually small for short time peri-ods, and we 
an normally apply Eq. (3.10) to orbits followed for a few peri
enterpassages of the asteroid.Comparing Eq. (3.10) to the equivalent expression for a 
ir
ular orbit we �ndthat the two di�er only by the ex
ess 
entrifugal potential E(x2 + y2). As anillustration of the slight di�eren
e, we 
al
ulate the lo
ations where the zero-velo
ity surfa
es surrounding the asteroid �rst open up. These positions o

urat saddle points of Eq. (3.10) (with vrot = 0) whi
h are also equilibrium pointsof Eq. (3.3) (with � = 0). Setting the partial derivatives of Eq. (3.10) equal tozero, we �nd that the openings of the ZVCs o

ur at the points (x = �x
rit; y =0; z = 0), where x
rit and the 
orresponding Ja
obi \
onstant" are given by:
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x
rit = � 33 + E� 13 ;C
rit = 9x
rit : (3.11)As the e

entri
ity is in
reased in Eq. (3.11), the opening of the zero-velo
itysurfa
es o

urs 
loser to the asteroid; this 
an be qualitatively understood bynoting that the equilibrium points o

ur nearer the asteroid as a result of theadditional outwardly dire
ted 
entrifugal a

eleration at peri
enter. For E = 0,we re
over the more familiar results x
rit = 1 and C
rit = 9 (see Se
tion 2.3.2and Chauvineau and Mignard 1990a); while, 
onversely, taking the extreme 
aseE = 1, we obtain x
rit � 0:91 and C
rit � 9:9, di�eren
es of only � 10%. We
on
lude, as above, that the in
uen
e of the additional 
entrifugal a

elerationis minimal.

3.2 Integrations3.2.1 GeneralNow that some intuition has been developed about the e�e
t of the asteroid'sorbital e

entri
ity, we will present the results of our numeri
al integrations. For
omparison purposes, we take the parti
le to have the same initial 
onditionsused in Chapter 2 (initially in the asteroid's orbital plane on an initially 
ir-
ular orbit) and use an asteroid like Amphitrite (Table 2.1), but with di�erentorbital e

entri
ities. The addition of orbital e

entri
ity, however, 
ompli
atesmatters by requiring the spe
i�
ation of two extra items, namely the e

entri
ityof the orbit and the asteroid's position along its orbit at the time the parti
leis laun
hed. The se
ond of these 
ompli
ations has lesser signi�
an
e sin
e wefollow the test parti
le's motion during the time it takes the asteroid to 
omplete�ve orbits around the Sun (� 20 years); thus usually the in
uen
e of di�erentstarting positions should be minimal. For simpli
ity, therefore, we 
hoose tostart the asteroid at the apo
enter of its helio
entri
 orbit in all of the followingintegrations. This 
hoi
e should provide a stringent test of our negle
t of the\e

entri
" terms in the above dis
ussion sin
e these terms are allowed to a
t forsome time before es
ape, whi
h generally o

urs during the peri
enter passage,is possible. Even with this redu
tion of the problem, a thorough exploration ofthe three-dimensional phase spa
e (asteroid's e

entri
ity, parti
le's in
lination,parti
le's starting distan
e) would require approximately (10 e

entri
ities) x (20in
linations) x (25 starting distan
es) = 5000 initial 
onditions. To redu
e thisto a more manageable number we will take four two-dimensional sli
es throughthis phase spa
e, three at 
onstant in
linations representing the three impor-tant 
lasses of orbits (prograde, retrograde, and highly-in
lined), and one at themeasured e

entri
ity of the asteroid Gaspra (Table 2.1).
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3.2.2 Prograde OrbitsPrograde orbits provide the best test of the ideas presented above sin
e, at leastin the 
ir
ular 
ase, parti
les on su
h orbits usually es
ape very qui
kly whenevertheir ZVCs are open (see Fig 2.10). We might be tempted, therefore, to predi
tthat es
apes will o

ur when the ZVC evaluated at the asteroid's peri
enter isopen, but before we 
an 
on�dently make su
h a predi
tion, an additional fa
tormust be 
onsidered. Imagine that es
ape is energeti
ally possible as the asteroidnears peri
enter, but the parti
le is lo
ated at a disadvantageous spot for es
apeto o

ur, say 90o away from the Sun-asteroid line. Then to provide a fair 
han
efor es
ape, we must either require that the asteroid remain near peri
enter longenough for the parti
le to 
omplete a reasonable fra
tion of one orbit around theasteroid or, equivalently, we must integrate through multiple peri
enter passagesso that many opportunities to es
ape arise, some of whi
h will �nd the parti
lein a favorable position. The prograde orbits with the longest periods are thosenear the limits of stability; these have synodi
 periods that are about 1/4 ofthe asteroid's period if the minor planet is on a 
ir
ular orbit. For an e

entri
asteroid orbit with the same semimajor axis, the stability zone is smaller and theparti
les orbit even faster. Thus we expe
t that �ve peri
enter passages of theasteroid about the Sun should usually allow the parti
le ample opportunity toes
ape.Figure 3.2 shows the results of nearly two hundred orbital integrations 
arriedout for initially 
ir
ular prograde orbits at a variety of distan
es from asteroidswith di�ering e

entri
ities. We treat the full range of possible e

entri
ities; thelow-to-moderate values are generally appli
able to asteroids, while the larger aremore appropriate for 
omets. The boundary line extends the 
riti
al distan
efound for i = 0 orbits in Fig. 2.15 to asteroids with non-zero orbital e

entri
ityusing the s
aling result of Se
tion 3.1.2. The division plots as a straight line in the(e;RA) 
oordinates used in Fig. 3.2 be
ause the 
riti
al distan
e, like the size ofthe stability zone, is proportional to the asteroid's peri
enter distan
e A(1�E).For these prograde orbits, the line also sele
ts the initial 
ondition 
orrespond-ing to the 
riti
al peri
enter ZVC (ignoring the small e

entri
ity dependen
edis
ussed in Se
tion 3.1.3). Thus only parti
les with initial 
onditions above theline have ZVCs that are instantaneously open near peri
enter. It is apparent thatno orbits below the line es
ape; note, however, that this trapping is not ne
es-sarily required by the argument of 
losed ZVCs be
ause a

elerations that wereignored in developing these ZVCs 
an 
ause orbits to 
ross them. Nevertheless, aswe argued above, these a

elerations should be small, so the fa
t that no es
apesare seen to o

ur from below the boundary is en
ouraging. Furthermore, thereis only a single bound orbit that lies signi�
antly above the division. This loneparti
le was never in the right pla
e to get a boost from M. Coriolis at peri
enter;it would almost 
ertainly es
ape with in
reased integration time.The distribution of orbits that strike the asteroid in Fig. 3.2 displays an in-
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Figure 3.2 The orbital fate of nearly 200 parti
les on prograde orbits aroundan asteroid at 2:55AU. Ea
h parti
le was given the velo
ity that would put iton an initially 
ir
ular path around the minor planet. A solid 
ir
le signi�es aparti
le that remains in the asteroid's vi
inity for at least twenty years, a smalldot 
orresponds to a grain that es
apes into helio
entri
 spa
e, while an open
ir
le with a dot inside represents a parti
le that strikes the asteroid's surfa
e.The diagonal line is the predi
ted division between bound and es
ape orbits; itsderivation is based on s
aling the Hill sphere at peri
enter as developed in thetext.
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teresting regularity. All of these 
rash orbits are found above the division lineat whi
h parti
les be
ome unbound. The la
k of 
rash orbits below the line is
onsistent with the 
hara
ter of bound prograde and retrograde orbits whi
h areusually very regular in appearan
e and rarely display 
haoti
 behavior (
f. Chau-vineau and Mignard 1990a). However, as we will see presently, the separation ofbound and 
rash orbits observed here for prograde orbits is not a result that 
anbe extended to three-dimensional paths.
3.2.3 In
lined OrbitsBound orbits with in
linations in the range 60o < i < 120o have many similar
hara
teristi
s (Se
tion 2.6.1); a

ordingly we 
hoose i = 90o orbits as typi
alexamples of this 
lass. The largest of these orbits is 
omparable to the largestof the prograde orbits, so the maximum period for bound, in
lined orbits is alsoabout 1/4 of an asteroid period. By the argument advan
ed above, �ve peri
enterpassages of the asteroid about the Sun should be enough to allow most parti
lesthat are destined to es
ape to be dislodged. But we have found that the openingof the ZVCs is not a good indi
ator of es
ape for orbits with i >� 30o sin
e theCoriolis a

eleration for these orbits does not have the large radially outward
omponent 
hara
teristi
 of that for prograde orbits. We therefore dis
ontinueour use of 
riti
al ZVCs as an es
ape 
riterion, instead fo
using on Hill spheres
aling as des
ribed in Se
tion 3.1.2 to 
onne
t our results for an asteroid on a
ir
ular orbit to those with non-zero e

entri
ity.The line in Fig. 3.3 shows the appli
ation of this s
aling. It does remarkablywell, although not nearly as well as in the prograde 
ase. The reason for thisis 
lear. A prograde orbit will almost always es
ape if the 
orresponding ZVCis open, and will rarely es
ape if the ZVC is 
losed; this idea is re
e
ted in thesharpness of the empiri
al boundary seen in Fig. 3.2 (re
all, however, that fore

entri
 asteroids the ZVC is just an approximation). In
lined orbits, on theother hand, are not so stri
tly 
onstrained. Many remain at least temporarilyin the asteroid's vi
inity even if their ZVCs are wide open; hen
e the divisionline between bound and unbound in
lined orbits is \fuzzier" than the division inthe prograde 
ase. Several bound orbits are lo
ated in the region dominated byes
ape orbits and a few es
ape orbits are even found below the line in the regionwhere this 
riterion asserts that orbits should be bound. Noti
e also that 
rashorbits are inextri
ably interwoven with both bound and es
ape paths. This resultis 
onsistent with a similar one for the 
ir
ular 
ase where many in
lined 
rashorbits are found in the vi
inity of the 
riti
al distan
e (Fig. 2.15). The ubiquityof 
rash orbits under these 
ir
umstan
es is a dire
t 
onsequen
e of the dynami
sof su
h orbits dis
ussed in Se
tion 2.5.3 in some detail.
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Figure 3.3 Same as Fig. 3.2 for initially 
ir
ular orbits with in
lination i = 90o.As in Fig. 3.2, the approximate theoreti
al division separating bound and es-
ape orbits mat
hes the data quite impressively; the de
rease of stability within
reasing e

entri
ity is very evident.
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3.2.4 Retrograde OrbitsThe situation for retrograde paths about ellipti
ally orbiting asteroids is not asgood as for the two 
ases dis
ussed above for several reasons. First, sin
e boundretrograde orbits are relatively large, their periods are about four times the periodof the biggest prograde orbits; this implies that integrations of �ve asteroid yearsmay not be suÆ
iently long to explore the full dynami
al range. In addition,sin
e these orbits are about twi
e the size of the ones 
onsidered previously, theasteroid's gravity is mu
h weaker and the perturbations are signi�
antly larger(see Fig. 2.3). Consequently the unmodeled parts of these for
es are more im-portant for retrograde orbits than for either prograde or in
lined ones. As anexample, the Coriolis a

eleration pulls more strongly inward at the asteroid'speri
enter for retrograde orbits than simple s
aling would suggest and this aug-ments the stability of these orbits around asteroids on e

entri
 paths. Finallythe point at whi
h the ZVCs �rst open for retrograde orbits is only about 25% ofthe distan
e to where es
apes �rst o

ur assuming an asteroid on a 
ir
ular orbit.The 
onstraint provided by the retrograde ZVCs, therefore, is almost useless (
f.Se
tion 2.5.1 and Chauvineau and Mignard 1990a).Figure 3.4 shows our results for planar retrograde orbits. The s
aling law thatworked so well for the prograde and in
lined orbits 
learly fails here: many boundorbits are found above the line where the theory predi
ts only es
ape orbits. Thebehavior is not even linear; noti
e the abrupt drop in stability that o

urs for anasteroid e

entri
ity of 0.7. This steep fall-o� suggests that longer integrationswould lead to additional es
apes, at least near this edge. Furthermore, the �ngerof es
ape orbits extending into the bound orbits at a distan
e of about 300 asteroidradii also hints that the bound orbits above the �nger will es
ape given a few moreperi
enter passages. But in
reasing the integration time will not solve all of theproblems en
ountered here. We re
all the results of Zhang and Innanen (1988)who, after tra
king orbits for 1000 years, found that the 
riti
al distan
e forinitially 
ir
ular retrograde orbits around asteroids with e

entri
ities of 0.0 and0.07 were 445 and 358RA, respe
tively. The E = 0 result agrees with our �ndingfor a 20 year integration; thus, s
aling to the peri
enter of an E = 0:07 orbit(see Fig. 3.4), we would predi
t a 
riti
al distan
e of 410RA, or about 15% largerthan the numeri
al result. Evidently the analysis of these retrograde orbits ishampered by both insuÆ
ient integration times and inadequate approximations.
3.2.5 GaspraAs a �nal test and an independent veri�
ation of the ideas addressed above, andmotivated by the destination of a 
ertain spa
e
raft, we 
arried out a more thor-ough investigation of the stability of orbits about an idealization of the asteroid951 Gaspra. We use values for Amphitrite (Table 2.1) and Gaspra's true e

entri
-ity E = 0:17 to fa
ilitate dire
t 
omparisons with our previous �gures. Be
ause
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Figure 3.4 Same as Fig. 3.2 for initially 
ir
ular retrograde orbits. Note thesparsity of orbits that strike the asteroid. For retrograde orbits, the 
al
ulatedbound-es
ape division disagrees with the data for reasons that are dis
ussed inthe text (
ompare Figs. 3.2 and 3.3).
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our integrations are for an obje
t at 2:55AU, the results need to be s
aled forappli
ation to the true Gaspra whi
h orbits at 2:20AU. Distan
es measured inRA, as the ordinates are in the following three �gures, must therefore be redu
edby the ratio of the semimajor axes of the two asteroids.Figure 3.5 shows the fate of parti
les as a fun
tion of their starting dis-tan
e and initial in
lination for an asteroid with Gaspra's e

entri
ity of 0.17(
f. Fig. 2.15 whi
h has E = 0). We estimate the 
riti
al distan
e by taking,for ea
h in
lination 
olumn, the outermost bound orbit su
h that there are noes
ape orbits below it; this pro
edure eliminates freak orbits su
h as the one at(i = 70o; d = 470RA). The results, 
riti
al distan
e as a fun
tion of in
lination,are plotted in Fig. 3.6 along with similar results for an asteroid with E = 0 (fromFig. 2.15). The dotted line in Fig. 3.6 is the expe
ted result for E = 0:17 whi
hhas been s
aled from the E = 0 data; 
omparing the predi
tions to the a
tualintegrations, we see that prograde and in
lined orbits a
tually es
ape at distan
esslightly less than predi
ted, but well within expe
ted errors arising from the ne-gle
ted e�e
ts. In those regions of Fig. 3.5 where there are many 
rash orbits, thedivision between bound and es
ape orbits is poorly 
onstrained; this leads to a\
hoppiness" in the 
riti
al distan
e whi
h is observed in the E = 0:17 data neari = 90o in Fig. 3.6. Unlike prograde and in
lined orbits, retrograde ones exhibitlittle loss of stability; on
e again suspi
ion falls on insuÆ
ient integration times.To des
ribe the volume in whi
h bound material might be present about as-teroids on 
ir
ular helio
entri
 orbits, we used the \stability surfa
e" (Fig. 2.16)Note that its typi
al radius up to latitudes of 35o is nearly 
onstant and is sig-ni�
antly larger than its verti
al dimension whi
h is approximately 
onstant forlatitudes greater than 35o (i.e., its shape is like a sphere with the poles sli
edo�). Be
ause polar orbits are less stable than retrograde ones for asteroids onellipti
 orbits as well as those on 
ir
ular paths (Fig. 3.6), we anti
ipate a similarmorphology for the stability surfa
e in the 
urrent 
ase. Fig. 3.7 plots the largestout-of-plane distan
e (z 
oordinate) from the union of all orbits with a givenstarting in
lination that lie within the 
riti
al distan
e; for 
omparison, we alsoplot results for a 
ir
ular asteroid orbit. We see that the maximum height towhi
h material around Gaspra 
an rise is only about 75% the value it would haveabove an asteroid on a 
ir
ular orbit. The dotted line in Fig. 3.7, the predi
tionof dire
t Hill-sphere-s
aling of results for E = 0, suggests that the value shouldbe 83%. Clearly the 
orrelation between the dotted line and the E = 0:17 datais worse in Fig. 3.7 than it is in Fig. 3.6; this di�eren
e re
e
ts 
hanges in theorbital evolution of the in
lined orbits under a

elerations ignored in our analysis.These numeri
al experiments indi
ate that bound debris should not presentbeyond about 200RA above Gaspra's orbital pole. We remind the reader thatour study has dealt only with the question of whi
h orbits are stable and whi
hare unstable. To a
tually estimate the probability that a spa
e
raft might strikesomething would require a knowledge of the population and loss me
hanisms
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Figure 3.5 The fate of about 650 parti
les started at di�erent in
linations foran asteroid on an orbit with semimajor axis A = 2:55AU and an e

entri
ityE = 0:17; solid 
ir
les, open 
ir
les, and small dots 
orrespond to bound orbits,
rash orbits, and es
ape orbits, respe
tively. Note the prevalen
e of impa
tsfor orbits with in
linations near 90 deg (
f. Fig. 2.15 and nearby text). We 
ans
ale this plot for appli
ation to Gaspra (A = 2:20AU and E = 0:17): sin
e thee

entri
ities of the two asteroids are identi
al, and di�eren
es in their masses area

ounted for by measuring distan
es in RA, the ordinate need only be multipliedby the ratio of the two semimajor axes, namely 2:20=2:55 � 0:86.
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Figure 3.6 Maximum starting distan
e for those initially 
ir
ular orbits thatremained bound to the asteroid (for about 20 years) as a fun
tion of the orbitingparti
le's initial in
lination. Data are plotted for two values of the asteroid'sorbital e

entri
ity, E = 0 and E = 0:17; in both 
ases A = 2:55. The dotted lineis the predi
tion for E = 0:17 derived from s
aling the E = 0 result with the Hillsphere at peri
enter. In this 
ase the two semimajor axes are identi
al, so s
alingis a

omplished by simply multiplying the E = 0 results by 1� 0:17 = 0:83. Theplot 
learly shows the erosion of the zone of stability 
aused by in
reasing theasteroid's orbital e

entri
ity.
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Figure 3.7 Maximum height above the asteroid's orbital plane attained by theparti
les from Fig. 3.6; as in that �gure, the dotted line is the predi
tion for thelower set of data obtained by s
aling from the upper set. The data displayedhere show that as the asteroid's e

entri
ity is in
reased, orbits that rise to largeheights above the orbital plane disappear faster than our simple s
aling wouldsuggest.
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for 
ir
um-asteroidal orbits. Most dis
ussions of debris sour
es (Weidens
hillinget al. 1989, Burns and Hamilton 1991) favor the likelihood that 
ir
um-asteroidaldebris, if any exists at all, will be produ
ed mu
h 
loser to the minor planetthan the distant orbits 
onsidered here. Thus our 
riterion is likely to be quite
onservative; that is, a spa
e
raft should be able to safely pass mu
h 
loser tothe asteroid than the 200RA quoted above. In the next 
hapter, we investigatethe e�e
ts of another perturbing a

eleration that 
lears the 
ir
um-asteroidalenvironment { solar radiation pressure.



Chapter 4
Radiation Perturbations onDistant Orbits1
4.1 Introdu
tionIn Chapters 2 and 3 we dis
ussed distant 
ir
um-asteroidal orbits that are stronglyperturbed by the solar tidal for
e. Be
ause the dire
t gravitational a

elerationtoward the asteroid is so weak in an absolute sense, radiative pro
esses impartnon-trivial perturbations for parti
les smaller than a few 
entimeters a
ross. Thespatial distribution of millimeter and 
entimeter-sized obje
ts around an asteroidis of 
onsiderable pra
ti
al interest sin
e impa
ts with su
h obje
ts are lethalto a swiftly-passing spa
e
raft. A

ordingly, in this 
hapter we fo
us on theorbital dynami
s of radiatively perturbed parti
les and put limits on the extentof 
ir
um-asteroidal debris in this size range.The perturbations we 
onsider arise from the absorption and subsequent re-emission of solar photons and 
orpus
ular radiation. Of the many for
es (radia-tion pressure, Poynting-Robertson drag, Yarkovsky e�e
t, et
. - see the reviewby Burns et al. 1979) that arise from this pro
ess, radiation pressure is by farthe strongest. Radiation pressure arises primarily from the absorption of themomentum of solar photons and 
onsequently is dire
ted radially outward fromthe Sun. The for
e's strength is proportional to the solar 
ux density whi
h hasthe same inverse square radial dependen
e as the Sun's gravity; hen
e radiationpressure is usually written as a dimensionless quantity � times solar gravity. Forspheri
al parti
les that obey geometri
al opti
s,

� = 5:7� 10�5 Qpr�grg ; (4.1)1This 
hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stabilityzones about asteroids II. The destabilizing e�e
ts of e

entri
 orbits and of solar radiation,I
arus 96, 43{64 [
opyright 1992 by A
ademi
 Press, In
.℄
60
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where rg and �g are the parti
le's radius and density in 
gs units and Qpr isa 
onstant whose value depends on the opti
al properties of the grain (Burnset al. 1979). This result applies to parti
les larger than about a half-mi
ron, thewavelength of a photon at the peak of the solar spe
trum. When a parti
le's
hara
teristi
 size is similar to the wavelength of in
ident light, Mie s
atteringo

urs, Qpr is no longer 
onstant, and � be
omes a 
omplex fun
tion of parti
lesize. In 
ontradi
tion to Eq. (4.1), whi
h predi
ts that the strength of radiationpressure will in
rease for smaller parti
les, it a
tually de
reases (Burns et al.1979) be
ause most solar photons are in the visible and su
h photons intera
tonly weakly with very small grains. In the rest of this work, we will 
on�neourselves to large grains that obey Eq. (4.1).
4.2 Helio
entri
 vs. Cir
umplanetary OrbitsThe a

eleration of an isolated parti
le on a helio
entri
 orbit is determined bythe sum of the inward for
e of solar gravity and the outward for
e of radiationpressure, whi
h 
an be 
ombined into a single 1=r2 for
e with magnitude (1 ��) times solar gravity. The grain's orbital dynami
s is then identi
al to thegravitational two-body problem with a redu
ed solar mass; if a parti
le's size,and hen
e its �, is 
onstant, its orbit will be a 
oni
 se
tion. Only if the parti
le's� 
hanges abruptly, as when a small grain is eje
ted from a 
omet, or graduallyas in the 
ase of a subliming grain, will its orbital evolution be non-trivial (Burnset al. 1979). Radiation pressure, therefore, does not signi�
antly alter the natureof most helio
entri
 orbits and, a

ordingly, it has re
eived s
ant attention in theliterature.The situation is quite di�erent for parti
les that orbit a planet rather thanthe Sun (Milani et al. 1987); sin
e the planet itself is essentially unin
uen
ed byradiation pressure while small obje
ts orbiting it may be, the problem 
annotbe treated by simply redu
ing the mass of the Sun as in the 
ase of helio
entri
orbits. Furthermore, the dominant for
es are di�erent in ea
h problem; in the
ase at hand, the important for
es are the planet's gravity and the solar tidal for
erather than dire
t solar gravity as in the helio
entri
 problem. In many situations,therefore, radiation pressure produ
es stronger e�e
ts on 
ir
umplanetary orbitsthan on solar orbits; we will show the truth of this statement when the \planet"is a
tually a large asteroid with a radius of 100 km.Sin
e radiation pressure typi
ally indu
es mu
h smaller a

elerations than theasteroid's gravity, an orbit-averaged perturbation te
hnique is often appropriate.This analysis, leading to a simpli�ed set of di�erential equations des
ribing theevolution of the os
ulating orbital elements due to an external for
e whi
h is
onstant in magnitude and dire
tion, has been 
arried out by Burns et al. (1979)and Chamberlain (1979), among others. The semimajor axis of a 
ir
umplane-tary orbit is found to be un
hanged by radiation pressure. Burns et al. solved the
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planar system (i = 0) 
onsidering small e

entri
ity and weak radiation pressure,assumptions appli
able to most situations arising in the solar system. Theirsolution was later extended to arbitrary e

entri
ities and moderate radiationpressure by Mignard (1982). Both Burns et al. and Mignard �nd periodi
 os
il-lations in the orbital e

entri
ity that, for weak radiation pressure, vary with theplanet's orbital period. The solution to the full system with arbitrary in
lination,as derived by Mignard and H�enon (1984), involves 
ompli
ated 
oordinate trans-formations that render the study of an orbit with initial 
onditions expressedin orbital elements impra
ti
al. The planar solution shows, however, that if ra-diation pressure is suÆ
iently strong, it 
an indu
e e

entri
ities large enoughthat parti
les are for
ed to 
rash into the asteroid (
f. Peale 1966, Allan andCook 1967). This me
hanism, whi
h provides the potential to eÆ
iently removetightly bound material from 
ir
um-asteroidal orbits, will be dis
ussed further inthe se
tions to follow.
4.3 Zero-Velo
ity CurvesAs we noted in Se
tion 3.1.3 above, the existen
e of the Ja
obi integral and itsasso
iated zero-velo
ity 
urves proves to be useful in addressing the eventual fateof loosely bound, prograde orbits. A

ordingly, in this se
tion we explore zero-velo
ity 
urves derived with the in
lusion of solar radiation pressure; as a �rstapproa
h to the problem and to avoid the diÆ
ulties en
ountered in Se
tion 3.1.3,we treat only the 
ase of 
ir
ular asteroid orbits. For 
ir
ular orbits, we will �ndthat exa
t results exist; extending the results to e

entri
ally orbiting asteroids,however, entails the same approximations dis
ussed in Se
tion 3.1.3.The existen
e of a Ja
obi integral for the restri
ted three-body problem withradiation pressure is anti
ipated sin
e radiation pressure in the rotating frame
an be derived from a time-independent potential. Indeed, the addition of ra-diation pressure to solar gravity does not greatly 
ompli
ate the problem sin
ethese for
es are identi
al in both dire
tion and radial dependen
e. In fa
t, thederivation of the Ja
obi integral and the zero-velo
ity 
urves in the photogravi-tational, restri
ted, 
ir
ular three-body problem pro
eeds along almost identi
allines as the \
lassi
al" derivation (S
huerman 1980). Extensive analysis of thestability of the resulting equilibrium points has been 
arried out by Luk'yanov(1984,1986,1988). We now apply these ideas to Hill's problem, whi
h, like therestri
ted problem, has an integral of the motion.In
orporating radiation pressure into the equation of motion (Eq. 2.2), weobtain the following:d2rdt2 = �GMAr2 r̂+ GM�A3 [3x� z℄� 2
� vrot + �GM�A2 x̂; (4.2)where we have taken in
oming solar rays to be parallel, an assumption that
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is valid in the vi
inity of our asteroid. Assuming � is time-independent, the�nal a

eleration on the right-hand side of Eq. (4.2) 
an be integrated to givethe potential �(GM�=A2)x. Taking the s
alar produ
t of Eq. (4.2) with vrot,integrating over time and non-dimensionalizing (G = 1;
 = 1, and rH = 1), we�nd:

C = 6r + 3x2 � z2 + 2�� 3�� 13x� v2rot: (4.3)Equation (4.3) depends on the parameter ���1=3 and so, as in the 
ase of non-zero orbital e

entri
ity, 
are must be exer
ised when s
aling from one asteroid toanother. In parti
ular, results s
ale as the Hill sphere only if the parameter ���1=3is kept 
onstant. This 
an be shown more expli
itly by examining Eq. (4.2) in thesame manner that we studied Eq. (3.3) in Se
tion 3.1.2. If Qpr and the parti
leand asteroid mass densities are 
onstant, then � is inversely proportional to theparti
le's radius rg (Eq. 4.1) and ��1=3 is inversely proportional to the asteroid'sradius RA. Thus, simply stated, results from a small asteroid 
an be applied toa larger one if the produ
t of the asteroid's radius and the radius of the orbitingparti
le is kept 
onstant (i.e., ��1=3 � (rgRA)�1= 
onstant).We 
an derive zero-velo
ity 
urves from Eq. (4.3) by setting vrot = 0 and
hoosing a parti
ular value of C. For weak radiation pressure, the shape of theresulting zero-velo
ity 
urves di�ers only slightly from the more familiar ZVCs ofHill's problem; for stronger radiation pressure, however, the di�eren
e is marked.In an attempt to provide the reader with some insight into the 
onstraints ones
ape imposed by the ZVCs, we dis
uss their shape for a moderate value ofradiation pressure, namely that appropriate for 1-millimeter parti
les aroundAmphitrite. Several ZVCs are drawn in Fig. 4.1; these are simply plots of Eq. (4.3)with vrot = 0 and z = 0 for di�erent values of the Ja
obi 
onstant C. The small
ir
les that 
losely surround the asteroid have large Ja
obi 
onstants; their shapeis primarily determined by the asteroid's gravity (
f. dis
ussion by Chauvineauand Mignard 1990a for ZVCs without radiation pressure). As C is de
reased, the
ir
les grow larger and begin to distort due to the tidal and radiation-indu
eda

elerations. Be
ause they both are dire
ted along the x-axis, these perturbationa

elerations 
ause a distortion of the ZVCs along that axis. The tidal potentialis an even fun
tion of x and thus 
auses an elongation symmetri
 about x = 0(see Figs. 2.5 and 2.10). In 
ontrast, radiation pressure, be
ause it always a
tsin the x̂ dire
tion, 
auses a non-symmetri
 distortion, shifting the ZVCs awayfrom the Sun. We see that radiation pressure is dominant for 1-mm parti
lessin
e the outer 
urves of Fig. 4.1 are highly asymmetri
. One 
onsequen
e ofthis asymmetry is that as the Ja
obi 
onstant is de
reased, the 
urves open awayfrom the Sun before they open toward it. Radiation pressure allows suÆ
ientlyenergeti
 parti
les to es
ape in the anti-sunward dire
tion; es
ape in the sunwarddire
tion, whi
h requires still more \energy," o

urs more rarely.
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Figure 4.1 Zero-velo
ity 
urves, in
luding solar radiation, for a 1-mm parti
learound Amphitrite. The Sun is lo
ated far out along the negative x-axis and theasteroid is the solid 
ir
le (not drawn to s
ale) at (0,0). Asso
iated with ea
h
urve is a unique value of the Ja
obi 
onstant; larger 
urves have smaller Ja
obi
onstants. The four-pointed star, lo
ated at (370,0), denotes the equilibriumpoint where all for
es balan
e for 1-mm parti
les; a se
ond equilibrium point liesbetween the asteroid and the Sun at (-579,0).
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When dis
ussing Fig. 4.1, we 
arefully avoided quoting any a
tual numbersfor the Ja
obi 
onstants or the lo
ation of the point at whi
h the ZVCs open (see,however, the �gure 
aption). This was done to keep the dis
ussion general andtherefore appli
able to a large range of radiation pressure strengths. In reality,the Ja
obi 
onstant and the points where the ZVCs open are all fun
tions ofthe relative strength of radiation pressure. To solve for the opening positions,whi
h o

ur at the equilibrium points of Eq. (4.2), we set the partial derivativesof Eq. (4.3) (with vrot = 0) equal to zero (
f. Danby 1988, p. 260). Thus, de�ning


 = �3� 3�� 13 ; (4.4)we �nd two solutions whi
h lie on the x-axis (y = z = 0) at positions given bysolutions to the 
ubi
: x3 + 
x2 � 1 = 0; (4.5)where the upper sign refers to the 
riti
al point furthest from the Sun and thelower sign to the one 
losest to the Sun. Solving Eq. (4.5) for 
 <� 1 (weak-to-moderate radiation pressure), we obtain x
rit � �(1 � 
=3 + 
2=9) and C
rit �9 � 6
 � 
2. We �nd that there are indeed two 
riti
al ZVCs, sin
e the twoopening points o

ur at di�erent values of the Ja
obi 
onstant. Thus if more
urves with ever-de
reasing Ja
obi 
onstants were plotted in Fig. 4.1, we wouldeventually see a tunnel from the asteroid to helio
entri
 spa
e opening up on theleft side of the �gure. For 
 >> 1 and x
rit > 0, we �nd x
rit � 
�1=2, whi
htends toward zero, and C
rit � 12
1=2.
4.4 IntegrationsOur philosophy in adding the e�e
ts of e

entri
ity and radiation pressure to thees
ape problem is to separate the two so that a more dire
t 
omparison withthe results of Chapter 2 is possible. A

ordingly, in all subsequent numeri
alintegrations, we pla
e the asteroid on a 
ir
ular orbit around the Sun. As before,we model the asteroid 29 Amphitrite with the parameters given in Table 2.1. Westart parti
les out along the x-axis away from the Sun with a speed su
h thatthe orbit would be 
ir
ular in the absen
e of all perturbations. As in Chapter3, we allow the velo
ity ve
tor to take on one of three in
linations relative tothe orbital plane: prograde (i = 0o), retrograde (i = 180o), or in
lined (i = 90o).These in
linations are representative of the three basi
 
lasses of 
ir
um-asteroidalorbits in the 
ase when radiation pressure is absent. The period of integration wasset at �ve asteroid years (� 20 years) to fa
ilitate 
omparison with our previousresults.
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Although these are the same initial 
onditions used in Chapters 2 and 3,they are parti
ularly appropriate here for two reasons. First, the radiation andtidal potentials are maximum in the anti-sunward dire
tion; thus 
ir
ular orbitsstarting on the positive x-axis have larger Ja
obi 
onstants than 
ir
ular orbitsof the same radius starting elsewhere. Our results for 
ir
ular orbits, therefore,are 
onservative in the sense that at ea
h distan
e, we study the initially 
ir
ularorbit that, energeti
ally, has the least 
han
e of es
aping. The se
ond reasonthat our initial 
onditions are reasonable is more physi
al. One of the mostdangerous potential sour
es for material in the 
ir
um-asteroidal environment isa \feeder" satellite, a small body from whi
h material 
an be eÆ
iently removedby meteoroid bombardment (Burns and Hamilton 1991). In 
ontrast to dire
timpa
ts on the 
entral asteroid in whi
h material generally es
apes or is re-a

reted, mu
h of the debris blasted from a moonlet 
an end up in orbit aroundthe asteroid. We envision the following s
enario: a \feeder" satellite unin
uen
edby radiation pressure is 
ontinually subje
ted to a 
ux of hypervelo
ity parti
leswhi
h blasts debris from its surfa
e. Although suÆ
iently energeti
 to es
apethe weak gravity of the satellite, mu
h of the debris 
annot es
ape the asteroid.As the 
lumps of eje
ted material separate exposing small bodies to solar rays,radiation pressure begins to exert its in
uen
e, preferentially eliminating thesmaller parti
les. Our integrations begin at the point when mutual gravitationaland shadowing e�e
ts 
an be negle
ted; further evolution of the debris in theaftermath of an impa
t event is governed by Eq. (4.2).Con�ning ourselves to an orbit of a given starting in
lination, we still must�x the initial size of the parti
le's 
ir
ular orbit as well as the strength of theradiation pressure as parameterized by 
; thus we have a two-parameter spa
eto explore. In order to avoid 
onfusion, we 
ontinue to display plots for Am-phitrite with distan
es measured in asteroid radii and parti
le sizes measured inmillimeters; to apply these plots to Gaspra (with E = 0) we simply multiply theverti
al axis by the ratio of the semimajor axes 2:20=2:55 � 0:86 (Table 2.1) and
hange \millimeters" to \
entimeters." The 
hange in the verti
al axis 
omesfrom s
aling distan
es with the size of the Hill sphere (Se
tion 2.3.3) while thatof the horizontal axis arises from the 
ondition that the parameter 
, de�ned inEq. (4.4), be unaltered; keeping 
 
onstant is equivalent to requiring that theprodu
t of the asteroid and parti
le radii be 
onstant as was dis
ussed immedi-ately following Eq. (4.3). Most of the equations to follow, however, depend on thedimensionless quantities r (measured in Hill radii) and 
; use of these quantitiesboth simpli�es the appearan
e of the equations and fa
ilitates s
aling to otherasteroids. The size of the Hill sphere for Amphitrite and Gaspra in asteroid radiiis given in Table 2.1; below we make the 
onne
tion between 
 and the parti-
le's size more apparent. Assuming spheri
al parti
les with the same density asthat assumed for the asteroid (�g = 2:38 g= 
m3) and a radiation pressure 
oeÆ-
ient of unity (Qpr = 1), we �nd, using Eqs. (4.1) and (4.4) that 
 is inversely
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proportional to the parti
le's radius; for Amphitrite
A = 0:0673=rg; (4.6)while for Gaspra 
G = 0:673=rg; (4.7)where rg is the parti
le's radius in 
entimeters.
4.4.1 Prograde OrbitsFigure 4.2 shows the fate of several hundred prograde paths followed for �ve or-bits of Amphitrite around the Sun. The pi
ture is remarkably regular; orbits thatshare a 
ommon fate 
luster together in one of three distin
t regions with fewex
eptions. The relative strength of radiation pressure in
reases from right to leftas the parti
le's size is de
reased: this 
auses the rapid disappearan
e of boundorbits. For 10-mm parti
les, the division between bound and es
ape orbits is inagreement with that found analyti
ally (Se
tion 2.4) and numeri
ally (Fig. 2.15)in the absen
e of radiation pressure: initially 
ir
ular prograde orbits are stableout to about 220RA, or about one-half the radius of the Hill sphere. In this re-gion, radiation pressure is strong enough to perturb orbits, but does not have thepower to alter the orbital fates of many parti
les. As parti
le sizes are de
reased,in
reased radiation pressure is seen to 
ause only a few extra es
apes at largedistan
es from the asteroid until we 
onsider parti
les with radii of a millimeter.In the 1-mm 
olumn of Fig. 4.2 an amazing transition takes pla
e; bound orbitssuddenly extend only half as far from the asteroid as they did for parti
les twi
eas large, their demise being due to the appearan
e of a large number of orbitsdoomed to strike the asteroid. For these parti
les, radiation pressure is largeenough to indu
e major os
illations in orbital e

entri
ity, ex
ursions so largethat e ! 1 and a 
ollision with the minor planet is likely. Even more startlingis the disappearan
e of bound orbits in the next 
olumn to the left; all orbitsbeyond 20RA, with one ex
eption, either impa
t the asteroid or es
ape from itsgravitational grasp. Parti
les in this 
olumn have radii � 0:5 millimeters; aroundGaspra this 
orresponds to parti
les nearly a 
entimeter a
ross! De
reasing par-ti
le sizes still further yields no surprises; bound orbits do not reappear, and thein
reasing radiation pressure 
auses es
apes to o

ur ever 
loser to the asteroid.Re
all that all of the points plotted in Fig. 4.2 
orrespond to the fates of par-ti
les followed for just over twenty years; for this problem, radiation pressurea

omplishes mu
h in extraordinarily short times!Probably the most interesting portion in Fig. 4.2 is the transition region whereorbits �rst begin to impa
t the asteroid. Examining the orbits of the eleven 1-mmgrains that 
rash, we �nd all but three of them, the one 
losest to the asteroidand the two furthest from it, impa
t in about a third of an asteroid year. Orbital
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Figure 4.2 The fate of approximately 200 parti
les of di�erent radii startedabout Amphitrite on prograde 
ir
ular orbits of various sizes that evolve underthe in
uen
e of solar radiation pressure; solid 
ir
les, open 
ir
les, and small dots
orrespond to bound orbits, 
rash orbits, and es
ape orbits, respe
tively. The
olumns of initial 
onditions are evenly spa
ed along the horizontal axis. Orbitswith the same fate tend to 
luster, dividing the plot into three distin
t regions.Note the rapid disappearan
e of bound orbits as the parti
le sizes are redu
ed to1mm and then to �0.5mm. This, of 
ourse, is due to the in
reasing strength ofradiation pressure relative to the asteroid's gravity. For Gaspra, 
orrespondingparti
le sizes would be ten times larger.
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e

entri
ities rise monotoni
ally to a 
riti
al value near unity at whi
h point theperi
enter of the orbit dips below the surfa
e of the asteroid and impa
t o

urs.The three ex
eptions, however, show that this is not the full story. Two of theseorbits survive one stint of large e

entri
ity after whi
h the orbit 
ir
ularizes andthe pro
ess begins anew. These orbits 
rash when the e

entri
ity rises to valuesnear one a se
ond time. The third orbit, whi
h is the furthest from the asteroid,survives no less than eight su

essive periods of large e

entri
ity before �nallystriking the asteroid during its ninth 
y
le.Several e�e
ts 
an 
ause these deviations from the simple sinusoidal os
illa-tions of e

entri
ity predi
ted by Mignard (1982). Sin
e the orbits under dis
us-sion are large, the tidal for
e from the Sun is signi�
ant and 
annot be ignoredas it is in the idealized 
ase. This for
e will also in
uen
e the orbital e

entri
ityand may either augment or detra
t from radiation-indu
ed 
hanges. Further-more, even in the absen
e of the tidal for
e, orbits of this size have long periodsfor whi
h the orbital averaging employed by Burns et al. (1979) and Mignard(1982) is generally inappropriate. This will be the 
ase any time the parti
le'sorbital elements 
hange signi�
antly during a single 
ir
uit around the asteroid.One important 
onsequen
e of rapidly varying elements is that if a parti
le attainsan e

entri
ity of one at some point far from the asteroid, the e

entri
ity mayde
rease below the 
riti
al value ne
essary for 
ollision before the parti
le su�ersa 
lose approa
h. This, in fa
t, is the reason that the three orbits just dis
ussedsurvive several 
lose approa
hes. A �nal 
onsideration that does not a�e
t ourintegrations, but would alter orbits around a real asteroid, is the non-spheri
alshape of typi
al minor planets. Higher-order gravity terms 
an signi�
antly al-ter the evolution of even a large orbit if, as in the 
ase under dis
ussion, thee

entri
ity of the orbit is near unity so that 
lose approa
hes o

ur.The �sh shape plotted in rotating 
oordinates in Fig. 4.3 is the amazing or-bit dis
ussed above that narrowly avoids 
ollision eight times only to impa
tthe asteroid on the ninth pass. The heavy bla
k line is the zero-velo
ity 
urveappropriate for the initial 
ondition, a 1-mm parti
le starting on a 
ir
ular un-perturbed orbit around the asteroid Amphitrite at 190RA. Although the ZVCis open, the parti
le never had the 
han
e to taste the freedom of helio
entri
spa
e. At �rst sight this is strange, sin
e the orbit extends nearly to the Lagrangepoint where for
es on a stationary parti
le balan
e; prograde orbits that rea
hthis far invariably es
ape sin
e the Coriolis a

eleration is outwardly dire
ted.Retrograde parti
les, however, are stabilized by the Coriolis a

eleration and 
ansafely wander in this region; 
loser inspe
tion of Fig. 4.3 reveals that althoughthe orbit begins prograde, it be
omes retrograde when farthest from the Sun, atthe very fringes of helio
entri
 spa
e. In fa
t, the orbit swit
hes from prograde toretrograde and ba
k again periodi
ally, as 
an be seen from the time history ofthe in
lination displayed in Fig. 4.4. These transitions ne
essarily take pla
e ate = 1, when the parti
le's velo
ity ve
tor points either dire
tly toward or away
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Figure 4.3 A 1-mm parti
le on an initially 
ir
ular prograde orbit started at190RA about Amphitrite. The initial position is marked with a solid trianglewhose upper apex points in the dire
tion of the initial velo
ity; a �lled squaremarks the end of the integration, and a solid 
ir
le represents the asteroid itself.In this 
ase, the square and the 
ir
le overlap sin
e the grain ends its orbitalevolution on the asteroid's surfa
e. The four-pointed star is the equilibriumpoint, and the heavy 
urve partially en
losing the orbit is the zero-velo
ity 
urveappropriate for this initial 
ondition; its asymmetry is due to radiation pressure.Although the ZVC shows that the parti
le is energeti
ally able to es
ape, thegrain su�ers a more drasti
 fate.
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Figure 4.4 The time histories of some of the os
ulating orbital elements for thepath displayed in Fig. 4.3. Plotted are the orbit's semimajor axis, its e

entri
ity,and its in
lination. These 
urves are 
al
ulated by integrating the equation ofmotion, and transforming the resulting velo
ity v and position r into orbitalelements (Danby 1988). Note that the parti
le swit
hes from prograde (i = 0o)to retrograde (i = 180o) and ba
k again periodi
ally ea
h time the e

entri
ityrea
hes unity.
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from the asteroid; thus the very fa
t that the orbit survives so long warns us ofthe dangers of taking the orbit-averaged equations too seriously.The history of the os
ulating elements in Fig. 4.4 is also enlightening, espe-
ially when dis
ussed along with the evolution of the a
tual orbit. After a singleprograde loop, the orbit swit
hes to retrograde as the e

entri
ity approa
hes one;this �rst o

urs very near the upper part of the zero-velo
ity surfa
e in Fig. 4.3.A 
hange in in
linations from i = 0o to i = 180o or vi
e-versa 
an, but neednot, involve 
losely approa
hing the ZVC; this only o

urs if the parti
le is atthe apo
enter of a re
tilinear ellipse (e = 1). Indeed, Fig. 4.3 has examples oftransitions at varying distan
es from the ZVC. The parti
le then dives in for a
lose approa
h to the asteroid whi
h o

urs at the small dip in the 
enter of thee

entri
ity peak. The small redu
tion in e

entri
ity, whi
h manifests itself inless than an orbital period, is enough to allow the parti
le to su

essfully negoti-ate the trea
herous region. The parti
le subsequently moves outward toward thelower part of the ZVC, �nally returning to its prograde state to repeat the 
y
leanew. The entire 
y
le, in whi
h the e

entri
ity 
hanges from zero to unity andba
k to zero, takes only four orbits of the parti
le around the asteroid; 
learly anorbit-averaging te
hnique is invalid here! The inadequa
y of orbit-averaging 
analso be seen in the semimajor axis history of Fig. 4.4. Orbit-averaging of bothradiation pressure and the tidal a

eleration lead to predi
tions that the semima-jor axis, a, will remain 
onstant on times
ales larger than the parti
le's orbitalperiod; these predi
tions rely on the fa
t that the orbital elements, a in
luded,do not 
hange mu
h during a single orbit. Large variations in the semimajor axisshould, therefore, not o

ur on any times
ale; the extent to whi
h this is untrueis a measure of the validity of the averaging approximation.
4.4.2 Retrograde OrbitsFigure 4.5 is the retrograde 
ounterpart to Fig. 4.2. Qualitatively the two plots arevery similar sin
e radiation pressure a
ts analogously on prograde and retrogradeorbits as will be seen below; di�eren
es in the plots 
an be explained by thee�e
ts of the Coriolis a

eleration. As in Fig. 4.2, orbits in Fig. 4.5 are segregatedinto three distin
t regions 
ontaining bound, es
ape, and 
rash orbits. For weakradiation pressure, su
h as that a
ting on 10-mm parti
les, 
ir
ular orbits arestable out to about the Hill sphere in a

ordan
e with the results of Chapter 2.The Coriolis a

eleration exerts a powerful in
uen
e on these orbits, keeping thembound at twi
e the distan
e of the largest prograde orbits. Retrograde orbits,like their prograde 
ounterparts, experien
e a slight degradation of stability asparti
le sizes are de
reased; but, as with prograde orbits, an abrupt transitiono

urs for 1-mm parti
les: half of the bound orbits are repla
ed by those that
rash! The rapid erosion of stability is 
ontinued for grains � 0:5mm in size forwhi
h bound orbits disappear entirely; 
omparing Figs. 4.2 and 4.5, we see that
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Figure 4.5 The fate of about 300 parti
les of di�erent radii started about Am-phitrite on retrograde 
ir
ular orbits of various initial sizes; solid 
ir
les, open
ir
les, and small dots 
orrespond to bound orbits, 
rash orbits, and es
ape or-bits, respe
tively. The 
olumns of As in Fig. 4.2, orbits sharing a 
ommon fate
luster into three distin
t regions; bound orbits rapidly disappear as parti
le sizesare de
reased to 1mm and then to � 0:5mm. For parti
les smaller than 0:1mm,the di�eren
es between Fig. 4.2 and this plot are slight.
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the disappearan
e of bound orbits in ea
h 
ase o

urs for parti
les of the samesize. As radiation pressure is in
reased, 
rash orbits 
ontinue to yield to es
apeorbits. Comparing with Fig. 4.2 again, we �nd a few extra 
rash orbits in theretrograde 
ase and these rapidly disappear as the strength of radiation pressurein
reases; the extra impa
t orbits 
an also be attributed to Coriolis e�e
ts.Figure 4.6 shows the most distant bound orbit in the 1-mm 
olumn of Fig. 4.5;its initial 
onditions are appropriate for a grain started at 180RA from Amphitrite.Although we show only the �rst e

entri
ity 
y
le, whi
h o

urs over about anasteroid year, this orbit was in fa
t followed for �ve 
ir
uits of the asteroid aroundthe Sun. The e

entri
ity behavior is similar to that of the prograde orbits; itin
reases to a value near one, remains 
at as the \ellipses" in Fig. 4.6 move slowly
lo
kwise, then de
reases ba
k to zero as the parti
le returns roughly to its initialposition. Be
ause the orbit is almost periodi
, subsequent evolution repeats thatdes
ribed above although the \ellipses" do not fall exa
tly atop those alreadypresent. In its �ve-year tour, the parti
le survives multiple 
lose approa
hes, the
losest a mere 1:9RA above the asteroid's surfa
e! All impa
t orbits for 1-mmparti
les in Fig. 4.5 have the same sunwardly dire
ted petals and general 
hara
-teristi
s as the orbit in Fig. 4.6; in the former 
ases, however, the 
lose approa
hesdip below 1RA abruptly 
utting short the orbital evolution! As with the progradeorbits dis
ussed above, most of these retrograde orbits impa
t midway throughtheir �rst e

entri
ity os
illation, although three of the �ve furthest survive atleast one 
y
le for reasons similar to those dis
ussed in Se
tion 4.4.1. Moving
loser to the asteroid along the 1-millimeter 
olumn, we �nd that bound orbitshave progressively more distant 
lose approa
hes (
orresponding to smaller e

en-tri
ities), although again the orbital shapes are reminis
ent of Fig. 4.6. Finally,we note that all bound orbits, Fig. 4.6 in
luded, are purely retrograde; furtherfrom the asteroid, however, we do en
ounter orbits that swit
h between the pro-grade and retrograde states. These outer orbits have short lifetimes sin
e theyinvariably 
rash while traversing the often fatal e = 1 regime.
4.4.3 In
lined OrbitsThe situation for in
lined orbits (here the term in
lined will refer to orbits withi = 90o) is somewhat di�erent than for planar ones. In the orbit-averaged equa-tions of Burns et al. (1979) and Chamberlain (1979) there is a 
os i term thatis small for in
linations near 90o but equal to �1 for planar orbits. The 
hangein this term re
e
ts simple di�eren
es in the orbital geometry whi
h we willillustrate with dis
ussion of a hypotheti
al 
ir
ular orbit around the asteroid.Imagine that a grain is started on a 
ir
ular orbit fairly 
lose to the asteroidsu
h that its period is mu
h less than that of the asteroid around the Sun. Ifthe grain is pla
ed on either a prograde or a retrograde orbit, the angle betweenthe Sun and the parti
le as measured from the asteroid will 
ir
ulate between
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Figure 4.6 A 1-mm parti
le on an initially 
ir
ular retrograde path starting at180RA; symbols are those de�ned in Fig. 4.3's 
aption. Although the initial
onditions for Figs. 4.3 and this �gure are quite similar, the orbital paths havea very di�erent appearan
e. The zero-velo
ity 
urve for this initial 
ondition isopen even wider than the one in Fig. 4.3; the fa
t that the parti
le does notes
ape is an example of the poor 
onstraint imposed by retrograde ZVCs. Onlythe �rst several loops of this orbit are shown, but subsequent motion repeats thepattern shown here.
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0o and 360o every synodi
 period; re
all that the synodi
 period is the period ofthe parti
le with respe
t to the Sun. For a path in
lined 90o to the asteroid'sorbital plane, however, the situation is quite di�erent. If the parti
le is startedon the positive x-axis, then after one quarter of an asteroid orbit, the dire
tionto the Sun is everywhere perpendi
ular to our hypotheti
al unperturbed 
ir
ularorbit; at this point, the angle whi
h 
ir
ulates for the planar 
ases is 
onstant!Clearly radiation pressure will a
t di�erently on in
lined orbits than on planarones. Considerations of the averaged equations of motion and the fa
t that a per-pendi
ular perturbing for
e does not a�e
t the orbital e

entri
ity (Danby 1988)lead us to the 
on
lusion that driving orbital e

entri
ities to large values will bemore diÆ
ult in the in
lined 
ase.Figure 4.7 veri�es these ideas; bound orbits exist for parti
les approximately�ve times smaller than that where the last bound planar orbits are seen. Thesebound orbits in the transition region disappear even more abruptly than in theplanar 
ase; in the 
olumn for � 0.2-mm parti
les, stable orbits abound andthere are no 
rash orbits while in the next 
olumn to the left there are no boundones! Impa
t orbits sprinkled throughout the region of weak radiation pressureare probably not asso
iated with that for
e at all; re
all the large number of su
horbits for in
linations in the near 90o range for our integrations of the purelygravitational three-body problem (Figs. 2.15 and 3.3). Dis
ounting these ex
ep-tions, the bound, es
ape and 
rash orbits separate ni
ely into three regions asbefore. In Fig. 4.7, as in the planar �gures, the right side of the plot smoothlyapproa
hes results found in Fig. 2.15 in the absen
e of radiation pressure. Forvery small parti
les that are signi�
antly in
uen
ed by radiation pressure, resultsare in a

ordan
e with the planar 
ases; there are a few more impa
t orbits thanin the analogous 
olumns in Fig. 4.2 and a few less than in Fig. 4.9 as 
ouldbe predi
ted by 
onsidering the Coriolis a

eleration. In this region of all three�gures, orbits 
rash extremely rapidly; few survive more than the time ne
essaryto in
rease the e

entri
ity to one.
4.5 Analyti
 Considerations4.5.1 Bound-Es
ape DivisionFor ea
h of the orbital 
lasses (prograde, retrograde, in
lined) des
ribed above,we have found that { to a greater or lesser degree { parti
les with similar 
har-a
teristi
s (parti
le radius, initial orbit size) share similar fates, and that theboundaries between these fates are sharply de�ned. This suggests that the out-
omes for su
h parti
les are being determined by simple pro
esses; hen
e we nowseek the me
hanisms that segregate orbits into the three separate regions notedabove. In this se
tion and the ones to follow, we dis
uss the fa
tors that 
ause aparti
le to es
ape and to 
rash, and we develop analyti
al expressions that de�ne
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Figure 4.7 The fate of approximately 200 parti
les of di�erent sizes started on
ir
ular paths initially in
lined at 90o; solid 
ir
les, open 
ir
les, and small dots
orrespond to bound orbits, 
rash orbits, and es
ape orbits, respe
tively. The
olumns of These orbits jealously guard their stability until parti
le sizes areredu
ed to 0.1mm; reasons for this are dis
ussed in the text. Crash orbits in theupper right of the diagram are of the type seen in Fig. 3.5 and are 
aused bythe tidal for
e; those to the lower left, however, are due to radiation pressure.Comparing this �gure to Figs. 4.2 and 4.5, we see few di�eren
es for parti
lessmaller than 0.1mm.
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the divisions separating these areas from ea
h other and from the region of boundorbits.We know { by analogy with the purely gravitational 
ase { that, if orbits liewithin 
losed ZVCs, they will remain bound. Hen
e, as a 
riterion for es
ape,the opening of the zero-velo
ity 
urves will prove to be useful, at least in theprograde 
ase. To 
onne
t ZVCs to the orbits dis
ussed above, we substitute theinitial 
onditions, y = z = 0 and the initial 
ir
ular velo
ity 
ondition,

v2rot = �� 3dBE�1=2 
os i� dBE�2 � 3dBE sin2 i; (4.8)into Eq. (4.3) to obtain:
CBE = 3dBE + 2(3dBE)1=2 
os i+ 2d2BE + 6
dBE ; (4.9)where CBE is the Ja
obi 
onstant for whi
h the zero-velo
ity 
urves �rst openand dBE is the 
riti
al distan
e at whi
h we expe
t the bound-es
ape division too

ur. We solve this equation numeri
ally in ea
h of the three in
lination 
asesand plot part of the solution 
urve in Figs. 4.8, 4.9, and 4.10 (dashed line). Ifextended to smaller parti
les sizes, the 
urve would also separate the 
rash orbitsthat had the potential to es
ape from those that did not. Although the theoreti
alresults in all three in
lination 
ases 
orre
tly predi
t that orbital stability is lostas parti
le sizes are de
reased, the 
urves only su

eed in �tting the numeri
alresults for prograde orbits; the mat
h steadily worsens as the in
lination is in-
reased. The reason for this is, of 
ourse, that the derivation of Eq. (4.9) ignoresthe all-important Coriolis a

eleration. Not surprisingly, the radial portions ofthe negle
ted Coriolis term, whi
h has a 
os i dependen
e, provides in
reasingstability as the in
lination is raised from i = 0o to i = 180o. The situation is
ompli
ated by non-radial parts of the Coriolis a

eleration, with a sin i depen-den
e, whi
h tend to destabilize orbits. The two e�e
ts 
ombine to explain whythe division between bound and es
ape orbits, as numeri
ally obtained, o

ursat a similar distan
e in the prograde and i = 90o 
ases but mu
h further out forretrograde orbits (Se
tion 2.6.1).

4.5.2 Bound-Crash DivisionParti
les risk 
ollision with the asteroid on
e their orbital e

entri
ities be
ome solarge that at peri
enter their orbits pier
e the asteroid's surfa
e: rp = a(1� e) <RA. If we negle
t the tidal a

eleration { an approximation that is 
ertainly validfor strong radiation pressure { we 
an apply Mignard's expression for the e

en-tri
ity produ
ed by radiation pressure (1982, his Eq. 28) to determine when animpa
t 
an o

ur. More pre
isely, the tidal a

eleration 
an be ignored in deter-mining when es
apes will o

ur for orbits with initial semimajor axes<� rH=3 sin
e



79

Figure 4.8 Prograde orbits. Same as Fig. 4.2 but now in
luding theoreti
al linesdividing bound, es
ape, and 
rash orbits. The dashed line, dis
ussed in Se
tion4.5.1, presents a 
riterion that should separate parti
les that are bound fromthose that es
ape. Similarly, the heavy and lightweight solid 
urves are thosethat our theory predi
ts for the bound-
rash (Se
tion 4.5.2) and 
rash-es
ape(Se
tion 4.5.3) divisions, respe
tively.
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Figure 4.9 Retrograde orbits. Same as Fig. 4.5 with theoreti
al lines dividingbound, es
ape, and 
rash orbits. See Fig. 4.8 and the text for an explanation ofthe three 
urves.
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Figure 4.10 In
lined orbits. Same as Fig. 4.7 with theoreti
al lines dividingbound, es
ape, and 
rash orbits. See Fig. 4.8 and the text for an explanation ofthe three 
urves.
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tides 
ause only small e

entri
ity os
illations in this regime. Furthermore, fororbits mu
h larger than this, the orbit-averaging pro
edure employed by Mignard(1982) is no longer valid. For initially 
ir
ular prograde orbits, Mignard's resultfor the variation of e

entri
ity 
an be rewritten in the useful form

(1� e2)1=2 = n2��2 + n2� + �2�2 + n2� 
os[(�2 + n2�)1=2t℄; (4.10)where � is related to � via the equations: � = 3=(2�0), and �0 is Chamberlain's(1979) expression for the time it takes radiation pressure to produ
e the 
ir
ularvelo
ity, i.e., �0 = (GMA=r)1=2=(�GM�=R2). Loosely, � is the strength of the so-lar radiation pressure relative to the asteroid's lo
al gravity. For weak radiationpressure (� << 1), the e

entri
ity simply varies with the solar period, whilefor strong radiation pressure e varies more rapidly. Although mathemati
allyEq. (4.10) predi
ts a 
omplex e

entri
ity when the right-hand side of the equa-tion is less than zero (i.e., when � > n� and 
os < 0), this does not a
tually o

urin the orbit-averaged perturbation equations from whi
h Eq. (4.10) is derived be-
ause e is prevented from ex
eeding unity by 1 � e2 terms in these equations.What, then, really happens as e approa
hes one? There are two possibilities: theparti
le either 
an 
ollide with the asteroid, preventing further evolution of theorbital elements, or, for longer-lived orbits, a prograde-to-retrograde transition
an take pla
e. Be
ause Mignard's solution is restri
ted to prograde orbits, itis unable to predi
t the prograde-to-retrograde transition and instead suggests a
omplex e

entri
ity.It is not diÆ
ult to repeat Mignard's derivation for retrograde orbits. Webegin with the orbit-averaged equations of motion and 
onsider the planar limiti = 180o (instead of the i = 0o taken by Mignard). With an appropriate 
hoi
eof variables, the form of the resulting pair of equations 
an be made identi
al tothose for the prograde 
ase; spe
i�
ally, we �nd that Eq. (4.10) applies equallywell to retrograde orbits. This is a single example of a more general result: ifthe orbital elements, evolving under some perturbation for
e, are taken to remain
onstant over a single sidereal period, then the resulting orbit-averaged equationswill yield similar histories for prograde and retrograde orbits. A

ording to thismodel of the e�e
ts of radiation pressure, therefore, there should be no di�eren
ein the fate of initially 
ir
ular prograde and retrograde orbits sin
e Eq. (4.10)governs the evolution of both. This is true, of 
ourse, only as long as the parti
leremains 
lose to the asteroid where the Coriolis a

eleration, whi
h en
apsulatesthe di�eren
es between prograde and retrograde orbits, 
an be ignored. Furtherfrom the asteroid, di�eren
es in the Coriolis a

eleration manifest themselves inthe in
reased stability of the retrograde parti
les noted in the dis
ussion of Figs.4.2 and 4.5. In these regions (e.g., 1-mm 
rash orbits), Eq. (4.10) does not stri
tlyapply.A 
ollision with the asteroid 
an o

ur when the peri
enter of the os
ulating
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orbit dips below the asteroid's surfa
e. For the large orbits under dis
ussion,this requires an e

entri
ity that is nearly unity. A

ordingly, we solve for theminimum � that allows e = 1 in Eq. (4.10); although e 
annot ex
eed one,it must ne
essarily attain this value during a prograde-to-retrograde transition.The 
ollision 
riterion is � = n�, whi
h 
an be re
ast as

dBC = 427
2 ; (4.11)where dBC is the 
riti
al distan
e at whi
h the division between bound and 
rashorbits is lo
ated. Furthermore, near this division where, by de�nition, � � n�, weexpe
t that 
ollisions will o

ur in half the period given by Eq. (4.10), i.e., 2�3=2 �0:35 asteroid years. This simple estimate is in very good agreement with ourobservations for most of the prograde orbits dis
ussed in Se
tion 4.4.1. Equation(4.11) is also plotted on ea
h of Figs. 4.8, 4.9, and 4.10 as a solid, heavyweight
urve. We �nd reasonable agreement in the prograde and retrograde �gures, buta rather poor mat
h for the in
lined orbits. The fa
t that in
lined orbits are moreresistant to radiation pressure-indu
ed impa
ts should not be surprising in light ofthe dis
ussion in Se
tion 4.4.3. For 1-mm parti
les around Amphitrite where thelimits of the theory are stret
hed the most, we see that bound retrograde orbitsextend further from the asteroid than expe
ted (Fig. 4.9), while bound progradeorbits extend to distan
es less than predi
ted (Fig. 4.8). These di�eren
es, whi
hare due to the negle
ted Coriolis a

eleration, only appear for large orbits andadd stability to retrograde orbits as dis
ussed above.For � 0.5-mm parti
les, bound orbits do not extend as far as predi
ted in boththe prograde and retrograde 
ases. This is due to the �nite size of the asteroidwhi
h allows impa
ts to o

ur for e

entri
ities less than one. This e�e
t 
anbe derived from Eq. (4.10) by putting e = e
rash, where e
rash = 1 � RA=dBC .Setting the 
osine to �1, and solving for �=n� as before, we �nd:
dBC = 4f2(e
rash)27
2 ; (4.12)where f(e
rash) is given by

f(e
rash) = 1� (1� e2
rash) 12e
rash ; (4.13)and f2(1) = 1 so that Eq. (4.11) is re
overed. The solution of Eqs. (4.12) and(4.13) is 
ompli
ated sin
e e
rash is a fun
tion of dBC ; in general, the equationmust be numeri
ally solved. In pra
ti
e, however, an iterative pro
edure in whi
han initial value of dBC is substituted into the right-hand side of Eq. (4.12) to
ompute an updated value, 
onverges to a reasonable estimate relatively rapidly.As an example, 
onsider the bound-
rash division for � 0.5-mm parti
les whi
hEq. (4.11) predi
ts will o

ur at about thirty asteroid radii. For this distan
e, a
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ollision takes pla
e when e = e
rash = 29=30 � 0:97 for whi
h f2(0:97) � 0:59!Thus instead of o

urring at 30 asteroid radii, a single iteration of Eq. (4.12)predi
ts that the division should happen at about 18 asteroid radii; a few moreiterations show that the division is a
tually nearer to 14RA, whi
h is in goodagreement with Figs. 4.8 and 4.9. The surprisingly large 
hange in f2(e
rash) fore
rash <� 1 has its origins in the fa
t that radiation pressure takes a long time tofurther in
rease the e

entri
ity of an already highly-e

entri
 orbit.To make our results more useful, we instead solve for the minimum-sized par-ti
le found in an asteroid's neighborhood by applying Eq. (4.12), and employingEqs. (4.1) and (4.4) to return to more familiar dimensional units. We �nd thatparti
les satisfying the following inequality� rg1 
m� <� � 1120f(e
rash)�� r1RA�1=2�MAmphitriteMAsteroid �1=3�2:55AUa �1=2�Qpr1:0 ��2:38 g 
m�3� � (4.14)are removed from 
ir
um-asteroidal orbit. This formula is appli
able only forstrong radiation pressure where the bound-
rash division exists (see Figs. 4.8through 4.10), roughly where 
 >� 1. We �nd for Gaspra that, outside of 10RA,no parti
les with rg <� 0:45 
m should be found and at Galileo's 
y-by distan
eof � 200RA, all parti
les with rg <� 1:4 
m should be absent. Subsequent to thesubmission of this work (Hamilton and Burns 1992), Gr�un et al. (1992) reportedthat Galileo's dust instrument, sensitive to parti
les larger than 0:1�m, dete
tedno hits during its 
y-by of Gaspra. There were also no dete
tions during the Ida
y-by (E. Gr�un 1993, private 
ommuni
ation).
4.5.3 Crash-Es
ape DivisionAlthough the 
riteria des
ribed in the two pre
eding se
tions de�ne the mostinteresting boundaries, namely those that separate regions where parti
les 
anfreely orbit from regions where they 
annot, we now derive, for 
ompleteness, anapproximate argument to des
ribe the 
urve separating orbits that 
rash fromthose that es
ape. Unlike the boundaries dis
ussed in the previous se
tions, herethere is no ni
e theory to appeal to so we make the following somewhat arbitrary
hoi
e. We say that if a highly-perturbed parti
le 
an 
omplete a single orbitaround the asteroid, its eventual fate will be to 
rash into the asteroid. Whilethis is not always true (some orbits near the a
tual boundary 
omplete a fewloops before es
aping), it does apply to most of our numeri
al results, espe
iallythose for strong radiation pressure. We approximate further by saying that ifour parti
le has enough \energy" to 
omplete a quarter of a hypotheti
al 
ir
ularorbit, it will 
omplete a full loop around the asteroid and hen
e will eventually
rash. This statement is 
ertainly approximate sin
e the path a
tually followed
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by the parti
le is 
ertainly not 
ir
ular; a look at the shape of the orbits in Figs.4.3 and 4.6, however, shows that the approximation is fairly reasonable. In any
ase, parti
les with signi�
antly less energy have no hope of swinging around theasteroid, while those with more \energy" should be able to. Mathemati
ally, weset the right-hand side of Eq. (4.3), evaluated at (x; y; z) = (dCE; 0; 0) with vrotas given by Eq. (4.8), equal to the same expression evaluated at (0; dCE; 0) withvrot = 0. The result is:3dCE = 2(3dCE)1=2 
os i+ 2d2CE + 6
dCE ; (4.15)where dCE is the distan
e to the division between 
rash and es
ape orbits. Wenumeri
ally solve Eq. (4.15) to obtain the last de�ning 
urve whi
h is plotted inFigs. 4.8, 4.9, and 4.10 as a solid, lightweight 
urve. This approximate divisionagrees remarkably well with the a
tual boundary for strong radiation pressure,deviating signi�
antly only for large orbits along whi
h the negle
ted tidal andCoriolis a

elerations are important.
4.6 Dis
ussionThe above 
al
ulations and those of other groups have been 
arried out not somu
h to solve new 
elestial me
hani
s problems but rather to address a pra
-ti
al question: will the 
ir
um-asteroidal environment be hazardous to a 
y-byspa
e
raft? A

ordingly, a reader might anti
ipate that we would 
on
lude this
hapter with a probability 
al
ulation determining the odds of �nding debris ofvarious types in the asteroid's neighborhood. Unfortunately su
h 
al
ulations arefraught with un
ertainty sin
e they involve 
ompli
ated supply and loss me
h-anisms, many of whi
h are poorly 
onstrained. We therefore 
ontent ourselveswith a qualitative des
ription of this problem, summarizing possible supply andloss pro
esses.As pointed out in Chapter 2, by Chauvineau and Mignard (1990a), and bymany others, the distan
e within whi
h 
o-planar prograde material 
an remaintrapped for short periods about an asteroid 
ir
ling the Sun is roughly half theHill radius; for 
o-planar retrograde parti
les the size in
reases to about a fullHill radius. In extending these ideas to three dimensions, we showed in Se
tion2.6.2 that bound out-of-plane material 
an only rise to about two-thirds of aHill radius; we used these results to de�ne a stability surfa
e within whi
h boundorbiting material might be found. This surfa
e overestimates the zone of stability,however, be
ause nearly all unmodeled pro
esses, some of whi
h operate on shorttimes
ales and others that take ages, are destabilizing. The former dominate,sin
e they will overwhelm 
ontinuous supply me
hanisms, whi
h a
t on longertimes
ales. A

ordingly, the fo
us of Chapters 2, 3, and this one has been to
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dis
uss the e�e
ts that 
ause 
hanges to the stability of orbits in time intervals
omparable to the asteroid's orbital period (
f. Burns and Hamilton 1991).In assessing the importan
e of an asteroid's ellipti
al orbit on the size of thestability zone, we dis
overed that the dimensions of the zone are roughly pro-portional to the minimum asteroid-Sun distan
e. Sin
e the e�e
ts of an ellipti
orbit 
an be quanti�ed, the safety of a passing spa
e
raft 
an be assured simplyby avoiding an asteroid's 
al
ulated stability zone. We also found that radiationpressure was remarkably e�e
tive in sweeping small parti
les rapidly out of the
ir
um-asteroidal environment. These grains would normally be expe
ted to bethe most numerous and, sin
e the largest of them 
an severely damage a spa
e-
raft, they pose the greatest threat to a 
y-by mission. Sin
e small grains areremoved mu
h more rapidly than they are resupplied, however, our results de�nea region of spa
e in whi
h small orbiting debris will not be found.Many loss me
hanisms operate over mu
h longer times
ales. In this 
ategorywe in
lude the long-term e�e
t of the gravitational tugs of Jupiter and the otherplanets (Chauvineau and Mignard 1990b) as well as 
lose approa
hes of otherasteroids whi
h 
an disrupt a binary pair (Chauvineau et al. 1991). These e�e
ts
ause parti
les within the stability zone de�ned above to es
ape, but their eÆ-
ien
y is 
riti
ally dependent on the unknown rate at whi
h supply me
hanismspopulate the stability zone. Other long-term loss pro
esses { notably Poynting-Robertson drag, 
atastrophi
 fragmentation and sputtering { a
t most e�e
tivelyon small grains. These grains are more eÆ
iently removed by radiation pressure;
ollisions, for example, set lifetimes at � 104 � 105 years for parti
les betweentenths of millimeters and a few 
entimeters in radius while radiation pressuretypi
ally removes su
h grains in only a few years. The important point to makeis that all of these loss pro
esses 
ause the a
tual region of spa
e �lled by stableorbits to be smaller than a simple 
ir
ular three-body model would suggest.Several me
hanisms (Weidens
hilling et al. 1989, Burns and Hamilton 1991)might supply 
ir
um-asteroidal satellites or debris: i) primordial 
o-a

retionpro
esses like those that are believed to have produ
ed most planetary satellites;ii) formation in a nearly 
atastrophi
 
ollision like the event thought to havegenerated Earth's Moon; iii) 
apture of interplanetary debris within the asteroid'sstability zone; iv) a 
ontinuous 
ux of impa
t eje
ta leaking o� the asteroid itselfas the latter is bombarded by mi
rometeoroids; and v) similar eje
ta leaving anasteroidal \feeder" satellite. The last of these is thought to be the most feasiblesupplier of 
ir
um-asteroidal debris, sin
e a signi�
ant fra
tion of the eje
ta 
anremain trapped in this 
ase in 
ontrast to me
hanism iv). Unfortunately it is alsothe least 
al
ulable!Sin
e none of these pro
esses 
an be quanti�ed well and sin
e de�nitive ob-servations of life-threatening debris 
an not be made from the ground, missionplanners have been quite anxious about where in the vi
inity of an asteroid aspa
e
raft 
ould safely 
y. Clearly this is a very diÆ
ult engineering question.
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Nonetheless, within the assumptions of the models, the re
ent resear
h sum-marized above shows that regions beyond a few hundred asteroid radii will not
ontain stably trapped parti
les and that small parti
les will be entirely absentfrom the asteroid's vi
inity. In addition, it is en
ouraging that no s
hemes seem
apable of populating the most distant stable orbits. Nevertheless, when enteringunknown territory, one always has a nagging worry that something was ignored,perhaps a new me
hanism to stabilize orbits or one to eÆ
iently generate distantmaterial. For that reason this Ph.D. 
andidate, at least, has greeted the un-s
athed 
ight of the Galileo spa
e
raft past 951 Gaspra and 243 Ida, at distan
esof � 230RA and � 170RA, respe
tively, with sighs of immense relief.



Chapter 5
Orbital Perturbation Theory1
5.1 General Remarks on Dust and OrbitalPerturbation TheoryAlthough dust parti
les 
ontain only a tiny fra
tion of the mass in orbit about aplanet, they far outnumber their ma
ros
opi
 
ompanions. In planetary systemsthese tiny motes are ubiquitous, both interspersed with ma
ros
opi
 bodies in op-ti
ally thi
k rings and organized into tenuous stru
tures of their own. Sensitivedete
tors aboard spa
e
raft have dis
overed dust strewn throughout planetarysystems, albeit in quantities too faint to be visible (Gurnett et al. 1983, 1987,1991). Clearly the overall distribution of dust in 
ir
umplanetary orbits is 
om-plex; yet the distribution, and the fa
t that it 
an indi
ate the presen
e of larger,perhaps unseen, sour
e bodies is of interest to diverse groups of resear
hers (seeChapter 1). A ne
essary prerequisite for obtaining su
h knowledge is a goodunderstanding of the orbital dynami
s of an individual dust grain.Mi
ron-sized dust grains moving along 
ir
umplanetary orbits are subje
t tostrong non-gravitational perturbations due to s
attering of solar photons and dueto Lorentz for
es arising from the planet's rotating magneti
 �eld. The e�e
t ofthese perturbations on an orbiting dust parti
le 
an be determined by in
ludingthe perturbation for
es in the left-hand side of Newton's se
ond law F = ma(see Chapter 4). In general this equation 
annot be solved analyti
ally, so we arefor
ed to resort to approximate or numeri
al methods (see Chapters 2{4, Horanyiet al. 1992, S
ha�er and Burns 1992 among others). In many 
ases, however, weare interested not in the detailed information of how a parti
le's position andvelo
ity 
hange with time but only in how the 
hara
ter of its orbit varies. Inthese 
ases, the six os
ulating orbital elements (a; e; i;
,!, and �) de�ned in Figs.1This 
hapter is based on the paper: Hamilton, D.P. (1993), Motion of dust in a planetarymagnetosphere: Orbit-averaged equations for oblateness, ele
tromagneti
, and radiation for
eswith appli
ation to Saturn's E ring. I
arus 101, 244{264 [
opyright 1993 by A
ademi
 Press,In
.℄
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5.1 and 5.2 are parti
ularly useful. Other 
hoi
es for these elements, espe
iallythe sixth, are also possible (Danby 1988, p. 201). We shall often use M � nt;the mean anomaly, where n = (GMp=a3)1=2 is the parti
le's mean motion, t isthe time measured from the moment of peri
enter passage, G is the gravitational
onstant, and Mp is the planetary mass.If the perturbation for
es are small 
ompared to the planet's gravitationalattra
tion, the �rst �ve os
ulating elements will 
hange slowly over times
alesmu
h longer than the parti
le's orbital period. Therein lies the primary advantageof the orbital elements: be
ause they are 
onne
ted to the geometry of the orbitand be
ause they vary slowly with time, the os
ulating elements allow a dire
tvisualization of the orbital history of a perturbed body in a way that far surpassesthat possible with a set of positions and velo
ities. Take, for example, the 
ase ofan orbit around an oblate planet whi
h we will dis
uss below in Se
tion 5.2. It iswell known that the orbit-averaged solution to this problem is, to high a

ura
y,simply a pre
essing ellipse (Danby 1988, p. 345). The orbit retains its size, shape,and in
lination o� the equatorial plane while its node regresses and its peri
enterpre
esses, ea
h at a 
onstant rate. By 
al
ulating these rates from equations givenbelow and using Figs. 5.1 and 5.2, one 
an easily pi
ture the resulting orbitalevolution. Attaining the same pi
ture from positions and velo
ities as fun
tionsof time requires more 
omputation and 
onsiderably greater insight!We note that, te
hni
ally, the os
ulating elements di�er slightly from geo-metri
 elements whi
h des
ribe the true shape of the orbit; these deviations areof order the dimensionless ratio (�) of the perturbing for
e to gravity. For anoblate planet, therefore, the dis
repan
ies are of order J2 (see Greenberg 1981,Borderies and Longaretti 1987). These di�eren
es are espe
ially important whentrue e

entri
ities and in
linations are small 
ompared to � (e.g., the geometri
ally
ir
ular orbit dis
ussed by Greenberg, 1981, has a small os
ulating e

entri
ityand appears as if it is always at its os
ulating peri
enter), and when other per-turbations do not strongly a�e
t an element. Similarly, the rate of 
hange of themean anomaly is unequal to the mean motion for perturbed orbits; the devia-tions are of order � and are due both to real 
hanges in a parti
le's speed as wellas di�eren
es between the os
ulating and geometri
 elements. Be
ause we areprimarily interested in how a parti
le's orbit evolves, we will not use the meananomaly perturbations in this 
hapter, but merely in
lude them in the equationsto follow for 
ompleteness.The fa
t that, for modest perturbations, the os
ulating orbital elements varyslowly in time is useful both numeri
ally and analyti
ally be
ause it allows thee�e
ts of a perturbation to be averaged over a single (assumed 
onstant) Keple-rian orbit. The resulting averaged expressions des
ribe how the os
ulating orbitalelements 
hange in time and are a

urate to �rst-order in �. In the following se
-tions we treat the strongest perturbation for
es a
ting on 
lose 
ir
umplanetarydust grains { higher-order gravity, radiation pressure, and the ele
tromagneti
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Figure 5.1 View of an ellipti
al orbit in the orbital plane. Three of the orbitalelements { the semimajor axis a, e

entri
ity e, and true anomaly � { are depi
ted.Simple geometry shows that the orbit 
enter is o�set from the planet by a distan
eae, the semiminor axis is given by b = a(1� e2)1=2 and the semi-latus re
tum byl = a(1� e2).
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Figure 5.2 Three additional orbital elements that de�ne the orientation of anellipti
al orbit relative to a �xed plane and a referen
e dire
tion in that plane.The longitude of the as
ending node, 
, measures the angle from the referen
edire
tion to the point where the orbit's plane interse
ts the referen
e plane; theargument of peri
enter, !, de�nes the angle between that interse
tion point andperi
enter (the 
losest approa
h of the orbit to the 
entral body); and the in
lina-tion, i; measures the angle between the orbital and referen
e planes. In
linationis de�ned su
h that 0o � i � 180o.
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for
e { and derive the appropriate orbit-averaged equations.
5.2 Higher-Order GravityTreatments of the orbital perturbations arising from non-spheri
al terms in aplanet's gravitational �eld 
an be found in many texts (e.g., Danby 1988), butwe in
lude a short dis
ussion of them in this se
tion both for 
ompleteness andto provide a simple example of the orbit-averaging pro
ess that 
an be 
omparedwith the more 
ompli
ated ones to follow.Be
ause a planet's spin is responsible for most of the distortion of its gravity�eld, the �eld 
an be well represented by adding an axially symmetri
 perturbingpotential

VGR = GMpr 1Xj=2 Jj�Rpr �jPj(
os �); (5.1)to the standard point sour
e potential; the perturbing for
e is obtained by takingthe negative gradient: FGR = �mgrVGR: Throughout this 
hapter the subs
ripts\p" and \g" stand for \planet" and \grain," respe
tively; here Rp is the planet'sradius and mg is the mass of the dust grain. The Pj(x) are Legendre polynomialsand the Jj are dimensionless 
oeÆ
ients that 
an be evaluated for a parti
ularplanet to des
ribe its gravity �eld.To derive the �rst-order, orbit-averaged equations, we rewrite the potentialEq. (5.1) in terms of the orbital elements and average it over time to obtainthe negative of the disturbing fun
tion. Inserting the disturbing fun
tion intothe potential form of the planetary equations (Danby 1988, p. 336) we �nd thefollowing equations for the variation of the elements:�dadt�J2 = 0; (5.2)�dedt�J2 = 0; (5.3)�didt�J2 = 0; (5.4)�d
dt �J2 = � 3nJ2R2p2a2(1� e2)2 
os i; (5.5)�d!dt �J2 = 3nJ2R2p2a2(1� e2)2�2� 52 sin2 i�; (5.6)�dMdt � n�J2 = 3nJ2R2p2a2(1� e2)3=2�1� 32 sin2 i�; (5.7)
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where the angular bra
kets denote orbit-averaged quantities (
f. Danby 1988, p.347). Te
hni
ally, ea
h of the orbital elements on the right-hand side of Eqs.(5.2{5.7) should be en
ased in angled bra
kets as we ignore their short-period
u
tuations, but these bra
kets will be omitted for 
larity sin
e we refer only tothe averaged elements throughout this 
hapter.Noti
e that Eqs. (5.2{5.7) are trivially integrable even though the full problemis not (Kozai 1959). The �rst three expressions imply that the elements a; e, andi are 
onstant and, 
onsequently, the right-hand sides of the �nal three equationsare also �xed. Thus the angles 
 and ! 
ir
ulate, having values that 
hangelinearly in time. Sin
e the 
ir
ulation times are � (a=Rp)2=J2 times longer thanthe orbital period, the solution to Eqs. (5.2{5.6) is simply a slowly rotatingellipse.The �nal equation merely expresses the average rate at whi
h a parti
le 
om-pletes a single os
ulating orbit from peri
enter to peri
enter; the rate di�ersslightly from the mean motion both be
ause the parti
le's average angular speedis 
hanged and be
ause the position of peri
enter slowly shifts. For equatorialorbits, the right-hand side of Eq. (5.7) is positive and the parti
le 
ompletes itsradial peri
enter-to-peri
enter os
illation slightly faster than its unperturbed Ke-plerian 
ounterpart. This is an expe
ted result sin
e, in the equatorial plane,planetary oblateness augments the inward pull of point-sour
e gravity; the in-
reased for
e e�e
tively raises the os
illator's \spring 
onstant" and hen
e itsfrequen
y.
5.3 Radiation PressureFor mi
ron-sized grains in 
ir
umplanetary orbit, solar radiation pressure is astrong perturber. In its simplest form, radiation pressure imparts a for
e on agrain given by:

FRP = ��GM�R2 ŝ; (5.8)where M� is the solar mass, R is the Sun-planet distan
e, ŝ is a unit ve
torpointing from the planet toward the Sun, and � is the dimensionless ratio of theradiation for
e to solar gravity given by Eq. 4.1.This simple expression ignores the anisotropy of re-radiated photons (Poynting-Robertson drag), grain rotation (Yarkovsky e�e
t), the planetary shadow, and
ompli
ations arising from the rotation and �nite angular size of the Sun. Thesee�e
ts are quite small 
ompared to the main for
e of radiation pressure and
an usually be negle
ted in a �rst approximation. Dissipative for
es, su
h asPoynting-Robertson drag, however, 
an be important even if they produ
e slow
hanges be
ause they a�e
t the semimajor axis, an element unperturbed by dire
tradiation pressure. Similarly, e�e
ts of the planet's shadow makes it possible for
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radiation pressure to alter the semimajor axis of an orbit (Mignard 1984, Horanyiand Burns 1991). Over the short times 
onsidered here, however, the weak dragfor
es 
annot 
ause appre
iable orbital evolution; and we 
an ignore the shadowe�e
ts sin
e these are small and periodi
.Orbit-averaged solutions to a parti
le moving around a spheri
al planet sub-je
t to that planet's gravity and solar radiation pressure have been derived byseveral authors, in
luding Burns et al. (1979) and Chamberlain (1979), both ofwhom used Gauss' form of Lagrange's planetary equations for a for
e 
onstantin magnitude and dire
tion, and Mignard (1982), who used a disturbing fun
tionapproa
h and in
luded the e�e
ts of solar motion. All of the above authors didtheir analysis in the plane de�ned by the orbital motion of the planet aroundthe Sun (hereafter 
alled the e
lipti
 plane2) and measured their in
linationsfrom that plane. In the 
ase of motion about an oblate planet, however, theplanet's equatorial plane is also important - this is espe
ially true sin
e mostsour
es of 
ir
umplanetary dust (planetary rings and inner satellites) reside nearthis plane. It is natural, therefore, to seek an orbit-averaged solution to the or-bital evolution 
aused by radiation pressure that 
an be expressed in the planet'sequatorial plane; this is equivalent to adding a non-zero planetary obliquity, 
,to the previously derived solutions. In this se
tion we dis
uss two approa
hes toobtaining equatorial equations and then we derive analyti
al expressions valid forall obliquities.One approa
h, motivated by the fa
t that orbit-averaged equations valid inthe e
lipti
 plane are already available (Mignard 1982), is to simply translatethese equations into the equatorial plane; this task 
an only be a

omplished ifthe orbital elements themselves 
an be 
onverted. Sin
e the new set of elementsdes
ribe the same ellipti
al orbit from a di�erent referen
e plane, only the angles(i;
, and !) that de�ne the orbit's orientation relative to the plane will be altered(Fig. 5.2) - the other elements (a; e; and �) will be identi
al in both frames. Weseek, therefore, fun
tions that relate the new orientation angles to the old. These
an be obtained either by simple rotations or from spheri
al trigonometry. As seenfrom the planet's 
enter, the equatorial plane, the e
lipti
 plane, and a parti
le'sorbital path all appear as great 
ir
les on the sky (Fig. 5.3); for simpli
ity we have
hosen to measure ea
h orbital node from the as
ending node of the e
lipti
 on theequatorial plane. The spheri
al triangle formed by the interse
tions of these great
ir
les impli
itly de�ne the equatorial elements in terms of the e
lipti
 elements.Unfortunately, the expressions resulting from translating to equatorial elementsare 
umbersome enough to defeat the main purpose of orbit-averaging whi
h is toobtain simple equations for analyti
 work. A

ordingly, we try a di�erent ta
k.Sin
e we hope to 
ombine the e�e
ts of radiation pressure with other pertur-bations, we need orbit-averaged expressions referen
ed to the equatorial plane2Here we use the term e
lipti
 somewhat loosely to avoid 
onfusion between the planet andparti
le orbital planes. Stri
tly speaking, the e
lipti
 refers only to Earth's orbital plane.



95

Figure 5.3 The planet's equatorial plane, the e
lipti
 plane, and the dust grain'sorbital plane, ea
h as proje
ted onto the sky from the planet's 
enter. Elementsdes
ribing the orientation of the grain's orbital plane relative to either of thetwo referen
e planes are shown; in ea
h 
ase, the inertial referen
e dire
tion isthe as
ending node of the e
lipti
 on the equatorial plane. Primed quantitiesare elements referen
ed to the e
lipti
 plane, unprimed ones are measured along(or from) the equatorial plane, and 
 is the planet's obliquity. The spheri
altriangle formed by the interse
tions of these three planes impli
itly de�ne one setof elements in terms of the other [(i;
; !)! (i0;
0; !0)℄.
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and to an inertial dire
tion. We 
hoose a right-hand 
oordinate system 
enteredon the planet with x̂ pointing to the as
ending node of the e
lipti
 on the equato-rial plane (Fig. 5.3), ŷ in the equatorial plane, and ẑ along the spin axis. Sin
e, toa good approximation, the Sun is motionless during the time it takes the parti
leto 
omplete a single orbit (this will only be ina

urate for very distant orbits),we 
an average over an orbital period while holding the Sun's position 
onstant.The problem breaks down into three pie
es: 1) determine the response of theorbit to a 
onstant for
e along ea
h of the 
oordinate axes; 2) solve for the Sun'smotion in the equatorial frame; and 3) linearly 
ombine these solutions.Starting the �rst task, we resolve the solar position in the equatorial frame into
omponents with magnitudes sx; sy; and sz, the time-variable values of whi
h willbe determined shortly. The solar position as seen from this frame is then simply:ŝ = sxx̂ + syŷ + szẑ: The perturbing potential VRP is obtained from Eq. (5.8)via the relation FRP = �rVRP . Sin
e the magnitude and dire
tion of radiationpressure 
hanges only slightly over a single orbit of the dust grain, we treat theright-hand side of Eq. (5.8) as a 
onstant and �nd VRP = FRP (sxx+ syy + szz).To average the disturbing fun
tion, �VRP , over time, we �rst need to express the
artesian 
oordinates x; y; z in terms of orbital elements:x = r sin � 
os� = r(
os
 
osu� sin
 sinu 
os i); (5.9)

y = r sin � sin� = r(sin
 
osu+ 
os
 sinu 
os i); (5.10)
z = r 
os � = r sin i sinu; (5.11)where

r = a(1� e2)1 + e 
os � ; (5.12)and u � ! + � is the argument of latitude. Sin
e sx; sy, and sz are nearly
onstant during the time it takes to make a single 
ir
uit around the planet, onlythe following orbital time-averages are needed:
hxi = �32ea(
os
 
os! � sin
 sin! 
os i); (5.13)
hyi = �32ea(sin
 
os! + 
os
 sin! 
os i); (5.14)and

hzi = �32ea sin i sin!: (5.15)
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We note that hyi 
an be obtained from hxi by subtra
ting 90o from the nodein Eq. (5.13) and that all expressions redu
e appropriately if e or i equals zero.Inserting these expressions into the potential formulation of the planetary equa-tions, we obtain (after some algebra) the following expressions for the variationof the orbital elements: �dadt�RP = 0; (5.16)�dedt�RP = �(1� e2)1=2[sx(
os
 sin! + sin
 
os! 
os i)+sy(sin
 sin! � 
os
 
os! 
os i)� sz 
os! sin i℄; (5.17)�didt�RP = �e(1� e2)1=2 (sx sin
 
os! sin i�sy 
os
 
os! sin i+ sz 
os! 
os i); (5.18)�d
dt �RP = �e(1� e2)1=2 (sx sin
 sin!�sy 
os
 sin! + sz sin! 
ot i); (5.19)�d!dt �RP = �(1� e2)1=2e [sx(
os
 
os! � sin
 sin! 
os i)

+sy(sin
 
os! + 
os
 sin! 
os i) + sz sin! sin i℄� 
os i�d
dt �RP ; (5.20)�dMdt � n�RP = ��(1 + e2)e [sx(
os
 
os! � sin
 sin! 
os i)+sy(sin
 
os! + 
os
 sin! 
os i) + sz sin! sin i℄: (5.21)Here 2�=(3n) = �M�a2=(MpR2) is the ratio of the radiation for
e to the planet'sgravity at a given semimajor axis. In terms of previous expressions � = 3=(2�0)in Chamberlain (1979)'s notation and �(1� e2)1=2 = 3HF=(2m�) in Burns et al.(1979)'s notation. Eqs. (5.16{5.21) are fully three-dimensional, valid for alle

entri
ities and in
linations.It remains only to determine the 
oeÆ
ients sx; sy, and sz. Imagine a rotatinge
lipti
 
oordinate system su
h that the Sun remains �xed along the xR-axis. Ingeneral, at time t = 0, the Sun is lo
ated at an angle Æ from the inertial referen
edire
tion in Fig. 5.3. To �nd the 
oordinates of a unit ve
tor pointing toward theSun in the equatorial frame, we apply two rotations: �rst a rotation of �n�t� Æaround the normal to the e
lipti
 ba
k to the mutual node, then a rotation
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around the inertial dire
tion by minus the obliquity to align the referen
e planes.In matrix notation, the transformation is:ŝ = Rx(�
)Rz(�n�t� Æ)x̂R; (5.22)where Rx(�) and Rz(�) are rotation matri
es around the x and z axes, respe
tively(see Danby 1988, p. 425). Performing the multipli
ation, we �nd:sx = 
os(n�t+ Æ); (5.23)

sy = 
os 
 sin(n�t+ Æ); (5.24)and sz = sin 
 sin(n�t+ Æ): (5.25)Noti
e that for 
 = 0; n� = 0; Æ = 0, we have sx = 1; sy = sz = 0 and Eqs. (5.16{5.20) redu
e to those of Burns et al. (1979) or Chamberlain (1979). Mignard(1982)'s equations are obtained after a little trigonometry, by letting 
 = 0; Æ = 0and employing the transformation 
 = 
R+n�t. Here 
R is Mignard's longitudeof the nodes whi
h di�ers from 
 be
ause the former is measured from a dire
tionthat rotates at an angular speed n�. With a little trigonometry, we �nd thatEqs. (5.16{5.21 and 5.23{5.25) are also in agreement with expressions derivedindependently by Smyth and Mar
oni (1993).We have derived Eqs. (5.23{5.25) last to emphasize the fa
t that the orbit-averaging 
an be performed for arbitrary sx; sy, and sz as long as their timedependen
e is slow 
ompared to the parti
le's orbital period. For example, we
ould easily treat the problem of motion around a planet whi
h orbits the Sunon an ellipti
al path by simply repla
ing the argument in the Rz rotation matrixin Eq. (5.22) by an expression valid for the Sun's non-uniform rate. Of 
ourse,in su
h a 
ase it would also be ne
essary to add a time dependen
e to � to allowfor the more important fa
t that radiation pressure weakens as the planet movesaway from the Sun (
f. dis
ussion following Eq. 4.10).
5.4 Ele
tromagneti
 For
es5.4.1 General RemarksThe rings and small satellites of the outer planets lie 
lose to their primaries inenvironments 
hara
terized by swarms of energeti
 
harged parti
les trapped bystrong magneti
 �elds. Immersed in this sea of parti
les, a dust grain qui
klya
quires an ele
tri
 
harge by a number of me
hanisms (Goertz 1989), the mostimportant of whi
h are the ele
tron and ion 
harging that o

ur as the grain
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sweeps up these gyrating parti
les. Un
harged dust grains are impa
ted by ele
-trons more frequently than by ions be
ause the thermal speed of the former farex
eeds that of the latter - in essen
e, the ele
trons get to the grains before theions do. As a grain be
omes more negatively 
harged, it is able to ele
trostati
allyward o� some ele
trons while simultaneously attra
ting a 
omparable number ofions until a balan
e is attained (Burns and S
ha�er 1989, their Fig. 1). For typi
almagnetospheri
 parameters and mi
ron-sized grains, equilibrium is established ina fra
tion of an orbital period. The addition of other 
harging me
hanisms, su
has photoele
tron 
urrents and se
ondary ele
tron emission, usually only perturbsthe equilibrium grain 
harge, although for high se
ondary yields su
h pro
esses
an lead to multiple equilibria (Meyer-Vernet 1982). Finally, even the equilib-rium 
harge may gradually 
hange as the grain's orbit takes it into regions whereplasma populations di�er and as the grain's velo
ity relative to the plasma varies(
f. Burns and S
ha�er 1989). Sto
hasti
 variations of the grain's 
harge, whi
hare generally relatively small and o

ur swiftly, have little e�e
t on orbital evo-lution (S
ha�er and Burns 1994).Despite the 
omplexity of these 
harging me
hanisms, it is often a good ap-proximation to assume that the equilibrium 
harge on a grain is 
onstant. Take,for example, the orbital elements displayed in Fig. 5 of Horanyi et al. (1992)whi
h show an e

entri
 orbit that ranges from 1 out to 7 saturnian radii. Al-though the relative velo
ity between the grain and the 
o-rotating plasma variestremendously, 
hanges in the equilibrium potential are limited to �5%. This isin agreement with Burns and S
ha�er (1989)'s Fig. 1 whi
h shows a weak de-penden
e of the equilibrium potential on velo
ity. Potentially more serious arethe 
u
tuations in a grain's 
harge 
ause by spatial and temporal variations inthe density and temperature of the magnetospheri
 plasma. Be
ause the plasmadensity in the E ring is relatively large, a grain's 
harge adjusts to its surround-ings mu
h more rapidly than it orbits the planet (Horanyi et al. 1992). If wemake the reasonable assumption of 
ylindri
ally symmetri
 spatial variations inthe plasma parameters, it 
an be shown, with the formalism to be introdu
edbelow, that the semimajor axis and e

entri
ity of the grain's orbit 
hange inalmost the same way as they do for a 
onstant 
harge. Sin
e the purpose of thisse
tion is to a

ount for the �rst-order e�e
ts of the Lorentz for
e, hen
eforth wewill make the simplifying assumption of 
onstant 
harge. In Chapter 6, we willreturn to 
omment further on the validity of this approximation for the spe
i�

ase of Saturn's E ring.Planetary magneti
 �elds are responsible not only for trapping the ele
tronsand ions that 
harge up a dust grain, but also for the resulting orbital pertur-bations su�ered by su
h grains. In the standard model, these �elds are assumedto arise from two sour
es: 
urrents interior to a given radial distan
e from theplanet and 
urrents exterior to this distan
e; 
onne
tions between the regionsare ignored. Be
ause of the assumed la
k of 
urrents in the region of interest
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(J � r � B = 0), the magneti
 �eld 
an be derived from a s
alar magneti
potential � in analogy with the ele
tri
 potential. The j; k 
omponent of thes
alar magneti
 potential in the frame rotating with the planet is given by theusual spheri
al harmoni
 expansion:

�j;k = Rp�Rpr �j+1[gj;k 
os(k�R) + hj;k sin(k�R)℄P kj (
os �); (5.26)where j is an integer ranging from one to in�nity, k is an integer ranging fromzero to j, and �R = � � 
pt, with the subs
ript 'R' denoting the rotating 
o-ordinate system. Here � and � are the angular spheri
al 
oordinates de�ned inthe non-rotating frame. The gj;k and hj;k are �eld 
oeÆ
ients with units of gausswhi
h 
an be evaluated for ea
h planet (for Saturn see Connerney et al. , 1984;S
ha�er and Burns, 1992, tabulate values for the giant planets and give additionalreferen
es). In Eq. (5.26) we have ignored the (usually small) 
ontributions fromthe exterior 
urrents; their e�e
ts 
an be readily in
luded (A
u~na et al. 1983a)when ne
essary (e.g., beyond a few planetary radii in the Jovian system). TheS
hmidt-normalized asso
iated Legendre polynomials P kj (x) are de�ned in termsof the regular Legendre polynomials; the relevant expressions 
an be found inS
ha�er and Burns (1992). Finally, the magneti
 �eld 
ontribution from the j; k
omponent of the potential is Bj;k = �r�j;k; (5.27)while the total �eld in the rotating frame is obtained by summing all of theindividual 
omponents
B = 1Xj=1 jXk=0Bj;k: (5.28)

Two ways exist to obtain the Lorentz for
e valid in a non-rotating frame
entered on the planet. Although the methods give identi
al results, they are
on
eptually quite di�erent and it is instru
tive to go through ea
h argument.In the �rst method, we 
al
ulate the for
e in the rotating frame as FEM =q(vrel=
 � B) with vrel = v � (
p � r), where vrel is the orbital velo
ity ofthe dust grain relative to the rotating frame, v is its velo
ity relative to a non-rotating planeto
entri
 
oordinate system, 
p is the spin ve
tor of the planet, 
 isthe speed of light, and q is the 
harge on the grain. Employing spe
ial relativityto transform the for
e ba
k to the non-rotating frame, we �nd that it is unalteredto �rst-order in v=
 and hen
e:FEM = q
f[v � (
p � r)℄�Bg: (5.29)
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The pre
eding dis
ussion makes it quite 
lear that the Lorentz for
e vanishesfor an equatorial 
ir
ular orbit at the syn
hronous distan
e: there the velo
ityrelative to the magneti
 �eld is zero and thus no for
e is present.The se
ond way to treat the problem is to transform the magneti
 �eld fromrotating 
oordinates to non-rotating ones before 
al
ulating the for
e. Utilizingspe
ial relativity again, we �nd that the magneti
 �eld is un
hanged (negle
tingterms of order 
pr=
 << 1), and that an ele
tri
 �eld E = �(
p � r) � B ispresent in the non-rotating frame. This is the so-
alled \
o-rotational ele
tri
�eld" dis
ussed by Burns and S
ha�er (1989) among others. The Lorentz for
eis then 
al
ulated from FEM = q[E+ (v=
�B)℄ and Eq. (5.29) is obtained on
emore. This dis
ussion highlights the role of the magneti
 �eld; it illustrates thatpart of the Lorentz for
e does no work and, as we shall see, is less able to in
uen
ethe orbital elements.Although the magneti
 �eld 
an be expressed as a gradient of a potential, theele
tromagneti
 for
e, be
ause of its velo
ity dependen
e, 
annot. We are there-fore unable to use the disturbing fun
tion approa
h that was applied to radiationpressure and instead must use Gauss' form of the planetary equations. Theseequations are given in orbital 
oordinates where the a

eleration at a parti
u-lar point on the orbit is resolved into orthogonal 
omponents whi
h are radial(R̂ = r̂), normal to the orbit (N̂), and tangential (Ĉ) to a 
ir
le in the orbitalplane that passes through the point. The Lorentz for
e, Eq. (5.29), is written inequatorial spheri
al 
oordinates whi
h are 
onverted into the orbital 
oordinatesby use of Eqs. (5.9{5.11) and the following expressions:

�̂ = �
os isin �N̂� sin i 
osusin � Ĉ; (5.30)and
�̂ = �sin i 
osusin � N̂+ 
os isin � Ĉ: (5.31)Carrying out the transformation and keeping tra
k of all terms, we �nd that thenormal, radial, and tangential 
omponents of the Lorentz a

eleration 
an berepresented as:

N = q
mg��vrB� sin i 
osusin � + vrB� 
os isin � �BrvC +Br
pr 
os i�; (5.32)
R = q
mg��vCB� 
os isin � � vCB� sin i 
osusin � +B�
pr sin ��; (5.33)

C = q
mg�vrB� 
os isin � + vrB� sin i 
osusin � +Br
pr sin i 
osu�; (5.34)
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where vr and vC are the radial and 
ir
ular parts of the velo
ity and the Bi arethe appropriate magneti
 �eld 
omponents. These three equations are valid forany magneti
 �eld. Finally we need to express the radial and 
ir
ular velo
ity
omponents of a Keplerian ellipti
al orbit in terms of the orbital elements; from
onservation of orbital energy and angular momentum we have:

vr = �GMpa �1=2 e sin �(1� e2)1=2 ; (5.35)and
vC = �GMpa �1=2 1 + e
os�(1� e2)1=2 : (5.36)

5.4.2 The Aligned DipoleWe begin by dis
ussing the axisymmetri
 (k = 0) terms in the magneti
 �eldexpansion given by Eqs. (5.26{5.28) as they have no time dependen
e and 
anbe readily orbit-averaged. Of these, the j = 1 term is the strongest so we fo
uson it �rst. The magneti
 �eld produ
ed by this g1;0 term is a spin-axis aligneddipole whi
h has the following 
omponents:
Br = 2g1;0�Rpr �3 
os �; (5.37)
B� = g1;0�Rpr �3 sin �; (5.38)

B� = 0: (5.39)for 
onvenien
e, and in analogy with Eq. (4.1), we de�ne a dimensionless param-eter, L, as a rough measure of the strength of the ele
tromagneti
 for
e relativeto the planet's gravity. We take the g1;0 term of the magneti
 �eld given in Eqs.(5.37{5.39), evaluate Eq. (5.29) in the equatorial plane with v = 0, and divideby the planet's gravitational for
e (note this is similar to the parameter � de�nedby S
ha�er and Burns 1987). The result is:
L = qg1;0R3p
p
GMpmg : (5.40)Inserting the for
e resulting from Eqs. (5.37{5.39) into the planetary perturbationequations and performing the time-averages we obtain:�dadt�g1;0 = 0; (5.41)
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�dedt�g1;0 = �nL4 e(1� e2)1=2 sin2 i sin(2!); (5.42)�didt�g1;0 = nL4(1� e2)1=2 e2 sin i 
os i sin(2!); (5.43)�d
dt �g1;0 = nL(1� e2)1=2 �
os i� 1(1� e2)� n
p��; (5.44)�d!dt �g1;0 = nL(1� e2)1=2 �� 
os2 i+ 3 
os i(1� e2)� n
p��; (5.45)�dMdt � n�g1;0 = �2nL: (5.46)These expressions have been simpli�ed from exa
t formulae by dropping termsof high order in e and i. Nevertheless, Eqs. (5.41{5.46) are quite a

urate evenfor very large in
linations and e

entri
ities as we shall soon see.The ele
tromagneti
 for
e, like radiation pressure, makes non-zero 
ontribu-tions to variations in the e

entri
ity and in
lination but these 
ontributionsdepend on powers of sin i and e; they are therefore quite small unless the or-bit under 
onsideration is both highly-e

entri
 and signi�
antly-in
lined. Thus,at least for small in
linations and e

entri
ities, the e�e
t of the planet's dipolarmagneti
 �eld is not unlike that of J2 (the planet's quadrupole gravitational �eld)sin
e both for
es primarily 
ause pre
ession. This 
rude similarity should not besurprising sin
e, at least near the equator plane, both for
es have strengths thatdiminish rapidly with distan
e and dire
tions that are predominantly radial. Forele
tromagnetism, the nodal and apsidal pre
ession rates are dependent on in
li-nation, e

entri
ity, and the semimajor axis as are their J2 
ounterparts. Unlikethe gravitational 
ase, however, the ele
tromagneti
 rates vary 
onsiderably rel-ative to one another for 
ir
ular orbits of di�erent sizes near the equatorial plane(
ompare Eqs. 5.44{5.45 with 5.5{5.6). Close to syn
hronous orbit (n = 
p), forexample, the nodal rate vanishes, while the apsidal rate is zero further from theplanet near the pla
e where 3n = 
p. In
identally, as syn
hronous orbit is ap-proa
hed in the limit (n! 
p; e! 0; i! 0), the Lorentz for
e vanishes as doesthe nodal rate, but the peri
enter rate does not. How 
an a for
e whi
h is zeroall along an orbit 
ause orbital evolution? The solution to this apparent paradoxis, of 
ourse, that it does not; a 
ir
ular orbit has no unique peri
enter so the fa
tthat an ill-de�ned angle fails to vanish is unimportant. For small e

entri
ities,peri
enter exists, the Lorentz for
e is non-zero, and Eq. (5.45) gives the 
orre
tpre
ession rate.
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5.4.3 The Aligned QuadrupoleAs in the gravitational 
ase, in
lusion of the higher-order axisymmetri
 (k = 0)terms in the magneti
 �eld expansion requires that the lower-order terms betreated more 
arefully (i.e., taken out to the next order in L), a task that rapidlyin
reases in algebrai
 
omplexity. For gravity, a treatment in
luding just the J2term is a good approximation be
ause J3 and the other odd harmoni
s are allex
eedingly small for the giant planets, and be
ause the �elds produ
ed by thelarger, even harmoni
s fall o� very qui
kly with in
reasing distan
e. A

ord-ingly, we might hope that higher-order symmetri
 terms in the ele
tromagneti
expansion 
ould be ignored as well. We �nd, however, that the axisymmetri
quadrupole has a non-trivial in
uen
e on orbital dynami
s; its importan
e 
anbe easily understood by noting that near the equator, the radial 
omponent ofthe dipole magneti
 �eld is small (of order i). In 
ontrast, the quadrupole �eldis primarily radial and its magnitude a
tually ex
eeds the radial dipolar �eld fororbits with small in
linations. When 
rossed into a transverse velo
ity, the radial�eld produ
es a strong normal for
e whi
h perturbs the in
lination, node andperi
enter; hen
e we expe
t that quadrupole e�e
ts will be important for theseelements. Further expansion to in
lude the symmetri
 o
tupole and higher k = 0terms is unne
essary, as the radial and theta 
omponents of the 
ombined dipoleand quadrupole magneti
 �eld dominate 
ontributions from higher-order terms.Rather than repeating the derivations of Se
tion 5.4.2 for the symmetri
quadrupole term (an arduous task!), we will treat only the 
ase of small in
li-nations whi
h is of the most interest for planetary appli
ations. For in
linationssmaller than 30o, the theta 
omponent of the magneti
 �eld is dominated bythe dipole term and so we ignore the small quadrupole 
ontributions to that
omponent. The radial 
omponent of the quadrupole �eld

Br = 32g2;0�Rpr �4(3 
os2 � � 1); (5.47)however, is important. The largest e�e
t of the radial quadrupole �eld on aslightly in
lined orbit is to produ
e a normal for
e; 
onsequently, we ignore Eqs.(5.33) and (5.34) and 
onsider only Eq. (5.32); this for
e a�e
ts only the in
li-nation, node, and peri
enter derivatives. The �rst two terms of Eq. (5.32) areidenti
ally zero be
ause we have ignored the theta 
omponent of the quadrupole�eld and there is no phi 
omponent. Furthermore, it turns out that the �nal termalso 
ontributes nothing. Performing the mu
h-simpli�ed averaging 
al
ulation,we obtain: �didt�g2;0 � 32nL�g2;0g1;0��Rpa �� n
p� e 
os!(1� e2)5=2 ; (5.48)�d
dt �g2;0 � tan!sin i �didt�g2;0 (5.49)



105
�d!dt �g2;0 � � 
os i�d
dt �g2;0 (5.50)where approximation signs have been used instead of equal signs to remind thereader that these equations represent only part of the quadrupole perturbations,albeit the most important 
ontributions for low-in
lination orbits. In this limit,additional quadrupole perturbations are insigni�
ant when 
ompared to the ef-fe
ts of the aligned dipole.Noti
e that, with a little manipulation, the form of Eqs. (5.48{5.50) is iden-ti
al to the sz 
omponent of the radiation pressure equations (Eqs. 5.18{5.20).This o

urs be
ause both sets of equations arise from small, nearly 
onstant ver-ti
al for
es being applied to an orbit; we will take advantage of this similarityin Se
tion 5.5 to follow. The sin i in the denominators of Eqs. (5.19) and (5.49)simply expresses the fa
t that, for low in
linations, the orbital node is poorlyde�ned and small perturbations 
an for
e large 
hanges in that element.

5.4.4 Asymmetri
 TermsUp to now, we have ignored the non-axisymmetri
 (k 6= 0) terms in the magneti
�eld expansion; this is a good approximation for the almost perfe
tly alignedsaturnian �eld (Connerney et al. 1984), but not for the magneti
 �elds of theother giant planets. Thus non-axisymmetri
 magneti
 �eld terms merit a briefdis
ussion. First of all, we note that asymmetri
 terms are more diÆ
ult to treatthan the symmetri
 ones sin
e the planet's rotation 
auses the �eld's orientationto 
hange rapidly. Typi
ally, a planet's spin period is 
omparable to the orbitalperiod of an inner orbit; for this type of orbit there is not a unique timespanover whi
h to average. In 
ontrast, distant orbits have periods that are so longthat we 
an average the magneti
 �eld �rst over a single spin period and thenover the orbital motion. Following this pro
edure, we �nd that all of the non-axisymmetri
 terms in Eq. (5.26) average to zero (i.e., they give no 
ontributionto orbital evolution in this limit).En
ouraged by this result, we might be tempted to ignore the e�e
ts of thenon-axisymmetri
 terms even 
lose to the planet, arguing that they will onlyindu
e small periodi
 os
illations. For most orbits this is true, but at spe
i�
 lo-
ations orbital and spin frequen
ies are 
ommensurate and the averaging pro
essis invalid (
f. S
ha�er and Burns 1992, Burns et al. 1985). These \Lorentz" res-onan
es 
an be treated by isolating the 
ommensurate terms in Eqs. (5.32{5.34)for use in the planetary equations, but for now we ignore the non-axisymmetri
terms and a

ept the fa
t that the orbit-averaged equations derived in this se
-tion will not be valid near resonant lo
ations. We analyze Lorentz resonan
es inChapter 7.
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5.5 Coupled PerturbationsIn the 
ir
umplanetary environment, all three perturbation for
es dis
ussed above(higher-order gravity, the ele
tromagneti
 for
e, and radiation pressure) 
onspireto perturb the orbits of mi
ron-sized dust grains. Sin
e the for
es are generallysmall, the orbit-averaged equations derived in the previous se
tions 
an be simplysummed to a

ount for the 
umulative e�e
t of all perturbations:�d�dt �total =Xj �d�dt �j; (5.51)
where � is any of the six os
ulating orbital elements. The resulting expressions are
umbersome, but several hundred times faster to numeri
ally integrate than theirNewtonian 
ounterparts. In addition, the output of the Newtonian equations(ve
tor position and velo
ity) must be translated into os
ulating orbital elements.As a demonstration of the validity of our derivations, we 
ompare numeri
alintegration of the Newtonian (Fig. 5.4) and orbit-averaged (Fig. 5.5) equationsfor a 1-mi
ron grain 
harged to -5.6 Volts, approximately the potential expe
tedin the saturnian environment (Horanyi et al. 1992, Fig. 1). The initial 
onditionsin both 
ases are appropriate for a grain laun
hed from the moon En
eladus onan initially 
ir
ular, 
oplanar orbit at 3:95Rp; the Sun is initially at its maximumheight above the equatorial plane (90o past the as
ending node of the e
lipti
 onSaturn's equator - Fig 5.3). Plotted are the �ve os
ulating orbital elements andthe solar angle �� (de�ned below). All six panels of the two plots agree quitewell whi
h reassures us that the approximations made in the previous se
tionsare valid.The most notable di�eren
e between Figs. 5.4 and 5.5 appears in the semima-jor axis tra
es; in the �rst �gure, the semimajor axis displays a pe
uliar \fuzzi-ness," while no evolution whatsoever of this element is apparent in the se
ond.The dis
repan
y is due to e�e
ts that o

ur during a single orbital period; inFig. 5.4 these e�e
ts are 
learly visible while in Fig. 5.5 they do not exist be
ausethey have been averaged out. These short-period terms arise when the ve
torposition and velo
ity are translated into the os
ulating orbital elements; in thepresen
e of perturbations, the values of the elements depend on the point alongan orbit at whi
h they are 
al
ulated. The di�eren
e in these values over a singleorbit is �rst-order in the small dimensionless quantities J2, �=n, and L, and theos
illations in os
ulating semimajor axis are greater for larger e

entri
ities as 
anbe readily seen in the plot. By noting the value of a in Fig. 5.4 at points wheree � 0, however, we see that no long-term 
hange o

urs in the semimajor axis inagreement with Fig. 5.5. The fa
t that the rapid and sometimes dis
ontinuous
hanges in ! and 
 that o

ur at low e and i are not perfe
tly reprodu
ed (seeFigs. 5.4 and 5.5 at t � 8 years for example) is unimportant sin
e these variablesbe
ome singular as e and i, respe
tively, tend toward zero.
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Figure 5.4 Os
ulating orbital elements plotted against time from integrations ofthe full Newtonian equations of motion. The integrations shown in this �gure andin the following one used identi
al initial 
onditions: a spheri
al grain 1 mi
ronin radius (�g = 1g=
m3; Qpr = 1) 
harged to a potential of -5.6 Volts initiallyreleased from En
eladus at 3:95Rp on a 
ir
ular Keplerian orbit in the equatorialplane. For
es operating on the orbit in
lude: the monopole and J2 
omponentsof the gravity �eld, radiation pressure (no shadowing), and the Lorentz for
efrom an aligned dipole. The agreement between the two methods is very goodand is dis
ussed further in the text. Other values of interest are the three di-mensionless parameters J2 = 0:01667, �=n = 0:00012, L = �0:00295; the ration=
p = 0:32439, and the initial pre
ession rates, as given by Eqs. (5.59) and(5.60), _
xy(e � 0) = �345o/year and _!xy(e � 0; �� = 90o) = 315o/year. Thedi�eren
e between the two rates is roughly the initial slope of the solar angletra
e in the sixth panel.
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Figure 5.5 Os
ulating orbital elements plotted against time from integrations ofthe orbit-averaged equations of motion. This integration followed the evolutionof an orbit subje
t to the identi
al for
es, and starting with the same initial
onditions, as the orbit in Fig. 5.4. The agreement between the two �guresis impressive. The most noti
eable dis
repan
y, the semimajor axis history, isdis
ussed further in the text.
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The agreement between Figs. 5.4 and 5.5 also en
ourages qualitative andquantitative des
riptions of evolution based on the orbit-averaged equations. Toassist this endeavor, we write out Eq. (5.51) expli
itly. As noted above, mostsour
es for 
ir
umplanetary dust are thought to be the small moons and ringsorbiting 
lose to their planet; these obje
ts move on nearly 
ir
ular orbits inthe equatorial plane. While radiation pressure 
an 
ause e

entri
ities of someinitially 
ir
ular orbits to grow quite large as we will see in Chapter 6, it is oftendiÆ
ult for grains to attain orbits signi�
antly in
lined to the equatorial plane.This supposition holds for orbits 
lose to the planet and away from the Lorentzresonant lo
ations. A useful limit for analyti
 work, therefore, is that of nearlyequatorial orbits. We keep only the leading terms in sin i for ea
h element andalso take i < 
, whi
h is a reasonable assumption in most 
ases (Jupiter is apossible ex
eption as 
 � 3o). Additionally, we assume that 
 <� 30o so that
os 
 � 1; this, of 
ourse, is not a good approximation for Uranus with 
 � 98o!Using Eq. (5.51) to sum the e�e
ts of all of the for
es dis
ussed in the previousse
tions, we �nd, with the help of some trigonometri
 identities:�dadt� = 0; (5.52)�dedt� = �(1� e2)1=2 sin��; (5.53)�didt� = Z 
os!; (5.54)�d
dt � = Z sin!sin i + _
xy; (5.55)�d!dt � = �Z sin!sin i + _!xy; (5.56)where �� � 
 + ! � n�t� Æ (5.57)is the solar angle, approximately the angular di�eren
e between the longitudes ofthe Sun and the orbit's peri
enter measured in the equatorial plane; the 
hangein this angle is given by: _�� = _
xy + _!xy � n�: (5.58)The pre
ession rates arising from oblateness, ele
tromagneti
, and radiation for
es(ex
luding the terms proportional to Z, de�ned immediately below) are:

_
xy = � 3nJ2R2p2a2(1� e2)2 + nL(1� e2)3=2�1� e2 � n
p�; (5.59)
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and

_!xy = 3nJ2R2pa2(1� e2)2 � nL(1� e2)3=2�1� e2 � 3n
p�+ �(1� e2)1=2 
os��e ; (5.60)
the Z terms are ex
luded for reasons that will be
ome apparent in the followingse
tions. Finally, the quantity

Z = e(1� e2)1=2 ��sz + 32(1� e2)2nL�g2;0g1;0��Rpa �� n
p��; (5.61)represents the 
ontributions of the two verti
al for
es in the problem; the out-of-plane 
omponent of radiation pressure and the for
e arising from the alignedquadrupole �eld. These two for
es are small and do not 
ause substantial orbitalevolution; noti
e that the terms proportional to Z in Eqs. (5.55{5.56) are equaland opposite so that for small i, the absolute longitude of peri
enter $ = 
+ !is unaltered. Nevertheless, the for
es are important be
ause they in
uen
e theverti
al extent of an orbit as will be dis
ussed in greater detail below.The presen
e of J2, L, and � in all of the above expressions indi
ate the e�e
tsof oblateness, ele
tromagnetism, and radiation pressure, respe
tively; Eq. (5.53),for example, shows that e

entri
ity, in this low in
lination limit, is driven solelyby radiation pressure. Additional approximations to the set of equations (5.52{5.56) 
an be made for spe
i�
 situations. For example, we 
an drop the ele
-tromagneti
 terms for orbits around bodies with insigni�
ant magneti
 �elds(
ertainly Venus and Mars; and presumably Pluto, asteroids, and 
omets) or forsmall un
harged obje
ts (atoms and mole
ules) around any planet. In the latter
ase, Eq. (4.1) would need to be altered sin
e geometri
al opti
s are not valid foratoms and mole
ules (
f. Smyth and Mar
oni 1993).In this 
hapter we have set up a framework within whi
h the most powerfulnon-gravitational for
es 
an be treated. The expressions that we derived aregeneral and appli
able in numerous lo
ales throughout the solar system. In thenext 
hapter we apply our results to one of these obje
ts: Saturn's di�use E ring.



Chapter 6
Saturn's E ring1
6.1 Introdu
tionIt is important to understand the dynami
s of the very faint rings surroundingthe giant planets sin
e, owing to the rarity of 
ollisions, su
h entities o�er anex
ellent opportunity to learn the fundamental pro
esses a�e
ting the motionof individual ring parti
les. Be
ause the parti
les 
omprising the ethereal ringsare usually small, however, the orbital evolution of even a single parti
le 
an bequite 
omplex: in addition to the usual gravitational perturbations (e.g., dueto planetary oblateness and embedded satellites), small grains are also subje
tto radiation pressure and ele
tromagneti
 for
es (Chapter 5) as well as weakervariations due to drags, and 
harge variations (Burns 1991). All these pro
essesare a
tive to some extent in the dense rings as well, but they are obs
ured byother perturbations, espe
ially 
ollisions and 
olle
tive e�e
ts.Perhaps the best studied of all the ethereal rings is Saturn's E ring. Mu
h ofthe interest in this three-dimensional stru
ture arises be
ause the Cassini spa
e-
raft will make many passes through this region. Re
ently, Showalter et al. (1991)have 
ombined spe
trophotometri
 data of the E ring from ground-based mea-surements with that from the Pioneer 11 and Voyager en
ounters. Their mostimportant �ndings are: the ring extends from <�3 to >� 8RS (the equatorial radiusof Saturn RS=60,330 km); its opti
al depth pro�le peaks sharply near the orbitof En
eladus (aE = 3:95RS), making this satellite the suspe
ted sour
e of thering, with a simple power law de
ay that is sharper inward [� � (r=aE)15℄ thanoutward [� � (aE=r)7℄ of En
eladus' orbit; in general, the ring shows a gradual in-1This 
hapter is based on three papers: Horanyi, M., J.A. Burns, and D.P. Hamilton (1992),The dynami
s of Saturn's E ring parti
les. I
arus 97, 248{259 [
opyright 1993 by A
ademi
Press, In
.℄, Hamilton, D.P. (1993), Motion of dust in a planetary magnetosphere: Orbit-averaged equations for oblateness, ele
tromagneti
, and radiation for
es with appli
ation toSaturn's E ring. I
arus 101, 244{264 [
opyright 1993 by A
ademi
 Press, In
.℄, and Hamilton,D.P., and J.A. Burns (1993), The origin of Saturn's E ring: Self-sustained, naturally. S
ien
e,submitted.
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rease in verti
al thi
kness with distan
e from Saturn, ranging from ' 6; 000 kmat its inner boundary to ' 40,000 km at its outer edges but has a lo
al mini-mum at the orbit of En
eladus, where the thi
kness is only ' 4; 000 km; and,perhaps most puzzling of all, the size distribution of the parti
les is very nar-row, being 
omposed mainly of parti
les with 1(�0:3)�m radii. In this 
hapterwe suggest that many of these observations 
an be understood in terms of theshort-term dynami
s of single parti
les inje
ted at En
eladus; a s
hemati
 of theE ring, showing its relation to En
eladus and the main rings, is given in Figure6.1. We will demonstrate that, to some degree, the E ring's opti
al depth pro�leresults from the 
ompeting e�e
ts of the perturbations due to planetary oblate-ness and the Lorentz for
e, whi
h allow solar radiation pressure to indu
e quitelarge e

entri
ities for a sele
ted parti
le size range in
luding the mi
ron-sizedgrains thought to be present in the ring. This me
hanism is 
apable of spreadingmaterial quite qui
kly a
ross large radial distan
es from Saturn and produ
inga sharply peaked opti
al depth pro�le; its e�e
tiveness is found to be stronglysize-dependent, whi
h is 
onsistent with the E ring's very narrow parti
le size dis-tribution. In the following three se
tions we use analyti
 and numeri
al methodsto understand the radial, azimuthal, and verti
al stru
ture of Saturn's E ring.
6.2 Radial Stru
tureIn order to understand the �rst-order radial stru
ture, we begin with a simpleanalyti
al model based on the results of the previous 
hapter. In order that su
ha model be analyti
ally tra
table, we make a number of simplifying assumptions.First, we in
lude only the perturbations from oblateness, solar radiation pressureand the Lorentz for
e, negle
ting all weaker perturbations (e.g., drag for
es). Inaddition, we assume that the 
harge on a dust grain orbiting in the E ring isnearly 
onstant whi
h is in a

ord with the �ndings of Horanyi et al. (1992),although with a more extreme plasma model, this need not be the 
ase. In thisse
tion, we also negle
t variations in the in
lination and the node, sin
e for smallin
linations, these elements do not a�e
t the ring's radial stru
ture. Finally,we initially assume low e

entri
ities, although this assumption will be relaxedshortly. For small e

entri
ities, Eqs. (5.53), (5.58), (5.59), and (5.60) be
ome�dedt� = � sin�� (6.1)�d��dt � = �e 
os�� + _$xy (6.2)where _$xy, de�ned to be

_$xy = 3nJ2R2p2a2 + 2n2L
p � n�; (6.3)
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Figure 6.1 The saturnian system. The solid 
entral disk represents Saturn andimmediately exterior to it are the opti
ally thi
k A and B rings (hat
hed). TheE ring 
overs the stippled region outside the main rings and en
ompasses theorbits of at least four major saturnian satellites: Mimas, En
eladus, Tethys,and Dione. For 
larity, we show only En
eladus' orbit (the 
ir
le of radiusamoon � 3:95RS) and that of an E-ring grain whi
h originated on En
eladus(ellipse with adust = 3:95RS and edust = 0:5). The orbital turning points A(apo
enter) and P (peri
enter) of the parti
le's orbit are lo
ated at distan
esadust(1 + edust) and adust(1 � edust) from Saturn. E-ring parti
les 
ross the orbitof En
eladus at the points I1 and I2 and 
an venture within the radial distan
eof the opaque main rings only if they 
y above or below them.
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represents the uniform motion of peri
enter relative to the Sun in the absen
e ofradiation pressure. Before solving Eqs. (6.1) and (6.2), let us qualitatively dis
ussthe solutions.The �rst two terms on the right side of Eq. (6.3) are mu
h larger than n�and, sin
e the grain 
harge and hen
e L is expe
ted to be negative (Horanyiet al. 1992), these two terms 
ompete against one another. Thus, the peri
enter
an be gravitationally dominated (pre
ession with _$xy > 0), stopped ( _$xy=0)or ele
tromagneti
ally dominated (regression with _$xy < 0). Whi
h of thesesituations o

urs will depend on the parti
le's size, 
harge and its position inthe magnetosphere. We now dis
uss the simple 
ase in whi
h _$xy = 0. Sin
ethe se
ond term on the right side of Eq. (6.3) is strongly size-dependent (seeEq. 5.40), near 
an
ellation of the two terms will o

ur only for a narrow rangeof parti
le sizes. For the expe
ted 
onditions in the E ring (� � �5V, �=0.2yr�1), the 
riti
al grain size is rg = 1�m, very similar to the size of the grainsa
tually observed in the ring.In 
onne
tion with initial 
onditions, presuming the E-ring parti
les originateon En
eladus, we make three observations: i) the es
ape velo
ity from the satelliteis probably less than 10�2 times the satellite's orbital velo
ity; ii) ele
tromagneti
perturbations alone do not introdu
e large orbital velo
ity 
hanges (S
ha�er andBurns 1987); and iii) En
eladus' orbit is nearly 
ir
ular. A

ordingly we assumethat the grain is laun
hed at 3.95 RS onto an approximately 
ir
ular Keplerianorbit. From su
h a starting 
ondition (e � 0), Eq. (6.2) shows that �� willswiftly turn to �=2 and then will stay lo
ked; simultaneously, by Eq. (6.1), thee

entri
ity grows at the 
onstant rate � (Horanyi et al. 1990).Of 
ourse the e

entri
ity 
an only in
rease until the orbit interse
ts the outeredge of the A ring at 2.27RS where 
ollisions with the opaque ring will eliminatethe parti
le; written in terms of orbital e

entri
ity, this 
ondition is e
oll � 0.43.(Naturally, this applies only to parti
les staying in the equatorial plane whereasbelow we will �nd that 
ollisions with the main rings are less likely on
e thein
lination is allowed to be non-zero.) A

ording to Eq. (6.1), su
h an e

entri
itywill be a
hieved in a little more than 2 years. To summarize, one-mi
ron parti
lesinje
ted at En
eladus with � � �5 volts, will be rapidly dispersed owing to theire

entri
 orbits and then will be lost by 
ollisions with the A ring. We must re
all,however, that it is the �ne balan
e between the perturbations due to oblatenessand the Lorentz for
e that an
hors the peri
enter in this 
ase, thereby allowingsolar radiation pressure to indu
e large e

entri
ities.For the general 
ase, where _$xy 6= 0, one 
an most readily solve Eq. (6.1)and Eq. (6.2) by transforming to the variables P � e sin�� and Q � e 
os��,whi
h are found to des
ribe simple harmoni
 os
illations. In terms of the originalvariables, the solution is
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e = 2�_$xy ����sin� _$xy2 t����� (6.4)

�� = modulo� _$xy2 t; ��+ �2 ; (6.5)assuming the initial 
ondition e(t = 0) = 0. The e

entri
ity 
hanges periodi
allyas the peri
enter moves at a 
onstant rate from �=2 to 3�=2 (for _$xy > 0), atwhi
h point �� jumps ba
k to �=2 again (for a geometri
al representation of thissolution, see Horanyi and Burns 1991). The period of the e

entri
ity variation isP = 2�= _$xy and the maximum e

entri
ity (within the approximation of smalle) is emax = 2�= _$xy.As seen in Eqs. (5.40) and (6.3), _$xy, and therefore emax, is very sensitive tothe grain size. For a spe
i�
 parti
le size, one 
an 
ompute the range of voltagesthat will produ
e pre
ession rates su
h that e
oll is a
hieved. Larger voltages
ause the Lorentz pre
ession rate to dominate that from the planet's oblatenesswhile for smaller voltages the 
onverse holds; both 
ases mitigate the abilityof solar radiation pressure to produ
e high e

entri
ities. Figure 6.2 displaysthe maximum e

entri
ity emax a
hieved by parti
les of three sizes and variousvoltages near those of the nominal E-ring grains. Parti
les on 2-D orbits arelost to the main rings when the peri
enter dips into the A ring, whi
h o

ursfor e
oll = 0:43. As we will see below, three-dimensional orbits survive until theorbital nodes interse
t the A ring (this always happens before the orbit interse
tsthe planet) whi
h o

urs for e0
oll = 0:65 (Se
tion 6.4). The 
urves to the left(right) of the 
at tops in Fig. 6.2 
orrespond to _$xy < 0 ( _$xy > 0). Be
auseparti
les of di�erent sizes are spread in su
h dramati
ally di�erent ways, thepopulation of grains that is present at the outskirts of the E ring 
ould di�er
onsiderably from that introdu
ed at En
eladus. As an illustration of this e�e
t,
onsider a population 
onsisting of three sizes (0.5, 1.0, and 1.5�m) inje
ted atEn
eladus. The e

entri
ity histories of these parti
les, plotted in Fig. 6.3, di�ersigni�
antly and the maximum values a
hieved are in agreement with Fig. 6.2.An ex
ellent test of our model 
an be made by the Cassini spa
e
raft whi
hwill 
arry out 
omplete photometri
 observations of the E ring and in-situ dete
-tions of the dust parti
les 
omposing it. These data sets will 
onstrain parti
lesize distributions a
ross the E ring. Indeed, the importan
e of radiation pressurewill be shown if a wide distribution of parti
le sizes is found to be present nearthe orbit of En
eladus but only a very sele
ted size range is seen elsewhere. Amore dire
t test involves using Cassini's dust dete
tor to see whether the parti
lessensed at distan
es from En
eladus are on e

entri
 orbits.We now 
ompute the radial opti
al depth distribution due to grains movingon ellipti
al orbits. For di�use stru
tures like the E ring, the opti
al depth isproportional to the time a grain spends within any given radial interval, r tor+�r, whi
h in turn is inversely proportional to rvr, where vr is the average radial
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Figure 6.2 The maximum e

entri
ity emax = 2�= _$xy that is a
hieved a

ordingto Eq. (6.4), as a fun
tion of the assumed (
onstant) surfa
e potential for varioussize grains (heavy lines) introdu
ed at En
eladus (at 3.95RS). The results fromnumeri
al integration are also shown (dashed lines); the di�eren
es between the
urves at large e

entri
ities 
learly signal the breakdown of the assumption thate � 1. The 
urves are trun
ated at e0
oll = 0:65, the e

entri
ity at whi
h allthree-dimensional orbits with a = 3:95RS will interse
t Saturn's A ring; parti
les
on�ned to the ring plane will be lost on
e they rea
h e
oll=0.43 when the orbitalperi
enter dips into the outer A ring.
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Figure 6.3 History of orbital e

entri
ities for 0.5, 1.0, and 1.5�m parti
les evolv-ing under oblateness, ele
tromagnetism, and radiation pressure as they moveabout Saturn with orbital semimajor axes of 3.95RS. In ea
h 
ase, parti
les aretaken to be i
y spheres of density 1.0g/
m3 at a potential of -5Volts. For 0.5�mparti
les, the Lorentz for
e dominates orbital pre
ession and the orbit spins toorapidly for radiation pressure to 
reate substantial e

entri
ities. Similarly, for1.5�m parti
les, oblateness dominates and the orbit pre
esses swiftly in the oppo-site dire
tion with the same out
ome. For 1.0�m parti
les, however, the Lorentzand oblateness pre
essions largely 
an
el, allowing radiation pressure to greatlyperturb the orbital e

entri
ity; note that a single e

entri
ity os
illation o

ursin one pre
ession period. The symbols D, T, and M identify the orbital e

en-tri
ities at whi
h parti
les laun
hed from En
eladus will 
ross the orbits of thesatellites Dione, Tethys, and Mimas, respe
tively.
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velo
ity over the interval 
onsidered; the extra r in the denominator appearsbe
ause the area of an annulus of width �r over whi
h these parti
les are spreadis 2�r�r. In terms of the orbital elements the radial velo
ity 
an be written as

vr = �GMpa �1=2 [a2e2 � (r � a)2℄1=2r : (6.6)The radial opti
al depth pro�le due to a single parti
le moving along a Keplerianorbit of a given e

entri
ity is then
� e(r) = To[a2e2 � (r � a)2℄1=2 ; (6.7)where To is a normalization 
onstant; 
learly this is valid only for distan
es be-tween the orbit's radial turning points [i.e., for a(1�e) � r � a(1+e)℄; elsewhere� e(r) = 0. Fig. 6.4 plots Eq. (6.7) for several e

entri
 orbits; note the symmetryabout r = a and the enhan
ed opti
al depth at the orbital turning points.A parti
le evolving under radiation pressure, however, does not have a 
on-stant orbital e

entri
ity as assumed immediately above, but by 
ombining Eqs.(6.4) and (6.7), and integrating over a full 
y
le of the e

entri
ity variation, we�nd that a single parti
le 
ontributes to � as
�(r) = T1 2�= _$xyZ0 � e(r)dt ; (6.8)

where T1 is another normalization 
onstant.Equation (6.8) des
ribes a distribution sharply peaked at the radial distan
eof the sour
e itself (Fig. 6.5). This o

urs be
ause the parti
le i) spends sub-stantial time at low e

entri
ity, and ii) even when at higher e, always passestwi
e through its initial radius on ea
h orbit. We note that the opti
al depthdistributions in Figs. 6.4 and 6.5 are ea
h symmetri
 about the sour
e's orbitdespite the fa
t that ea
h parti
le spends more time at apo
enter of its orbit thanat peri
enter; this possibly 
ounterintuitive result arises be
ause the apo
enterparti
les are spread over a proportionally larger annulus.Figure 6.2 shows that our low-e

entri
ity approximation is reasonable fore <� 0:3 but may not be good for larger e

entri
ities where nonlinear e�e
tsbe
ome important. In Fig. 5.5, for example, the sinusoidal os
illations of the e
-
entri
ity are noti
eably distorted. To extend our results to higher e

entri
ities,we numeri
ally integrate parti
le orbits and use these to infer the ring's opti
aldepth as a fun
tion of radial distan
e. In order to 
onstru
t these ring pro�les,we followed grains of three 
hara
teristi
 sizes (0.5, 1.0, and 1.5�m) with iden-ti
al initial 
onditions and noted their radial positions every 10 days. We then
onstru
ted radial opti
al depth pro�les (Fig. 6.6) from the resulting orbits, nor-malizing the former in the same manner as in Fig. 6.5. For illustrative purposes,
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Figure 6.4 The pro�le of opti
al depth vs. radius plotted for grains with orbitsof semimajor axis = 3.95 RS and various e

entri
ities. The 
urves, whi
h areunde�ned at ea
h orbit's peri
enter and apo
enter, are trun
ated there for 
larity.The reason for the symmetry about 3:95RS is dis
ussed in the text.
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Figure 6.5 The radial opti
al depth 
ontribution of a single parti
le during afull period of its e

entri
ity os
illation for emax = 0:3; 0:5 and 0.7 (solid lines).These 
urves were 
onstru
ted by �rst subtra
ting a 
onstant value from thesolution of Eq. (6.8) and then normalizing the peak at En
eladus' position tounity; this pro
edure is similar to the ba
kground sky subtra
tion performedon photographi
 plates. This normalization pro
ess 
auses the area under ea
h
urve to di�er, but does preserve the symmetry around r = a in ea
h 
ase.Also plotted (dotted line) is the inferred radial brightness distribution basedon the observations and represented by two power-law drop-o�s from En
eladus(Showalter et al. 1991).
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Figure 6.6 The opti
al depth pro�les (
ontinuous lines) for grains of radii 0.5(top), 1.0 (middle), and 1.5 (bottom) mi
rons. All grains were given the sameinitial 
onditions, the orbits were sampled every 10 days for 90 years, and the
urves were normalized as in Fig. 6.5. Also plotted for 
omparison are the Showal-ter et al. (1991) observations (dashed line). The plot 
learly demonstrate theenhan
ed mobility enjoyed by the one mi
ron-sized grains. The three maxima
lustered near 4RS in the 
entral panel are due to the fa
t that the grain's orbitale

entri
ity does not de
rease to exa
tly zero on every 
y
le (see se
ond panel ofFig. 5.5).
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we ignored possible 
ollisions with the inner saturnian rings even though someof our orbits attain maximum e

entri
ities dangerously 
lose to e0
oll ' 0:65.As with our analyti
 result (plotted in Fig. 6.5), the opti
al depths in the threesimulations (Fig. 6.6) have sharp peaks near the sour
e with steep drop-o�s oneither side.The radial range 
overed by one-mi
ron grains mat
hes the observed widthof the E ring well, arguing 
onvin
ingly for a population of one-mi
ron grains.Both our analyti
 and numeri
ally derived opti
al depth pro�les are symmetri
about En
eladus' orbit, however, in 
ontradi
tion to the asymmetry displayed bythe observed ring (Showalter et al. 1992). We will return to address this point inSe
tion 6.5.
6.3 Azimuthal Stru
ture: E

entri
ity andSolar Angle6.3.1 Low E

entri
ity CaseAs dis
ussed above, the large, almost-periodi
 variation in the e

entri
ity dis-played in Figs. 5.4 and 5.5 is responsible for most of the E ring's stru
ture.In 
ontrast, the semimajor axis remains essentially 
onstant and the in
linationstays small. Due to the latter fa
t, substantial variations in 
 and ! do not sig-ni�
antly a�e
t the radial or azimuthal stru
ture of the ring. Furthermore, sin
ethe governing equation (Eq. 5.53) for e

entri
ity in this low-in
lination limitdepends only on the solar angle and the e

entri
ity itself, these two variables
an be de
oupled from the rest, as in Se
tion 6.2. A

ordingly we dis
uss thee

entri
ity and the solar angle in this se
tion and the elements i, 
, and ! inthe next.Ideally, we would like to �nd an exa
t solution for Eq. (5.53) and Eq. (5.58)valid for arbitrary e

entri
ities but, due to the presen
e of nonlinear 1 � e2terms, we have been unable to do so. By 
ontrast, for small e

entri
ities _�� isnearly a 
onstant, and a solution, in whi
h the e

entri
ity varies sinusoidally,
an easily be found (Burns et al. 1979, Horanyi et al. 1992). In the present 
ase,however, we are interested in highly-e

entri
 orbits and so are for
ed to 
ontentourselves with a qualitative des
ription of the orbital evolution based on these twoequations. First, as predi
ted by Eq. (5.53) and seen in Fig. 5.5, the e

entri
ityalways grows when 0o <� �� <� 180o and shrinks when 180o <� �� <� 360o. When_�� � 0, �� in Eq. (5.53) remains nearly 
onstant, the ellipti
al orbit keeps a givenorientation with respe
t to the Sun, and the e

entri
ity 
hanges monotoni
ally.In the low-e

entri
ity solution, an exa
t 
an
ellation of the pre
ession rateswith an asso
iated permanent growth of e

entri
ity is possible but, as seen inEqs. (5.59) and (5.60), the rates a
tually depend on di�erent powers of 1 � e2
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whi
h 
ause an imperfe
t 
an
ellation as the e

entri
ity varies. At large e, thesenonlinear e�e
ts are important and signi�
antly in
uen
e the azimuthal stru
tureof the ring.In order to study the nonlinear e�e
ts, we must �rst understand the simple
ase when these terms are absent; this situation is approximated in Fig. 5.5 wheree2 is always relatively small. As Fig. 5.5 shows, at t = 0 the solar angle �� isimmediately driven to 90o by radiation pressure; this o

urs be
ause, for smalle

entri
ities, the �nal term in Eq. (5.60) dominates _��. After the e

entri
ityrises slightly, the �nal term is less important so that the solar angle regresses 
on-tinually from t = 0 to t � 8:5 years under the gravitational and ele
tromagneti
terms in Eqs. (5.59) and (5.60); in this example, the regression rate is nearlyuniform be
ause, for these relatively low e

entri
ities, nonlinear terms are small.The verti
al \jumps" in ��, an example of whi
h o

urs at t � 5 years in Fig. 5.5,are simply due to the fa
t that the angle is plotted modulo 360o. As soon as thesolar angle 
rosses zero, the e

entri
ity begins de
reasing until eventually it issuÆ
iently small that the �nal term in Eq. (5.60) dominates again. As before, thisterm attempts to drive �� to 90o 
ausing the angle to be
ome positive and thee

entri
ity to in
rease. The 
y
le repeats almost periodi
ally with departuresfrom periodi
ity arising from the sensitive dependen
e of _�� on e.Be
ause of the 
oupling between e and the solar angle, the largest e

entri
-ities in Fig. 5.5 are attained when the peri
enter of the orbit is pointed towardthe Sun (�� = 0o). At this time, apo
enter is dire
ted away from the Sun and,a

ordingly, parti
les rea
h their maximum distan
e from the planet in this di-re
tion [r = a(1 + e) - see Fig. 5.1℄. Thus, if the E ring were 
omposed solelyof su
h parti
les, it would be asymmetri
 in azimuth, extending further in theantisolar dire
tion than in the solar dire
tion. A less negatively 
harged grainor, alternatively, a slightly larger parti
le, would have an initially pre
essing solarangle so that the maximum e

entri
ity would o

ur when the apo
enter of theorbit points toward the Sun (�� = 180o). Sin
e the true E ring is likely 
omposedof an ensemble of grains with slightly di�erent sizes, shapes, and/or 
harges, itwill probably in
lude both pre
essing and regressing orbits with some apo
enterspointing toward and others away from the Sun. This ensemble predi
ts that theE ring will be shaped like a Saturn-
entered ellipse, extending to equal distan
esin the solar and antisolar dire
tions and less far in the perpendi
ular dire
tions.Figure 6.7 plots su
h an ensemble.A fore-aft bulge of this type 
ould not be identi�ed in the available Voyagerimages (M.R. Showalter 1991, private 
ommuni
ation). In addition, inbound -outbound di�eren
es in Voyager plasma absorption dete
tions, whi
h have beeninterpreted as 
aused by an asymmetri
 E ring (Sittler et al. 1981), 
ould not bedue to the E ring studied here be
ause our parti
les are too small and too widelyseparated to be e�e
tive absorbers. Although su
h a distribution would minimizethe ring's apparent radial extent as viewed from Earth, little or no asymmetry
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Figure 6.7 The Saturn-
entered ellipse. The Sun lies o� along the negative x-axisand Saturn (not to s
ale) is at (0,0). To form this plot, we 
al
ulated the orbits oftwo di�erent grains (0.97�m and 1.2�m, ea
h 
harged to -5.5Volts) and plottedthem together on this �gure. The sizes were 
hosen so that the smaller parti
le'ssolar angle regresses while the larger parti
le's pre
esses; ea
h attains a similarmaximum e

entri
ity (� 0:4). Ea
h grain's orbit lies within a 
ir
ular shapedregion with its 
enter o�set from Saturn. Large grains extend further toward theSun while small grains are found preferentially on the far side of Saturn.
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would be visible to terrestrial observers sin
e Saturn's phase angle (Earth-Saturn-Sun angle) 
annot ex
eed six degrees. We emphasize, however, that these resultsdo not in
lude the e�e
ts of 1� e2 terms that we now 
onsider.
6.3.2 High E

entri
ity CaseTo demonstrate how larger e

entri
ities produ
e nonlinear e�e
ts, we 
onsiderthe orbital evolution of a 1 mi
ron grain 
harged to -5.4 Volts (as opposed to -5.6Volts for Fig. 5.5); all other initial 
onditions as well as the operating for
es remainun
hanged. The resulting orbital evolution, obtained from numeri
al integrationsof Eqs. (5.52{5.56), is displayed in Fig. 6.8. The only di�eren
e between the two
ases is the slightly altered grain 
harge, yet striking dissimilarities are apparent inboth the e

entri
ity and solar angle tra
es. In Fig. 6.8, the solar angle initiallyregresses as it does in Fig. 5.5, but the regression is slightly less rapid; thisallows the e

entri
ity to grow large enough to reverse the sign of _�� beforethe solar angle dips below zero. As a result, sin�� is larger for a longer periodof time permitting the e

entri
ity to in
rease substantially. The augmentede

entri
ity 
auses the solar angle to pre
ess through 180o, at whi
h point thee

entri
ity �nally begins to de
rease and a 
y
le similar to that dis
ussed above isestablished. Azimuthal asymmetry arises be
ause the stronger 1�e2 dependen
eof the gravitational pre
ession terms in Eq. (5.59) and (5.60) 
auses the orbitto pre
ess for large e whi
h always leads to a maximum extension in the solardire
tion (�� = 180o). Although for this orbit, e is large enough that the grainwould a
tually be lost to the main saturnian ring system, the orbital evolutiondisplayed here is typi
al for a large range of similar initial 
onditions.We now summarize the relevan
e of these results to the E-ring problem. Con-sider an ensemble of grains with slightly di�erent sizes and voltages, but alllaun
hed from En
eladus on initially 
ir
ular orbits. A fra
tion of the grains inthis ensemble will have emax <� 0:4; these will be relatively unin
uen
ed by thenonlinear 1�e2 terms and will lead to a \Saturn-
entered ellipse" like Fig. 6.7. Inaddition, however, our ensemble will 
ontain grains that a
hieve large e

entri
-ities. These parti
les all pre
ess eventually (the orbit in Fig. 5.5 almost attainsthe largest e

entri
ity possible with a stri
tly regressing solar angle), and so themaximum e

entri
ity always o

urs when the apo
enter is pointed toward theSun. Furthermore, be
ause pre
ession is rapid for very large e

entri
ities, themost elongated orbits sweep through a large range of peri
enter angles (see thesolar angle and e

entri
ity panels between t = 6 and t = 7 years in Fig. 6.8),resulting in distant parti
les in all dire
tions on the sunward side of Saturn. Sin
ethe real ring 
ontains both dynami
al 
lasses, an En
eladus-derived E ring mightbe expe
ted to extend � 1:2 times as far in the solar and perpendi
ular dire
-tions as in the antisolar dire
tion. In 
ontrast to low e

entri
ity, this distributiondisplays nearly its full radial extent when viewed from Earth.
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Figure 6.8 Os
ulating orbital elements plotted against time from integrationsof the orbit-averaged equations of motion; these agree well with full Newtonianintegrations (not shown). The same for
es operating in Fig. 5.5 are presenthere, and the initial 
onditions are identi
al to those in Fig. 5.5 ex
ept thegrain's voltage has been 
hanged slightly to -5.4 Volts. This small 
hange inthe voltage de
reases the strength of the ele
tromagneti
 for
e (L = �0:00284)whi
h in turn, 
hanges the pre
ession rates to _
xy(e � 0) = �338o/year and_!xy(e � 0; �� = 90o) = 315o/year; all other quantities retain the values noted inFig. 5.5's 
aption. These slightly di�erent pre
ession rates drasti
ally a�e
t thee

entri
ity history.
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The above dis
ussion expli
itly assumes that the 
harge on a grain remains
onstant throughout its orbital evolution. Could a varying parti
le 
harge disruptthe behavior seen here? Realisti
ally, small rapid 
u
tuations in a grain's voltageo

ur as the grain's position in the magnetosphere (where plasma densities andtemperatures might vary) and its velo
ity relative to the plasma 
hange. A de-lay in the response of the grain's voltage to lo
al 
onditions 
an a�e
t long-termevolution of semimajor axes (Burns and S
ha�er 1989), but over the short times
onsidered here, this pro
ess is unlikely to be important. Be
ause the 
harge
u
tuations are fast 
ompared to the orbital period, however, they should betreated before averaging the perturbation equations over an orbit. As arguedabove, this will not seriously in
uen
e the orbital semimajor axis and e

en-tri
ity. The in
lination and pre
ession equations, however, are more stronglya�e
ted. A di�eren
e in the in
lination equations only adjusts the magnitudeof Z (Eq. 5.61), however, whi
h does not seriously alter the behavior of Eqs.(5.54{5.56). Slightly di�erent ele
tromagneti
 pre
ession rates would still 
an
elthe gravitational rates, although at a minutely di�erent grain size. Most im-portantly, the 1 � e2 dependen
e of the ele
tromagneti
 pre
ession rate 
ouldbe 
hanged signi�
antly (exponent < �2); in this 
ase, the nonlinear e�e
t thatfavors an E ring with a minimum extension in the antisolar dire
tion would bereversed; the E ring would then have its small dimension in the solar dire
tion.In any 
ase, an asymmetry of some sort is likely to persist.Finally we point out that the surfa
e brightness of the E ring depends notonly on these dynami
 
onsiderations but perhaps even more on the distributionof parti
le sizes and shapes present in the E ring. This distribution determinesthe number of grains in ea
h of the dynami
al 
lasses dis
ussed two paragraphsba
k. If orbits with lower e

entri
ities (Fig. 6.8) are most prevalent, for instan
e,then the surfa
e brightness will be dominated by the \Saturn-
entered ellipse."Whatever the size distribution though, the E ring's surfa
e brightness shoulddisplay measurable azimuthal asymmetry.

6.4 Verti
al Stru
ture: In
lination, Node, andPeri
enterHaving 
ompleted our dis
ussion of the 
omponents responsible for azimuthalvariations, we now fo
us on the smaller perturbations to the E ring's verti
alstru
ture. These perturbations arise from weak normal for
es whi
h in
uen
eonly the elements i, 
, and !. We start by dis
ussing Figs. 5.5 and 6.8, simula-tions that do not in
lude the e�e
ts of the aligned quadrupole, for simpli
ity (i.e.,g2;0 is arti�
ially set to zero), although our derivations are general and will allowus to return to the important in
uen
e of the quadrupole term shortly. Perhapsthe most unusual behavior displayed by the elements i, 
, and ! in Figs. 5.5
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and 6.8 is the fa
t that the argument of peri
enter lo
ks, alternately to ! = +90owhen the physi
al lo
ation of peri
enter is above the equatorial plane (Fig. 5.2),and to ! = �90o when peri
enter is below the plane. This lo
king is 
orrelatedwith the solar position su
h that the orbital peri
enter is always displa
ed to thesame side of the equatorial plane as the Sun. In all �gures, the Sun starts at itsmaximum elevation above the equatorial plane (the summer solsti
e in Saturn'snorthern hemisphere) and remains above the plane for one quarter of its orbitalperiod of � 29:5 years 
rossing the equatorial plane at t � 7:4; 22:1, and 36:9years.At �rst sight this lo
king may seem unimportant: sin
e in
linations are small,what di�eren
e does it make that peri
enter is always elevated out of the equato-rial plane by a few tenths of a degree? There are several answers to this question.First, sin
e these orbits periodi
ally attain highly-e

entri
 orbits, an E-ring par-ti
le 
an dip in very 
lose to the main saturnian ring system. Be
ause the mainrings are so thin (Cuzzi et al. 1979, Si
ardy et al. 1982), however, even small in
li-nations 
ause E-ring grains to rise well above the main rings and hen
e 
ollisionswith these rings 
an only take pla
e at orbital nodes. Lo
king the peri
enter to�90o puts both the nodes along the latus-re
tum of the ellipse (Fig. 5.1), max-imizing the ability of an orbit of a given e

entri
ity to avoid interse
ting theinner rings. Su
h orbits 
an spread E-ring material a
ross the maximum radialrange. A 
ollision with the A ring is inevitable when a(1 � e2) = 2:27RS fromwhi
h, for a = 3:95RS, e0
oll ' 0:65; this always o

urs before 
ollision with Saturn[a(1� e00
oll) = 1 or e00
oll ' 0:75.℄Additionally, peri
enter lo
king alters the probability for an impa
t into asaturnian satellite sin
e most moons lie at low in
linations relative to Saturn'sequator. Most notably, this phenomenon enhan
es the probability of reimpa
tinto En
eladus sin
e an E-ring parti
le's node lies at a radial distan
e a(1 � e2)whi
h, for small e, is very 
lose to En
eladus' orbit at r = a. Finally, and perhapsmost interestingly, this dynami
al e�e
t suggests that the verti
al stru
ture ofthe E ring is time-variable over a single orbit of Saturn around the Sun. Beforedis
ussing the rami�
ations of this time variability, we wish to understand thelo
king analyti
ally.The behavior of ! suggests that the angle is attra
ted to a stable equilibriumpoint, and so we seek su
h a solution. First, however, we note that there areseveral pla
es in Fig. 6.8 (e.g., near t = 7; 13; 22 ... years) where the argumentof peri
enter is not strongly lo
ked to its equilibrium value; in these lo
ales,os
illations in ! are large and 
ir
ulation 
an o

ur. These deviations happeneither when the Sun passes through the equatorial plane (roughly every 15 years)and the argument of peri
enter begins its transfer from one equilibrium value tothe next or when the orbital e

entri
ity is small, in whi
h 
ase the peri
enteris poorly de�ned and 
an 
ir
ulate rapidly as predi
ted by the �nal term inEq. (5.60). To avoid these problems, we 
hoose to initially study the lo
king
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e�e
t for non-zero and 
onstant values of e and sz, ignoring the time-dependen
eof these parameters. We will return to justify and relax this approximationshortly. Setting !eq = �90o (the subs
ript \eq" stands for equilibrium) andremembering that in
lination must be positive, we �nd that Eq. (5.56) is zeroonly when

sin ieq = ���� Z_!xy ���� (6.9)whi
h, from Eq. (5.55) leads tod
dt ����eq = _
xy + _!xy: (6.10)Finally, setting Eq. (5.56) equal to zero and utilizing Eq. (6.9) yields an improveddetermination of !eq: sin!eq = sign( _!xy=Z): (6.11)We 
he
k the solution given by Eqs. (5.54{5.56) for stability by linearizing itabout the equilibrium point. Here we set � = �eq +��, where � is any of i, 
,and !, to �nd: �d�idt � = �ieq _!xy�!; (6.12)�d�
dt � = � _!xy�iieq ; (6.13)�d�!dt � = _!xy�iieq ; (6.14)whi
h 
an be trivially solved to yield:�i = ieq!0 
os( _!xyt+ �0); (6.15)
�
 = �!0 sin( _!xyt+ �0); (6.16)
�! = !0 sin( _!xyt+ �0); (6.17)where the initial 
onditions !0 and �0 are independent of i;
, and !. Thusos
illations about the equilibrium point are stable and have frequen
y _!xy whi
h,for the parameters of Fig. 6.8, 
orresponds to a period of � 1 year. The fa
t thatthe os
illation period is short 
ompared to the 
hara
teristi
 periods of e and szjusti�es our earlier treatment of these latter parameters as 
onstants; sin
e e andsz both 
hange slowly with time, the rapid os
illations are able to stay 
entered
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on the slowly drifting equilibrium value. These results, Eqs. (6.9{6.17), seemto be in good agreement with Figs. 5.5 and 6.8. Eq. (6.11) 
orre
tly predi
tsthat peri
enter and the Sun always lie on the same side of the equatorial planesin
e _!xy > 0 and, with no quadrupole term, Z 
hanges sign every time the Sun
rosses the equatorial plane. Furthermore, Eq. (6.9) shows that the in
linationapproa
hes zero when Z is small whi
h o

urs either when the Sun is in the ringplane or when e! 0, as we already inferred from Figs. 5.5 and 6.8. Additionally,several features of Eqs. (6.15{6.17) 
an be 
he
ked against the full numeri
alintegrations. As expe
ted, the os
illations in all three elements have e

entri
ity-dependent periods of approximately one year and, as predi
ted by Eq. (5.60), thisperiod de
reases for large e

entri
ities (the in
lination tra
e in Fig. 6.8 providesa ni
e example). Furthermore, sin
e no dis
ernible os
illations appear in the solarangle, whi
h is basi
ally the sum of 
 and !, the os
illations in these angles mustbe equal in magnitude and 180o out of phase as predi
ted by Eqs. (6.16) and(6.17). Additionally, we �nd that the i os
illations peak one-quarter of a periodbefore the ! os
illations as predi
ted by Eqs. (6.15{6.17), although the phasedi�eren
e is diÆ
ult to dete
t in these �gures.We now 
onstru
t verti
al pro�les in the same manner as the opti
al depthpro�les (Fig. 6.6) of Se
tion 6.2 and display the results in Fig. 6.9. The 
hara
-teristi
 wedge-shape of ea
h plot is due to peri
enter lo
king whi
h keeps orbitalnodes near En
eladus. By de�nition, verti
al o�sets are minimum near orbitalnodes and hen
e the ring is thinnest there. The radial dependen
e of the ringthi
kness from our simulation for one-mi
ron grains (Fig. 6.9) qualitatively imi-tates Showalter et al. (1991)'s interpretation of the Baum et al. (1981) ground-based observations des
ribed in Se
tion 6.1. Like the a
tual E ring, our modelfor solely one-mi
ron grains has a greater thi
kness at its outer edge than 
loseto the planet, and is thinnest at its sour
e. Although the relative proportionsare roughly 
orre
t, the magnitude of the predi
ted thi
kness is � 10 times lessthan the observed thi
kness. In fa
t, the problem is even worse sin
e these plotsare time averages; a snapshot of the ring at a parti
ular instant in time will �ndall orbital apo
enters either above or below Saturn's equatorial plane and hen
ethe ring will be less thi
k. We will have more to say about this dis
repan
y inSe
tion 6.5.We now add the e�e
ts of the aligned quadrupole term to the array of for
esin
uen
ing the dust grain. Figure 6.10 shows the orbital history of a grain withidenti
al properties and initial 
onditions as the parti
le in Fig. 6.8; the only
hange is that the magneti
 �eld from whi
h the Lorentz for
e is 
al
ulated nowin
ludes the aligned quadrupole 
omponent. The e

entri
ity and solar angletra
es in Fig. 6.10 are basi
ally un
hanged from Fig. 6.8, thus the results ofSe
tions 6.2 and 6.3 stand, but the i, 
, and ! tra
es are substantially altered.In
linations of nearly a degree (three times larger than in Fig. 6.8) are attained- the e�e
ts of the quadrupole term are de�nitely important for Saturn's E ring!



131

Figure 6.9 A s
atter diagram in the r = (x2 + y2)1=2; z plane for the orbitsdis
ussed in Fig. 6.6. The verti
al stru
ture for the one-mi
ron grains is similarto the stru
ture displayed by the a
tual E ring, although the heights attained inour simulations are a fa
tor of � 10 too small.
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Figure 6.10 Os
ulating orbital elements plotted against time from integrations ofthe orbit-averaged equations of motion. Again, the results agree well with the fullNewtonian integrations whi
h are not shown. Initial 
onditions and numeri
alquantities are the same as in Fig. 6.8, but the additional e�e
ts of the alignedmagneti
 quadrupole have been in
luded. Note the striking di�eren
e in the iand ! tra
es in the two �gures. The magneti
 �eld 
oeÆ
ients used for Saturnare g1;0 = 0:2154 gauss and g2;0 = 0:0164 gauss (
f. Connerney et al. 1984).
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Furthermore, the peri
enter favors lo
king to �90o over lo
king to 90o; this 
anbe easily explained by 
onsidering how the addition of the quadrupolar term
hanges Z. Using the values given in the �gure 
aptions, we �nd that the se
ondterm in Eq. (5.61) is always negative and, for small e, its magnitude is less thanthe maximum value of the �rst. Thus Z will be predominantly negative and,as predi
ted by Eq. (6.11), ! will usually be found near �90o. When the Sunis high above the equatorial plane, however, Z is positive and ! lo
ks to 90oas observed in Fig. 6.10. Sin
e the two terms in Z have di�erent e

entri
itydependen
ies, the time spent with ! � 90o will vary from one o

asion to thenext. This same sharp e

entri
ity dependen
e of the quadrupole 
ontribution toZ is also responsible for the di�eren
e in maximum in
linations observed in Figs.6.8 and 6.10.If all E-ring parti
les originated from En
eladus and had parameters like those
hosen for Fig. 6.10, we would expe
t that inner portions of the ring (the peri
en-ter sides of instantaneously ellipti
al orbits) would be o�set to the south of theequatorial plane when the Sun is not too far to the north. The outer portions ofthe ring, of 
ourse, would be o�set in the opposite dire
tion. There is not a singlesolar position at whi
h orbits transfer from one equilibrium to the next; as theSun rises in the northern sky, orbits with low e

entri
ities swit
h �rst, followedby those with greater e

entri
ities. In addition, a more realisti
 ensemble ofdi�erent parti
le sizes and shapes would 
ause further smear in the time whenorbits swit
h equilibria sin
e � and L vary signi�
antly with parti
le properties.So when the Sun is to the north of the equatorial plane, the situation is diÆ
ultto assess. Conversely, when it is to the south, Z is negative and all orbits in theensemble should have their peri
enters depressed toward the south. We see thatthis is indeed the 
ase in Fig. 6.11 whi
h, like Fig. 6.9, is a time-averaged plot.The e�e
ts of di�erent initial 
onditions and additional satellite sour
es forE-ring parti
les further 
ompli
ates the issue; these fa
tors 
an 
ause the initial
onditions to be far from the equilibrium point. When this is true, the os
illationsin ! 
an be large enough to 
ause 
ir
ulation of that element and this washesout the asymmetry dis
ussed above. Assuming that dust grains originate fromsatellites, they will always start on nearly 
ir
ular orbits for whi
h the equilib-rium in
lination is ieq = 0 (Eqs. 5.61 and 6.9). Several e�e
ts 
an 
ause initialin
linations to di�er from zero most notably the small underlying in
lination ofthe sour
e satellite itself, and the dispersion of grain laun
h velo
ities. We �nd,numeri
ally, that initial in
linations of more than about 0:5o for grains laun
hedfrom either En
eladus or Tethys 
ause os
illations large enough to destroy thelo
king. This 
uto� 
an also be found analyti
ally from Eq. (5.56). It is reason-able to assume that most of the grains es
ape from their sour
e moon with theminimum possible energy; in this 
ase es
ape will o

ur along the Saturn-satelliteline (
f. Figs. 2.10 and 2.11) with minimal 
hange to the initial in
lination. Theorbits of En
eladus and Dione are negligibly in
lined, but those of Tethys and



134

Figure 6.11 Verti
al s
atter plot. The a
tual three-dimensional path tra
ed outby the parti
le of Fig. 6.10 has been 
ollapsed into this two dimensional �gure.Note that verti
al stru
ture has been dramati
ally altered from that displayed inFig. 6.9's 
entral panel. The asymmetry arises from Saturn's non-zero symmetri
quadrupolar term (g2;0).
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Mimas have in
linations that ex
eed a degree; thus, nominally, grains laun
hedfrom En
eladus will have their peri
enters lo
ked while those from Tethys willnot. Summing the 
ontributions of several sour
e satellites and di�erent initial
onditions 
ompli
ates the pi
ture, but we believe that some verti
al asymmetryand time-variability are likely to remain.
6.5 Eviden
e for Additional Satellite Sour
esThe main problem with our simple model, whi
h assumes a single sour
e at En
e-ladus, is the fa
t that we �nd, in 
ontrast to the a
tual ring, a radial distributionthat is symmetri
 about the sour
e satellite (see Fig. 6.6). This symmetry isquite robust sin
e it arises dire
tly from the geometry of ellipti
al orbits (Se
tion6.2). One possible solution is that drag for
es, whi
h 
ause outward evolutionof orbits, are responsible for the asymmetry. This is unlikely, however, sin
ethese for
es operate times
ales mu
h longer than the typi
al lifetimes of E-ringgrains (see Se
tion 6.6.1). A more promising hypothesis is that there are addi-tional sour
es of E-ring material further out in the ring. Besides En
eladus, themoons Mimas, Tethys, Dione, and the Lagrangian 
ompanions of the two lattersatellites all lie within the E ring. Mi
rometeoroid 
ollisions or impa
ts of E-ringparti
les themselves into the moons 
ould loft material o� these small bodies.Sin
e mi
ron-sized parti
les originating from nearby satellites will most likelyhave equilibrium potentials similar to that of grains from En
eladus, peri
enterpre
ession rates will mat
h for parti
les similar in size to those 
onsidered here.As e

entri
ities grow and material spreads radially, these grains will merge withthose emanating from En
eladus. These sour
es would 
reate distributions sim-ilar to those in Fig. 6.5 but peaking at di�erent distan
es from Saturn; the sumof these distributions would ne
essarily be asymmetri
 and might better mat
hthe observations.Additional sour
e satellites alleviate another problem, namely that materialintrodu
ed from En
eladus 
annot rea
h the outer limits of the known E ring(8RS) be
ause, with the orbit's �xed semimajor axis (see Eq. 5.52), any e

entri
path that rea
hes beyond about 6:5RS would also penetrate the opaque innerrings. Material from outer satellite sour
es, however, 
an easily rea
h the nom-inal outer limit of the E ring. Furthermore, in 
ontrast to the linear model ofSe
tion 6.3.1, the nonlinearity of the orbit-averaged equations 
onsidered in Se
-tion 6.3.2 
auses some orbits with nearly maximum e

entri
ities to be orientedperpendi
ular to the Sun-Saturn line. Thus our model suggests that the E ring,as seen from Earth, 
ould display nearly its full breadth. This 
orre
tion may beenough for a primary sour
e of dust grains at En
eladus and a weaker sour
e atTethys or one of its Lagrangian 
ompanions (a � 4:89Rp) to a

ount for the fullwidth of the E ring as observed from Earth. This additional sour
e at Tethys'distan
e is also 
onsistent with the extra material seen in the vi
inity of that
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moon (Showalter et al. 1991's Fig. 11).Finally, the verti
al stru
ture dis
ussed in Se
tion 6.4 may provide furtherdynami
al eviden
e for a se
ondary sour
e of parti
les from Tethys. If En
eladuswere the ring's only sour
e, our numeri
al simulations would predi
t maximumthi
knesses of about 7,500 km (if orbital peri
enters are lo
ked) and 15,000 km(if peri
enters are not lo
ked - see below). As noted above, however, the E ringis about 40,000 km thi
k at its outer edge, still quite a bit broader than ourpredi
tions based on Fig. 6.10. Grains laun
hed from Tethys, however, attainin
linations of � 2:5o and, be
ause of Tethys' relatively large orbital in
lination,the orbital peri
enters are not lo
ked. When 
ombined, these e�e
ts lead to apredi
ted thi
kness of >� 40; 000 km at the outer edge of the E ring, a �gure thatis in agreement with the observations.Could other me
hanisms, most notably Lorentz resonan
es, provide the in-
rease in thi
kness without an additional Tethys sour
e? While most of thestrongest Lorentz resonan
es lie very 
lose to Saturn, we note that just interiorto En
eladus there is an important se
ond-order 3:1 resonan
e driven by the tilteddipolar �eld whose strength is proportional to eig1;1 (Chapter 7). If we assumea 0:8o tilt in Saturn's magneti
 dipole, whi
h is that initially proposed by Nesset al. (1982) (
f. A
u~na et al. 1983b), we �nd that the resonan
e is suÆ
ientlystrong to break peri
enter lo
king for some orbits. Numeri
al simulations indi-
ate that in
linations 
an subsequently be pumped up to a few degrees. Thus we
on
lude that while a Tethys sour
e a

ounts ni
ely for the observed in
linations,the 3:1 Lorentz resonan
e a
ting on material laun
hed from En
eladus may alsobe able to do so. In either 
ase, however, the breadth of the E ring and its radialasymmetry about En
eladus' orbital radius still argue for a Tethys sour
e.
6.6 Consequen
es of Highly E

entri
 Orbits6.6.1 Collisions with Embedded SatellitesAfter the pre
eding dis
ussion of the detailed dynami
s of individual grainslaun
hed from En
eladus, we turn now to the question of the ring's origin. Severalme
hanisms have been suggested for lofting small dust grains o� En
eladus intoorbit around Saturn, in
luding vol
anoes (Pang et al. 1984a,b) and/or geothermala
tivity (Ha� et al. 1983), as well as the impa
t of a 
omet (M
Kinnon 1983).Eviden
e supporting either of the �rst two suggestions is s
ant; the Voyagerspa
e
raft found no indi
ations of vol
anoes or geysers on En
eladus, althoughthe satellite does have a relatively young surfa
e (<� 1 billion years). Furthermore,the suggestion that Tethys 
ontributes material to the E ring is diÆ
ult for all ofthese models to a

ommodate, as it requires a
tivity undete
ted by Voyager ontwo satellites in the former 
ases, and an improbable pair of 
ometary impa
tsin the latter. In the next few se
tions, we propose a self-sustaining model of
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the E ring whi
h follows naturally from 
onsidering the 
onsequen
es of highly-e

entri
 orbits.The E ring shares the region between 3 and 8RS with an ensemble of moonsthat travel along nearly 
ir
ular paths (Table 6.1); a

ordingly, on
e the orbitsof E-ring parti
les be
ome moderately e

entri
, they will 
ross the paths ofthese satellites (see Figs. 6.1 and 6.3). Given a satellite of radius Rmoon on alow-e

entri
ity orbit at radial distan
e amoon, a grain on a \
rossing" orbit willstrike the moon with an e-folding times
ale of:

T
ol � �(sin2 idust + sin2 imoon)1=2� amoonRmoon�2�UrU �Torb; (6.18)where Torb = 2�adust=vdust is the dust grain's orbital period, adust is its semimajoraxis, and vdust is its orbital velo
ity ( �Opik 1976). In Eq. (6.18), U is the relativevelo
ity between the moon and the dust grain, Ur is its radial 
omponent, andthe orbital in
linations idust and imoon (Table 6.1) are measured relative to theplane of the main ring system. The ratio Ur=U is nearly independent of edust and,to within < 20%, equals one. Typi
al times for dust grains laun
hed from moonswithin the E ring to reimpa
t the sour
e satellite are given in Table 6.1 assuming,for illustrative purposes, that idust = 0:1o and adust = amoon. The value 
hosenfor idust does not signi�
antly a�e
t 
ollision times
ales for Mimas and Tethyssin
e these satellites are signi�
antly in
lined. Moreover, the orbital nodes ofgrains laun
hed from the unin
lined satellites (En
eladus, Dione) be
ome lo
kednear the radial position of the sour
e (Se
tion 6.4), making Eq. (6.18) somewhatof an overestimate. Sin
e orbital lo
king tends to enhan
e impa
t probabilitiesonto the sour
e satellites, we 
hoose a value for idust that is somewhat lower thantypi
al E-ring in
linations (see Fig. 6.10). Thus the entries in (Table 6.1) applyreasonably well to the a
tual E ring.The albedo patterns of the saturnian satellites may support the notion thate

entri
ally-orbiting E-ring grains 
ommonly strike these bodies. A distributionof e

entri
 orbits having En
eladus' semimajor axis will preferentially strike theleading (trailing) fa
e of exterior (interior) satellites sin
e 
ollisions will o

ur nearapo
enter (peri
enter). Hen
e, assuming that impa
ts 
ause surfa
e brightening,one 
an explain why Tethys and Dione, satellites exterior to En
eladus, havebrighter leading hemispheres while Mimas, whi
h lies interior to En
eladus, has abrighter trailing hemisphere (Verbis
er and Veverka 1992). Erosional brighteningof the leading hemisphere is 
onsistent with an enhan
ed meteoroid 
ux to thefront fa
es of the exterior satellites (Clark et al. 1986, Veverka et al. 1986, Burattiet al. 1990), but 
annot a

ount for Mimas' brighter trailing side. Furthermore,En
eladus itself is photometri
ally similar a
ross diverse geologi
 zones suggestingthe presen
e of a ubiquitous surfa
e layer of mi
ron-sized grains (Buratti 1988),perhaps due to a long history of sandblasting by E-ring material.The grain-moon 
ollision times
ales in Table 6.1 are extremely rapid: En
e-
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Table 6.1 Satellites within the E ringName amoon emoon imoon Rmoon �moon ves
ape vmoon T
ol(RS) (o) (km) (g/
m3) (km/s) (km/s) (years)Mimas 3.08 0.02 1.53 195 1.17 0.16 14.3 200En
eladus 3.95 0.00 0.02 250 1.24 0.21 12.6 19Tethys 4.89 0.00 1.09 525 1.26 0.44 11.4 98Telesto (T+) 4.89 0.00 0.00 12 (1.0) 0.009 11.4 17,000Calypso (T-) 4.89 0.00 0.00 12 (1.0) 0.009 11.4 17,000Dione 6.26 0.00 0.02 560 1.44 0.50 10.0 19Helene (D+) 6.26 0.01 0.20 16 (1.0) 0.012 10.0 51,000Rhea 8.74 0.00 0.35 765 1.33 0.66 8.5 120
Physi
al and orbital properties of the satellites are from Burns (1986). The�nal three 
olumns are 
al
ulated from v2es
ape = 2GMmoon=Rmoon, v2moon =GMs=amoon, and Eq. (6.18), respe
tively; the mass of Saturn is Ms = 5:688 �1029g. The mass densities of the leading and trailing Lagrangian 
ompanions ofTethys (T+, T-) and the leading 
ompanion of Dione (D+) are unmeasured.
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ladus, immersed in the heart of the E ring, sweeps up the entire ring in a 
hara
-teristi
 time of 20 years. Without a supply of new material, the E ring should havelost more than 50% of its mass in the interval between its dis
overy (Feibelman1967) in 1966 and the Voyager 
y-bys in 1981. Sin
e it is unlikely that the E ringis disappearing so qui
kly, a me
hanism that 
ontinuously replenishes the ringmust exist. In parti
ular, a burst of a
tivity in the distant past, { through vol-
anism, geysers, or large impa
ts { is in
apable of a

ounting for the E ring thatwe observe today. Whatever pro
ess 
reates E-ring parti
les must be o

urringnow.
6.6.2 Collisional Yield; a Self-Sustaining RingWhat are the 
onsequen
es of these frequent grain-moon 
ollisions? First wenote that impa
ts are energeti
 sin
e dust grains on highly-e

entri
 orbits strikeembedded satellites at large relative velo
ities. From expressions for the radialand tangential velo
ity 
omponents of an ellipti
 orbit, the relative speed betweena parti
le traveling on a low-in
lination, arbitrarily-sized, e

entri
 orbit and amoon moving along a 
ir
ular, nearly equatorial path is approximatelyv
ol � evmoon; (6.19)where vmoon, the orbital speed of the moon, is roughly 10km/s (Table 6.1). Re-markably, this simple expression is a

urate to about 10% for parti
le orbits of allsizes and shapes as long as the 
ollision does not o

ur too near an orbital turn-ing point (Fig. 6.1). Owing to the large e

entri
ities of E-ring grains, 
ollisionvelo
ities often surpass 5 km/s, a value far in ex
ess of satellite es
ape velo
ities(Table 6.1). These hypervelo
ity impa
ts eje
t an amount of mass greatly ex-
eeding that of the impa
tor (O'Keefe and Ahrens 1977) into 
ir
um-saturnianorbit where it merges with the E ring.Sin
e mi
ron-sized impa
ts add material to the E ring, the ring may sustainitself with these 
ollisions; only a small fra
tion of the 
ollisional eje
ta, however,is 
omposed of the dynami
ally-favored, mi
ron-sized grains. As Fig. 6.3 demon-strates, grains that fall outside this spe
ial size window never attain the highe

entri
ities ne
essary for energeti
 
ollisions; instead they eventually en
ounterthe sour
e satellite in low-velo
ity 
ollisions that liberate little or no mass. Thusa self-sustaining E ring requires that, on average, the 
ollision of a mi
ron-sizedgrain must eje
t at least one mi
ron-sized fragment.Can a mi
ron-sized impa
t a

elerate a 
omparable-sized fragment to es
apevelo
ity? Clearly the answer to this question depends on the nature of the 
olli-sion and on the es
ape velo
ity of the impa
ted satellite. The 
ollisional fragmentsof interest are similar in size to the proje
tile and they must survive inta
t, whi
hsuggests spallation (Melosh 1989). Due to 
an
ellation of the initial 
ompres-sional and the re
e
ted rarefa
tion stress waves, spall fragments are only lightly
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sho
ked and 
an ex
eed the proje
tile in size. A few experiments (Fris
h 1990,1991, Ei
hhorn and Kos
hny 1992), in whi
h small hypervelo
ity proje
tiles 
ol-lide with i
y targets, yield large, rapidly-moving spall fragments. Unfortunately,these experiments give in
on
lusive answers to our question for En
eladus sin
ethe measured speeds of the fastest proje
tile-sized 
ollisional fragments are simi-lar to that satellite's es
ape velo
ity. Perhaps the mi
ron-sized yield of a typi
al
ollision is unusually high owing to En
eladus' surfa
e regolith of mi
ron-sizeddebris (Buratti 1988).Energeti
 grain-moon 
ollisions are also suggested by the vast quantity of OHmole
ules observed in the E-ring region whi
h seems imply a quantity of H2Otwenty times more than traditional sour
es 
an supply (Shemansky et al. 1993).The 
ollisions that we have argued are 
apable of lofting a mi
ron-sized obje
tinto spa
e liberate many times that mu
h mass in the form of water mole
ules andtiny aggregates. The E-ring sour
e is 10-100 times more eÆ
ient than others (e.g.,mi
rometeoroid bombardment, sputtering) and 
an easily generate the observedpopulation of OH mole
ules (Hamilton and Burns 1993a).
6.6.3 Collisions with RingsAs noted above, some fra
tion of E-ring material will also intera
t with the inte-rior G, F, and A rings of Saturn (Table 6.2) (Showalter and Cuzzi 1993, Showalteret al. 1992, Dones et al. 1993). The resulting 
ollisions deplete the E ring and
reate many small eje
ta fragments in the target rings. However, in additionto bombardment by E-ring grains, the rings of Saturn are also stru
k by inter-planetary meteoroids. Whi
h sour
e dominates? We 
al
ulate that the mass
ux of E-ring grains onto En
eladus ex
eeds the interplanetary 
ux (taken to be4:5 � 10�17g/
m2s from Cuzzi and Durisen (1990) by 104 (Hamilton and Burns1993a). At the F and G rings, where E-ring 
uxes are redu
ed, this ratio dropsto 10-100, and for the outer 100km of the A ring, to 1-10. Regions interior to theoutermost A ring are shielded from E-ring grains, and so the interplanetary 
uxdominates there.Most 
ollisionally-dominated rings, like the main rings of Saturn, have powerlaw size distributions with q � 3:0 (Zebker 1985). Interestingly, both the Fand G rings display anomalously high q's, 4.6 and 6, respe
tively (see Table 6.2),suggesting an ex
ess of very small dust parti
les. The dustiness of these rings maybe augmented by high velo
ity impa
ts of E-ring motes into the dusty 
omponentsof the F and G rings. Su
h 
ollisions are 
atastrophi
 and a
t to steepen the sizedistribution. We suggest that the unique size distributions of the F and G ringsare determined, in part, by the in
ux of E-ring grains.The outer few hundred kilometers of the A ring are brighter and dustier thanits inner parts (Dones et al. 1993). The additional 
ux of small parti
les to theexterior part of the ring may brighten large ring members (in the same manner
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Table 6.2 Properties of the outer saturnian ringsName inner edge outer edge �small �large q 
omment(RS) (RS)A 2.03 2.27 <�0.03 0.7 �3 � 100m thi
kF 2.32 2.32 0.1 0.02 4.6�0.5 
ore of >
m obje
tsG 2.75 2.88 2 e-6 2.5 e-8 6.0�0.2 
ore of >
m obje
tsE <3.00 >8.00 1 e-5 ? - peak at 3.95 RS
Here �small is the opti
al depth in dust parti
les with radii in the mi
ron andsubmi
ron range while �large is the opti
al depth in parti
les larger than 1mm.Distributions of parti
le sizes within a ring are usually well approximated bypower laws of the form r�qg , where rg is the parti
le size and q, the power lawindex, is listed for the A, F, and G rings. Saturn's E ring is not well representedby a power law; it seems to have a monodisperse size distribution (Showalteret al. 1991)
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that it seems to brighten Mimas, En
eladus, Tethys, and Dione) and/or augmentthe produ
tion of dust (as in the F and G rings).
6.6.4 Intraparti
le CollisionsAs mentioned above, the E ring gains mass during typi
al impa
ts of mi
ron-sizedgrains with embedded satellites. Sin
e the rate of mass in
rease is proportionalto the number of ring members, the ring would in
rease in mass exponentiallywith time without a me
hanism to quen
h this growth. Intragrain 
ollisions,where the loss rate is quadrati
 in the number density of ring members, willeventually overwhelm a linear sour
e and will stabilize the ring at a parti
ularopti
al depth. If the E ring is marginally self-sustaining and intragrain 
ollisionsare 
atastrophi
, then at steady state grain-grain and grain-moon 
ollisions shouldo

ur with roughly similar probabilities. In the a
tual ring, the 
ross-se
tionalarea of E-ring parti
les is a few times that of En
eladus, and so the intraparti
le
ollision rate is similar to the grain-moon 
ollision rate as expe
ted.
6.6.5 Computer SimulationsIn order to test whether the E ring might be self-sustaining, we use a 
omputersimulation 
ontaining more sophisti
ated versions of the simple ideas dis
ussedabove. Our model in
ludes all of the moons and rings listed in Tables 6.1 and6.2, and 
onsiders a dis
rete spe
trum of seven parti
le sizes (0.4�m - 1.6�min steps of 0.2�m). Prior to running our models, we numeri
ally followed theorbital histories of grains of all sizes laun
hed from ea
h moon, and re
ordedthe average in
lination, maximum e

entri
ity, and the period of the e

entri
ityos
illation (
f. Fig. 6.3). These three parameters are used to approximate thee�e
ts of orbital perturbations and hen
e serve as the dynami
al inputs to ourmodel.The 
ollisional yield for a hypervelo
ity impa
t into a moon depends onlyon the target's es
ape velo
ity and surfa
e properties, and the impa
tor's kineti
energy. We assume that in order to send one proje
tile-sized fragment into spa
e,the impa
t energy must ex
eed the kineti
 energy of the es
aping fragment by afa
tor of 100-400. We further 
onsider that the amount of es
aping eje
ta s
aleswith the impa
t energy and that intragrain 
ollisions are entirely 
atastrophi
.Finally, individual 
ollision rates and yields are folded together with dynami
alevolution to 
al
ulate a matrix of transition rates (e.g., the rate at whi
h 1.2�mgrains from En
eladus 
reate 0.8�m grains at Tethys). The di�erential equationsgoverning the population of grains of given sizes asso
iated with spe
i�
 moonsare then numeri
ally integrated (
f. Colwell and Esposito 1990).Table 6.3 shows the results of one of our simulations; we see that, as in thea
tual E ring, most parti
les in the mi
ron-range are lo
alized at En
eladus.
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En
eladus is sele
ted as the dominant sour
e for several reasons: the non-zeroin
linations of its neighbors substantially redu
e their 
ollision probabilities (Ta-ble 6.1); the large es
ape velo
ities of Tethys, Dione, and Rhea limit their 
olli-sional yields; and Mimas-derived parti
les are qui
kly lost to the inner saturnianrings. Besides mimi
ing the radial stru
ture of the true E ring, our simulatedring has a mass and a peak opti
al depth within a fa
tor of three of the observedvalues; this agreement reinfor
es our assertion that intraparti
le 
ollisions in fa
tdetermine these quantities. The results presented in Table 6.3 are typi
al; betterapparent agreement 
ould be for
ed by tweaking parameters.The only element of our model that stands in 
ontrast to observations is thesize distribution whi
h shows an ex
ess of submi
ron grains rather than beingmonodisperse at 1�m (Showalter et al. 1991). Su
h a result is not unexpe
ted;it follows 
learly from our assumptions that mi
ron-sized impa
ts 
reate equalamounts of mass in ea
h size bin and that smaller grains are swept up at roughlythe same rate as their more massive brethren. Furthermore, sin
e a substantialpopulation of submi
ron dust is observed in the F and G rings, it might also beexpe
ted in the E ring. Nevertheless, the presen
e of many small parti
les in themodel's output disagrees with the most straightforward interpretation (Showalteret al. 1991) of Voyager observations, namely that the E ring has an appre
iablylower opti
al depth in submi
ron parti
les than in mi
ron grains (M.R. Showalter1993, private 
ommuni
ation). The above model is so su

essful in a

ounting forvarious features of the E ring and its embedded satellites that one might wonderhow this dis
repan
y 
an be explained. Our model may in
orre
tly reprodu
ethe a
tual eje
ta size distribution or may underestimate loss rates for submi
rongrains. Furthermore, the interpretation of the observations assumes that parti
lesizes are uniform throughout the E ring (M.R. Showalter 1993, private 
ommuni-
ation) and yet we have seen that submi
ron dust remains 
on�ned to a narrowband around the sour
e's radial lo
ation (Fig. 6.3). Perhaps, mi
ron-sized dustappears to dominate be
ause it alone is found a
ross the entire E ring.
6.6.6 Impli
ations for Other RingsIn the previous se
tions, we have shown how dusty rings may be generated andhave suggested that the E ring is one member of this 
lass. High-velo
ity impa
tsinto satellites sustain the E ring through the addition of eje
ta, and ring parti
lesare lost in 
atastrophi
 grain-grain 
ollisions. The resulting steady-state ring hasa 
al
ulable mass and opti
al depth that agree with the measured quantities. Ingeneral a self-sustaining ring of this type requires only i) advantageously-lo
atedsour
e satellites that are proper sizes and ii) a me
hanism for in
reasing ring-parti
le orbital e

entri
ities and thereby enhan
ing 
ollisional yields. The smalljovian satellites Metis and Adrastea satisfy these two 
onditions; thus the faintring surrounding and inward of these two satellites may be similarly generated.
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Table 6.3 Steady-state parti
le population for the E ring0.4�m 0.6�m 0.8�m 1.0�m 1.2�m 1.4�m 1.6�mMimas 9.3 e+22 1.1 e+22 1.3 e+21 1.4 e+20 3.4 e+20 2.6 e+20 2.5 e+20En
eladus 7.5 e+22 4.3 e+22 1.1 e+22 1.4 e+21 1.5 e+21 5.6 e+20 2.1 e+20Tethys 6.0 e+22 9.8 e+21 2.1 e+21 2.1 e+19 3.8 e+18 3.6 e+16 7.2 e+14Dione 4.9 e+21 4.0 e+20 5.9 e+19 1.1 e+16 2.1 e+14 3.2 e+13 2.5 e+12Rhea 4.7 e+20 1.6 e+18 4.3 e+14 7.7 e+12 3.2 e+11 0 0Total 2.3 e+23 6.4 e+22 1.5 e+22 1.6 e+21 1.8 e+21 8.2 e+20 4.6 e+20
The �nal, near steady-state population of a simulated E ring. Ea
h size/moon binwas started with a population of 1018 parti
les and the ring was allowed to evolvetoward 
ollisional steady state for 500 years. Most 
hanges in the populationo

urred over the �rst hundred years when grain-grain 
ollisions were rare. Thetotal volume of our steady-state E-ring model is equivalent to a sphere of radius35 meters whi
h 
orresponds to a maximum opti
al depth of about 30% that ofthe true E ring. The 
umulative 
ross-se
tional area of these ring parti
les is1.1 times that of En
eladus. Although we negle
t the Lagrangian 
ompanionsof Tethys and Dione in this simulation for simpli
ity, their 
ontributions may beimportant.
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6.7 Future Observations and Predi
tions6.7.1 Ground-BasedThe most favorable time for ground-based observations of the E ring o

urs whenSaturn's main rings, as seen from Earth, appear edge-on; this last o

urred in1979-80 and will next happen in 1995-96. At these times, the signal from theE ring is strong due to the long opti
al path length through the region, ands
attered light from the main rings is dramati
ally de
reased. Sensitive observa-tions made during this period should be 
apable of extending the known innerand outer limits of the ring sin
e these apparent boundaries (Table 6.2) are mostlikely due to the weakening of signal relative to ba
kground. This is espe
iallytrue in the inner region where the bright glare from the main rings 
ompli
atesinterpretation. Our model predi
ts that material should be present inward to theedge of the A ring.Be
ause the predi
ted azimuthal stru
ture of the E ring is symmetri
 as viewedfrom the Sun, it is very unlikely that any asymmetry will be seen from Earth. Theverti
al asymmetry should, however, te
hni
ally be visible to terrestrial observers,although the magnitude of the e�e
t may be too small to be noti
eable. Whenthe Sun is nearly in the ring plane, the quadrupole dominates peri
enter lo
kingand dust exterior to En
eladus' orbit (a = 3:95Rp) should be o�set slightly to thenorth; interior to En
eladus it should be found slightly to the south (Fig. 6.11).The magnitude of the o�set depends on the unknown properties of the ensembleof grains that make up the E ring; o�sets should in
rease, however, with radialdistan
e from En
eladus. Grains originating from Tethys, however, will be dis-tributed more symmetri
ally about the equatorial plane and so the verti
al o�setmay disappear at large distan
es where Tethys-derived grains predominate.
6.7.2 From Spa
e
raftThere are de�nite hints of verti
al asymmetry from the Voyager 
y-by missions.Showalter et al. (1991) 
ite eviden
e from Voyager images 
entered at about 4Rpfor a northern o�set of several hundred kilometers - larger than that expe
ted bydi�eren
es between the equatorial and Lapla
e planes. The o�set predi
ted byEqs. (6.9{6.11) is small at this distan
e be
ause it is just outside the positionwhere the orbital nodes lie. Sin
e the Sun was elevated only � 4o north ofthe equatorial plane at the time of the 
y-by, the quadrupole term should stilldominate the solar term and material exterior to the nodes should be elevatedslightly to the north as observed. In addition, Voyager 1 swept through the E ringat a distan
e of about 6:1Rp, near the Dione \
lear zone," and returned data fromits PWS instrument, whi
h was dis
overed to be sensitive to dust impa
ts. Thesedata imply an o�set to the south (W. Kurth 1992, private 
ommuni
ation). Mostof the material in this region probably originates from Tethys, in whi
h 
ase the
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orbital peri
enters are not lo
ked; thus we 
annot easily predi
t the sense of theobserved o�set.Questions about the sour
es of dust and possible asymmetries in the E ring'sstru
ture are diÆ
ult to answer from ground-based observations alone. Be
ausesingle parti
le dynami
s dominate 
olle
tive e�e
ts in the E ring, detailed in-formation on individual parti
le orbits, whi
h 
an most easily be obtained fromspa
e
raft observations, are desirable. The sour
es of E-ring material should beeasily identi�ed when the Cassini orbiter, with its sophisti
ated dust dete
tor,arrives at Saturn and makes repeated passes through the region. The missionshould also be able to determine the nature and extent of any azimuthal andverti
al asymmetry.



Chapter 7
Resonan
es1
7.1 Introdu
tionGravitational orbital resonan
es, in whi
h the frequen
y of a perturbing for
e is
ommensurate with a natural orbital frequen
y, have fundamental importan
ein the solar system. Satellites resonate with one another as in the saturnianMimas-Tethys and En
eladus-Dione pairs as well as the famous jovian Io-Europa-Ganymede triple. At resonant lo
ations in the main rings of Saturn, satellites
ause density and bending waves, and sometimes form gaps and ringlets. Somefeatures in the saturnian rings have even been as
ribed to tiny perturbationsfrom axially asymmetri
 terms in the planet's gravitational �eld (Franklin et al.1982, Marley and Por
o 1993). Sin
e gravitational resonan
es are so 
ommon inthe solar system, might non-gravitational resonan
es also be prevalent? This isalmost 
ertainly true; however examples of su
h resonan
es will only be foundby looking in the right pla
es. Sin
e non-gravitational for
es 
an 
ompete withgravitational ones solely when parti
les are small, we expe
t these resonan
es forparti
les with radii less than a few mi
rons. The faint ring systems of the giantplanets are 
omposed primarily of tiny parti
les and so su
h lo
ales are ideal sitesto seek out signs of non-gravitational resonant intera
tions.These signs are 
learly present both in the main jovian ring (Burns et al.1985) and in Saturn's E ring (Chapter 6). In the former lo
ation, Lorentz (ele
-tromagneti
) resonan
es, whi
h arise from Jupiter's spinning magneti
 �eld, are
apable of pumping up the e

entri
ity and in
lination of ring parti
les. In par-ti
ular, the transition between the main ring and the verti
ally extended haloo

urs at a lo
ation where the ratio of the orbital frequen
y to the planet's spinrate is nearly 3:2 (Burns et al. 1985). Parti
les drifting inward and a
ross thisstrong resonant lo
ation in
rease their in
linations by a fa
tor of several hundred(see S
ha�er and Burns 1992). As we have seen in Chapter 6, the parti
les in1This 
hapter is based on the paper: Hamilton, D.P. (1993), A 
omparison of Lorentz,planetary gravitational, and satellite gravitational resonan
es. I
arus, submitted.
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Saturn's di�use E ring are also in nearly resonant orbits although this time thedriving for
e is radiation pressure instead of ele
tromagnetism. Be
ause E-ringorbits retain a given orientation with respe
t to the Sun for an extended period oftime, radiation pressure is able to build up large orbital e

entri
ities and spreadmaterial a
ross the full breadth of the E ring (Chapter 6).Other non-gravitational resonan
es have also been identi�ed, among themshadow resonan
es (Horanyi and Burns 1991, Mignard 1984) and resonant 
hargevariations (Burns and S
ha�er 1989, Northrop et al. 1989). In the former, 
on-ditions 
hange in the planetary shadow (radiation pressure and the photoele
tri

urrent shut o�) whi
h o

urs naturally on
e per orbit; su
h orbits are thus intrin-si
ally resonant. Shadow resonan
es may be responsible for the strange azimuthalasymmetry seen in the main jovian ring and in its halo (for a des
ription of theasymmetry, see Showalter et al. 1987). Resonant 
harge variations o

ur whenthe 
harge on a dust grain 
hanges with a period that is 
ommensurate with thegrain's orbital period; the termination of the photoele
tri
 
urrent during shadowpassage provides a simple example, while another depends on variations in the
urrent 
ow to a grain as its position and velo
ity 
hange along its orbit.Be
ause gravitational resonan
es have been extensively studied, it is valuablewhen studying non-gravitational e�e
ts to draw from the body of knowledge al-ready amassed. A

ordingly, the primary emphasis of this work is to explore thesimilarities of non-gravitational and gravitational orbital resonan
es by 
ompar-ing and 
ontrasting their stru
ture and e�e
ts on orbiting parti
les. We 
hooseto look at two di�erent types of gravitational resonan
es { those due to an or-biting satellite and those due to the \lumpiness" of an arbitrarily shaped planet{ and we pi
k Lorentz resonan
es both be
ause of their importan
e at Jupiterand be
ause of their similarity to gravitational resonan
es (Hamilton and Burns1993b). In the interest of brevity, hen
eforth we adopt the following notation:LR = Lorentz resonan
e, SGR = satellite gravity resonan
e, and PGR = plane-tary gravity resonan
e. By 
omparing three di�erent types of orbital resonan
es,we progress in understanding the traits that underlie all orbital resonan
es andthose that are unique to parti
ular ones.A se
ond goal of this 
hapter is the mathemati
al 
hara
terization of theLorentz perturbation whi
h is useful for several appli
ations. As noted above,Lorentz resonan
es are known to play a key role in the jovian ring (Burns et al.1985). They are also suspe
ted of being important elsewhere, perhaps a

ount-ing for dust found over the Neptunian pole (Hamilton et al. 1992), 
ausing largerin
linations in the saturnian E ring (Chapter 6), and a

ounting for 
urious phe-nomena at the 
orotation distan
e (Showalter et al. 1985). These resonan
eshave been analyti
ally treated by S
ha�er and Burns (1987) and more re
entlyby S
ha�er and Burns (1992) who used a perturbed harmoni
 os
illator modelof resonan
e. Here we instead follow the standard 
elestial me
hani
s approa
h;sin
e gravitational perturbations have been treated in this way, similarities and
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di�eren
es between resonan
es might be more readily apparent. Furthermore,the 
elestial me
hani
s approa
h has several advantages over the harmoni
 os
il-lator approa
h, the most obvious of whi
h is that the results of perturbations aredes
ribed by slowly-varying orbital elements whi
h allow graphi
 visualization oforbital evolution.The importan
e of Lorentz resonan
es in many of the above appli
ations re-mains spe
ulative be
ause resonant strengths are poorly known; indeed, even thestru
ture of these resonan
es is not well understood. In Se
tion 7.2, we attemptto re
tify this situation by expanding the Lorentz for
e out to se
ond-order insmall quantities e and i. In Se
tion 7.3, we 
ompare SGRs, PGRs, and LRs anddis
uss underlying symmetries 
ontained in their expansions. We add the impor-tant dissipative e�e
ts of drag for
es in Se
tion 7.4, following whi
h we presentour 
on
lusions.
7.2 Expansion of Perturbing For
es7.2.1 Planetary GravityWe begin by dis
ussing perturbations to two-body motion arising from smalldeviations in a planetary gravity �eld. This well-studied problem shares manyaspe
ts with the Lorentz perturbation and, a

ordingly, fa
ilitates our later dis-
ussion of that for
e. Be
ause we 
onsider only small perturbations, solutions tothe full problem di�er only slightly from the exa
t solution to the two-body prob-lem. A

ordingly, we make use of the orbital elements sin
e these will 
hangerelatively slowly in time. The basi
 task then, is to write the perturbation interms of os
ulating orbital elements so that the time rate of 
hange of ea
h ofthese elements 
an be determined. We now sket
h the derivation following the
omprehensive treatment of Kaula (1966).Working in a planet-
entered referen
e frame rotating at the planet's spinrate 
p, the gravitational potential � outside an arbitrarily-shaped body 
an beshown to satisfy Lapla
e's equation, r2� = 0 (Danby 1988). The solution ofLapla
e's equation in spheri
al 
oordinates for a 
ylindri
ally-symmetri
 planet,is given by Eq. 5.1. For an asymmetri
 body, solving Lapla
e's equation leads tothe standard spheri
al harmoni
 expansion of the gravitational potential:

� = �GMpRp 1Xj=0�Rpr �j+1 jXk=0[C�j;k 
os(k�R) + S�j;k sin(k�R)℄P kj (
os �); (7.1)
where, as before, G is the gravitational 
onstant, Mp and Rp are the planetarymass and radius, and r; �; �R are the usual spheri
al 
oordinates de�ned in therotating frame. These 
oordinates 
an be translated into the non-rotating frameby the identity �R = �� �0, where �0 = 
pt is the longitude of a referen
e point
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on the rotating planet. The P kj (x) are asso
iated Legendre polynomials (Kaula1966, S
ha�er and Burns 1992). Finally, the 
oeÆ
ients C�j;k and S�j;k are di-mensionless quantities whose values are set by the mass distribution within theplanet. Note, however, that several 
onventions exist for normalizing the asso-
iated Legendre polynomials (Stern 1976); be
ause the 
hoi
e of normalizationalters the numeri
al values of C�j;k and S�j;k, 
are must be taken when these 
oef-�
ients are evaluated. Kaula (1966) for instan
e, uses unnormalized polynomialsin the main text, but quotes numeri
al values for the Earth (through j = k = 6,his Tables 3 and 4) in whi
h a spheri
al harmoni
 normalization (his Eq. 1.34)has been used. To further 
ompli
ate matters, the same polynomials arise whenthe magneti
 �eld is expanded, but these are 
onventionally S
hmidt-normalizedwhi
h di�ers from both of the above 
hoi
es (see S
ha�er and Burns 1992). We
hoose to S
hmidt-normalize the gravity 
oeÆ
ients to fa
ilitate the 
omparisonof PGRs and LRs, and pla
e asterisks on the 
oeÆ
ients as a reminder of thisun
onventional 
hoi
e.The disturbing fun
tion, i.e., the negative of Eq. 7.1 rewritten in terms of or-bital elements, is found by 
onverting the spheri
al 
oordinates to orbital quanti-ties and substituting into Eq. 7.1; the relevant expressions, Eqs. (5.9{5.11), allowr; �, and � to be repla
ed by a; e; i;
; u, and �. As in the previous 
hapters, a ande are the semimajor axis and e

entri
ity of the ellipti
al orbit, i is the orbitalin
lination, and 
 is the longitude of the as
ending node; the argument of lati-tude, u, and the true anomaly, �, vary rapidly and nonlinearly in time (Fig. 7.1).We therefore repla
e these latter two quantities with the longitude of peri
enter$, whi
h 
hanges slowly, and the mean longitude of the parti
le �, whi
h variesnearly linearly in time. In addition, this 
hoi
e 
auses all referen
e angles to bemeasured from the same zero-point in spa
e whi
h makes the symmetries of theexpansion most apparent (see Se
tion 7.3.1 below). The elements employed inour expansions are therefore: a; e; i;
; $; and �.We eliminate the argument of latitude with the expressionu = $ � 
 + � (7.2)(Fig. 7.1), leaving only the true anomaly �, whi
h always appears inside trigono-metri
 fun
tions, to be translated. Be
ause expressions relating 
os � and sin �to trigonometri
 fun
tions of the mean anomaly M are available (e.g., Smart1953, p. 41), we pro
eed by using multiple-angle identities to �rst write our series(Eq. 7.1) in terms of sums and produ
ts of 
os � and sin �. We do this using asymboli
 algebra program (MACSYMA), although with 
are it 
an be done an-alyti
ally (Kaula 1966). Next the substitutions for 
os � and sin � are employed;these expressions are 
omplex, involving Bessel fun
tions and their derivatives,but 
an be redu
ed to the form Pj Bjej 
os(jM) where the Bj are 
onstants(Smart 1953, p. 41). These expressions 
onverge only for e < 0:66, a 
onstraintof little importan
e sin
e most appli
ations are to low-e

entri
ity orbits. Finally,
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Figure 7.1 Orbital elements. The symbols A and P stand for apoapse and peri-apse, respe
tively, while AN and DN refer to the as
ending and des
ending nodes.Longitude angles (e.g., �;$, and 
) are measured from a spe
i�ed referen
e di-re
tion in spa
e. Node angles (e.g., 
) are measured to the as
ending node whilearguments (e.g., u and !) are measured from this point. Similarly, peri
enterangles (e.g., $ and !) are measured to periapse while anomalies (e.g., �) aremeasured from there.
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we 
omplete the transformation to our orbital elements by repla
ing M via theidentity M = ��$.The resulting expression is quite 
omplex, 
ontaining produ
ts and quotientsof in�nite power series in the e

entri
ity. We simplify by formally multiplyingand dividing the various series so that ea
h term in the full expression 
ontainsonly a single power of the e

entri
ity. Next, we repla
e all produ
ts and pow-ers of trigonometri
 fun
tions with multiple-angle expressions; these steps are
omputationally intensive and tedious, and therefore are best left to symboli
programs. The �nal result is the disturbing fun
tion, a series 
ontaining termsof the following form:f(a; e; i; :::) 
os(A��+ A�0�0 + A$$ + A

 + A0); (7.3)where the Aj are integer 
onstants and f is a fun
tion of a; e; i and the �eld
oeÆ
ients C�j;k and S�j;k. Readers interested in more expli
it analyti
 results forthe disturbing fun
tion relevant to planetary gravity �elds should 
onsult Kaula(1966)'s Se
tion 3.3.We wish to 
ompare these results with those that arise from the Lorentzfor
e 
onsidered in the next se
tion, but be
ause a disturbing fun
tion 
annot bede�ned for the Lorentz for
e, we must derive time rates of 
hange of the orbitalelements in both 
ases. These rates are obtained by inserting the disturbingfun
tion into Danby (1988)'s Eq. (11.9.9) whi
h gives six new series, one for therate of 
hange of ea
h orbital element, ea
h of whi
h 
ontains terms of the formof Eq. (7.3). We use expressions for dn=dt; de=dt; di=dt; d
=dt; d$=dt, andd�=dt where the mean motion is given by

n = �GMpa3 �1=2: (7.4)The variable d�=dt en
apsulates all perturbative 
hanges to a parti
le's orbitalmean motion; it is equivalent to Danby (1988)'s d�1=dt, and satis�es d�=dt =d�=dt�n. To fa
ilitate the 
omparison of in
lination and e

entri
ity resonan
es,we Taylor-expand the six series in e and i and trun
ate so that only terms se
ond-order in small quantities remain. Our results for sele
ted quadrupole and o
tupole
omponents of the planetary gravity �eld are presented in Table 7.1. Many of thepatterns seen in Table 7.1 [e.g., the similarity of the 
oeÆ
ients of the time ratesof 
hange of the e

entri
ity (in
lination) and the peri
enter (node)℄ follow fromthe fa
t that these expressions are derived from a single disturbing fun
tion.
7.2.2 The Lorentz For
eIn addition to planetary gravity, a 
harged dust grain in orbit around a planetresponds to the Lorentz for
e arising from the rotating magneti
 �eld asso
i-ated with the planet (Se
tion 5.4.1). Close in, the magneti
 �eld B rotates at the
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Table 7.1 The se
ond-order expansion of perturbations due to the C�2;2 and C�3;2
omponents of the planetary gravitational �eld. The �rst 
olumn 
ontains theresonant argument, 	 = A�� + A�0�0 + A$$ + A

 [see Eqs. (7.3) and (7.8)℄.When the disturbing fun
tion is expanded to se
ond-order in the small quantities(e and i), dn=dt is given to se
ond-order, de=dt and di=dt to �rst-order, and theangular quantities d
=dt, d$=dt, and d�=dt to zeroth-order. The response for theS�2;2 and S�3;2 
omponents (Eq. 7.1) are obtained from these by the transformationC� ! S� and 	 ! 	 � �=2. Se
tion 7.4.1 gives an example of how to use thistable.
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planet's 
onstant spin rate
p, and the Lorentz for
e is given by Eq. 5.29. Assum-ing that the magneti
 �eld is evaluated in a 
urrent-free region (J � r�B = 0),the only remaining 
onstraint that must be satis�ed is Maxwell's equationr�B =0 (Stern 1976, Se
tion 5.4.1). Taking B = �r�mag, we �nd that r � B = 0is automati
ally satis�ed, and r2�mag = 0 with solutions like Eq. (7.1) above.Hen
e

B = �Rpr 1Xj=1�Rpr �j+1 jXk=0[gj;k 
os(k�R) + hj;k sin(k�R)℄P kj (
os �); (7.5)
whi
h is merely a 
ombination of Eqs. (5.26{5.28). Re
all that the gj;k and hj;kare planetary magneti
 �eld 
oeÆ
ients with units of gauss [S
ha�er and Burns(1992) tabulate values for the giant planets and give additional referen
es℄.A measure of the relative strength of the Lorentz for
e is given by the param-eter L de�ned in Eq. 5.40; the Lorentz for
e 
an be treated as a perturbation togravity for grains satisfying L << 1. Assuming typi
al grain potentials of a fewVolts (e.g., Horanyi et al. 1992), this inequality translates to grains larger thanseveral tenths of a mi
ron in radius. For many appli
ations, in
luding the jovianring (Showalter et al. 1987) and the saturnian E ring (Showalter et al. 1991),dust grains are inferred to be mi
ron-sized and gravitationally dominated; hen
ea perturbation approa
h is appropriate.Sin
e the Lorentz for
e depends on velo
ity, it 
annot be written as the gradi-ent of a potential and thus an ele
tromagneti
 disturbing fun
tion does not exist.Therefore, in order to obtain the time rates of 
hange of the orbital elements fora general for
e, we pro
eed as follows:1. Resolve the for
e into three orthogonal 
omponents: one normal to the orbitalplane, the se
ond oriented radially, and the third perpendi
ular to the others.2. Insert these 
omponents into the perturbation equations of 
elestial me
hani
s(e.g., Danby 1988, Eq. 11.5.13).3. Convert all quantities into orbital elements.The �rst step has already been a

omplished for the Lorentz for
e in Se
tion 5.4.1(Eqs. 5.32{5.34). Next we insert the expressions forBr, B�, and B� from Eq. (7.5)into the for
e 
omponents whi
h are in turn substituted into the perturbationequations.Finally, we rewrite the perturbation equations in terms of our set of orbital el-ements; this step 
losely parallels that dis
ussed above for the planetary gravitydisturbing fun
tion. For ea
h of the six perturbation equations, we �rst 
on-vert the spheri
al quantities (r; �; �) to orbital elements using Eqs. (5.9{5.11),after whi
h we repla
e u and � with 
; $, and M (see Eq. 7.2 and the follow-ing dis
ussion). After simpli�
ation, we are again left with a series of terms of
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Eq. (7.3)'s form. Our result for the response of a 
harged grain to magneti
dipole, quadrupole, o
tupole, and sele
t higher-order terms, trun
ated to se
ond-order in e and i, is given in Table 7.2. The (g1;0 : 	 = 0) and (g2;0 : 	 = 0) termsagree with low-order expansions of Eqs. (5.41{5.46) and Eqs.(5.48{5.50) as theyshould.
7.3 Properties of the Expansions7.3.1 Orbital SymmetriesDespite the fa
t that the expansions listed in Tables 7.1 and 7.2 arise from verydi�erent perturbations, remarkably similar patterns are evident in ea
h 
ase. Forinstan
e, in both expansions the power of the e

entri
ity in a given term is relatedto the 
oeÆ
ient of the peri
enter angle, and the same holds for in
linations andnodes. Furthermore, in both 
ases, the 
oeÆ
ients of the angular quantities in ev-ery resonant argument sum to zero. These patterns are reminis
ent of d'Alembertrelations whi
h 
onstrain the form of SGRs, imposing symmetries that have beenre
ognized for as long as the satellite disturbing fun
tion has been expanded. A
-
ording to Brown and Shook (1933), the relation between peri
enter 
oeÆ
ientsand e

entri
ity powers was �rst dis
ussed by d'Alembert (1754); a more 
om-plete list of symmetries present in the se
ular part of the disturbing fun
tion 
anbe found in Applegate et al. (1986). We now present simple physi
al argumentsfor the origin of four of these symmetries; our �rst argument is not new (e.g.,Applegate et al. 1986, Message 1991), but we have found no referen
e for thefollowing three. The 
onstraints imposed by the symmetries are quite general,applying not only to SGRs, PGRs, and LRs, but to any orbital perturbation and,indeed, to any quantity that 
an be written in terms of orbital elements.Any physi
al quantity, Q, (e.g., a position, velo
ity, or perturbing for
e 
om-ponent, the disturbing fun
tion, a perturbation equation, et
.) that is expressedin terms of orbital elements 
an be written as a fun
tion of many variables,Q = F (�1; �2; �3; :::; �1; �2; �3; :::); (7.6)some of whi
h are longitude angles (�j) and some of whi
h are not (�j). For theLorentz perturbation (see Se
tion 7.2.2 and Table 7.2), the set of �j in
lude thequantities fa; e; i; L; gj;k; hj;kg while the set of �j is simply f
; $; �; �0g. Sin
ethe longitudes are angular quantities, F must be periodi
 in ea
h of them. Awell-behaved periodi
 fun
tion 
an be expanded as a Fourier series in ea
h ofits 
y
li
 variables; performing this expansion of Eq. (7.6) yields a series whoseterms have the following form:f(�1; �2; �3; :::) 
os(	); (7.7)
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Table 7.2 The se
ond-order expansion of perturbations due to the Lorentz for
ewith � = n=
p. All dipole, quadrupole, and o
tupole as well as a few of theimportant higher-order terms are given in separate subtables. The �rst 
olumn
ontains the resonant argument, 	 = A��+A�0�0 +A$$ +A

 [see Eqs. (7.3)and (7.8)℄. As with planetary gravity, we expand dn=dt to se
ond order in e andi, de=dt and di=dt to �rst order, and the angular quantities d
=dt, d$=dt, andd�=dt to zeroth order. By 
onvention, the h0;k are taken to be zero; the responseto the other hj;k terms 
an be obtained from this table by substituting hj;k in forgj;k and subtra
ting �=2 from 	. An example illustrating the proper use of thistable for the g3;3 
omponent is given in Eqs. (7.26{7.28) of Se
tion 7.4.1.
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where the fun
tion f plays the role of an amplitude and	 = A0 +Xj Aj�j: (7.8)
This series is summed over all possible unique sets of integer Aj's. Now, althoughall quantities pertaining to an arbitrary orbit may be expressed in the generalform of Eq. (7.7), the 
onverse is not true; not all fun
tions of this form representvalid physi
al quantities. We now dis
uss 
onstraints on the form of Eq. (7.7)that all physi
al quantities must obey.The �rst and best-known 
onstraint arises from the fa
t that all longitudeangles are measured from the same referen
e dire
tion, or zero-point, in spa
e(e.g., Applegate et al. 1986). Be
ause spa
e is isotropi
, the 
hoi
e of referen
edire
tion is arbitrary, and hen
e its sele
tion 
an in no way a�e
t a given orbitor the perturbations a
ting on it. We 
hoose a new zero-point of longitude byadding an angular quantity Æ to ea
h of the longitude terms and require thatEq. (7.6) be invariant under the transformationlongitude angles! longitude angles + Æ (7.9)(Fig. 7.1). Sin
e the invarian
e holds for arbitrary values of the variables �j and�j , the 
onstraint applies separately to ea
h term in the Fourier series. If Q isunaltered by Eq. (7.9), then 
ombining Eqs. (7.7{7.9) yields:f(a; e; i; :::) 
os(	) = f(a; e; i; :::) 
os(	 + ÆXj Aj): (7.10)
Now sin
e Æ is arbitrary, Xj Aj = 0: (7.11)
Thus the longitude 
oeÆ
ients 
ontained within ea
h term of any physi
al quan-tity must sum to zero. Noti
e in parti
ular that this rule is stri
tly obeyed byea
h term of the perturbation expansions listed in Tables 7.1 and 7.2.Unlike the zero-point of longitude, the line of nodes for a given orbit isuniquely determined by the interse
tion of the orbital plane with a given refer-en
e plane. Nevertheless, it is an arbitrary 
hoi
e to measure angles with respe
tto an orbit's as
ending node rather than its des
ending node. If we adopt theun
onventional 
hoi
e of using the des
ending node, the following modi�
ationsmust be made to the usual orbital elements:node angles! node angles + �

arguments! arguments� �



161
i! �i: (7.12)The �rst two transformations adjust the angles so that they are measured relativeto the new referen
e point, the des
ending node (Fig. 7.1). As seen from thedes
ending node, the orbit dips below the referen
e plane in the dire
tion oforbital motion and thus the new in
lination is negative. Sin
e the transformationmerely amounts to des
ribing the same orbit from a di�erent referen
e point,as with the zero-point of longitude, no analyti
 expression 
an depend on this
hoi
e.In an entirely analogous manner, the line of apsides is determined for ane

entri
 orbit, but one 
an measure angles from either peri
enter or from apo
-enter. By 
hoosing to measure from apo
enter, the usual orbital elements mustbe modi�ed as follows:periapse angles! periapse angles + �

anomalies! anomalies� �
e! �e: (7.13)As with the node above, the �rst two transformations adjust angles so that theyare measured relative to the new referen
e point (Fig. 7.1). The third transfor-mation, in whi
h the sign of the e

entri
ity is reversed, is ne
essary so that thetransformed distan
e and velo
ity 
omponents along the ellipti
al orbit retaintheir original values. If Q is unaltered by the transformations, as are dn=dt,d
=dt, d$=dt, and d�=dt, then the following expressions 
onstrain the form ofEq. (7.7): f(a; e; i; :::) 
os(	) = f(a; e;�i; :::) 
os(	 + � A
) (7.14)and f(a; e; i; :::) 
os(	) = f(a;�e; i; :::) 
os(	 + � A$); (7.15)whi
h redu
e to f(a; e; i; :::) = (�1)A
f(a; e;�i; :::) (7.16)and f(a; e; i; :::) = (�1)A$f(a;�e; i; :::): (7.17)When Q is de=dt [di=dt℄, it 
hanges sign under the transformation Eq. (7.13)[Eq. (7.12)℄ and an extra minus sign appears on the left-hand side of Eq. (7.17)
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[Eq. (7.16)℄. Thus the fun
tion f is not arbitrary; indeed, it must be either evenor odd in ea
h of the variables e and i. Furthermore, the parity of f with respe
tto e or i determines the parity of the 
orresponding angular quantity's 
oeÆ
ient.This 
onstraint is 
learly evident for ea
h of the entries in Tables 7.1 and 7.2; thetime derivatives of the mean motion and the angular quantities obey Eqs. (7.16)and (7.17) while de=dt and di=dt di�er by a minus sign). The symmetries alsorequire that power series expansions of f 
ontain all even (or all odd) powers ofe and i, a fa
t that is apparent in high-order expansions of SGRs (Murray andHarper 1993), PGRs (Kaula 1966), and LRs (Hamilton, unpublished).The �nal simple symmetry that we dis
uss arises from re
e
tion of a systemthrough the xy plane. Imagine working in a left-handed 
oordinate system inwhi
h angles are measured from the negative ẑ axis rather than the positive one(Fig. 7.2). The orbital elements are a�e
ted by the 
hange; the as
ending nodeof an orbit in the original xyz 
oordinate system be
omes the des
ending nodein the new system. Sin
e the usual orbital elements in
lude the longitude ofthe as
ending node, 
hanging to the new system ne
essitates adding � to anglesthat measure the lo
ation of the node and subtra
ting � from arguments mea-sured from that lo
ation (i.e., the �rst two lines of the transformation given byEq. 7.12). With this transformation, we su

eed in des
ribing the same orbitfrom two di�erent referen
e frames. For SGRs, the transformation must be per-formed on all satellite orbits and the requirement that Eq. (7.7) be unaltered bythe transformation implies that the sum of the node 
oeÆ
ients must be even.Taken together with Eq. (7.16), this in turn implies the well-known result thatno �rst-order in
lination resonan
es exist for SGRs.For PGRs and LRs, the situation is more 
ompli
ated sin
e the gravitationaland magneti
 �elds must also be des
ribed in the new 
oordinate system. In-deed, ẑ ! �ẑ implies �̂ ! ��̂, � ! � � �, and P kj (
os �) ! (�1)j+kP kj (
os �)(Fig. 7.2). To retain the original 
on�guration of the gravity �eld, the quantityC�j;kP kj (
os �) must be unaltered and hen
e we also 
hange the �eld 
oeÆ
ientsC�j;k ! (�1)j+kC�j;k. With these transformations, we su

eed in des
ribing theidenti
al problem from two di�erent 
oordinate systems; and, as before, the re-sults of a perturbation 
annot depend on the 
hoi
e of referen
e dire
tions. ForPGRs, f is proportional to one of the C�j;k and if Q is invariant under the 
hangeof 
oordinate systems, then the 
onstraint on Eq. (7.7) takes the form:C�j;k 
os(	) = (�1)j+kC�j;k 
os(	 + �A
) (7.18)or (�1)A
 = (�1)j+k. The above dis
ussion applies equally well to LRs, but anadditional minus sign is introdu
ed when the �nal 
ross produ
t in the Lorentzfor
e is 
al
ulated in the left-handed 
oordinate system (Eq. 5.29). Summarizingour results for the three resonan
es, we have:SGRs : Sum of node 
oeÆ
ients is always even;
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Figure 7.2 An orbit seen from two 
oordinate systems. In the xyz system, ANmarks the position of the as
ending node sin
e the polar angle � de
reases asthe satellite moves away from this point (i.e., the orbit as
ends above the xyreferen
e plane). As seen from the xy(�z) system, however, the polar angle is� � � and AN is the des
ending node sin
e the polar angle in
reases in thedire
tion of orbital motion.
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PGRs : j + k + A
 is always even;LRs : j + k + A
 is always odd: (7.19)Noti
e that the results for PGRs and LRs do not ex
lude �rst-order in
linationresonan
es. In fa
t, �rst-order in
lination resonan
es o

ur for PGRs when j+ kis odd and for LRs when j + k is even (
f. C�3;2 term in Table 7.1 and g2;2 termin Table 7.2).The symmetries presented in Eqs. (7.9), (7.12), (7.13) and (7.19) are widelyappli
able. Besides 
onstraining the form of the expansions of SGRs, PGRs, andLRs presented here, they apply dire
tly to any form of an arbitrary perturbation(e.g., ea
h of the orbit-averaged perturbations given in Chapter 5). Moreover,the symmetries hold for all physi
al quantities that are written in terms of orbitalelements whi
h 
an be espe
ially useful for spot-
he
king 
ompli
ated expressions.For instan
e, the expansions for sin � and sinE in Danby (1988, p. 437) do notmanifest the symmetry implied by Eq. (7.13) and hen
e 
annot be 
orre
t; validexpressions 
an be found in Smart (1953).

7.3.2 The HamiltonianThe properties dis
ussed above are shared by all perturbations simply be
auseof the nature of orbital elements. The resulting rules explain many of the pat-terns that are apparent in Tables 7.1 and 7.2. Additional similarities are presentbe
ause in ea
h of the problems there is a unique rotating frame in whi
h the per-turbation is 
onstant in time; for SGRs the frame rotates at the angular rate ofthe perturbing satellite, while for PGRs and LRs, it rotates at the planetary spinrate. When expressed in this rotating frame, F = ma 
ontains both a 
entrifugalterm and a Coriolis term. Nevertheless, a 
onserved quantity of the motion (en-ergy) 
an be found by taking the dot produ
t of the equation of motion with vrel(vrel is the velo
ity relative to the rotating �eld) and integrating over time; forSGRs, this pro
edure yields the 
lassi
al Ja
obi 
onstant (Danby 1988, p. 253).To zeroth-order in the perturbing for
e, the 
onserved quantity H is given by:
H = �GMr � 12
2p(x2 + y2) + 12v2rel; (7.20)where, for SGRs, 
p here and below is understood to be the mean motion ofthe perturbing satellite. The �rst term is the gravitational potential energy, these
ond is the potential 
orresponding to the 
entrifugal for
e, and the �nal termrepresents the parti
le's kineti
 energy. Be
ause of its perpendi
ularity to vrel,the Coriolis for
e does not 
ontribute to Eq. (7.20). In applying Eq. (7.20) toSGRs, we negle
t the small 
ontribution of the perturbing satellite whi
h is agood approximation when one is not too 
lose to the satellite (
f. Roy 1978, p.129). For PGRs, we negle
t the higher-order gravitational 
oeÆ
ients whi
h isa reasonable approximation. Finally, the Lorentz perturbation, like the Coriolis
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a

eleration, is perpendi
ular to vrel (see the dis
ussion immediately prior toEq. 5.29) and so its term disappears when dotted with the velo
ity, leaving theenergy integral unaltered. This is true even if the parti
le's 
harge varies withtime (Horanyi and Burns 1991). Thus Eq. (7.20) is the exa
t integral of themotion for the Lorentz perturbation. We now 
onvert this 
onstant of the motioninto orbital elements to see how it 
onstrains the form of our expansions. This
onversion was �rst a

omplished by Tisserand (Roy 1978, Eq. 5.50). We �ndRsyna + 2� aRsyn�1=2(1� e2)1=2 
os i = C; (7.21)where Rsyn is the radial position of syn
hronous orbit and C is a 
onstant. Weuse


p = �GMpR3syn �1=2 (7.22)and Eq. (7.4) to repla
e the distan
es in Eq. (7.21) with frequen
ies. Sin
e weare interested in expressing the 
onstraint in terms of our derived time rates of
hange, we di�erentiate and obtain
1n� n
p�(1�e2)1=2 
os i�dndt � 3e 
os i(1� e2)1=2�dedt��3(1� e2)1=2 sin i�didt�= 0 (7.23)

whi
h, to lowest-order in e and i, redu
es to
3nededt + 3nididt + �1� n
p�dndt = 0: (7.24)Equations (7.23) and (7.24) provide a link between variations in a; e; and i whi
h
an be used in a number of appli
ations. For example, Burns and S
ha�er (1989)and Horanyi and Burns (1991) have used planar versions of Eq. (7.23) in ele
-tromagneti
 problems to obtain de=dt when da=dt (or dn=dt) is known, whileS
ha�er and Burns (1992) were the �rst to apply a variant of Eq. (7.24) to elu
i-date properties of Lorentz resonan
es. The expressions 
an also be used to 
he
kderivations; the orbit-averaged ele
tromagneti
 expressions (Eqs. 5.41{5.43), forinstan
e, obey Eq. (7.23) as they must. Indeed, it is not diÆ
ult to see whatthe e

entri
ity 
ounterpart to Eq. 5.48 must be. We now dis
uss how Eq. (7.23)
onstrains the form of our expansions given in Tables 7.1 and 7.2.For any orbit, the 
hanges in the orbital elements imposed by the full pertur-bation must satisfy Eq. (7.23). In general, many terms add together to produ
ethese 
hanges, but at resonant lo
ations the e�e
ts of a single term dominateall others. At these lo
ations, the resonant term itself must obey Eq. (7.23),but elsewhere it need not. The expansion of PGRs (Table 7.1) illustrates thisproperty ni
ely; only at resonan
e, where n=
p � jA�0=A�j, do single resonant
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terms satisfy Eq. (7.24). The situation for Lorentz resonan
es is even simpler.As 
an be seen in Table 7.2, ea
h term satis�es Eq. (7.24), regardless of the valueof �(= n=
p), and thus the 
umulative perturbation automati
ally does too.
7.3.3 Additional PatternsIn the previous few se
tions we have dis
ussed simple physi
al ideas that putstrong 
onstraints on the form of all resonan
es; here we investigate rules of amore limited s
ope. Some of these apply to just one type of resonan
e whileothers follow from mathemati
al properties of the expansions rather than fromsimple physi
al arguments.Several additional physi
al rules further 
onstrain the form of Lorentz reso-nan
es. First, the Lorentz for
e must vanish for a 
ir
ular unin
lined orbit atthe syn
hronous distan
e, sin
e there the velo
ity relative to the magneti
 �eldis zero (Eq. 5.29). This fa
t is re
e
ted in the expansion of Table 7.2; all dn=dt,de=dt, di=dt and d�=dt terms disappear in the limit n ! 
p; e ! 0; i ! 0 (seeSe
tion 5.4.2). The d
=dt and d$=dt terms need not vanish in this limit as theseorbital elements are unde�ned for planar and 
ir
ular orbits, respe
tively (Se
-tion 5.4.2). Furthermore, 
onsideration of Eqs. (5.29) shows that the Lorentzexpansion splits into two pie
es, one arising from the v � B 
omponent of thefor
e (� terms in Table 7.2), and one due to (
p � r) � B (
onstant terms inTable 7.2). Sin
e the v � B for
e 
an do no work in the non-rotating frame,the orbital energy, and hen
e dn=dt, is unaltered. Thus there are no � terms inTable 7.2's dn=dt entries.Some patterns 
an best be explained mathemati
ally. One su
h regularity seenin both Tables 7.1 and 7.2 is that the powers of the e

entri
ity and in
lination inthe dn=dt equation equal or ex
eed the arguments of the 
orresponding angularquantities in 	. This property 
an be shown to be true by 
arefully followingthrough the expansion of the perturbing for
es; it stems from the fa
t that ea
happearan
e of a � or u is a

ompanied by an e or i respe
tively. Furthermore, thestru
ture of the perturbation equations (Danby 1988, Eq. 11.5.13) also insuresthat the power of e in the de=dt and d$=dt equations are, at most, one and twolower than A$ while the power of i in the di=dt and d
=dt terms follow the samepattern with respe
t to A
. Finally, the fa
t that the numeri
al 
oeÆ
ient in thede=dt and d$=dt (di=dt and d
=dt) terms are usually identi
al, to �rst order,also follows from the stru
ture of the perturbation equations.For typi
al resonant arguments, the equality in the patterns dis
ussed inthe above paragraph holds exa
tly. The only ex
eptions are resonan
es at syn-
hronous orbit whi
h have arguments of the form A�� A�0. Additionally, thesestrange resonan
es are the only ones that in
uen
e the d�=dt equation, althoughthe e�e
t is weak sin
e � � 1. Examining the 2� � 2�0 resonant argument (seethe C�2;2 entries of Table 7.1 and in the g3;2 entries of Table 7.2), we see that the
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gravitational version of this resonan
e has more in
uen
e on the orbital elementsthan the Lorentz version does. This manifests the fa
t that the Lorentz for
eweakens in the vi
inity of syn
hronous orbit.The resonant arguments of Tables 7.1 and 7.2 all have jA�0 j = k, whi
hfollows dire
tly from the fa
t that the gravitational and magneti
 �elds for theappropriate 
oeÆ
ients have k-fold longitudinal symmetry. This 
onstraint, takentogether with Eqs. (7.11) and (7.19) and the above dis
ussion, allows us to predi
twhi
h resonant arguments will appear for a given �eld 
oeÆ
ient. In 
omparingTable 7.1's C�3;2 and Table 7.2's g2;2 entries, for example, we see that all possible�rst- and se
ond-order resonant arguments (those for whi
h jA
j+ jA$j � 2) arepresent. The g3;2 entries also 
ontain all possible arguments of order two, but a feware missing from the C�2;2 entries. The missing arguments are best explained bylooking at the mathemati
al expansion of the planetary gravity resonan
es (Kaula1966). Properties of the series expansions for PGRs show that all arguments withA� = 0 and A$ = �2 as well as those that satisfy j � k+A
 < 0 
annot appearin the expansion. The missing term (C�2;2 : 	 = �2�0 + 2$) is an example of theformer 
onstraint while (C�2;2 : 	 = 4��2�0�2
)'s absen
e illustrates the latter.
7.3.4 Global Stru
ture; Considerations of Resonan
eStrengthAlthough the ideas dis
ussed above signi�
antly 
onstrain the stru
ture of indi-vidual resonan
es, they put few restri
tions on the global properties of the entireexpansions. A

ordingly, in this se
tion we address the distribution and relativestrengths of resonan
es in ea
h of the three 
ases.To a �rst approximation, the distributions of SGRs, PGRs, and LRs relative tosyn
hronous orbit are almost identi
al be
ause the nodal and apsidal frequen
iesare slow 
ompared to the mean motions and, 
onsequently, 
an be ignored when
al
ulating rough resonan
e positions. For all three problems, Nth-order reso-nan
es (N = jA
j+ jA$j) are lo
ated inside syn
hronous orbit when jA�j < jA�0 jand outside that position when jA�j > jA�0 j. The radial lo
ation of resonan
e, a,is determined by aRsyn = �
pn �2=3 =����A�A�0 ����2=3: (7.25)As in Se
tion 7.3.2, for SGRs Rsyn and 
p are understood to be the perturbingsatellite's distan
e and mean motion, respe
tively. We use Eq. (7.25) to plotthe positions of several �rst-order resonan
es (N = 1) and two se
ond-order ones(N = 2) in Fig. 7.3. These resonan
es 
luster together most tightly in the vi
inityof syn
hronous orbit { adja
ent resonan
es be
ome arbitrarily 
lose for large A�.Higher-order resonan
es behave similarly although Eq. (7.25) shows that theyextend further from syn
hronous orbit than their �rst-order 
ousins.
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Figure 7.3 Lo
ation of the several strong �rst-order (solid lines) and two rep-resentative se
ond-order (dashed lines) Lorentz resonan
es around Jupiter. ForJupiter, Rsyn = 2:24 planetary radii. The �gure applies equally well to planetarygravity resonan
es and, if the perturbing satellite is at Rsyn, to satellite reso-nan
es. In Se
tion 7.4, we �nd that dust grains spiraling toward syn
hronousorbit 
an be
ome trapped at resonant lo
ations while those dragged away fromsyn
hronous orbit experien
e resonant jumps in either the in
lination or e

entri
-ity. Both of the displayed se
ond-order resonan
es arise from the g4;3 
omponentof the magneti
 �eld. Sin
e the se
ond-order 1:3 resonan
e is found far beyondthe 1:2 resonan
e (Eq. 7.25), we see that higher-order resonan
es 
over a broaderradial range than �rst-order ones do.
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Although resonan
es lie in similar positions for ea
h perturbation, their strengthsrelative to one another vary depending on the details of the perturbing for
e. Forexample, ea
h �eld 
oeÆ
ient (e.g., g2;2) produ
es two �rst-order resonan
es, oneinside Rsyn (	 = �� 2�0 +
) and one outside (	 = 3�� 2�0�
). For LRs, thestrengths of these two resonan
es are related sin
e, to a sign, they have identi
alentries (Table 7.2); for PGRs, though, the entries di�er (Table 7.1). More im-portant, however, is the morphology of resonan
es in the vi
inity of syn
hronousorbit. For SGRs, syn
hronous orbit is o

upied by the perturbing satellite andso resonant strengths rise as this lo
ation is approa
hed. Sin
e resonan
es bothin
rease in strength and de
rease in separation as syn
hronous orbit is neared,it is inevitable that resonan
e overlap eventually o

urs. At this point, single-resonan
e models of orbital motion are inappropriate and 
haoti
 motions pre-dominate; Wisdom (1980) has shown that resonan
e overlap o

urs at a distan
eproportional to �2=7, where � is the satellite-to-planetary mass ratio. UnlikeSGRs, PGRs and LRs tend to weaken as syn
hronous orbit is approa
hed sin
ethese resonan
es depend on su

essively larger powers of Rp=a (Fig. 7.3, and Ta-bles 7.1 and 7.2). Thus the spa
ing and strength e�e
ts 
ompete, and it is notimmediately obvious whi
h dominates; S
ha�er and Burns (1987), however, arguethat this variety of resonan
e overlap does not o

ur for Lorentz resonan
es.Instead, a di�erent type of resonant overlap happens for PGRs and LRs. Justas the main energy levels of the hydrogen atom resolve into a multiplet of 
losely-spa
ed levels, so a detailed examination of resonant lo
ations reveals a similar �nestru
ture. Ea
h individual resonant lo
ation (e.g., 3:2 in Fig. 7.3) resolves intoa 
luster of resonan
es with a �xed ratio A�=A�0 and di�erent nodal and apsidal
oeÆ
ients. These resonan
es lie at slightly di�erent lo
ations due to the non-zero se
ular pre
ession rates d
=dt and d$=dt whi
h arise from the axisymmetri

omponents of SGRs, PGRs, and LRs (e.g., the gj;0 terms of Table 7.2). For SGRsand PGRs, in
lination resonan
es lie further from syn
hronous orbit than e

en-tri
ity resonan
es; this is due to the fa
t that se
ular gravitational perturbations
ause orbital nodes to regress and orbital peri
enters to pre
ess. For LRs, thesituations is more 
ompli
ated be
ause both gravitational and ele
tromagneti
perturbations in
uen
e the pre
ession rates. In some 
ases, the Lorentz for
e 
an
ause the opposite behavior, i.e., nodal pre
ession and apsidal regression(see the g1;0 and g3;0 
omponents of Table 7.2). Thus in
lination resonan
es maybe 
loser to syn
hronous orbit than e

entri
ity resonan
es. Finally, sin
e theele
tromagneti
 pre
ession rate depends on L, and hen
e on the 
harge-to-massratio of a dust grain, an ensemble of parti
les of di�erent sizes will experien
e res-onan
es in a range of slightly di�erent lo
ations. For some 
harge-to-mass ratios,the strong �rst-order in
lination and e

entri
ity resonan
es are 
lose enough tointerfere with one another, leading to resonant overlap and 
haos (see S
ha�erand Burns 1992's Fig. 5).In the expansions of PGRs and LRs presented in Tables 7.1 and 7.2, we
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have assumed that the gravitational and magneti
 �eld 
oeÆ
ients are time-independent and thus the �elds rotate as rigid obje
ts (i.e., at a single fre-quen
y). In reality, however, these 
oeÆ
ients probably 
hange slowly [
f. Levy(1989) for LRs at Jupiter℄ and, in some 
ases, even rapidly [
f. Marley (1991),Marley and Por
o (1993) for PGRs at Saturn℄. Unfortunately, the physi
s driv-ing these 
hanges, espe
ially those of the magneti
 �eld, are poorly understoodwhi
h pre
ludes a quantitative dis
ussion. Nevertheless, we 
an determine thequalitative e�e
ts of gradual 
hanges in the �elds by analogy with satellite reso-nan
es. In SGRs, the perturbing satellite has three distin
t orbital frequen
ies:its rapid mean motion and slower nodal and apsidal pre
ession rates. If the pre-
ession rates are suppressed, all 
orotation resonan
es (whose arguments dependon quantities of the perturber that are gradually 
hanging) disappear from thedisturbing fun
tion. In an entirely similar manner, the in
lusion of slow driftfrequen
ies to both the PGR and LR problems introdu
es 
orotation resonan
esthat are slightly separated from the nominal resonant lo
ations (Fig. 7.3).Be
ause 
orotation resonan
es a�e
t only the perturbee's mean motion, theyare often of minor importan
e. When a satellite is the perturber, however, thepaired intera
tions of a 
orotation resonan
e and a nearby e

entri
ity resonan
eare 
apable of longitudinally 
on�ning ring ar
s (Goldrei
h et al. 1986, Por
o1991). Thus the existen
e of 
orotation resonan
es in the other two 
ases may notbe entirely a
ademi
. In parti
ular, we suggest that similar trapping me
hanismsmay operate in some faint rings that are in
uen
ed by Lorentz for
es.
7.4 Coupling with Drag For
es7.4.1 Resonant EquationsA
ting alone, mean-motion resonan
es are 
apable of indu
ing moderately-large,periodi
 
hanges in the orbital elements of nearby parti
les. Nonetheless, be
ausethe majority of possible orbits are far from resonant lo
ations, resonant e�e
tsmight seem to be unimportant. Not so! When 
oupled with a drag for
e, whi
h
auses se
ular evolution of an orbit's mean motion, the importan
e of resonan
esis greatly enhan
ed sin
e drag for
es will inevitably transport distant parti
lesinto resonant lo
ations where they 
an be strongly perturbed. Furthermore, dragfor
es allow resonant perturbations to se
ularly 
hange orbital e

entri
ities andin
linations as we will demonstrate below. Depending on the dire
tion of the drift,drag for
es a
ting at resonan
e 
an 
ause jumps in the value of e and/or i as wellas resonant trapping with an asso
iated sustained growth in those elements.The importan
e of the 
oupling between drag for
es and resonan
es was �rstre
ognized by Goldrei
h (1965) who argued that tidal drags 
ause satellites toevolve into, and subsequently be
ome stably trapped in, satellite mean-motionresonan
es. Sin
e then, the 
apture pro
ess has been reexamined (Greenberg
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1973a), individual examples have been analyzed (e.g., Sin
lair 1975, Greenberg1973b), and Hamiltonian methods have been applied to the pro
ess (Peale 1976,Henrard 1982, Borderies and Goldrei
h 1984, Dermott et al. 1988, Malhotra1991). In these next few se
tions we argue that parti
les drifting into PGRs andLRs display similar dynami
 behavior to that seen at SGRs. We also illustratehow our LR expansion 
an be applied to the study of parti
ular resonan
es.Small parti
les that make up di�use ring systems are not signi�
antly in-
uen
ed by tidal for
es; instead several additional drag for
es operate on theseparti
les. Plasma and atmospheri
 drags arise from motion through swarms of
harged and neutral mole
ules that 
orotate with the planet; a

ordingly, thesedrags slow parti
les inside of Rsyn and speed up those outside of this position.Orbital evolution, therefore, is away from the syn
hronous lo
ation. Poynting-Robertson drag arises from the asymmetri
 s
attering and re-radiation of photons(Burns et al. 1979) and always 
auses orbits to lose energy and evolve inward.Finally, resonant 
harge variations arise from the lag in the response of a grain's
harge as its orbital motion takes it into regions with di�erent 
harging 
urrents.Depending on the plasma parameters, resonant 
harge variations 
an 
ause thesemimajor axis to either in
rease or de
rease (Burns and S
ha�er 1989, Northropet al. 1989). Although these drag for
es only operate on small parti
les they,like tidal evolution, 
an bring material to resonan
es and in
uen
e the subse-quent dynami
s. The analogous pro
ess for interplanetary dust { evolution underPoynting-Robertson drag into resonan
es with the planets { was �rst re
ognizedby Gold (1975) and later numeri
ally studied by Gon
zi et al. (1982). Severalre
ent papers revisit and extend the early results (e.g., Ja
kson and Zook 1989,1992, Weidens
hilling and Ja
kson 1993, Roques et al. 1993, Lazzaro et al. 1993).After the dis
ussion of Se
tion 7.3, it should not be surprising that LRs andPGRs behave almost identi
ally to SGRs when 
oupled with a drag for
e. Themain di�eren
e is due to the existen
e of strong �rst-order in
lination-type PGRsand LRs. In fa
t for LRs, in
lination resonan
es are usually stronger than the
orresponding e

entri
ity ones (Table 7.2). Thus, while a distribution of dustevolving through a set of SGRs might be expe
ted to remain roughly planar dueto the dominan
e of e

entri
ity-type resonan
es, this will not be the 
ase forPGRs and espe
ially LRs as the jovian halo so elegantly demonstrates (Burnset al. 1985). To emphasize this point, we treat a �rst-order in
lination-typeresonan
e in this se
tion although the stru
ture of the equations, and hen
e theresonant dynami
s, is identi
al for an e

entri
ity resonan
e (see Table 7.2 andHamilton and Burns 1993b).In writing a set of equations valid for the passage of a grain through anisolated resonan
e, we in
lude the drag for
e as well as the perturbation's resonantand se
ular terms. We spe
ialize the equations to the 3:2 �rst-order Lorentzin
lination resonan
e whi
h is thought to 
ause the transition from the mainjovian ring to its interior halo (Burns et al. 1985). Sin
e a �rst-order in
lination
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resonan
e does not strongly a�e
t e;$, and � (see Table 7.2), we ignore 
hanges inthese elements. The governing equations 
ome from the (g3;3 : 	 = 2�� 3�0+
)entry of Table 7.2. Taking � = n=
p � 3=2, the appropriate expressions aredndt = �3in2� 
os(2�� 3�0 + 
) + _ndrag (7.26)

didt = �n�2 
os(2�� 3�0 + 
) + _Idrag (7.27)
d
dt = n�2i sin(2�� 3�0 + 
) + _
se
; (7.28)where _
se
 is the nearly 
onstant se
ular pre
ession rate arising from ele
tromag-neti
 and gravitational for
es; its presen
e slightly alters the physi
al lo
ation ofresonan
e. Drag terms in
uen
e ea
h of Eqs. (7.26{7.28), but 
ontributions tod
=dt are negle
ted as they are dominated by _
se
. Finally, the limited radialextent of the resonan
e zone justi�es treating _ndrag as a 
onstant. We de�ne theresonan
e strength to be

� � p10L2 �(g23;3 + h23;3)1=2g1;0 ��Rpa �2 � (0:05)L; (7.29)or one-third of the dn=dt 
oeÆ
ient taken from the (g3;3 : 	 = 2��3�0+
) entryof Table 7.2. In the �nal approximation, we have used parameters appropriate forthe jovian 3:2 resonan
e, namely g1;0 � 4:218 G, g3;3 � �0:231 G, h3;3 � �0:294G (A
u~na et al. 1983a), and a=Rp � 1:7. At Jupiter, a mi
ron-sized grain 
hargedto a potential of +5V, has L � 0:028 and hen
e � � 0:0014, a value orders ofmagnitude greater than typi
al SGR strengths. Furthermore, sin
e drag for
esa
t on small parti
les mu
h faster than tidal for
es in
uen
e large ones, evolutionof dust parti
les in Lorentz resonan
es pro
eeds 
orrespondingly more rapidly.To improve our 
al
ulation of �, we would need to in
lude additional 
ontri-butions from the gj;3 and hj;3 (j = 5; 7; 9; :::) �eld 
oeÆ
ients, but unfortunately,the values of these 
oeÆ
ients are unknown for all non-terrestrial magneti
 �elds.Nevertheless, we 
an get a rough upper bound on the error in � by assuming thatthe higher-order �eld 
oeÆ
ients are roughly equal in magnitude to the o
tupole
oeÆ
ients [for the terrestrial magneti
 �eld, the 
oeÆ
ients de
rease in magni-tude with in
reasing order { (Stern 1976)℄. In this 
ase, the higher-order terms
ontribute <� 0:5� to the resonan
e strength. There are also terms in Eqs. (7.26{7.28) that depend on larger powers of e and i, but these 
ontributions amount to<� 0:1� for 
onditions present in the Jovian ring.Finally, we note that the stru
ture of the equations (7.26{7.28) is appropriatefor all �rst-order in
lination resonan
es; only the 
onstant 
oeÆ
ients in ea
hequation di�er from one resonan
e to the next (Table 7.2). Se
ond-order (Nth-order) resonan
es di�er only in that the power of i in ea
h of the dn=dt, di=dt,
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and d
=dt equations is (N � 1) larger. The (g4;3 : 	 = 5� � 3�0 � 2
) and(g4;3 : 	 = � � 3�0 + 2
) entries of Table 7.2 are ea
h se
ond-order in
linationresonan
es; their positions relative to Jupiter are given in Fig. 7.3. E

entri
ityresonan
es of all orders are identi
al in form to in
lination resonan
es if all i's arerepla
ed by e's. Be
ause all of these di�erent types of resonan
es have a similarstru
ture, we expe
t the same type of dynami
 behavior at ea
h of them.
7.4.2 Resonan
e TrappingWhat happens to parti
les that drift into resonan
e? The question is most exa
tlytreated by transforming Eqs. (7.26{7.28) into 
anoni
al variables from whi
h apendulum-like Hamiltonian 
an be de�ned (
f. Peale 1976). Su
h an analysisshows that for an isolated resonan
e there are two possibilities depending onthe dire
tion from whi
h the resonan
e is approa
hed: resonan
e trapping andresonant jumps. A trapping probability, whi
h depends on the relative strengthsof the resonan
e and the drag for
e, is asso
iated with the former. Unfortunately,the Hamiltonian results are awkward to interpret in terms of the orbital elements,the variables that have geometri
 meaning. A

ordingly, the purpose of this andthe following se
tion is to give simple des
riptions and approximate formulaein terms of orbital elements without resorting to a Hamiltonian analysis. In sodoing, we further emphasize the similarities between SGRs, PGRs, and LRs.When a parti
le enters the resonan
e zone and subsequently is stable againstperturbations that attempt to dislodge it, the parti
le is said to have been trappedinto resonan
e. For the parti
le to remain trapped, its orbital period must staynearly 
ommensurate with the for
ing period, and hen
e the average value ofdn=dt must be zero. This 
an only o

ur when the �rst term in Eq. (7.26)balan
es the se
ond. Thus very large drag rates pre
lude trapping or, put anotherway, for a given drag rate many resonan
es, espe
ially higher-order ones, aretoo weak to trap passing parti
les. In Fig. 7.4, we show what happens to agrain that en
ounters the 3:2 in
lination resonan
e while slowly drifting towardsyn
hronous orbit. Resonant perturbations stop the evolution of the mean motionand simultaneously 
ause the in
lination to grow. The latter growth 
an be easilyexplained with the energy 
onstraint, Eq. (7.24).Although drag for
es need not produ
e 
hanges in the orbital elements thatsatisfy Eq. (7.24) (resonant 
harge variations are an ex
eption and will be dis-
ussed separately below), the resonant portion of the perturbation must. Sin
ethe 
umulative perturbations for n; e, and i are written as sums of resonant anddrag terms (Eqs. 7.26 and 7.27), we solve for the resonant terms and substitutethese into Eq. (7.24). The energy 
onstraint takes the form

ededt + ididt = _ndrag3n �1� n
p�+ e _edrag + i _Idrag: (7.30)



174

Figure 7.4 Resonan
e Trapping. A plot of the orbital evolution numeri
allydetermined by Eqs. (7.26{7.28) for jovian parameters � = 1:4 � 10�3 and_ndrag = �10�5
2p. Plotted against Np, the number of jovian rotations, are themean motion ratio n=
p, the in
lination i, and the resonant angle 	. Initial
onditions are n = 1:6
p; i = 0:01, and 	 = 0. The resonant angle 	 librateswith small amplitude around a value slightly less than 270o as 
ould have beenanti
ipated by setting equation (7.26) to zero and solving for 	. The dashedline 
omes from Eq. (7.32) and, for these parameters, is i � 0:0037N1=2p . It hasbeen o�set slightly to the left for 
larity. Integrations of the full equations ofmotion, both for SGRs (
f. Dermott et al. 1988's Fig. 11) and LRs (Hamilton,unpublished), show behavior qualitatively similar to this.
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As it stands, Eq. (7.30) is dire
tly appli
able to mixed resonan
es (all of these
ond-order resonan
es with gj;k 
oeÆ
ients satisfying j + k=odd), whi
h in
u-en
e both e and i. For nearly 
ir
ular orbits at in
lination resonan
es, however,e

entri
ities are only weakly perturbed and 
an usually be ignored. Further-more, drag for
es typi
ally do not strongly a�e
t orbital in
linations so the _Idragterm 
an be dropped. Taking these approximations yields

ididt = _ndrag3n �1� n
p�; (7.31)whi
h 
an be dire
tly integrated to
i = si20 + 2 _ndragt3n �1� n
p�; (7.32)where i0 is the initial in
lination and t = Np(2�=
p) is time, with Np the numberof jovian rotations (
f. Hamilton and Burns 1993b). The predi
tion of Eq. (7.32)agrees well with the numeri
al integration of Eqs. (7.26{7.28) presented inFig. 7.4. We note that Eqs. (7.31) and (7.32) are appli
able to in
linationresonan
es of all orders and that similar expressions apply to nearly planar orbitsat e

entri
ity resonan
es. In
identally, Eq. (7.31) 
an also be obtained dire
tlyfor the 3:2 in
lination resonan
e by setting dn=dt = 0 in Eqs. (7.26{7.28) andsolving for i di=dt.As an interesting aside, 
onsider the 
ase where resonant 
harge variations
ause evolution through a Lorentz resonan
e. Be
ause the drag for
e is entirelyele
tromagneti
, the full perturbation satis�es Eq. (7.24). If a parti
le be
omestrapped in a resonan
e, then dn=dt is zero and hen
e e de=dt+ i di=dt = 0. Thusthere 
an be no se
ular in
rease in one element without a 
orresponding de
reasein another.Equation (7.30) shows that parti
les trapped in resonan
es systemati
ally
hange their in
linations and/or e

entri
ities. Evolution toward syn
hronousorbit makes i in
rease while evolution in the opposite sense 
auses it to de
rease(Eq. 7.32). Be
ause Eq. (7.32) gives nonsensi
al results for shrinking in
linations(the quantity inside the square root be
omes negative), parti
les drifting awayfrom syn
hronous orbit 
annot stay in resonan
e forever. In fa
t, by linearizingEqs. (7.26{7.28) around the equilibrium in
lination, it 
an be shown that solu-tions in whi
h i de
reases are unstable and so parti
les do not be
ome trappedat all. Conversely, when drifts are toward syn
hronous orbit, i in
reases and thelinearization yields stable solutions.Thus we �nd that trapping into pure in
lination-type and e

entri
ity-typeSGRs, PGRs, or LRs o

urs only when drifts are toward the syn
hronous lo
ation(Fig. 7.3); in su
h 
ases, the energy integral Eq. (7.24) requires that there be anasso
iated \square root" growth in e or i (Eq. 7.32 and Fig. 7.4).
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7.4.3 Jumps at Resonan
eWhen drifts are away from syn
hronous orbit, or when the drag rate is too highfor resonant trapping to o

ur, dis
rete jumps in the in
lination (or e

entri
ity)happen instead. In this se
tion we dis
uss the me
hanism that leads to resonantjumps and derive a simple expression to approximate the jump amplitude in thelimiting 
ase of slow drag (
f. Hamilton and Burns 1993b).Figure 7.5 shows the orbital history of a dust grain drifting away from syn-
hronous orbit and through the jovian 3:2 in
lination resonan
e. Far from res-onan
e, the angle 	 is seen to 
ir
ulate rapidly and the resonan
e has littlein
uen
e on the motion of an orbiting dust parti
le. As drags bring the parti
le
loser to resonan
e, however, 	 starts librating about a value near 90o; be
ause oftheir 
os	 dependen
e, however, dn=dt and di=dt are still not strongly perturbed(Eqs. 7.26 and 7.27). Eventually, the equilibrium point about whi
h librationo

urs be
omes unstable (one 
an solve for the point at whi
h this o

urs fromEqs. 7.26{7.28). The resonan
e variable 	 drifts away from 90o, and resonantperturbations to dn=dt overwhelm the drag for
e, qui
kly pushing orbits a
rossthe resonan
e zone. At this point 	 starts 
ir
ulating rapidly in the oppositesense, resonant perturbations dwindle in strength, and drag for
es dominate or-bital evolution on
e again.It is 
lear from Fig. 7.5 that both n and i experien
e jumps during pas-sage through resonan
e. Sin
e the jumps are 
aused by resonant for
es, theirmagnitudes are ne
essarily related by Eq. (7.24). In parti
ular, for in
linationresonan
es, e

entri
ities are una�e
ted and so

i di = ��dn3n��1� n
p�; (7.33)where dn and di are the jump amplitudes; the former 
an be approximated simplyfrom the width of the region over whi
h resonant perturbations are signi�
ant,whi
h we estimate to be roughly the resonan
e's libration width. We obtainthe libration width by setting d	=dt = 0 and using Eqs. (7.26{7.28) to solveseparately for the largest possible mean motion (nmax) and the smallest (nmin);the libration width is then simply jdnj � nmax � nmin. For grains drifting awayfrom syn
hronous orbit through a �rst-order in
lination resonan
e, we �nd themean motion jump,
dn � �2n�i ����1� n
p �����1� n
p�; (7.34)whi
h, 
ombined with Eq. (7.33), yields the in
lination jump,

di � 2�3i2 ����1� n
p ����3: (7.35)
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Figure 7.5 Jumps at resonan
e. A plot of the orbital evolution deter-mined by Eqs. (7.26{7.28) with parameters appropriate for a 1-mi
ron grain:� = 1:4 � 10�3; _ndrag = 10�5
2p. Initial 
onditions are n = 1:4
p; i = 0:01, and	 = 0. Noti
e that the jumps in mean motion (semimajor axis) and in
linationo

ur simultaneously near n � 3
p=2 as required by Eq. (7.33). The resonantargument 	 librates around a value near 90o until passage through the resonan
eo

urs, after whi
h it 
ir
ulates. Integrations of the full equations of motion, bothfor SGRs (
f. Dermott et al. 1988's Fig. 5) and LRs (Hamilton, unpublished),show behavior qualitatively similar to this.
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As they stand, these expressions are ambiguous sin
e it is un
lear what valuei has. For nearly 
ir
ular orbits that drift into strong �rst-order resonan
es,however, di � if , where if is the in
lination immediately after the jump. Weapproximate the in
lination during resonant passage with i � if=2 � di=2, whi
hallows us to express ea
h jump amplitude purely as a fun
tion of the resonan
e'slo
ation and strength:

di � 2��3�1=3����1� n
p ����; (7.36)
dn � �2n(3�2)1=3�1� n
p�: (7.37)As usual, the above dis
ussion applies equally well to all �rst-order e

entri
ityresonan
es. Applying Eqs. (7.37) and (7.36) to our jovian example and takingthe appropriate parameters from Fig. 7.5's 
aption, we estimate dn = 0:03
p anddi = 0:08, values lower than, but in reasonable agreement with, the numeri
allydetermined jumps observed in Fig. 7.5. We have also veri�ed the fun
tionaldependen
e of di on � and 1 � n=
p in additional numeri
al experiments. Thenumeri
ally-determined �nal in
lination in Fig. 7.5 is � 5:5o whi
h 
orrespondsto parti
les rising � 10; 000 km above the jovian equatorial plane, a value inagreement with the ring's observed half-thi
kness of 8; 000�10; 000 km measuredby Showalter et al. (1987). Thus the verti
al thi
kness of the jovian halo is
onsistent with mi
ron-sized grains drifting through the 3:2 Lorentz �rst-orderin
lination resonan
e.Here, and in the pre
eding se
tion, we have demonstrated that when dragfor
es bring parti
les to mean-motion resonan
es, either trapping or resonantjumps 
an o

ur. Be
ause the results of a parti
ular en
ounter depend so stronglyon the dire
tion of drag-indu
ed orbital evolution, however, 
ertain resonan
e-drag 
ombinations manifest only a single type of behavior. For instan
e, tidalfor
es typi
ally drive inner satellites toward outer ones and so the most 
ommonresonant phenomena for SGRs is trapping (
f. Goldrei
h 1965). Conversely, atLorentz resonan
es, plasma and atmospheri
 drags 
ause orbits to evolve awayfrom the syn
hronous lo
ation whi
h leads to resonant jumps. In Table 7.3, wesummarize the typi
al out
ome of 
ouplings between ea
h of the resonan
es anddrag for
es dis
ussed above. In all 
ases, the dynami
al out
ome of an intera
tiondepends on the dire
tion of drag-indu
ed orbital evolution at a given resonantlo
ation, not on the stru
ture of the parti
ular resonan
e. This serves to re-emphasize the fa
t that resonan
es arising from very di�erent perturbations aredynami
ally similar.
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7.5 SummaryIn this 
hapter, we present the �rst disturbing-fun
tion-style expansion of theLorentz for
e (Table 7.2). Our expansion, whi
h is to se
ond order in e

en-tri
ities and in
linations, provides simple equations valid for �rst-order e and iresonan
es as well as for se
ond-order e2, i2, and ei resonan
es. To lowest-order,our equations for Lorentz resonan
es have the same form as those derived forgravitational resonan
es whi
h a

ounts ni
ely for the similar dynami
al behav-ior that we have observed in numeri
al integrations.We tra
e many of the similarities between di�erent types of resonan
es to basi
orbital symmetries that 
onstrain the fun
tional form of all quantities { and hen
eall perturbations { expressed in terms of orbital elements. In parti
ular, theseorbital symmetries a

ount for several of the patterns long noti
ed in expansionsof the satellite disturbing fun
tion. Additional regularities are due to the fa
t thatthe three perturbations 
onsidered in this 
hapter { SGRs, PGRs, and LRs { areall 
onstrained by a nearly identi
al integral of the motion. This integral existsfor an arbitrary orbital perturbation provided that a rotating frame 
an be foundin whi
h the perturbation, or at least the resonant part thereof, is independentof time.Our results imply that the orbital dynami
s displayed at mean-motion reso-nan
es are fundamental. The �rst-order stru
ture of a given resonan
e is deter-mined primarily by orbital symmetries and by the integral of the motion. The
hara
ter of the perturbing for
e is important only in determining absolute reso-nan
e strengths.
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Table 7.3 Results of resonan
e-drag intera
tionsResonan
e Drag For
e Typi
al Dynami
sSGR Tidal TrappingSGR Plasma & Atmos. & Poynt.-Rob. Trapping & JumpsPGRy Tidal & Plasma & Atmospheri
 JumpsPGR Poynting-Robertson Trapping & JumpsLR Tidal (In
ompatible)LR Plasma & Atmospheri
 JumpsLR Poynting-Robertson Trapping & JumpsAll Resonant Charge Variations ???
y Here we have assumed a stati
 gravity �eld for PGRs whi
h is a good approxi-mation for the terrestrial planets. Sin
e gravitational modes of the giant planets
an rotate rapidly (
f. Marley 1991), resonant lo
ations are signi�
antly alteredand, hen
e, both types of dynami
al behavior 
an o

ur.



Chapter 8
Future Dire
tions
In the pre
eding 
hapters, we have developed analyti
al and numeri
al tools thatare useful for treating the orbital motions of dust parti
les 
ir
ling asteroids,
omets, and planets that themselves move on orbits around the Sun. We haveapplied our methods to several parti
ular obje
ts, demonstrating the importan
eof non-gravitational for
es for hypotheti
al 
entimeter-sized satellites of an aster-oid, for parti
les that make up Saturn's wedge-shaped E ring, and for those thatorbit within the main jovian ring. These examples, however, are just a few of thesolar system's many dusty features and we hope to apply the intuition gainedfrom the problems 
onsidered within these 
hapters to these additional faint ringstru
tures. In this �nal 
hapter, we brie
y tour the various planetary systems,dis
ussing the dusty environments of ea
h in turn and highlighting problems inwhi
h dust plays an important role. Be
ause planets di�er in their sizes, oblate-nesses, satellite retinues, magneti
 environments, and distan
es from the Sun,parti
ular dynami
al e�e
ts vary greatly in importan
e. Indeed, we maintainthat it is the variations in the interplay of dynami
al for
es that 
ause the greatdiversity found in faint ring stru
tures throughout the solar system.
8.1 The Inner Solar SystemThe 
ir
umplanetary environments of Mer
ury and Venus are likely to be amongthe most pristine in the solar system sin
e ea
h planet is devoid of satellites (Burns1973) and, hen
e, of major sour
es 
apable of supporting populations of 
ir
um-planetary dust. Although impa
ts with the planetary surfa
e 
an theoreti
allyloft material into bound orbits, su
h impa
ts are ne
essarily large, and relativelyrare. Furthermore, the pro
ess itself is very ineÆ
ient sin
e bound material typ-i
ally reimpa
ts the surfa
e swiftly (see Chapters 2{4 and Burns and Hamilton1991). Even this meager produ
tion me
hanism is unavailable at Venus, whosedense atmosphere prevents most { if not all { impa
t eje
ta from es
aping intospa
e.
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Several de
ades ago, the terrestrial environment, with its single large anddistant Moon, was almost as pure. S
aling the results of Chapter 4 to lunareje
ta, we �nd that parti
les with radii <� 1�m are 
ung from the Earth-Moonsystem by radiation pressure, while obje
ts with radii up to � 10�m are rapidlyfor
ed onto highly-e

entri
 orbits whi
h penetrate Earth's atmosphere (
f. Peale1966, Allan and Cook 1967). More massive eje
ta is swept up by the Moon in lowvelo
ity 
ollisions that o

ur with 
hara
teristi
 times
ales of thousands of years.Sin
e large-impa
t events are ne
essary to raise signi�
ant amounts of debris o�the lunar surfa
e and su
h impa
ts are rare, the inferred ring of lunar debris isvery sparsely populated.Probably the dominant sour
es of debris near Earth today, however, are themyriad arti�
ial satellites 
ir
ling our world and the fuel-spraying booster ro
ketsthat put them there. The most 
rowded regions are in low-Earth orbit, wheremost manned missions have 
own, and geosyn
hronous orbit, whi
h is be
omingin
reasingly 
rowded with 
ommuni
ation satellites (
f. Kessler and Cour-Palais1978, Kessler 1985, and He
hler 1985). These orbiting obje
ts a
t as sour
es forsmall parti
les as paint 
hips 
ake o�, and additional material is more for
efullyremoved by high velo
ity impa
ts of orbital debris and interplanetary mi
romete-oroids. Debris in the � 1�10�m range is highly perturbed by radiation pressureand ele
tromagneti
 e�e
ts; mu
h of this debris is for
ed to enter Earth's at-mosphere within a few years (Horanyi et al. 1988). This dynami
al e�e
t hasinteresting rami�
ations for the 
urrent population of orbital debris in the nearEarth environment, some of whi
h was sampled by the Long Duration ExposureFa
ility, a satellite that was re
overed in early 1990 after spending nearly sixyears in low-Earth orbit (
f. M
Donnell et al. 1992).Most distant of the terrestrial planets, Mars is attended by two small moons,Phobos and Deimos, that orbit at several planetary radii. Su
h moonlets areideal sour
es for 
ir
umplanetary dust sin
e velo
ities needed for debris to es
apetheir surfa
es are slight (Soter 1971). Dubinin et al. (1990) reported eviden
efor a putative ring of debris around Mars, and several papers have subsequentlyaddressed the issue theoreti
ally (Horanyi et al. 1990, 1991, Juh�asz et al. 1993).These e�orts explored the dynami
s displayed by orbiting grains, and predi
tedthe size distribution and number density of parti
les in the martian dust halo.We 
an improve our understanding of the martian environment by adding severalimportant e�e
ts negle
ted by previous works.First, the earlier papers ignore the pre
ession indu
ed by Mars' oblatenesswhi
h is parti
ularly important for grains laun
hed from Phobos. There, theapsidal pre
ession rate (2.78 rad/yr.) is similar to Mars' orbital motion (3.34rad/yr.) resulting in a 
lose 
an
ellation of the motion of peri
enter relativeto the Sun. Just as in Saturn's E ring (
f. Chapter 6), this near 
an
ellationallows radiation pressure to substantially in
rease orbital e

entri
ities. Withoutthe oblateness term, Juh�asz et al. (1993) 
al
ulate that grains with radii in the
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1� 7�m range laun
hed from Phobos will 
rash into Mars (
f. Chapter 6); withoblateness, this range in
reases to 1� 40�m. Additionally, the expressions usedfor the rates at whi
h moonlets sweep up parti
les are ina

urate for grains highlyperturbed by radiation pressure; this makes the 
al
ulated dust densities furthersuspe
t. Finally, the possibility that a signi�
ant population of dust is raised by
ollisions of ring parti
les with the tiny martian moons should be 
onsidered (
f.Chapter 6). Sin
e orbits are highly-perturbed, 
ollisions at speeds of 1-3 km/sare 
ommon; and be
ause es
ape velo
ities from the moonlets are of order 5 m/s,su
h impa
ts 
an liberate signi�
ant amounts of debris.
8.2 The Outer Solar SystemBe
ause their extensive retinues of tiny satellites serve as ex
ellent sour
es, thegiant planets rule signi�
antly dustier environments than their terrestrial 
ounter-parts. Satellites vary tremendously in their dust produ
tion rates; large obje
ts,su
h as the Galilean satellites of Jupiter, Saturn's Titan, and Neptune's Triton,are poor sour
es be
ause they retain nearly all impa
t eje
ta. Rather than dis-
ussing ea
h satellite sour
e individually, however, in this se
tion we will insteadfo
us on the expe
ted dynami
al behavior in spe
i�
 regions that are 
ommonto all planets, noting possible appli
ations when appropriate. In this manner,we hope to highlight points of parti
ular interest without be
oming unne
essarilytedious.Approa
hing any planet from the edge of its Hill sphere, the �rst regimeen
ountered is one in whi
h mi
ron- and larger-sized dust parti
les are domi-nated by three for
es: planetary gravity, solar gravity, and radiation pressure.The results of Chapters 2{4 are thus dire
tly appli
able to grains laun
hed fromdistant satellites, many of whi
h orbit at signi�
ant fra
tions of a Hill Sphere:Jupiter's retrograde 
luster at � 0:4rH , its prograde group and Saturn's Phoebeat � 0:2rH , and Saturn's Iapetus and Neptune's Nereid at � 0:05rH . Grainslaun
hed from these obje
ts a
hieve large e

entri
ities, but 
an also attain veryhigh in
linations relative to the planet's equatorial plane sin
e they are not in-
uen
ed by for
es that 
ause pre
ession about this plane. This 
lass of orbitsseems 
apable of explaining some of the mi
ron-sized debris dete
ted by the Voy-ager spa
e
raft's Planetary Radio Astronomy (Warwi
k et al. 1982, 1986, 1989)and Plasma Wave S
ien
e (Gurnett et al. 1983, 1987, 1991) instruments in thesaturnian, uranian, and neptunian systems. Although most impa
ts o

urrednear the respe
tive ring plane 
rossings, some 
ir
umplanetary material was alsofound at large in
linations at Saturn (Gurnett et al. 1983) and Neptune (D. Tsin-tikidis 1992, private 
ommuni
ation), and perhaps at Uranus. It seems likely thatthis material originates from exterior satellites and is distributed along highly-e

entri
 and in
lined orbits.Su
h a distribution of very e

entri
 orbits 
an also transfer material radially;
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in the saturnian system, the observable 
onsequen
es of this are striking. Dustblasted o� Saturn's retrograde Phoebe, for instan
e, is transported inward toIapetus, preferentially hitting that satellite's leading hemisphere (Soter 1974,Mignard et al. 1994). If we a

ept an external origin for Iapetus' 
olor, it is notsurprising that the satellite's leading side is very dark, mu
h like Phoebe. Thetrailing side of Iapetus, however, is i
y in 
omposition and ex
eedingly bright.Thus it seems likely that the gradual 
ontamination of i
y Iapetus by tiny grainsoriginating from Phoebe has, over billions of years, produ
ed the greatest albedovariation present on any satellite in the solar system.At distan
es of typi
ally � 5 � 30 planetary radii, the e�e
ts of planetaryoblateness and the ele
tromagneti
 for
e be
ome important. Radiation pressureis still reasonably in
uential, orbital velo
ities are larger, and material re
ol-lides with sour
e satellites on rapid times
ales. Lorentz resonan
es are relativelyunimportant sin
e only very weak, high-order ones are present this far from theplanet. These dynami
al for
es are similar to those dominant in Saturn's E ring(
f. Chapter 6), and hen
e the possibility for E-ring-like obje
ts elsewhere inthe solar system should be investigated. At Jupiter, the equivalent region liesamid the Galilean satellites whi
h are too large to be e�e
tive sour
es of dust.Moreover, re
ollision times
ales are rapid and relative velo
ities are too smallto support a self-sustaining ring. For similar reasons, the 
lassi
al satellites ofUranus, and Neptune's giant moon Triton also prove to be inadequate sour
es.Ironi
ally, the 
losest analog to the saturnian E ring may en
ir
le a terrestrialplanet { Mars. Maximum orbital e

entri
ities in the two rings are 
omparable,and as noted above, the martian ring may be self-generated through energeti
grain-moon 
ollisions. Additional types of self-sustaining rings may form prefer-entially in regimes 
loser to the 
entral planet.Approa
hing to within a few radii of the giant planets, oblateness and ele
-tromagneti
 for
es strengthen, the importan
e of radiation pressure wanes, andorbital velo
ities in
rease as do re
ollision frequen
ies. This is the domain domi-nated by Lorentz resonan
es, the most powerful bullies of the planetary neighbor-hood. Charged dust parti
les drifting into areas 
ontrolled by these strong reso-nan
es, are for
efully eje
ted from the resonan
e zone with a strong ki
k in theirorbital e

entri
ity or in
lination. The most dramati
 example of a Lorentz reso-nan
e is, of 
ourse, the transition between the main jovian ring and its verti
allyextended inner halo, but Lorentz resonan
es { both the e

entri
ity and in
lina-tion varieties { are almost 
ertainly important elsewhere in the jovian system, andat Uranus and Neptune (Fig. 8.1). Several opaque rings in the latter two systemsare lo
ated near strong Lorentz resonan
es; resonantly perturbed e

entri
itiesmay augment relative velo
ities, 
ollisional yields, and perhaps even 
ause thedusty 
omponent of some rings to be self-sustaining like Saturn's E ring. Greatswaths of dust enshroud Uranus and Neptune, and several dusty ring features arefound near Lorentz resonan
es too. Uranus' � ring nominally lies a few thousand
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Figure 8.1 Radial lo
ations of rings and Lorentz resonan
es at Uranus and Nep-tune. Rings are drawn as solid ar
s and are labeled near the �gure's edges whileLorentz resonan
es are signi�ed by dashed ar
s that are labeled in the 
enter ofthe �gure. The stippled regions in Neptune's system represent dust sheets; dustis also found in 
omplex stru
tures throughout the region o

upied by the mainuranian rings. Solid 
ir
les represent satellites: Cordelia at Uranus and (headinginward) Galatea, Thalassa, Despoina, and Naiad at Neptune. Several ring stru
-tures are lo
ated suggestively near Lorentz resonan
es: the Adams and Leverrierrings, and the inner and outer boundaries of both the 1989N4R and the uranianring system. Many of these asso
iations may be 
oin
idental, espe
ially sin
erings and resonan
es ea
h inhabit the region of spa
e near the 
entral planet.Nevertheless, Lorentz resonan
es almost 
ertainly in
uen
e the orbital motionsof the dusty 
omponents at both planets.
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kilometers from the strong 2:1 Lorentz resonan
e, and the ring's �ve-fold den-sity 
u
tuation advertises that interesting dynami
s are involved (Fig. 8.1). Theneptunian ring ar
s are in a 42:43 gravitational resonan
e with the small satelliteGalitea, but they are also near the 3:2 Lorentz resonan
e. The latter may 
ausedust to leak out of the ar
 sites into the mu
h fainter Adams ring that 
ompletelyen
ir
les the planet. A dust sheet begins near the 5:3 Lorentz resonan
e, only toterminate just short of the 2:1 resonan
e in an opaque 
ondensation of materialthat 
omprises the Leverrier ring (Fig. 8.1).Ba
k at Jupiter, a more 
omplete analysis of the main ring and the halois warranted, espe
ially 
onsidering the forth
oming observations of the Galileoorbiter. The stru
ture of the verti
ally extended halo 
ontains information onthe properties of the parti
les passing through the 3:2 resonan
e { primarily theirsize distribution and ele
tri
 potential, Sin
e jump amplitudes depend on parti
lesizes, halo grains should be non-uniformly layered, with larger ones tending to befound 
loser to the equatorial plane. Given the opti
ally determined parti
le sizedistribution of Showalter et al. (1987) and the details of the resonan
e intera
tiondis
ussed in Chapter 7, the verti
al stru
ture of the halo should be 
al
ulable.Su
h a derivation would provide an independent dynami
al 
he
k of Showalter(1987)'s opti
ally-derived size distribution, and 
ould also 
onstrain the grainpotential.Finally, parti
les somewhat smaller than those 
onsidered in this thesis arestrongly in
uen
ed by ele
tromagneti
 e�e
ts and 
an exhibit non-intuitive be-havior. Neither the perturbations s
hemes employed in Chapters 5{7, nor theadiabati
 theory of 
harged parti
les are appropriate for the motions of thesesubmi
ron grains sin
e the for
es of gravity and ele
tromagnetism are 
ompara-ble in strength. At Jupiter, these for
es 
ombine to 
ause rapid radial eje
tionof positively 
harged dust grains. Those interior to syn
hronous orbit are sent to�ery deaths in the jovian atmosphere, while those exterior are a

elerated to highvelo
ities that take them rapidly away from Jupiter into interplanetary, and theninterstellar, spa
e. Su
h high-velo
ity dust streams have re
ently been dete
tedby the Ulysses spa
e
raft, and models assuming a gossamer ring (an outwardextension of the main jovian ring) sour
e (Hamilton and Burns 1993
) and anIo sour
e (Horanyi et al. 1993a,b) have re
ently been developed. The motions ofneutral atoms and mole
ules in 
ir
umplanetary orbits are dominated by gravityand the resonant s
attering of sunlight (Smyth and Mar
oni 1993); 
onsequentlythe dynami
s displayed by su
h atoms is akin to the dynami
s that we have inves-tigated here. Additional surprises 
ertainly await investigations of the dynami
sof atoms and submi
ron-sized dust.In these past few pages, we have taken a rapid tour of the solar system,seeking out parti
ular areas where dust is 
ommon and where the methods of thisthesis might su

essfully be applied. The results of any su
h exer
ise dependsstrongly on perspe
tives whi
h are 
ontinually 
hanging as progress is made;
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thus an area emphasized here may later prove less interesting than another thatwas overlooked. A thorough study of one area leads to new insights into entirelydi�erent problems, and it is the anti
ipation of these insights that fuels 
ontinuedinvestigations of dynami
al phenomena.



Appendix A
Symboli
 Orbital Expansions
Computer algebra systems are in
reasingly useful tools in s
ienti�
 resear
h asadvan
es in both hardware and software design 
ontinue to vastly improve theperforman
e of these symboli
 pa
kages. A striking example of this trend isMurray and Harper (1993)'s re
ent expansion of the planetary disturbing fun
tionto eighth-order in e

entri
ities and in
linations; the information 
ontained inea
h of this volume's 436 pages is generated entirely symboli
ally. With the aidof 
omputer algebra, the authors improved on the presentation of previous works(Peir
e 1849, Le Verrier 1855, Brouwer and Clemen
e 1961), ferreted out insidiouserrors made in these earlier expansions, and extended their analysis beyond thelimits of human enduran
e.In a less dramati
 way, the symboli
 program used to generate the entrieslisted in Table 7.2 saved this author weeks of 
al
ulations and tedious error 
he
k-ing. It is the purpose of this appendix to en
ourage and assist those interestedin applying symboli
 methods to similar problems by presenting and explainingthe relatively simple MACSYMA 
ode used in Chapter 7.As entire books have been written about symboli
 algebra (Harper et al.1991 give a wonderful 
omparison of the main 
omputer algebra pa
kages; for anintrodu
tion to MACSYMA, 
onsult Rand 1984), our purpose is not to tea
h thelanguage, but rather to demonstrate the power of symboli
 methods and to 
larifythe pro
ess employed in our orbital expansions. Nevertheless, a 
ertain amountof explanation is ne
essary. In the sample MACSYMA session that follows, linesbeginning with C 
onstitute MACSYMA input (the program) while those startingwith D are MACSYMA output. The input lines 
an be typed intera
tively, orsubmitted all at on
e in a bat
h mode. Within a single line, \:=" is used to de�nea fun
tion (e.g., line C2) while a single 
olon sets up a rule for later substitution(e.g., line C22 { here line D22 merely e
hoes the input).The parti
ular example under 
onsideration expands the g1;0 aligned dipolarportion of the magneti
 �eld, but the extension to the other �eld 
omponentsis straightforward. The program's 
ow roughly follows the explanation given in
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se
tion 7.2.2. Here, we �rst obtain equations that de�ne the magneti
 �eld, whi
hwe then substitute into expressions for the for
e 
omponents. These, in turn, areplugged into expressions for the time rates of 
hange of the orbital elements.Finally, the rates of 
hange are Taylor-expanded out to the desired order. Wenow give spe
i�
 line-by-line 
omments, following whi
h we present the programitself.Lines C2 and C3 de�ne the Legendre polynomials and lines C4 and C5 sele
tthe symmetri
 dipole term (TH� �). The program then performs additionalsubstitution steps and prints the appropriate Legendre polynomial, \P," andits derivative with respe
t to �, \dP," in lines D9 and D13. Lines 14{21 areunimportant here, sin
e these pertain to the asso
iated Legendre polynomialsne
essary for asymmetri
 magneti
 �elds (MLON� �0, PHI� �). Lines D22, D23,D32, and D33 simply translate the spheri
al 
oordinates into orbital elements[
f. Eqs. (5.9), (5.10), and (5.11), BW� 
℄ and lines D24{D26 give the r, �,and � 
omponents of an aligned dipolar magneti
 �eld [
f. Eqs. (5.37), (5.38),and (5.39), RP� Rp℄. Various expressions for ellipti
 orbital motion appear inlines D27{D33; [
f. Eqs. (5.12), (5.35), (5.36), and (5.40), WP� 
p℄. In linesD34 through D36, the magneti
 �eld 
omponents are written in terms of orbitalelements.Lines C37{C42 de�ne the a

eleration 
omponents in the orbital 
oordinatesystem [see Eqs. (5.32), (5.33), and (5.34)℄, and lines C43{C52 de�ne the rates of
hange of the orbital elements (Danby 1988, p. 327). The next three lines repla
ethe variablesM , u, and � with the orbital elements that appear in Table 7.2; herePLON� � and CW� $. The equation of 
enter, expanded out to fourth-order ine

entri
ity is used for �; for higher-order expansions this equation would have tobe modi�ed. Line C56 determines the order of the expansion; typi
al runs takefrom several minutes to several hours on a Sun SPARC 1 workstation, dependingon this quantity and on the parti
ular �eld 
omponent being expanded. Ea
htime derivative is then Taylor-expanded to order \EPOW=2" in both of thesmall quantities E and I. We avoid E2I2 terms while retaining E2 and I2 termsby employing a tri
k: we substitute E*IOE in for I and do the Taylor expansionto se
ond-order in E; sin
e the IOE's 
ag the pla
es where I's belong, the reversesubstitution (I repla
ing E*IOE) is employed after the expansion to 
orre
t theexpression. Finally, we 
all trigredu
e, whi
h uses identities to eliminate powersof trigonometri
 fun
tions in favor of trigonometri
 fun
tions of sums of angles.Lines D63, D70, D77, D84, D99, and D130 give the �nal output for dn=dt, de=dt,di=dt, d
=dt, d$=dt, and d�=dt, respe
tively. These lines 
ontain all of the datafound in the g1;0 subtable of Table 7.2.
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