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ORBITAL DYNAMICS AND THE STRUCTURE OF FAINT DUSTY RINGSDouglas Peary Hamilton, Ph.D.Cornell University 1994
The orbital perturbations that at on objets irling a planet vary in strengthdepending on the sizes of both the partile and its orbit. We examine threeases that are diÆult to treat with the standard tools of elestial mehanis: i)large distant satellites, ii) small objets on distant orbits, and iii) tiny partilesorbiting near a planet.The dominant perturbation in the �rst ase is the tidal omponent of solargravity. Taking as our example an asteroid on a irular orbit about the Sun, wenumerially determine the size and three-dimensional shape of the surfae beyondwhih irum-asteroidal debris is unlikely to be present. We present saling lawsthat allow this result to be applied to objets with di�erent masses, semimajoraxes, and eentriities. Small objets on distant orbits are highly perturbed byradiation pressure, whih rapidly auses many of them to esape or to impat theasteroidal surfae. We determine that, for the asteroid Gaspra (radius � 10 km),debris smaller than entimeter-sized will disappear from distant orbits in just afew years. We generalize our results for appliation to arbitrary asteroids.Miron-sized grains, the prinipal onstituents of the many di�use rings ir-ling within a few planetary radii of the giant planets, are dominantly perturbedby eletromagneti and radiation fores. We derive orbit-averaged equations thatgovern the evolution of suh grains subjet to these perturbations; our expres-sions are valid at all non-resonant loations. Resonant loations are treated byexpanding the eletromagneti perturbation analogously to the derivation of thedisturbing funtion of elestial mehanis. We ompare our eletromagneti ex-pansion to previous gravitational expansions; similarities lead to the disovery ofsimple orbital symmetries that onstrain the possible onsequenes of any per-turbation.We use the above expressions to explore the dynamis of the miron-sizedgrains that make up Saturn's E ring and �nd that a oupling between planetaryoblateness, eletromagnetism, and radiation pressure generates highly-eentriorbits. The distribution of material along an ensemble of these elliptial orbitsagrees well with the E ring's observed radial and vertial struture. As a onse-quene of their highly-elliptial orbits, dust grains strike embedded satellites and



nearby rings at large veloities. We argue that these energeti ollisions sustainthe E ring at its urrent optial depth against the erosive e�ets of grain-grainollisions.
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Chapter 1
Introdution
1.1 Modern Celestial MehanisThe yli phases of the moon, the timing and duration of lunar and solar elipses,and the motions of the Sun, Moon, and planets are problems that have aptivatedthe imaginations of all who have witnessed suh elestial events; aordinglypreditions thereof have hallenged the minds of many of the world's greatestthinkers. From the late sixteenth entury, when Copernius' helioentri view ofthe solar system �rst vied with Ptolemy's idea of a geoentri universe, throughthe ensuing years during whih Kepler, Galileo, Newton and Einstein made theirpivotal ontributions, and up to the present era of spaeraft reonnaissane,our understanding of elestial mehanis has steadily improved. Over the pastfew deades, elestial mehanis has undergone a transformation from a largelytheoretial pursuit into a pratial disipline. This ourred as planetary andsatellite y-bys, eah requiring aurate desriptions of spaeraft trajetoriesand planetary positions, beame ommonplae. The spetaular images relayedbak to Earth from the Voyager spaeraft, for example, would not have beenpossible without the detailed trajetory information neessary for planet andsatellite rendezvouses, and preision amera-pointing. An additional reason tounderstand orbital motion is to minimize the danger of debilitating ollisions withtiny, unseen, and rapidly-moving bits of spae debris. The thrust of this thesis{ orbital dynamis and the struture of faint dusty rings { is strongly motivatedby suh onerns for spaeraft safety.
1.2 Why Study Dust?Dust is ubiquitous throughout the solar system, being found in orbit aroundEarth (MDonnell et al. 1992), Mars (Dubinin et al. 1990), and the giant plan-ets (Burns et al. 1984, Smith et al. 1989, Esposito et al. 1991), jettisoned fromomets to form elegant tails (Gr�un and Jessberger 1990) and from the jovian
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system in apparently periodi streams (Gr�un et al. 1993), and strewn throughoutthe inner solar system's zodiaal loud, where it onentrates in bands near themost prominent asteroid families (Dermott et al. 1985) and perhaps at ertainresonant loations (Jakson and Zook 1989). Beause small partiles are espe-ially sensitive to non-gravitational fores, they an be driven to unusual plaes.For example, miron-sized partiles make up the wedge-shaped di�use E ring ofSaturn (Showalter et al. 1991), while the omplex and beautifully intriate spokesof Saturn's B ring are hypothesized to arise from tiny grains eletrostatially lev-itated o� larger ring members (Goertz and Mor�ll 1983, Gr�un et al. 1983, Taggeret al. 1991). Resonant eletromagneti fores ating on small harged dust par-tiles may provide the explanation for the abrupt transition between Jupiter'sfaint ring and its vertially-extended ethereal halo (Burns et al. 1985). DuringVoyager's Neptune y-by, the spaeraft's plasma wave and planetary radio as-tronomy instruments disovered a tenuous loud of dust in yet another unlikelyloale, over Neptune's northern polar region (Gurnett et al. 1991, Warwik et al.1989).The fats that small partiles are both diÆult to detet, but also presentin vast quantities throughout the solar system, greatly enhane the potentialfor a atastrophi spaeraft-projetile enounter. The most dangerous loationsare in the viinity of larger parent objets: amid the ring systems and satelliteretinues of the giant planets, inside ometary halos and tails and, inreasingly,within a few planetary radii of Earth as man-made orbital debris { paint hips,fuel droplets, piees of hardware, old spaeraft, and the ollisional produtsthereof { aumulates (Kessler 1985). While the last loale is undoubtably themost threatening to Earth-orbiting satellites, Shuttle missions, and the proposedSpae Station Freedom, the �rst menaes the orbiters Galileo and Cassini, whihwill spend long periods of time in the environs of Jupiter and Saturn, respetively.Beause of large relative veloities, and hene energeti ollisions, objets only aentimeter aross an annihilate an entire spaeraft while millimeter-sized parti-les are apable of initing onsiderable damage, perhaps destroying individualinstruments. The latter fat was dramatially undersored by the rippling ofthe European Giotto mission during its traverse of omet Halley's halo in 1986.Somewhat smaller partiles, in the submiron to tenths of millimeters range, ansour optial surfaes, interfere with eletrial systems, and, over time, degradevarious sensitive omponents of a spaeraft. Beause of the great expense ofplanetary missions, the prevalene of orbital debris, and the distint threat thatsuh debris represents, onsiderable planning has been done to insure safe orbitaltours for both Galileo and Cassini (see Setion 1.4).Despite the fat that orbiting debris often stars as the blak-robed villainof elestial mehanis, ever plotting to interept unwary spae-faring vessels, itsother role { that of an instrutor { should not be forgotten for muh an be learnedfrom studying the distribution and orbital motion of these tiny motes. Paint hips
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and antiquated satellites tell us little of reent terrestrial history that we do notalready know, but samples of ometary and asteroidal partiles olleted in spae(e.g., from the Long Duration Exposure Faility, MDonnell et al. 1992) and onthe wings of speially out�tted airplanes (Brownlee 1985) hint at the origin of\shooting stars" oasionally seen ashing aross the night sky. Rapidly-movingdust partiles reently deteted near Jupiter by the Ulysses spaeraft seem tobe interstellar in origin, bearing lues to events that ourred far beyond thelimits of our roboti exploration (Gr�un et al. 1993). The organization of dustinto faint ethereal rings highlights various dynamial proesses whih an beused to better understand more omplex rings dominated by large losely-pakedmembers, and additional dust within these dense rings provides further traersof ongoing proesses. Thus the smallest partiles arry information pertinent tosome of the most profound questions of elestial mehanis - How do rings form?What proesses govern their struture? And, ultimately, how did the ring-likeprimordial planetary nebula originate, ondense, and evolve into the solar systemwe know today?To address these questions, an intimate understanding of the relevant foresating on dust grains and the onsequent orbital evolution that they indue isessential. Aordingly, a major goal of this thesis is to develop a set of toolsapable of desribing orbital motions and then to apply these tools in simplemodels of existing phenomena. The knowledge gleaned from suh an exerise isof both pratial and philosophial use: pratial sine, by understanding themotion of these partiles, we an minimize the threat to our spaeraft, andphilosophial in that one we better understand whene these tiny messagersoriginate, perhaps we will be able to better deipher the information that theyarry.
1.3 Classial Celestial MehanisMuh of the substane of this thesis involves the appliation of perturbationtheories to determine the evolution of orbiting partiles imposed by partiularperturbing aelerations. These theories require aurate desriptions of the a-elerations as well as nearly-orret baseline solutions from whih to omputedeviations; suh shemes were �rst employed during the eighteenth entury de-velopment of the disturbing funtion of elestial mehanis. Sine many of ourresults rely heavily on orbital perturbation theories and, in the ase of Chapter7, losely parallel the derivation of the disturbing funtion, we briey summarizerelevant results and plae them in historial ontext.The �rst aurate desription of planetary orbital motions was found empir-ially nearly four enturies ago by Johannes Kepler, who made extensive use ofTyho Brahe's metiulous naked-eye observations of Mars. Beause of the highelliptiity of Mars' path around the Sun, Kepler was fored to disard the notion
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of perfetly irular orbits and instead formulated the following three laws ofplanetary motion:1. Planets move along elliptial orbits with the Sun at one fous.2. The radius vetor to the planet traes out equal areas in equal time.3. The square of a planet's orbital period is proportional to the ube of thesemimajor axis of its elliptial orbit about the Sun.Later, Sir Isaa Newton showed that these rules followed naturally from the mu-tual gravitational attrations of two spherial bodies. But although elliptialmotion is an exat solution to the two-body problem, it only approximates theatual motion of a planet around the Sun or that of a satellite about a planet.Deviations from purely elliptial motion our beause of the gravitational attra-tions of additional objets, the non-spherial shapes of these bodies, and even theminusule orretions of Einstein's general theory of relativity.In the usual ase, perturbations are dominated by the diret gravitationalattration of the primaries and the orbits are nearly elliptial; thus Keplerianmotion an be used as a baseline solution and the atual path followed an bedetermined from perturbative theories. Muh of the early work in elestial me-hanis foused on e�orts to desribe and approximate the gravitational e�etsof one planet on another. High-order expansions of the disturbing funtion interms of the elliptial elements of planetary orbits were �rst worked out by Peire(1849) and Le Verrier (1855) (f. Brouwer and Clemene 1961): today's versionuses omputer algebra to derive extremely aurate and omputationally exten-sive expansions (Murray and Harper 1993). In another problem of interest, theperturbations arising from the gravitational attration of an arbitrarily-shapedplanet an also be modeled by a disturbing funtion, and this allows the motionsof lose planetary satellites to be predited very aurately (Kaula 1966). Withthese tehniques, one an, in priniple, understand the motions of most planets,omets, asteroids, and natural and arti�ial satellites found in our solar system.
1.4 Brief Summary of ChaptersThis thesis addresses two types of problems that fall outside the sope of theabove-mentioned lassial tools of elestial mehanis: i) those where large per-turbing aelerations make expansions inappropriate, and ii) those involving mo-tions of miron-sized dust partiles that are strongly inuened by non-gravitationalaelerations.The �rst subjet is disussed in Chapters 2{4, whih investigate the regionwhere material may stably orbit an asteroid. This study was motivated by on-erns for the safe passage of Galileo, whih made histori �rst y-bys of the as-teroids 951 Gaspra (Otober 29, 1991) and 243 Ida (August 28, 1993); the resultsof our study were used by the Galileo team to deide how lose, and from whatdiretion, to approah these primordial objets. For distant irum-asteroidal
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orbits, the solar tidal fore's pull on a partile is nearly as strong as the asteroid'sgravitational grip; hene the Sun and the asteroid vie for domination of driftingdebris. Numerial investigations are needed to follow the orbital evolution ofsuh partiles although some analytial onstraints do exist. In Chapter 2, weonsider an asteroid on a irular orbit around the Sun, in Chapter 3 we extendthis analysis to arbitrarily elliptial helioentri orbits, and in Chapter 4 we addthe e�ets of solar radiation pressure whih, due to the asteroid's weak gravita-tional �eld, is a relatively strong perturbation for potentially destrutive partilesin the millimeter and entimeter size range. Beause objets smaller than theseare rapidly driven from irum-asteroidal orbits by radiation fores, the near-asteroidal environment is predited to be relatively free of orbiting debris andhene benign to passing spaeraft. Galileo's unsathed y-by of both Gaspraand Ida, and the negative results of its onboard dust detetor substantiate theselaims (Gr�un et al. 1992, E. Gr�un 1993, private ommuniation). Saling rela-tions are derived that allow the results of Chapters 2{4 to be applied to asteroidsof di�erent masses, eentriities, and distanes from the Sun.Chapters 5{7 fous on the dynamis of miron-sized partiles in irumplane-tary orbits, an interesting and hallenging problem beause of the unusual arrayof physial proesses that inuene the motions of these tiny motes. The strongestperturbations are radiation fores, whih arise from the transfer of momentumdue to the absorption and re-emission of solar photons, and eletromagneti foreswhih our in the spinning magnetospheres of the giant planets. Beause of manyunertainties, partiularly in the nature of the plasma surrounding the giant plan-ets, researhers have usually sought to isolate and model a single perturbation inorder to understand its inuene on an orbit. For example, Burns et al. (1979)Mignard (1982, 1984), and Mignard and H�enon (1984) analytially desribe theinuene of radiation pressure and other e�ets assoiated with the transfer ofmomentum from solar photons and the solar wind. The equilibrium eletrialpotential of an isolated dust grain immersed in a plasma has been studied byWhipple (1981), Meyer-Vernet (1982), Whipple et al. (1985) and others. Variousresonanes assoiated with eletromagneti fores have been identi�ed, amongthem \Lorentz resonanes" with spatially-periodi magneti �elds (Burns et al.1985, Sha�er and Burns 1987), \shadow resonanes" (Horanyi and Burns 1991),and \resonant harge variations" (Burns and Sha�er 1989, Northrop et al. 1989).The dynamis of grains moving through the onveted solar wind �eld about aplanet have been addressed by Horanyi et al. (1990, 1991). Despite the impor-tant role that small partiles may play in various features of the solar system, aomprehensive treatment of the orbital histories of irumplanetary dust is notyet available (f. Sha�er 1989).A �rst attempt to omprehensively and simultaneously treat the largest per-turbative aelerations ating on irumplanetary miron-sized dust, eletromag-netism and radiation pressure, is presented in Chapter 5. Although these non-
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gravitational aelerations are large, the planet's attration usually dominatesand perturbative shemes are appropriate. We employ the method of orbit-averaging whih has the advantage of suppressing all but the seular terms (thosethat are independent of orbital longitudes); in most ases, the seular termsonstitute the perturbation's dominant long-term e�ets. The resulting set ofequations determine the orbital evolution of small grains throughout the innermagnetosphere exepting at ertain resonant loations.In Chapter 6, we use our knowledge of the orbital motions of miron-sized dustto understand the peuliar three-dimensional struture of the saturnian E ring.We �nd that E-ring grains orbit Saturn in unusually ellipti orbits whih imply apreviously unsuspeted method for the generation and sustenane of faint rings.We argue that ollisions of E-ring partiles with the satellites immersed in thering are suÆiently energeti to generate new ring material and that this proesssustains the ring. Besides being onsistent with the main properties of the E ring{ the radial loation of its peak brightness, the numerial value of that brightness,the ring's radial extent and its vertial struture { we �nd that our model agreeswith a number of independent observations { the oloration and surfae propertiesof the embedded satellites, the presene of large amounts of OH in the innermagnetosphere, and the high dust ontent of neighboring rings. Our resultsmay be useful in planning for, and an be tested by, both the 1995-6 edge-onappearane of Saturn's rings and the Cassini mission to Saturn, whih will makemultiple passes through the E ring.Motivated by the strong evidene for eletromagneti resonanes ausing thetransition between the main jovian ring and its inner halo, we return, in Chapter7, to systematially expand the eletromagneti perturbation at resonane loa-tions in a manner similar to that employed in the derivation of the disturbingfuntion of elestial mehanis. Besides providing a methodology for treating themotions of dust everywhere in the inner magnetosphere, we investigate similaritiesand di�erenes in the properties displayed by eletromagneti and gravitationalresonanes. We separate these properties into three groups: i) those shared byall orbital perturbations, ii) those that are ommon just to mean-motion reso-nanes, and iii) those that are unique to individual resonanes. Properties ingroup i) are shown to follow from simple physial symmetries whih apply notonly to the perturbations onsidered here, but to all quantities that are expressedin terms of orbital elements, while those in group ii) arise from shared integralsof the motion. As is often the ase in researh, study of a new phenomenon (hereLorentz resonanes) gives unexpeted insights into a well-researhed related area(gravitational resonanes).Finally, in Chapter 8 we onlude by disussing diretions for further study.A partiularly promising line of researh that we are urrently pursuing is are-examination of the dynamis in the jovian ring system. Many of the ideas dis-ussed in Chapters 5{7 seem to be simultaneously at work in these di�use rings,
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and the upoming impat of omet Shoemaker-Levy 9 into Jupiter in July 1994makes our study espeially timely. The ometary impat may ause the mainand gossamer rings to brighten, perhaps yielding lues to proesses relevant totheir formation. The more distant distributions of dust in the uranian and neptu-nian magnetospheres are also intriguing and an be studied with the methods ofChapters 5{7. As eah of these new areas are investigated, the need for improvedtheories will undoubtably arise, thereby driving the understanding of the orbitalmotions of irumplanetary dust yet another step forward.



Chapter 2
Orbital Stability Zones aboutAsteroids with Zero Eentriity1
2.1 IntrodutionWhile two questions { \How muh material is likely to be in orbit around anasteroid?" and \Exatly where will that material be?" { are interesting toplanetary sientists and elestial mehaniians, they are ritially important tothose spaeraft mission planners who must deide how losely to approah suhobjets. It is well known that, in the absene of perturbations, orbiting partilesan move on Keplerian paths at all distanes from an isolated asteroid. In reality,however, gravitational perturbations from the Sun and, to a lesser extent, theplanets will limit the zone in whih partiles an stably orbit.Sine the problem of N gravitationally attrating bodies is well known to beanalytially unsolvable forN > 2, numerial methods must be employed to obtainquantitative estimates of the motion of a test partile in the viinity of an asteroidthat itself irles the Sun. We neglet planetary perturbations sine these are atleast a thousand times weaker than solar e�ets (f. Chauvineau and Mignard1990b) and treat a three-body problem onsisting of the Sun, an asteroid, andan orbiting partile. The three-body problem has been numerially integratedmany times previously (onsult Szebehely 1967 for historial referenes while formore reent work see Zhang and Innanen 1988, Murison 1989b, Chauvineau andMignard 1990a,b) but the spae of possible parameters is so large that the three-body problem's omplete solution is, fundamentally, not understood. Fortunatelythe problem that we wish to solve is more restrited, although still analytiallyintratable.We treat the ase of hierarhial masses sine the asteroid's mass is insigni�-ant relative to the solar mass, yet is very large in omparison to partiles likely1This hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1991), Orbital stabilityzones about asteroids Iarus 92, 118{131 [opyright 1991 by Aademi Press, In.℄.
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Table 2.1 Parameters of Amphitrite and GaspraObjet A E RA � � rH(AU) ( km) (g/m3) (RA)Amphitrite 2.55 0.00 100 5� 10�12 2.38 452Gaspra 2.20 0.17 10 5� 10�15 2.38 390

to be orbiting it. Hierarhial masses provide a limiting ase of both Hill's prob-lem and the restrited three-body problem (H�enon and Petit 1986). We furthernarrow the spae of parameters by giving the asteroid a irular orbit aroundthe Sun, by hoosing to study only those orbits that are weakly bound to theasteroid, and by starting test partiles out on initially irular orbits. The se-ond hoie is made in order to explore the transition region between bound andunbound orbits and hene to delineate the zone in whih the material ould bestably trapped.In the numerial examples to follow, we model the asteroid 29 Amphitrite,a previously planned target of Galileo (see also Zhang and Innanen 1988), ashaving a irular orbit of radius A = 2:55AU, and an asteroid/Sun mass ratio� = 5:0�10�12. In reality, Amphitrite's orbit is moderately eentri (E = 0:07).For an assumed asteroid radius of RA = 100 km, the hosen � orresponds toa reasonable density of � = 2.38 g/m3. These parameters, as well as onesappropriate for Gaspra, Galileo's atual target, are listed in Table 2.1. The �nalolumn in the table lists the radius of the Hill sphere whih we de�ne at the endof the next setion. Our investigation on�rms and extends the study of Zhangand Innanen (1988) by using heuristi models to understand the nature of theobserved orbits, by onsidering motion out of the orbital plane, by illustrating theshape of the volume �lled by partiles on stable orbits, by showing how resultsan be saled to other asteroids, and by plaing the problem in the ontext ofmodern ideas on haos (f. Chauvineau and Mignard 1990a,b; Murison 1989b).
2.2 Equation of MotionWe use two non-inertial oordinate systems (Fig. 2.1), eah with its origin onthe asteroid whih itself orbits the Sun: non-rotating oordinates that keep theiraxes �xed with respet to the distant stars, and rotating oordinates that maintaintheir axes �xed relative to the Sun. In eah, the asteroid's orbit lies in the xyplane. Beause the orbits we onsider are only weakly bound to the asteroid, solarperturbation fores are relatively large and, aordingly, most paths are moreeasily understood when viewed in a referene frame rotating with the asteroid'smean motion 
ẑ around the Sun ((xyz)rot in Fig. 2.1). The mean motion is
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Figure 2.1 Two non-inertial oordinate systems are shown as they follow theasteroid on its irular orbit of radius A about the Sun. The xyz system stays�xed in its angular orientation while the (xyz)rot system rotates uniformly so thatthe Sun always is at xrot = �A. In the non-rotating system the Sun is initiallyat x = �A and it moves with angular speed 
 around the asteroid in the planez = 0. In most integrations the partile starts along the Sun-asteroid line at(x = d; y = 0; z = 0) with a veloity in the non-rotating frame that would put iton a irular orbit if the Sun were not present.
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a vetor that points normal to the orbit (ẑ is the unit vetor in the positive zdiretion) and has magnitude


 = sGM�A3 ; (2.1)where G is the gravitational onstant, A is the Sun-asteroid distane, and M� isthe mass of the Sun. The aeleration of a partile orbiting the asteroid is thenapproximately given by Hill's equation (Szebehely 1967):d2rdt2 = �GMAr2 r̂+ GM�A3 (3xrot � z)� 2
� vrot; (2.2)where r is the vetor pointing from the asteroid to the partile, r̂ is the orre-sponding unit vetor, vrot is the partile's veloity measured in the rotating frame,and MA is the mass of the asteroid. The terms on the right side of Eq. (2.2) aredue to the asteroid's diret gravity, the ombination of solar tidal and entripetale�ets, and the Coriolis e�et, respetively. Heneforth, the full seond term willbe referred to as the \tidal" term. In the derivation of Eq. (2.2), we have ne-gleted quantities that are seond order in r=A. These terms, if inluded, wouldbreak the symmetry of the tidal term around the (yz)rot plane. We have observedonsequenes of this broken symmetry in a few numerially integrated esape or-bits, but do not judge it to be signi�ant in estimating the trapped region or indesribing most orbits.In order for the reader to gain insight into the trajetories to be shown later,we now disuss some of the properties of the aelerations in Eq. (2.2). In thesedesriptions we will all an orbit prograde if the partile's angular veloity aroundthe asteroid is in the same sense as the asteroid's angular veloity around theSun; for a retrograde orbit, the partile's angular veloity is in the opposite sense.Figure 2.2 is a sketh showing how the diretion and magnitude of the variousaelerations hange along a hypothetial orbit that is oplanar and oval-shapedin the rotating frame. Notie that the aelerations all at in di�erent diretions:the diret term always points toward the asteroid, the tidal term invariably alignsparallel or antiparallel to the solar diretion, and the Coriolis term is alwaysperpendiular to the orbit. Furthermore, the diret aeleration is inward andthus ats to bind partiles to the asteroid, while the tidal aeleration, whih hasa omponent that points outward, ats to expel them from the system. Beausethe Coriolis aeleration depends on the sign of the veloity, it points outwardfor prograde orbits but inward for retrograde ones; thus the Coriolis aelerationtends to stabilize the latter but disrupt the former.Finally note that along the orbit the tidal aeleration inreases with growingseparation distane, while all other aelerations derease. Comparing the dire-tions of the aelerations in the prograde and retrograde ases, we an alreadysee that retrograde orbits should be stable out to greater distanes than prograde
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Figure 2.2 Skethes of the aelerations (magnitudes and diretions) that areexperiened by a partile at various plaes along a oplanar oval orbit whose longaxis is aligned with the solar diretion; the asteroid is at the origin. The diretaeleration is aused by the asteroid's gravitational attration of the partile.The \tidal" aeleration is due to the loal imbalane between the Sun's attrationand that needed to ause the asteroid's irular path (see Eq. 2.2). The sign ofthe Coriolis aeleration depends on whether the partile moves in the same(prograde) or opposite (retrograde) angular sense as the asteroid in its orbitabout the Sun.
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ones sine in the former situation the Coriolis aeleration is inward while in thelatter it is outward. Numerial experiments support this statement as does na-ture's laboratory: the outermost moons of Jupiter and Saturn are on retrogradeorbits.In order to quantify the radial dependenes of the aelerations, they areplotted in Fig. 2.3 as funtions of distane from the asteroid for the speial aseof a irular oplanar orbit. Reall that we've used Amphitrite as our modelasteroid (Table 2.1). To adjust the axes of this and all of the following plots toyour favorite asteroid, simply multiply distanes measured in RA by the fator(�=2:38 g m�3)1=3(A=2:55AU), where � is the new asteroid's density and A isits semimajor axis. The justi�ation for this saling will be presented in Setion2.3.3; we also note here that di�erenes in asteroid orbital eentriities annotbe aommodated although we will have more to say about this in Chapter 3.All of the urves plotted in Fig. 2.3 are normalized by the loal diret aelera-tion of the asteroid's gravity. Sine the strength of the tidal aeleration dependson azimuthal position (see Fig. 2.2), it varies along even a irular orbit and thushere we plot its maximum value. The total aelerations for prograde [urve P℄and retrograde [urve R℄ orbits, as plotted in Fig. 2.3, were obtained by takingthe various terms and simply adding them; even though this addition ignores thevetor harater of these aelerations, we believe that it is instrutive.In the limit of small separations (i.e., on the left side of Fig. 2.3), the per-turbation aelerations [urves C(P), C(R), and T℄ tend to zero, and thus bothprograde and retrograde orbits approah the two-body solutions: irles and el-lipses about the asteroid. Aordingly, the urves of Fig. 2.3 are most appliablein this inner region, sine only there do irular orbits atually exist. Nevertheless,the urves provide useful guides for estimating magnitudes in more ompliatedsituations. Of ourse, are must be exerised in their appliation, espeially whenestimating the magnitude of the Coriolis aeleration whih, due to its veloitydependene, will vary substantially with the atual path taken.Both the restrited three-body problem and Hill's problem admit an integralof the motion that an be derived by integrating, over time, the salar produt ofEq. (2.2) with the veloity vrot. Chauvineau and Mignard's (1990a) expressionfor this Jaobi integral an be generalized to three dimensions as

v2rot � 
2(3x2 � z2)� 2GMAr = �C; (2.3)where C is the Jaobi onstant and r = (x2 + y2 + z2)1=2. The three terms onthe right of Eq. (2.3) are the kineti, \tidal," and diret terms respetively. ThisJaobi onstant is onserved in a rotating frame entered on the asteroid and isrelated to the more usually de�ned Jaobi onstant (see Szebehely 1967) whih isonserved in a rotating frame entered on the Sun. Subsequently we will give thequantity \�C=2" the name \energy" to distinguish it from the helioentri energy
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Figure 2.3 The various aelerations ating on a partile as it moves along airular oplanar orbit about the asteroid are plotted versus separation from theasteroid; all aelerations are normalized to G, the loal gravitational attration ofthe asteroid, whih dereases as the inverse square of the separation. The variousperturbations, shown dotted, are all zero for orbits atop the asteroid (i.e., atzero separation); T is the maximum \tidal" term, C(P) is the prograde Coriolisaeleration and C(R) is the retrograde Coriolis aeleration. P and R are thetotal perturbations that at on prograde and retrograde partiles, respetively,ignoring the vetor nature of the atual fores.
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(energy of a body orbiting the Sun) and the two-body energy (energy of a bodyorbiting the asteroid if the Sun were not present). Sine a partile's veloity mustalways remain real, and sine C is �xed uniquely by initial onditions (positionand speed), Eq. (2.3) restrits the motion of any partile to lie within thoseregions of spae where the following inequality is satis�ed:


2(3x2 � z2) + 2GMAr � C: (2.4)The lines along whih the veloity is zero (i.e., those plaes where the left-handside of Eq. 2.4 equals C) are alled zero-veloity or Hill urves. An esape riterionthat an been invoked is that whenever, for given initial onditions, a partile lieswithin a zero-veloity surfae that is losed about the asteroid, the partile annotesape that region. Of ourse the onverse does not hold: there is no guaranteethat, just beause the Hill urve is open, the partile will neessarily esape in a�nite time. Diagrams of zero-veloity urves an be found in many basi elestialmehanis texts (e.g., Danby 1988); partiularly nie three-dimensional viewsare given in Lundberg et al. (1985). The distane to the positions along thexrot-axis at whih the zero-veloity surfae �rst opens an be omputed to berH = (�=3)1=3A for Hill's problem (Danby 1988). These points are two of thethree o-linear Lagrange points (the other is on the far side of the Sun) and theirdistane from the asteroid de�nes the radius of the Hill sphere (see Table 2.1).The o-linear Lagrange points are unstable equilibrium points; a partile plaedwith zero veloity in one of these positions will remain there forever, but partilesstarting arbitrarily lose will depart the neighborhood.
2.3 General Remarks on the Solution2.3.1 IntegrationsOur numerial integrations all upon an eÆient integrator that utilizes boththe Bulirsh-Stoer and Runge-Kutta methods (Press et al. 1987). The routinetakes advantage of the speed of the Bulirsh-Stoer tehnique, falling bak onthe Runge-Kutta sheme during lose approahes between the two bodies (f.Murison 1989a).In our integrations the partile was generally started along the Sun-asteroidline, on the far side of the minor planet (Fig. 2.1). It was usually given a veloitythat would plae it on a irular orbit around the asteroid if perturbations fromthe Sun were absent. In many simulations the plane of the partile's orbit wasgiven an initial inlination i with respet to the plane of the asteroid's orbit. Theinlination is positive to the helioentri north, and reahes 180o for a purelyretrograde orbit. With these initial onditions, the ones used most frequently,the only degrees of freedom are the initial separation distane and the initial
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inlination. We also explored other initial onditions for the partile (i.e., aspetrum of starting longitudes, di�erent launh speeds, and arbitrarily-diretedinitial veloity vetors) to assess the generality of our results.
2.3.2 Nature of OrbitsSine the relative strengths of the various perturbations hange with separa-tion (Fig. 2.3), orbits may have quite di�erent harateristis depending on theirdistanes from the asteroid (Chauvineau and Mignard 1990a). Within a fewasteroidal radii, orbits are simple Keplerian ellipses sine the asteroid's gravitydominates all perturbations (see Fig. 2.3 and the earlier disussion). Farther out,perturbations beome large enough to indue orbital planes and perienters topreess notieably, although the orbits retain their basi Keplerian nature. Asthe distane is inreased still further we ome to a region in whih quasiperiodistable orbits are intermingled with haoti paths. An orbit is quasiperiodi if itontains only a �nite number of inommensurate frequenies. In many of our ex-periments, the period orresponding to the partile's dominant frequeny is seento be ommensurate with the asteroid's orbital period; suh a ommensurate\loking" between the foring frequeny and the natural response of a system isa ommon feature of nonlinear systems (Gukenheimer and Holmes 1983).This quasiperiodi/haoti zone gradually gives way to the realm of esapeorbits whih we de�ne as those trajetories that depart the viinity of the aster-oid, but the division between these regions is not learly de�ned; in fat, in theirular restrited three-body problem the boundary between these regions is self-similar in a fratal-like manner (Murison 1989b). In an area where esape orbitspredominate, isolated \islands" of stable quasiperiodi orbits an our (Chau-vineau and Mignard 1990a). And, likewise, in regions where mostly quasiperiodiorbits exist, a few esape orbits an be found. Although the regions are not en-tirely disonneted, we observe that beyond a ertain \stability boundary," thenumber of stable orbits drops very sharply. Our goal in this hapter is to under-stand the shape of this boundary that separates orbits bound to the asteroid fromthose that esape its inuene. Sine haoti orbits are prevalent in the transi-tion zone, our results for the size of the stability zone are probably onservative:longer integrations would have shown additional esapes (Wisdom 1982). But, toa �rst approximation, we an determine the lous of points forming the stabilityboundary by looking at the outermost regions where the majority of orbits arestable. Chaos neessarily permeates these outer regions, sine a partile's fateertainly depends sensitively on initial onditions (Murison 1989b).Sine the results of Chauvineau and Mignard (1990a), whih follow on thepioneering study of H�enon (1970), are so relevant to our �ndings, they will besummarized here. These authors use the surfae-of-setion tehnique to studythe stability of motions in Hill's problem. They �nd that, for prograde orbits
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that have a Jaobi onstant muh greater than the ritial value at whih theHill urves no longer enlose the asteroid, the motions are regular: trajetoriesare nearly periodi, and stable. Employing non-dimensional units, in whih thegravitational onstant, the asteroid's mean motion, and its Hill radius are set tounity (G = 1;
 = 1, and rH = 1; these hoies set MA = 3), the ritial Jaobionstant ours at C = 9. At values somewhat above 9 (from 9.2 to 9.3604 tobe preise), the topologial struture of the mapping is suh that new periodiorbits are introdued as C is lowered; more and more of these periodi islandsappear as C = 9:2 is approahed and the regularity of the mapping is lost.At 9.2 and below, haoti trajetories appear in parts of the mapping. Theseergodi regions tend to �ll up more and more of the phase spae until, with Cnear 9, little of the surfae of setion is populated with periodi islands; insteadvirtually all is a sea of haos. Note that up to this point, sine all the zero-veloity urves orresponding to C > 9 enirle the asteroid, the motions arebounded with the partiles remaining about the asteroid, albeit moving alonghaoti paths. However, one the Jaobi onstant falls below 9, suddenly theergodi region beomes onneted with external parts of the phase spae. Thatis, however, not to say that all partiles will neessarily esape in a �nite time,merely that it is energetially possible for partiles with C < 9 to �nd their waythrough the ergodi region and esape. Some regular diret orbits do exist for8:88 < C < 9:00, although they over little of the available phase spae. Forretrograde orbits Chauvineau and Mignard (1990a) �nd quite di�erent results.With C >> 9 the mapping is usually regular and, as in the prograde ase, haosappears when C is a bit larger than 9. The striking di�erene is that manyregular retrograde orbits are seen to persist for values of C well below the ritialvalue, unlike the prograde situation. For ompleteness, we note that there arealso a small number of pathologial orbits that osillate between the diret andretrograde states.To help the reader onnet the results of Chauvineau and Mignard (1990a)to the trajetories that we will be plotting later, we now show that a one-to-one orrespondene exists between our usual initial onditions and the Jaobionstant. Reall that we start a partile at (d; 0; 0), with a veloity that is inlinedat an angle i from the xy plane and whose speed in the non-rotating frame is(GMA=d)1=2. From Eq. (2.3) the Jaobi onstant for this initial ondition is:

C = ���GMAd �1=2 os i� 
d�2 � GMAd sin2 i+ 3d2
2 + 2GMAd : (2.5)
Figure 2.4 is a plot of C versus the starting distane d for various inlinationsi; the plotted Jaobi onstant is given in the non-dimensional units used byChauvineau and Mignard (1990a).
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Figure 2.4 The Jaobi onstant, in non-dimensional units (G = 1;
 = 1; rH = 1),is plotted for the family of orbits studied in this hapter. These orbits are initiallyirular, are started from the positive x-axis, and are inlined by an angle i withrespet to the xy plane. The ritial Jaobi onstant (C = 9) is also plotted. Ifthe Jaobi onstant of a partiular orbit lies above the ritial line, that partileis bound to the asteroid for all time. If, however, it lies below the ritial line,the partile is energetially able to esape, although it is not required to do so.
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2.3.3 Saling to Other AsteroidsEven though most of our simulations onsidered a spei� ase (� = 5�10�12 andA = 2:55AU), we an apply our results to other asteroids with di�erent semi-major axes and mass ratios. Consider a system of N gravitationally interatingbodies viewed from an inertial frame. All fores in the system are gravitational,so the strength of eah interation varies as the inverse square of distane. Inpartiular, if all distanes are multiplied by a fator �, the fores retain theirdiretions and are redued by �2. One an then resale time so that the resultingsystem of di�erential equations is idential to the original set: therefore, as longas the initial veloities are also appropriately modi�ed, idential orbital pathswill result. So, for example, if the asteroid's distane from the Sun is doubled,partile orbits around the asteroid will have the same shape as in the originalase if starting distanes from the asteroid are doubled and veloities are reduedby a fator of 21=2. Thus, the orbits sale with the asteroid's semimajor axis A.Employing similar ideas to a hange in the asteroid's mass, we �nd that theorbit sales with �1=3 for the ase of the three-body Hill problem with the asteroid-partile distane muh less than the distanes to the Sun. This approximationis well satis�ed for the motion of bound satellites of asteroids. For the distantsatellites of the jovian planets, however, higher-order terms in the mass ratio �are important and the saling law is less valid. When ombined, the distaneand mass saling laws imply the powerful assertion that for eah orbit existingaround one asteroid, a orresponding orbit, di�ering only in absolute size, existsaround a seond asteroid provided that the two asteroids have the same orbitaleentriity. The ratio of the sizes of the two orbits is equal to the ratio of theradii of their respetive Hill spheres: rH = (�=3)1=3A. If the sizes are measuredin asteroid radii, as in our plots, they sale as �1=3A. In partiular the orbitalstability zone, whih is the union of all stable orbits, sales as this ratio. Thesizes of the Hill spheres of Amphitrite and Gaspra are listed in Table 2.1.At any rate, it is lear that Hill sphere saling di�ers from �2=5A, the size ofthe sphere of inuene, that has been used by some mission planners to estimatethe region within whih material ould be stably trapped. We reall that thesphere of inuene is de�ned as that surfae along whih it is equally valid toonsider the motion of the partile relative to the Sun with the asteroid as aperturber as it is to onsider the motion of the partile relative to the asteroidwith the Sun as a perturber (Roy 1978). That is to say, the sphere of inuene isthe lous of points where the ratios of the perturbing fores to the diret fores inthe two ases are equal. This sphere lies within the Hill sphere for � < 0:004 butthe di�erene only beomes signi�ant (Chebotarev 1964) when � is very small,as in the ase under onsideration here. Amphitrite's sphere of inuene has aradius of 115RA.As an example of saling, we onsider orbits about Galileo's target asteroid951 Gaspra. To apply our Amphitrite plots given below to an asteroid with
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Gaspra's parameters, but zero orbital eentriity, distanes measured in asteroidradii should simply be multiplied by the ratio of the semimajor axes, namely2.20/2.55=0.86 (Table 2.1).
2.4 Analyti Esape CriteriaMany estimates of analytial esape riteria for irular orbits have been made;most follow either from onsidering the Jaobi onstant that will open the zero-veloity urves or from equating fores in a rotating frame (see Fig. 2.3). Szebe-hely (1978) has used the former method to predit that irular orbits will esapewhen they are beyond rH=3. Markellos and Roy (1981) re�ned Szebehely's treat-ment by inluding all of the terms in the Jaobi equation (Eq. 2.5 with i = 0oand i = 180o) to derive ritial distanes of � 0:49rH for prograde irular orbitsand � 0:28rH for retrograde irular orbits (see Fig. 2.4). These distanes arelower limits for esape; partiles starting on irular orbits within these distanesare onstrained by losed zero-veloity surfaes that enirle the asteroid. Ournumerial results for initially irular orbits are � 0:49rH for prograde orbits and� rH for retrograde ones (see Setion 2.6.1). The agreement of the prograderesults is impressive, while that of the retrograde results is appalling. But thereis a simple explanation: the method outlined above ignores the inuene of theCoriolis aeleration on the partile sine the salar produt of the Coriolis termin Eq. (2.2) with vrot is zero. The e�et of this omission is abundantly lear in theresults of Markellos and Roy whih predit that retrograde orbits are less stablethan prograde ones, even though the diretions of prograde and retrograde Cori-olis aelerations imply the onverse (see Fig. 2.2). In fat, we �nd that progradeorbits slip away as soon as esape is energetially possible, pushed outward bythe omitted Coriolis aeleration, while retrograde orbits linger, held in by thisaeleration.Equating fores in a rotating referene frame was originally applied by King(1962) who showed that diret gravity balanes the \tidal" fore along the x-axis at a distane rH . Innanen (1979) added the e�ets of the Coriolis fore toobtain limiting radii for prograde and retrograde orbits of 0:69rH and 1:44rH ,respetively. This work ontains a subtle error whih involves the translation ofthe partile's veloity into the rotating frame; after orretion of this mistake,we �nd that the limiting radii alulated via Innanen's method should be 0:80rHand 2:60rH , respetively (these distanes are the points where the normalizedfore urves P and R attain a value of zero in Fig. 2.3). This method shows thatretrograde orbits are stable out to muh greater distanes than prograde ones,but gives poor agreement with numerial results (see the disussion of Fig. 2.3for an explanation of why this method gives poor preditions).Various arguments (see, e.g., Keenan and Innanen 1975) have been given forthe reason why retrograde orbits are so muh more stable than prograde ones, but
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one that we �nd espeially appealing relies on the nature of epiyles, the pathsof partiles on elliptial orbits as seen from a oordinate system that moves at themean orbital rate; epiyli motions are retrograde and, for small eentriities,take plae along a 2:1 ellipse aligned with the long axis in the diretion of theorbital motion. That is to say, if a partile were at a great separation from theasteroid suh that it felt virtually no attration to the asteroid but it had anelliptial path of the same semimajor axis as the asteroid's, it would be observedin the rotating system to travel along a retrograde path (see Chauvineau andMignard 1990a). In a very real sense the retrograde motion is preferred whereasprograde motion must be fored.
2.5 Individual Examples2.5.1 Coplanar Trapped OrbitsOur numerial experiments for the Amphitrite ase show that all trajetories thatstart as irular prograde orbits within � 224RA (C = 9:0000) are bound, whilemost of those outside this range esape from the asteroid. Sine we are onernedwith the outer limit where material an still be retained by the asteroid, we showan orbit (Fig. 2.5) that is lose to the stability limit, namely one that was initiallyirular at 221RA (C = 9:0505). The displayed orbit, is quasiperiodi with twodominant frequenies: one is the inverse of the synodi period and the other isabout eight times slower. The regular appearane of this orbit in the rotatingframe is due to the fat that the two dominant frequenies are lose to a ratio ofintegers. Relevant timesales are the asteroid's orbital period (4.08 Earth years),and the sidereal period of an unperturbed satellite at 221RA (0.80 years). Theunit of time in this and the following plots is taken to be an asteroid year (theperiod of the asteroid's orbit around the Sun).We an qualitatively understand the orbital evolution of Fig. 2.5 by onsid-ering the aeleration (Eq. 2.1) along an initially irular orbit. At �rst, thepath is elongated into an elliptial shape by the ation of the tidal term sinethe Coriolis term does not hange a irular orbit (an orbit that is irular in thesidereal frame will also be irular in the synodi frame; the Coriolis aelerationin this simple ase merely aounts for the di�erene in orbital veloity measuredin the two frames). As the orbit elongates and is attened further, the Coriolisaeleration beomes inreasingly asymmetrial (see Fig. 2.2); the strengthenedCoriolis aeleration near perienter enhanes radial aelerations there whereasthe orresponding aeleration is diminished near apoenter (Fig. 2.3). In fat,the diretion of the Coriolis aeleration near apoenter an swith sign if the e-entriity is high enough (remember that it is the veloity in the rotating framethat appears in Eq. 2.1); although suh a reversal does not our in any of theplanar orbits displayed in this hapter, we have notied it in other integrations.
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Figure 2.5 The path of a partile started on a prograde oplanar irular orbitat 221RA (C = 9:0505) as seen in the rotating oordinate system. The asteroid'sposition is given by an x; the partile's initial loation by the small triangle withone point showing the diretion of the initial veloity; and the partile's loationat the end of the integration by the solid square. The Sun lies out the negativexrot-axis throughout the integration. The heavy line shows the zero-veloity urvespei�ed by the initial onditions (see Eq. 2.4) and the stars show the positionsof the nearby Lagrange points (and aordingly the size of the Hill sphere).
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Now the fat that the Coriolis aeleration near apoenter is less than that nees-sary to maintain a irular orbit allows loal gravity to more e�etively ompetewith the tidal fore. This ompetition is most apparent in highly-eentri orbitswhere the apoenter end of the ellipse appears to be attened (Fig. 2.5). Theasymmetry of the Coriolis aeleration ats to irularize the orbit, and eventuallyit dominates the elongating e�et of the tidal fore. In the example under disus-sion, this ours after the third synodi period. The elongation slows, stops, andreverses itself. The orbit then beomes more irular until the tidal fore againdominates the Coriolis fore and the proess repeats. The period of this yle iseight times the synodi period as was mentioned above.The entire orbital path of the prograde satellite shown in Fig. 2.5 lies wellwithin the zero-veloity urve, de�ned by Eq. (2.4), that orresponds to theinitial onditions. This ours beause a signi�ant fration of the \energy"in the Jaobi integral remains in kineti \energy". It is apparent from the zero-veloity urve that the spei�ed starting onditions have too little initial \energy"to allow esape.The dynamial history of an orbiting partile an be desribed in terms of itsinitial position and veloity or, equally well, in terms of its four osulating orbitalelements for a two-dimensional problem (Danby 1988). The osulating orbitalelements for a bound orbit are de�ned to be those that desribe the ellipse thatthe partile would follow if all perturbations were turned o�. These elements,whih we de�ne in the non-rotating frame, hange with time as perturbationsause the partile to deviate from true elliptial motion. Of the orbital elements,the orbital semimajor axis a is the most signi�ant when addressing esape sinethe size of the orbit, 2a, formally beomes in�nite and then attains negativevalues as the partile goes through the esape proess. The time histories of theosulating orbital elements that desribe the path about the asteroid shown inFig. 2.5 are displayed in Fig. 2.6. Here the periodi nature of the solution islearly visible. We note that the semimajor axis vs. time urve has loal extremanear the points where the orbit rosses the xrot and yrot axes. This feature arisesbeause orbital energy is diretly related to the semimajor axis (Burns 1976) andbeause the work done by the tidal fore hanges sign in eah quadrant of the(xy)rot plane. In general, the work done by the tidal fore will hange sign fourtimes in a single orbit, although this need not our at the points where the orbitrosses the axes.In the next example (Fig. 2.7), the partile starts along a retrograde irularorbit twie as large as the �rst example; it begins at xrot = 445RA; yrot = 0 (C =1:5518), very lose to the transition between bound and unbound retrogradeorbits. The unperturbed sidereal orbital period is about 2.3 Earth years or nearly4/7 of an asteroid year. As in the prograde ase, quasiperiodi retrograde orbitsare also ommon; this one has two major frequenies that are not quite a ratio ofintegers as an be seen in Fig. 2.8 whih presents the histories of the osulating
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Figure 2.6 The time history of the orbit shown in Fig. 2.5. Plotted are thepartile's osulating orbital semimajor axis a, orbital eentriity e, and orbitalradius r as funtions of time in asteroid years. The orbit is most perturbed whenit is farthest from the asteroid. It is bound and almost periodi.
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Figure 2.7 The path of a partile started on a retrograde oplanar irular orbitat 445RA (C = 1:5518) as observed in the rotating oordinate system. SeeFig. 2.5's aption for a desription of the symbols. The orbit is bound and has avery regular appearane.
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orbital elements a and e. For this retrograde orbit, the zero-veloity urves donot onstrain the motion (Chauvineau and Mignard 1990a) sine, as a result ofthe small C (due to the large apparent veloity of a retrograde orbit as measuredin the rotating frame), the urves do not enlose the asteroid. Nevertheless, thepartile is obviously bound; indeed we note that it is strongly inuened by theasteroid sine its orbital shape is not the 2:1 ellipse that would be harateristiof helioentri epiyli motion.To analyze the partile's motion, onsider the perturbing e�ets of the tidaland Coriolis terms on a irular orbit (see Fig. 2.9 whih shows the �rst threeloops about the asteroid of Fig. 2.7). Initially the tidal term dominates, sine theCoriolis aeleration does not hange the shape of a irular orbit. This pushesthe partile in the xrot diretion (ar AB) whih displaes the orbit as a whole tothe right (positive xrot). When the partile moves to the left side of the asteroid,it is muh loser to the asteroid due to this displaement (ar BC). Thus at pointC the tidal term, being proportional to xrot (see Fig. 2.2) , is smaller than it wasat A. Hene the total ontribution of the tidal fore along BC is smaller thanthe integrated e�et along AB, resulting in a net displaement of the orbit to theright. In addition, the Coriolis aeleration, whih is stronger over ar BC thanover ar AB due to a larger veloity, dominates the weakening tidal fore. Thepartile then swings around the asteroid (ar CD), mostly under the inuene ofthe asteroid's gravity, and out to large r where Monsieur Coriolis starts to tugit to the left (ar DB). The tidal fore swithes sign again, and pulls the partileoutward along ar BE to the point E, where it has roughly the negative of itsinitial veloity and position: the yle repeats.
2.5.2 Coplanar Esape OrbitsFigures 2.10 and 2.11 show planar esape orbits that have initial onditions thatare lose to the bound orbits of Figs. 2.5 and 2.7; thus all of these orbits lienear the stability boundary. In those ases where esape is marginal (suh asall those disussed here), the diretion of esape is always near the Sun-asteroidline beause the outwardly direted tidal term is maximum there (Fig. 2.2). Thisresult, whih remains valid even for inlined orbits, an also be understood readilyfrom the zero-veloity surfae whih opens �rst along the Sun-asteroid line (seeFig. 2.10). Of ourse, with large enough initial \energy" (or, equivalently, smallenough C for the zero-veloity urves to be wide open), objets an esape in anydiretion, but in all of the ases that onern us, objets depart from the asteroidwith little extra energy beause the partile is initially bound (i.e., its energyin the two-body system omposed of the asteroid and the partile is initiallynegative) and the perturbation fores an modify this energy only slowly. In fat,the Coriolis aeleration, being perpendiular to the orbital veloity, an do nowork and thus does not alter the orbital energy at all.
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Figure 2.8 The time history of some osulating orbital elements for the retrogradeorbit displayed in Fig. 2.7.
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Figure 2.9 The �rst few loops of the orbit shown in Fig. 2.7. The letters onthe path are used in the text to desribe various ars along whih partiularaelerations dominate the motion.
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Figure 2.10 The trajetory of a oplanar prograde partile that esapes afterstarting on a irular orbit at 227.25RA (C=8.9423). The symbols are de�ned inFig. 2.5's aption. Note that, in ontrast to Fig. 2.5, the initial onditions hereare suh that the zero-veloity urve is open to helioentri spae and the parti-le, after bouning haotially around within the zero-veloity bottle, eventuallyslips out the nek to move along an ellipti helioentri orbit having propertiesdesribed in the text.
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Figure 2.11 The trajetory of a oplanar retrograde partile that esapes afterstarting on a irular orbit at 450RA (C=1.5421). See Fig. 2.5's aption for adesription of the symbols used. Note that on the last loop the path extends wellbeyond the radius of the Hill sphere and that the partile transfers to a progradeorbit before esaping. In this ase, the transfer to a prograde orbit ours inboth the rotating and non-rotating frames. The harater of the esape path isdisussed in the text.
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Figure 2.10 shows a haoti prograde orbit started at 227.25RA (C = 8:9423)that esapes inward toward the Sun. The fat that the zero-veloity surfaeaurately delimits the aessible region of spae is apparent. Note that sine, byde�nition, speeds must be zero on zero-veloity surfaes, partiles approah thesurfae perpendiular to it so as to form orbital usps.Beause the asteroid's orbit is irular, one an very simply alulate the pa-rameters of the solar orbit that is attained by partiles esaping from it. Sinethe partile departs the asteroid with a very low veloity relative to the rotat-ing frame, we an ignore this veloity as well as later inuenes of the asteroid(sine it is so small and so distant) when estimating the partile's helioentrienergy whih determines diretly the orbital semimajor axis of the partile in itsnew path around the Sun (Burns 1976). The partile's veloity in the rotatingframe is lowest near the inner Lagrange point (see Fig. 2.10), so at this point itsangular veloity about the Sun losely mathes that of the asteroid. Making thesimpli�ation that the partile starts from the inner Lagrange point with zeroveloity in the rotating frame, one an alulate the spei� (i.e., per unit mass)helioentri kineti energy of the partile 
2(A�rH)2=2, and its spei� potentialenergy, �GM�=(A � rH). Equating the sum of these two energies to the totalspei� helioentri energy, �GM�=2Ag, we �nd that the semimajor axis of thepartile's new orbit about the Sun is Ag = (A� 4rH). Sine the partile's initialveloity in the non-rotating frame is perpendiular to the solar diretion and thepartile initially falls toward the Sun, the Lagrange point must be aphelion of thenew solar orbit. Solving the equation for aphelion Ag(1 + Eg) = A � rH yields(to �rst order) an eentriity of Eg = 3rH=A. Sine the esaped partile's semi-major axis is smaller than the asteroid's, the partile's orbital period is shorter,so its path trails o� to the upper left as viewed in the frame rotating with theasteroid's mean motion (Fig. 2.10). Alternatively the diretion of departure anbe understood in the rotating frame by onsidering the e�ets of the Coriolisaeleration.Figure 2.11 shows a retrograde orbit starting at 450RA (C = 1:5421) that be-omes prograde just prior to esape. Arguments similar to those for the progradeorbit an be used to �nd Ag = A + 4rH and Eg = 3rH=A; thus the partile'sesape path trails o� to the lower right. Again, although it is not as lear as inthe prograde ase, the point of lowest relative veloity ours near a Lagrangepoint.

2.5.3 Inlined OrbitsFigures 2.12 and 2.13, whih are plotted in non-rotating oordinates, show orbitswith initial inlinations of 70o. Fig. 2.12, where the trajetory is seen as projetedonto the xz plane, displays an orbit that starts out roughly irular at a distaneof 230RA (C = 7:2747) but hanges to an oval shape that beomes narrower and
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Figure 2.12 The trajetory of a partile started on a irular orbit at 230RAwith an inlination of 70o as viewed in a projetion onto the xz plane of thenon-rotating system (C=7.2747). The symbols are de�ned in Fig. 2.5's aption.This partile eventually esapes.
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Figure 2.13 An xz projetion of a 50 year integration of a partile started ona irular orbit at 250RA with an initial inlination of 70o (C = 6:9306). Thispartile, like many others on three-dimensional orbits with inlinations satisfying60o < i < 120o, is seen to reah roughly the same z value regardless of x.
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narrower until, on the last loop, the diretion of rotation atually reverses! Whenviewed in three dimensions, the ellipse is tilted out of the asteroid's orbital planeby approximately 45o and the diretion of its major axis is suh that the latter'sprojetion onto the orbital plane lies along the initial Sun-asteroid line. Theellipse is not as narrow as it appears in this projetion sine it also extends in theŷ diretion. To lessen onfusion in the diagram, we have eleted not to show thefurther evolution of the orbit but will desribe it. The highly-eentri orbit isseen to broaden slowly until it is approximately irular. At this point, the ylebegins to repeat with the irular orbit slowly beoming more eentri, but aftera seond lose approah to the asteroid, the partile esapes. In many orbits (e.g.,Fig. 2.13) this yle ontinues without an esape. Eah time the approximatelyirular orbit begins to inrease its eentriity, the major axis of the new ellipse isfound to be tilted at � 45o from the xy plane and to lie along the re-oriented Sun-asteroid line. The axis an be tilted either toward or away from the Sun, and anlie either primarily above the xy plane or primarily below it due to the symmetryof the tidal term. Fig. 2.13 shows an orbit started x = 250RA (C = 6:9306)that was followed for ten iruits of the asteroid around the Sun. Notie thatthe maximum z values attained by the orbit are approximately independent of x.This harateristi, whih was observed on many orbits started near the ritialdistane with 60o < i < 120o, has an important inuene on the shape of thestability zone as desribed below.In the depited ase, tidal perturbations alone must be responsible for themotion sine the results are plotted in non-rotating oordinates, where no Coriolisterm appears. The form of the tidal aeleration in the non-rotating frame is
2(3xrot � r), whih di�ers from the seond term of Eq. (2.2) sine that terminluded the entrifugal aeleration of the rotating frame. In the following, welump the radial part of the tidal term in with the asteroid's gravity, and onsideronly the e�ets of the xrot term. Consider a partile that would be on an elliptialorbit primarily in the xz plane in the absene of perturbations (Fig. 2.14), andignore for the moment the fat that the Sun is not always along the x-axis. Wesee that, starting from x = 0, the tidal perturbation pushes the partile to largervalues of x than would be experiened in a two-body problem. Beause of thisadded aeleration, the partile drops along an orbital path that brings it loserto the asteroid than its unperturbed ounterpart. Throughout the region of loseapproah, the tidal fore is negligible so that we an approximate the motionthere by the solution to the two-body problem. Hene, after one revolution,the partile emerges on a more highly-eentri ellipse, and the yle repeats.The outome of the narrowing ellipse is either an impat with the asteroid ora reversal of the diretion of rotation (see Fig. 2.14). If the latter ours, thetidal aeleration operates in the opposite way to broaden the orbit out to airle where the whole proess begins anew. Beause of passage through manyof these very narrow ellipses, the probability for a partile on an orbit of this
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Figure 2.14 E�et of tidal fores on an inlined elliptial orbit. Notie that theatual orbital path for a single revolution around the asteroid is displaed to theright from where an unperturbed elliptial path would lie. This, of ourse, is dueto the tidal aeleration. The orbit shown is part of that in Fig. 2.12.
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type to impat the asteroid is very large. We note that the reverse of suh animpat orbit o�ers a mehanism by whih material, blasted from the surfae ofthe asteroid by a ollision, ould be put into distant orbits.The essene of this argument is unhanged when we take into aount thatthe Sun is not always along the x-axis as measured in the non-rotating frame.Therefore, in general, the tidal aeleration ontains both x and y omponentsthat vary in time. Beause the partile's orbital motion remains primarily inthe xz plane, the diretion of the tidal aeleration varies roughly sinusoidallyas this plane moves with the asteroid's angular frequeny around the Sun. Thusgenerally the x omponent of the tidal aeleration dominates the y omponentfor the simple reason that the orbit never samples large y values. The argumentan be generalized for orbits whose motions are primarily in the x0z plane wherex0 is some linear ombination of x and y. Orbits with inlinations in the range60o < i < 120o have their motions primarily in some x0z plane, and thus exhibitthis type of dynamial motion.
2.6 Global Struture2.6.1 Esape as a Funtion of InlinationTo explore the e�ets of orbital inlination on the stability of partiles, we stud-ied weakly bound orbits that began at various inlinations but otherwise hosethe same initial onditions for purposes of omparison. We de�ne the ritialdistane as the initial displaement within whih most orbits remain bound, andoutside of whih most esape. We �nd that the ritial distane displays a strongdependene on initial inlination. Naturally, beause of the problem's fratal-likenature (Murison 1989b), oasional orbits within the ritial distane esape,while some others outside this distane are bound; in this sense the ritial \dis-tane" represents a very omplex struture that annot be truly represented bya single line. The number of these exeptions, however, dereases rapidly as onemoves away from the transition region.Figure 2.15 shows the results of almost seven hundred di�erent integrationsin whih the initial distane and initial inlination were varied in inrements of10RA and 10o respetively. The diagram distinguishes between orbits that es-ape, those that remain aptured, and those that rash into the asteroid. Notethat the ollision orbits our predominantly for inlinations around 90o whereorbits undergo the hazardous \narrowing ellipse" motion desribed above. It isapparent that there is a fairly risp \boundary" between the bound and esapeorbits; this boundary is the ritial distane. Most of the graph's features an beinterpreted as due to the Coriolis aeleration. Taking a irular orbit for illustra-tion, onsider the radial part of the Coriolis term (i.e., toward or away from theasteroid), whih is proportional to os i and whih therefore attains its maximum
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Figure 2.15 The ritial distane, whih divides stable from unstable orbits, as afuntion of initial inlination. All partiles are injeted on initially unperturbedirular orbits along the Sun-asteroid line. A large solid dot signi�es an orbitthat remains near the asteroid for at least 5 asteroid years, a small dot is anorbit that esapes in less than this amount of time, and an open irle with adot inside is an orbit that strikes the asteroid. Note that orbits with i > 90o,partiularly those that approah purely retrograde orbits, are stable out to muhgreater distanes than oplanar prograde paths (see text for disussion).
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inward and outward strengths at i = 180o and i = 0o, respetively. This preditsthe upward trend of the ritial distane with inlination in Fig. 2.15.We �nd a loal minimum in the ritial distane near i = 90o on�rmingprevious results of Keenan (1981). This feature and the rough symmetry for� 30o around i = 90o an be explained by abrupt inlination shifts that we haveobserved in orbits with initial inlinations in the range 60o < i < 120o. We havefound that many esape orbits with inlinations i in this range swith to orbitswith an inlination� 180o�i via the narrowing ellipse proess outlined in Setion2.5.3, and thus esape for both i and 180o � i orbits an our at the smallerinlination where the Coriolis binding aeleration is weaker. Together, these twoe�ets predit the overall shape of Fig. 2.15. Non-radial Coriolis aelerations,whih are maximum near i = 90o, may also inuene the struture and exatloation of the minimum.
2.6.2 The \Stability Boundary"Figure 2.16 illustrates the shape of the boundary within whih stable orbitslie. The surfae represents the maximum z value attained by a partile as afuntion of xrot and yrot, not for a single orbit, but for the union of nearly 1000stable orbits lying within the ritial distane in Fig. 2.15. The rare stable orbitsfound in regions where unstable orbits predominate were not inluded (see priordisussion of the fratal-like nature of the stability boundary and Fig. 2.15). Theoutput of our integration routines is a series of points in the rotating system(xrot; yrot; z) through whih a given orbit passes. We divided the (xy)rot plane upinto a 20� 20 grid of 60 km� 60 km squares and reorded the maximum z valueourring above eah square from the union of all of the points in eah of thestable orbits. The data were then interpolated out to an 80� 80 grid to optimizethe viewing.We also exploited two symmetries to quadruple the e�etive number of inputorbits to Fig. 2.16. It an be shown that the transformation of initial onditionsz ! �z; vz ! �vz, results in an orbit that is the reetion of the original orbitthrough the xy plane (see Eq. 2.2). This follows most simply from onsiderationsof the symmetry of the gravitational fores in an inertial frame entered on theSun. Thus eah of our orbits has a mirror image through the (xy)rot plane andwe an inorporate this image by taking not the maximum z, but the maximumjzj attained. This e�etively doubles the number of input orbits. Furthermore,the transformation (r ! �r;vrot ! �vrot) also yields identially shaped orbitsin Hill's problem, so we an again double the number of input orbits. All told,there are 4 � 239 � 1; 000 separate initial onditions inorporated in Fig. 2.16,eah pertaining to an orbit that is stable for at least 5 asteroid years.Fig. 2.16 shows that the stability surfae is roughly at on top with verysteep sides. The plateau region is at an average height of about 285RA above
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Figure 2.16 Plot of the upper half of the stability surfae viewed from pith=60o,yaw=10o, and roll=0o as suggested by the referene ube. Note that the sale isdistorted due to the viewing angle. The attened surfae is at an approximatealtitude of z = 285RA, and the surfae drops o� preipitously to the roughlyirular base region (r � 480RA). To determine this surfae we took the exteriorenvelope of the orbits of about 1000 partiles that were started near the ritialdistane but remained aptured for 5 asteroid years. Thus, if pathologial asesare ignored, partiles found within the surfae are generally bound to the asteroidwhile those outside are not. See the text's disussion for more details about howthis �gure was onstruted. This �gure learly illustrates that stable orbits aremore losely on�ned in the polar region.
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the xy plane with the highest orbit rising to 307RA above the plane; its base isroughly irular with a radius of about 480RA. The attened polar region arisesfrom the fat that maximum z values attained by orbits with 60o < i < 120o areroughly independent of x and y (see Fig. 2.12). The plotted surfae is not basedon enough di�erent orbits to validate omments on the seond order strutureof the surfae; in addition, we remind the reader that this surfae pertains topartiular initial onditions, and thus the detailed shape may hange somewhatwith di�erent modes of injetion.



Chapter 3
Orbital Stability Zones aboutAsteroids on Eentri Orbits1
3.1 Analyti Treatment3.1.1 Equation of MotionThe study of orbital stability in Chapter 2 assumes an asteroid on a irular orbitand although an exat saling law an onnet results for asteroids with di�erentmasses and distanes from the Sun, no suh saling to asteroids with other orbitaleentriities is expeted to be possible. Sine many asteroids and omets are onsigni�antly ellipti orbits, this hapter will explore the onsequenes of non-zeroorbital eentriity on the stability of irum-asteroidal orbits.An asteroid on an ellipti orbit moves around the Sun at a non-uniform an-gular rate whih, written as a vetor, is:


 = d�dt ẑ = �GM�R3 � 12 (1 + E os �) 12 ẑ; (3.1)where R is the instantaneous distane from the Sun given by
R = A(1� E2)1 + E os � ; (3.2)and A, E, and � are the asteroid's semimajor axis, eentriity and true anomaly,respetively (see Fig. 3.1). Equation (3.1) redues to Eq. (2.1) in the limit E ! 0.The true anomaly �, whih gives the angular loation of the partile relative toperienter, is a periodi funtion of time; thus 
 and R also vary periodially. Tostudy orbits in the viinity of the asteroid, it is desirable to work in a oordinate1This hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stabilityzones about asteroids II. The destabilizing e�ets of eentri orbits and of solar radiation,Iarus 96, 43{64 [opyright 1992 by Aademi Press, In.℄
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Figure 3.1 An eentri orbit showing the de�nitions of some of the variablesused in the text. The Sun lies at one fous of the ellipse and the asteroid's trueanomaly � is the angle between the asteroid and perienter as seen from the Sun.The instantaneous Sun-asteroid distane R is minimum at perienter (� = 0)where it attains the value A(1� E).
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system entered on the asteroid and rotating with it at the instantaneous angularveloity 
 around the Sun. We generalize Eq. (2.2) and �nd, to �rst-order inr=R, the equation of motion for a partile in suh a frame:
d2rdt2 = �GMAr2 r̂+GM�R3 [(3x�z)+E os �(x+y)+2E sin �(xŷ�yx̂)℄�2
�vrot:(3.3)Reall that r = rr̂ = x+y+z is the vetor pointing from the asteroid to the par-tile, MA is the mass of the asteroid, and vrot is the partile's veloity measuredin the rotating frame. We omit \rot" subsripts from position oordinates in thishapter and the next sine in these hapters we work exlusively in the rotatingframe. The veloity in the rotating frame is related to that in the non-rotatingframe by vrot = v � (
� r) (3.4)where v is the test partile's veloity relative to non-rotating oordinates; itsmagnitude for a irular orbit is simply (GMA=r)1=2. Taking E = 0 in Eq. (3.3),we reover Hill's equation (Eq. 2.2). The three terms in Eq. (3.3) without expliiteentriity dependene are the asteroid's gravitational attration, the \tidal a-eleration" and the Coriolis aeleration; these terms are disussed in greaterdetail in Setion 2.2. The new terms are only present for non-zero eentriityand so will be dubbed the \eentri" terms in the disussion below. The termwith E os � dependene is a orretion to the entrifugal aeleration whih arisesfrom the di�erene in the asteroid's atual angular veloity from the angular ve-loity it would have if it were on a irular orbit at the same distane. Nearperienter, the asteroid's angular veloity exeeds that whih it would have on airular orbit (Eq. 3.1) and hene there is an enhaned entrifugal aelerationaway from the asteroid. Similarly, near the asteroid's apoenter, the angular ve-loity is signi�antly lower than it would be on a orresponding irular orbit;onsequently the \eentri entrifugal aeleration" is inwardly direted.The term proportional to E sin � arises from the non-uniform rate of rotationof the referene frame; it vanishes at perienter and apoenter where the angularaeleration (the time derivative of Eq. 3.1) is zero. This aeleration always liesin the xy plane and is tangent to a irle surrounding the asteroid. In ontrast tothe other aelerations disussed above, this aeleration an have a substantialomponent direted parallel or antiparallel to the partile's veloity; \energy" isadded to the orbit in the former ase and removed from it in the latter. Sinethe term has a sin � dependene, it auses \energy" to be added to progradeorbits as the asteroid moves from apoenter to perienter and removed duringthe return to apoenter. Retrograde orbits lose \energy" as the asteroid dropstoward perienter but regain it over the seond half of the yle. For many orbits,there is little net hange in the \energy" over the asteroid's omplete orbital
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period. Nevertheless, ating over long times, we expet this aeleration to bedestabilizing sine it produes behavior analogous to a random walk in orbital\energy". Those orbits whose orbital \energy" is inreased may eventually bedriven to esape.
3.1.2 Hill Sphere at Perienter SalingIn this setion, our goal is to �nd a simple analyti way to extend results obtainedfor an asteroid with a given semimajor axis, eentriity, and mass to a seondasteroid with di�erent values of these quantities. In Hill's problem when the as-teroid's eentriity was zero, we found that suh an extension was possible andthat distanes sale like the radius of the asteroid's Hill sphere rH = (�=3)1=3A,where � �MA=M� is the asteroid-Sun mass ratio. Thus, for example, if an inter-esting orbit were disovered to exist around one asteroid with zero eentriity,an orbit with the same shape exists around all other asteroids whih move onirular paths. This follows from the fat that Hill's problem in dimensionlessform is parameter free.These ideas extend readily to the ase when the asteroid has non-zero een-triity. To non-dimensionalize Eq. (3.3), we hoose to measure distanes in unitsof the asteroid's Hill radius and angular veloities in units of the asteroid's meanmotion n� � (GM�=A3)1=2. With these hoies and the de�nitions given in Eqs.(3.1) and (3.2), we an rewrite Eq. (3.3) as follows:
d2rd� 2 = � 3r2 r̂+�1 + E os �1� E2 �3[(3x� z) + E os �(x+ y) + 2E sin �(xŷ � yx̂)℄

�2(1 + E os �)2(1� E2)1:5 (ẑ� v)� 2(1 + E os �)4(1� E2)3 (x+ y); (3.5)where � = n�t is the dimensionless time and v is the partile's dimensionless ve-loity measured in the non-rotating frame. Sine the only parameter in Eq. (3.5)is E (� is a funtion of time), it follows that with a given eentriity, the equa-tions of motion are idential for asteroids of di�erent sizes and distanes fromthe Sun; hanging these quantities only a�et how we de�ne the dimensionlessunits. In short, sine distanes are measured in Hill radii, our results sale withthat distane. The more interesting question, however, is the following: How anwe sale results from one asteroid to another when the two have di�erent orbitaleentriities?Clearly an exat saling of results is impossible given the � dependene ofEq. (3.5); aordingly we attempt to �nd an approximation valid for the orbitsthat we are most interested in, namely those that narrowly avoid esaping fromthe asteroid. Physial intuition and Eq. (3.5) show that the perturbation ael-erations felt by an orbiting partile are maximum when the asteroid is near the
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perienter of its orbit. In general, therefore, weakly bound partiles have theirlosest brush with esape during the asteroid's perienter passage and, givenslightly more \energy", many of these partiles would be expeted to esape dur-ing this time. If we are only interested in determining what will happen to thesystem in the short term (a few orbits of the asteroid around the Sun), and areonly worried about marginal esapes, whih our near perienter, then in somesense we an ignore what happens over the rest of the orbit. Taking � = 0 inEq. (3.5), we laim that, apart from small di�erenes in the entrifugal and Cori-olis terms due to the faster angular veloity at perienter, the result is just theequation of motion for orbits around an asteroid with E 0 = 0 and A0 = A(1�E).In other words, for the purposes of studying marginal esapes on short timesales,an asteroid moving through its perienter an be reasonably well approximatedby a seond asteroid moving on a irular orbit at the perienter distane of the�rst. A similar tak is taken by Lear et al. (1992) in quite a di�erent ontext.In order to justify this laim, we must show that the perturbation aelerationsarising from the asteroid's faster angular veloity at perienter are small omparedto the perturbations due to the asteroid's loser distane to the Sun. Consider�rst the \tidal" aeleration arising from solar tidal and entrifugal e�ets whihis given by the seond term on the right side of Eq. (3.5). Evaluated at perienter(� = 0) this term beomes:

aT idal = [3x� z+ E(x+ y)℄(1� E)3 : (3.6)Expanding Eq. (3.6) in a Taylor series in E, we �nd the �rst-order term is givenby: E[9x� 3z℄ + E[x+ y℄; (3.7)where the �rst term in brakets arises from the asteroid's loser distane to theSun and the seond omes from the inreased angular veloity. The distaneterms are signi�antly larger, espeially for partiles along the x-axis where es-ape invariably ours. This remains true for higher-order terms in the Taylorexpansion although the magnitude of the di�erene dereases somewhat. Treat-ing the Coriolis aeleration in the same manner, we �nd that at perienter itan be written in the form
aCoriolis = �2[1 + E℄ 12[1� E℄ 32 ẑ� v � 2 [1 + E℄[1� E℄3 (x+ y); (3.8)here the terms in the denominators arise from the asteroid's loser distane tothe Sun while those in the numerators are due to the variation of the asteroid'sveloity along its ellipti path. As in Eq. (3.7), we �nd the hange in distaneis the dominant e�et, aounting for >� 75% of the variane in the Coriolisaeleration for all values of the eentriity.
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Sine the terms arising from the asteroid's inreased angular veloity at peri-enter are small ompared to the terms owing to its loation loser to the Sun, wean { as a �rst approximation { ignore the veloity terms. A partile's equationof motion around an asteroid near perienter is then idential to the equation ofmotion of a partile around a seond asteroid on a irular orbit at the perienterdistane of the �rst. Furthermore, sine the stability of weakly bound orbits isput to the greatest test during the asteroid's perienter passage, the most impor-tant fator determining esape is learly how losely the asteroid approahes theSun. The synthesis of these results suggests that the size of the asteroid's stabil-ity zone is simply proportional to the asteroid's perienter distane. Combinedwith the results for an asteroid on a irular orbit (Setion 2.3.3), we have thatthe size of an asteroid's stability zone is roughly proportional to the size of theHill sphere alulated at the asteroid's perienter (� (�=3)1=3A(1� E)).This is a very strong assertion. It states that, if we an asertain the size of thestability zone for one asteroid, we an estimate it for other asteroids with di�erentmasses, semimajor axes and eentriities. As noted in Setion 2.3.3, saling toan asteroid with a di�erent semimajor axis is mathematially exat and saling toan asteroid with a di�erent mass only errs to the order of the asteroid-Sun massratio whih is entirely negligible. Thus any given orbit around one asteroid has aounterpart around another asteroid with an idential shape if the eentriitiesof the two asteroids are the same. Sine the stability surfae is omposed ofmultiple orbits all of whih sale in this way, it does too. We have now shownthat for orbits of short duration around asteroids with di�erent eentriities,most (perhaps 70 - 80%) of the e�ets of eentriity on the size of the stabilitysurfae an be aounted for by saling the surfae as the Hill sphere alulatedat the asteroid's perienter. In the setions to follow, we use our E = 0 results(Fig. 2.15) to make preditions for asteroids with non-zero eentriity and thenompare these preditions with atual numerial integrations. We also disuss thevalidity of the approximations made for three speial ases: prograde, retrogradeand i = 90o orbits.

3.1.3 The Jaobi IntegralFirst, however, we digress slightly and onsider the Jaobi integral whih, afterall, is one of the most powerful results available for the irular restrited problemof three bodies. In the irular ase, the Jaobi integral allows the derivation ofzero-veloity urves (ZVCs) whih plae simple, but often useful, restritions onthe portion of spae aessible to partiles starting with given initial onditions.In Setion 2.2, we applied these surfaes to an asteroid on a irular orbit; herewe examine the diÆulties inherent in extending this analysis to asteroids oneentri orbits.Attempting to obtain the Jaobi integral in the standard way, we �rst take
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the salar produt of Eq. (3.3) with vrot to obtain
vrot� _vrot+GMAr2 _r = GM�R3 [(3x _x�z _z)+E os �(x _x+y _y)+2E sin �(x _y�y _x)℄; (3.9)where the Coriolis term has vanished sine it is perpendiular to vrot. The nextstep is to integrate Eq. (3.9) over time. The terms on the left are diretly inte-grable, but those on the right, espeially the last one, are more stubborn. Theseright-hand terms are impliit funtions of time through both the partile's oor-dinates and the asteroid's true anomaly, and hene they annot be integrated foran unknown orbit. Thus we �nd a Cath-22: although a Jaobi integral exists forthe ase where the primaries orbit along ellipses, it is not known how to expressthe integral in a useful manner (Szebehely and Giaaglia 1964). That is to say, toobtain useful information from the Jaobi integral, the trajetory of the partilemust be known but knowledge of the partile's trajetory makes the informationontained in the integral redundant!One again, beause we are mainly interested in orbits during the asteroid'sperienter passage, we look for a result that an be applied in that region. Taking� = 0 in Eq. (3.9) eliminates the �nal term and allows the time integration tobe performed. Carrying out the integration and swithing to slightly di�erentdimensionless units (GM�=r3p � 1; (�=3)1=3rp � 1, where rp = A(1 � E) is theperienter distane), we obtain:

C = 6r + 3x2 � z2 + E(x2 + y2)� v2rot: (3.10)This equation with vrot = 0 determines the shape of the ZVCs instantaneouslyat the asteroid's perienter. The appliation of Eq. (3.10) is approximate, andeven then stritly limited to a small time �t near a single passage of an asteroidthrough perienter; similar onlusions are reahed through more rigorous deriva-tions (Szebehely and Giaaglia 1964, Ovenden and Roy 1961). If one attemptsto apply Eq. (3.10) to two suessive perienter passages, unmodeled e�ets suhas the �nal term in Eq. (3.9), ating in the interim might alter C, the Jaobi\onstant." Fortunately, suh modi�ations are usually small for short time peri-ods, and we an normally apply Eq. (3.10) to orbits followed for a few perienterpassages of the asteroid.Comparing Eq. (3.10) to the equivalent expression for a irular orbit we �ndthat the two di�er only by the exess entrifugal potential E(x2 + y2). As anillustration of the slight di�erene, we alulate the loations where the zero-veloity surfaes surrounding the asteroid �rst open up. These positions ourat saddle points of Eq. (3.10) (with vrot = 0) whih are also equilibrium pointsof Eq. (3.3) (with � = 0). Setting the partial derivatives of Eq. (3.10) equal tozero, we �nd that the openings of the ZVCs our at the points (x = �xrit; y =0; z = 0), where xrit and the orresponding Jaobi \onstant" are given by:
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xrit = � 33 + E� 13 ;Crit = 9xrit : (3.11)As the eentriity is inreased in Eq. (3.11), the opening of the zero-veloitysurfaes ours loser to the asteroid; this an be qualitatively understood bynoting that the equilibrium points our nearer the asteroid as a result of theadditional outwardly direted entrifugal aeleration at perienter. For E = 0,we reover the more familiar results xrit = 1 and Crit = 9 (see Setion 2.3.2and Chauvineau and Mignard 1990a); while, onversely, taking the extreme aseE = 1, we obtain xrit � 0:91 and Crit � 9:9, di�erenes of only � 10%. Weonlude, as above, that the inuene of the additional entrifugal aelerationis minimal.

3.2 Integrations3.2.1 GeneralNow that some intuition has been developed about the e�et of the asteroid'sorbital eentriity, we will present the results of our numerial integrations. Foromparison purposes, we take the partile to have the same initial onditionsused in Chapter 2 (initially in the asteroid's orbital plane on an initially ir-ular orbit) and use an asteroid like Amphitrite (Table 2.1), but with di�erentorbital eentriities. The addition of orbital eentriity, however, ompliatesmatters by requiring the spei�ation of two extra items, namely the eentriityof the orbit and the asteroid's position along its orbit at the time the partileis launhed. The seond of these ompliations has lesser signi�ane sine wefollow the test partile's motion during the time it takes the asteroid to omplete�ve orbits around the Sun (� 20 years); thus usually the inuene of di�erentstarting positions should be minimal. For simpliity, therefore, we hoose tostart the asteroid at the apoenter of its helioentri orbit in all of the followingintegrations. This hoie should provide a stringent test of our neglet of the\eentri" terms in the above disussion sine these terms are allowed to at forsome time before esape, whih generally ours during the perienter passage,is possible. Even with this redution of the problem, a thorough exploration ofthe three-dimensional phase spae (asteroid's eentriity, partile's inlination,partile's starting distane) would require approximately (10 eentriities) x (20inlinations) x (25 starting distanes) = 5000 initial onditions. To redue thisto a more manageable number we will take four two-dimensional slies throughthis phase spae, three at onstant inlinations representing the three impor-tant lasses of orbits (prograde, retrograde, and highly-inlined), and one at themeasured eentriity of the asteroid Gaspra (Table 2.1).



49
3.2.2 Prograde OrbitsPrograde orbits provide the best test of the ideas presented above sine, at leastin the irular ase, partiles on suh orbits usually esape very quikly whenevertheir ZVCs are open (see Fig 2.10). We might be tempted, therefore, to preditthat esapes will our when the ZVC evaluated at the asteroid's perienter isopen, but before we an on�dently make suh a predition, an additional fatormust be onsidered. Imagine that esape is energetially possible as the asteroidnears perienter, but the partile is loated at a disadvantageous spot for esapeto our, say 90o away from the Sun-asteroid line. Then to provide a fair hanefor esape, we must either require that the asteroid remain near perienter longenough for the partile to omplete a reasonable fration of one orbit around theasteroid or, equivalently, we must integrate through multiple perienter passagesso that many opportunities to esape arise, some of whih will �nd the partilein a favorable position. The prograde orbits with the longest periods are thosenear the limits of stability; these have synodi periods that are about 1/4 ofthe asteroid's period if the minor planet is on a irular orbit. For an eentriasteroid orbit with the same semimajor axis, the stability zone is smaller and thepartiles orbit even faster. Thus we expet that �ve perienter passages of theasteroid about the Sun should usually allow the partile ample opportunity toesape.Figure 3.2 shows the results of nearly two hundred orbital integrations arriedout for initially irular prograde orbits at a variety of distanes from asteroidswith di�ering eentriities. We treat the full range of possible eentriities; thelow-to-moderate values are generally appliable to asteroids, while the larger aremore appropriate for omets. The boundary line extends the ritial distanefound for i = 0 orbits in Fig. 2.15 to asteroids with non-zero orbital eentriityusing the saling result of Setion 3.1.2. The division plots as a straight line in the(e;RA) oordinates used in Fig. 3.2 beause the ritial distane, like the size ofthe stability zone, is proportional to the asteroid's perienter distane A(1�E).For these prograde orbits, the line also selets the initial ondition orrespond-ing to the ritial perienter ZVC (ignoring the small eentriity dependenedisussed in Setion 3.1.3). Thus only partiles with initial onditions above theline have ZVCs that are instantaneously open near perienter. It is apparent thatno orbits below the line esape; note, however, that this trapping is not nees-sarily required by the argument of losed ZVCs beause aelerations that wereignored in developing these ZVCs an ause orbits to ross them. Nevertheless, aswe argued above, these aelerations should be small, so the fat that no esapesare seen to our from below the boundary is enouraging. Furthermore, thereis only a single bound orbit that lies signi�antly above the division. This lonepartile was never in the right plae to get a boost from M. Coriolis at perienter;it would almost ertainly esape with inreased integration time.The distribution of orbits that strike the asteroid in Fig. 3.2 displays an in-
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Figure 3.2 The orbital fate of nearly 200 partiles on prograde orbits aroundan asteroid at 2:55AU. Eah partile was given the veloity that would put iton an initially irular path around the minor planet. A solid irle signi�es apartile that remains in the asteroid's viinity for at least twenty years, a smalldot orresponds to a grain that esapes into helioentri spae, while an openirle with a dot inside represents a partile that strikes the asteroid's surfae.The diagonal line is the predited division between bound and esape orbits; itsderivation is based on saling the Hill sphere at perienter as developed in thetext.
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teresting regularity. All of these rash orbits are found above the division lineat whih partiles beome unbound. The lak of rash orbits below the line isonsistent with the harater of bound prograde and retrograde orbits whih areusually very regular in appearane and rarely display haoti behavior (f. Chau-vineau and Mignard 1990a). However, as we will see presently, the separation ofbound and rash orbits observed here for prograde orbits is not a result that anbe extended to three-dimensional paths.
3.2.3 Inlined OrbitsBound orbits with inlinations in the range 60o < i < 120o have many similarharateristis (Setion 2.6.1); aordingly we hoose i = 90o orbits as typialexamples of this lass. The largest of these orbits is omparable to the largestof the prograde orbits, so the maximum period for bound, inlined orbits is alsoabout 1/4 of an asteroid period. By the argument advaned above, �ve perienterpassages of the asteroid about the Sun should be enough to allow most partilesthat are destined to esape to be dislodged. But we have found that the openingof the ZVCs is not a good indiator of esape for orbits with i >� 30o sine theCoriolis aeleration for these orbits does not have the large radially outwardomponent harateristi of that for prograde orbits. We therefore disontinueour use of ritial ZVCs as an esape riterion, instead fousing on Hill spheresaling as desribed in Setion 3.1.2 to onnet our results for an asteroid on airular orbit to those with non-zero eentriity.The line in Fig. 3.3 shows the appliation of this saling. It does remarkablywell, although not nearly as well as in the prograde ase. The reason for thisis lear. A prograde orbit will almost always esape if the orresponding ZVCis open, and will rarely esape if the ZVC is losed; this idea is reeted in thesharpness of the empirial boundary seen in Fig. 3.2 (reall, however, that foreentri asteroids the ZVC is just an approximation). Inlined orbits, on theother hand, are not so stritly onstrained. Many remain at least temporarilyin the asteroid's viinity even if their ZVCs are wide open; hene the divisionline between bound and unbound inlined orbits is \fuzzier" than the division inthe prograde ase. Several bound orbits are loated in the region dominated byesape orbits and a few esape orbits are even found below the line in the regionwhere this riterion asserts that orbits should be bound. Notie also that rashorbits are inextriably interwoven with both bound and esape paths. This resultis onsistent with a similar one for the irular ase where many inlined rashorbits are found in the viinity of the ritial distane (Fig. 2.15). The ubiquityof rash orbits under these irumstanes is a diret onsequene of the dynamisof suh orbits disussed in Setion 2.5.3 in some detail.
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Figure 3.3 Same as Fig. 3.2 for initially irular orbits with inlination i = 90o.As in Fig. 3.2, the approximate theoretial division separating bound and es-ape orbits mathes the data quite impressively; the derease of stability withinreasing eentriity is very evident.
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3.2.4 Retrograde OrbitsThe situation for retrograde paths about elliptially orbiting asteroids is not asgood as for the two ases disussed above for several reasons. First, sine boundretrograde orbits are relatively large, their periods are about four times the periodof the biggest prograde orbits; this implies that integrations of �ve asteroid yearsmay not be suÆiently long to explore the full dynamial range. In addition,sine these orbits are about twie the size of the ones onsidered previously, theasteroid's gravity is muh weaker and the perturbations are signi�antly larger(see Fig. 2.3). Consequently the unmodeled parts of these fores are more im-portant for retrograde orbits than for either prograde or inlined ones. As anexample, the Coriolis aeleration pulls more strongly inward at the asteroid'sperienter for retrograde orbits than simple saling would suggest and this aug-ments the stability of these orbits around asteroids on eentri paths. Finallythe point at whih the ZVCs �rst open for retrograde orbits is only about 25% ofthe distane to where esapes �rst our assuming an asteroid on a irular orbit.The onstraint provided by the retrograde ZVCs, therefore, is almost useless (f.Setion 2.5.1 and Chauvineau and Mignard 1990a).Figure 3.4 shows our results for planar retrograde orbits. The saling law thatworked so well for the prograde and inlined orbits learly fails here: many boundorbits are found above the line where the theory predits only esape orbits. Thebehavior is not even linear; notie the abrupt drop in stability that ours for anasteroid eentriity of 0.7. This steep fall-o� suggests that longer integrationswould lead to additional esapes, at least near this edge. Furthermore, the �ngerof esape orbits extending into the bound orbits at a distane of about 300 asteroidradii also hints that the bound orbits above the �nger will esape given a few moreperienter passages. But inreasing the integration time will not solve all of theproblems enountered here. We reall the results of Zhang and Innanen (1988)who, after traking orbits for 1000 years, found that the ritial distane forinitially irular retrograde orbits around asteroids with eentriities of 0.0 and0.07 were 445 and 358RA, respetively. The E = 0 result agrees with our �ndingfor a 20 year integration; thus, saling to the perienter of an E = 0:07 orbit(see Fig. 3.4), we would predit a ritial distane of 410RA, or about 15% largerthan the numerial result. Evidently the analysis of these retrograde orbits ishampered by both insuÆient integration times and inadequate approximations.
3.2.5 GaspraAs a �nal test and an independent veri�ation of the ideas addressed above, andmotivated by the destination of a ertain spaeraft, we arried out a more thor-ough investigation of the stability of orbits about an idealization of the asteroid951 Gaspra. We use values for Amphitrite (Table 2.1) and Gaspra's true eentri-ity E = 0:17 to failitate diret omparisons with our previous �gures. Beause
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Figure 3.4 Same as Fig. 3.2 for initially irular retrograde orbits. Note thesparsity of orbits that strike the asteroid. For retrograde orbits, the alulatedbound-esape division disagrees with the data for reasons that are disussed inthe text (ompare Figs. 3.2 and 3.3).
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our integrations are for an objet at 2:55AU, the results need to be saled forappliation to the true Gaspra whih orbits at 2:20AU. Distanes measured inRA, as the ordinates are in the following three �gures, must therefore be reduedby the ratio of the semimajor axes of the two asteroids.Figure 3.5 shows the fate of partiles as a funtion of their starting dis-tane and initial inlination for an asteroid with Gaspra's eentriity of 0.17(f. Fig. 2.15 whih has E = 0). We estimate the ritial distane by taking,for eah inlination olumn, the outermost bound orbit suh that there are noesape orbits below it; this proedure eliminates freak orbits suh as the one at(i = 70o; d = 470RA). The results, ritial distane as a funtion of inlination,are plotted in Fig. 3.6 along with similar results for an asteroid with E = 0 (fromFig. 2.15). The dotted line in Fig. 3.6 is the expeted result for E = 0:17 whihhas been saled from the E = 0 data; omparing the preditions to the atualintegrations, we see that prograde and inlined orbits atually esape at distanesslightly less than predited, but well within expeted errors arising from the ne-gleted e�ets. In those regions of Fig. 3.5 where there are many rash orbits, thedivision between bound and esape orbits is poorly onstrained; this leads to a\hoppiness" in the ritial distane whih is observed in the E = 0:17 data neari = 90o in Fig. 3.6. Unlike prograde and inlined orbits, retrograde ones exhibitlittle loss of stability; one again suspiion falls on insuÆient integration times.To desribe the volume in whih bound material might be present about as-teroids on irular helioentri orbits, we used the \stability surfae" (Fig. 2.16)Note that its typial radius up to latitudes of 35o is nearly onstant and is sig-ni�antly larger than its vertial dimension whih is approximately onstant forlatitudes greater than 35o (i.e., its shape is like a sphere with the poles sliedo�). Beause polar orbits are less stable than retrograde ones for asteroids onellipti orbits as well as those on irular paths (Fig. 3.6), we antiipate a similarmorphology for the stability surfae in the urrent ase. Fig. 3.7 plots the largestout-of-plane distane (z oordinate) from the union of all orbits with a givenstarting inlination that lie within the ritial distane; for omparison, we alsoplot results for a irular asteroid orbit. We see that the maximum height towhih material around Gaspra an rise is only about 75% the value it would haveabove an asteroid on a irular orbit. The dotted line in Fig. 3.7, the preditionof diret Hill-sphere-saling of results for E = 0, suggests that the value shouldbe 83%. Clearly the orrelation between the dotted line and the E = 0:17 datais worse in Fig. 3.7 than it is in Fig. 3.6; this di�erene reets hanges in theorbital evolution of the inlined orbits under aelerations ignored in our analysis.These numerial experiments indiate that bound debris should not presentbeyond about 200RA above Gaspra's orbital pole. We remind the reader thatour study has dealt only with the question of whih orbits are stable and whihare unstable. To atually estimate the probability that a spaeraft might strikesomething would require a knowledge of the population and loss mehanisms
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Figure 3.5 The fate of about 650 partiles started at di�erent inlinations foran asteroid on an orbit with semimajor axis A = 2:55AU and an eentriityE = 0:17; solid irles, open irles, and small dots orrespond to bound orbits,rash orbits, and esape orbits, respetively. Note the prevalene of impatsfor orbits with inlinations near 90 deg (f. Fig. 2.15 and nearby text). We ansale this plot for appliation to Gaspra (A = 2:20AU and E = 0:17): sine theeentriities of the two asteroids are idential, and di�erenes in their masses areaounted for by measuring distanes in RA, the ordinate need only be multipliedby the ratio of the two semimajor axes, namely 2:20=2:55 � 0:86.
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Figure 3.6 Maximum starting distane for those initially irular orbits thatremained bound to the asteroid (for about 20 years) as a funtion of the orbitingpartile's initial inlination. Data are plotted for two values of the asteroid'sorbital eentriity, E = 0 and E = 0:17; in both ases A = 2:55. The dotted lineis the predition for E = 0:17 derived from saling the E = 0 result with the Hillsphere at perienter. In this ase the two semimajor axes are idential, so salingis aomplished by simply multiplying the E = 0 results by 1� 0:17 = 0:83. Theplot learly shows the erosion of the zone of stability aused by inreasing theasteroid's orbital eentriity.
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Figure 3.7 Maximum height above the asteroid's orbital plane attained by thepartiles from Fig. 3.6; as in that �gure, the dotted line is the predition for thelower set of data obtained by saling from the upper set. The data displayedhere show that as the asteroid's eentriity is inreased, orbits that rise to largeheights above the orbital plane disappear faster than our simple saling wouldsuggest.
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for irum-asteroidal orbits. Most disussions of debris soures (Weidenshillinget al. 1989, Burns and Hamilton 1991) favor the likelihood that irum-asteroidaldebris, if any exists at all, will be produed muh loser to the minor planetthan the distant orbits onsidered here. Thus our riterion is likely to be quiteonservative; that is, a spaeraft should be able to safely pass muh loser tothe asteroid than the 200RA quoted above. In the next hapter, we investigatethe e�ets of another perturbing aeleration that lears the irum-asteroidalenvironment { solar radiation pressure.



Chapter 4
Radiation Perturbations onDistant Orbits1
4.1 IntrodutionIn Chapters 2 and 3 we disussed distant irum-asteroidal orbits that are stronglyperturbed by the solar tidal fore. Beause the diret gravitational aelerationtoward the asteroid is so weak in an absolute sense, radiative proesses impartnon-trivial perturbations for partiles smaller than a few entimeters aross. Thespatial distribution of millimeter and entimeter-sized objets around an asteroidis of onsiderable pratial interest sine impats with suh objets are lethalto a swiftly-passing spaeraft. Aordingly, in this hapter we fous on theorbital dynamis of radiatively perturbed partiles and put limits on the extentof irum-asteroidal debris in this size range.The perturbations we onsider arise from the absorption and subsequent re-emission of solar photons and orpusular radiation. Of the many fores (radia-tion pressure, Poynting-Robertson drag, Yarkovsky e�et, et. - see the reviewby Burns et al. 1979) that arise from this proess, radiation pressure is by farthe strongest. Radiation pressure arises primarily from the absorption of themomentum of solar photons and onsequently is direted radially outward fromthe Sun. The fore's strength is proportional to the solar ux density whih hasthe same inverse square radial dependene as the Sun's gravity; hene radiationpressure is usually written as a dimensionless quantity � times solar gravity. Forspherial partiles that obey geometrial optis,

� = 5:7� 10�5 Qpr�grg ; (4.1)1This hapter is based on the paper: Hamilton, D.P., and J.A. Burns (1992), Orbital stabilityzones about asteroids II. The destabilizing e�ets of eentri orbits and of solar radiation,Iarus 96, 43{64 [opyright 1992 by Aademi Press, In.℄
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where rg and �g are the partile's radius and density in gs units and Qpr isa onstant whose value depends on the optial properties of the grain (Burnset al. 1979). This result applies to partiles larger than about a half-miron, thewavelength of a photon at the peak of the solar spetrum. When a partile'sharateristi size is similar to the wavelength of inident light, Mie satteringours, Qpr is no longer onstant, and � beomes a omplex funtion of partilesize. In ontradition to Eq. (4.1), whih predits that the strength of radiationpressure will inrease for smaller partiles, it atually dereases (Burns et al.1979) beause most solar photons are in the visible and suh photons interatonly weakly with very small grains. In the rest of this work, we will on�neourselves to large grains that obey Eq. (4.1).
4.2 Helioentri vs. Cirumplanetary OrbitsThe aeleration of an isolated partile on a helioentri orbit is determined bythe sum of the inward fore of solar gravity and the outward fore of radiationpressure, whih an be ombined into a single 1=r2 fore with magnitude (1 ��) times solar gravity. The grain's orbital dynamis is then idential to thegravitational two-body problem with a redued solar mass; if a partile's size,and hene its �, is onstant, its orbit will be a oni setion. Only if the partile's� hanges abruptly, as when a small grain is ejeted from a omet, or graduallyas in the ase of a subliming grain, will its orbital evolution be non-trivial (Burnset al. 1979). Radiation pressure, therefore, does not signi�antly alter the natureof most helioentri orbits and, aordingly, it has reeived sant attention in theliterature.The situation is quite di�erent for partiles that orbit a planet rather thanthe Sun (Milani et al. 1987); sine the planet itself is essentially uninuened byradiation pressure while small objets orbiting it may be, the problem annotbe treated by simply reduing the mass of the Sun as in the ase of helioentriorbits. Furthermore, the dominant fores are di�erent in eah problem; in thease at hand, the important fores are the planet's gravity and the solar tidal forerather than diret solar gravity as in the helioentri problem. In many situations,therefore, radiation pressure produes stronger e�ets on irumplanetary orbitsthan on solar orbits; we will show the truth of this statement when the \planet"is atually a large asteroid with a radius of 100 km.Sine radiation pressure typially indues muh smaller aelerations than theasteroid's gravity, an orbit-averaged perturbation tehnique is often appropriate.This analysis, leading to a simpli�ed set of di�erential equations desribing theevolution of the osulating orbital elements due to an external fore whih isonstant in magnitude and diretion, has been arried out by Burns et al. (1979)and Chamberlain (1979), among others. The semimajor axis of a irumplane-tary orbit is found to be unhanged by radiation pressure. Burns et al. solved the
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planar system (i = 0) onsidering small eentriity and weak radiation pressure,assumptions appliable to most situations arising in the solar system. Theirsolution was later extended to arbitrary eentriities and moderate radiationpressure by Mignard (1982). Both Burns et al. and Mignard �nd periodi osil-lations in the orbital eentriity that, for weak radiation pressure, vary with theplanet's orbital period. The solution to the full system with arbitrary inlination,as derived by Mignard and H�enon (1984), involves ompliated oordinate trans-formations that render the study of an orbit with initial onditions expressedin orbital elements impratial. The planar solution shows, however, that if ra-diation pressure is suÆiently strong, it an indue eentriities large enoughthat partiles are fored to rash into the asteroid (f. Peale 1966, Allan andCook 1967). This mehanism, whih provides the potential to eÆiently removetightly bound material from irum-asteroidal orbits, will be disussed further inthe setions to follow.
4.3 Zero-Veloity CurvesAs we noted in Setion 3.1.3 above, the existene of the Jaobi integral and itsassoiated zero-veloity urves proves to be useful in addressing the eventual fateof loosely bound, prograde orbits. Aordingly, in this setion we explore zero-veloity urves derived with the inlusion of solar radiation pressure; as a �rstapproah to the problem and to avoid the diÆulties enountered in Setion 3.1.3,we treat only the ase of irular asteroid orbits. For irular orbits, we will �ndthat exat results exist; extending the results to eentrially orbiting asteroids,however, entails the same approximations disussed in Setion 3.1.3.The existene of a Jaobi integral for the restrited three-body problem withradiation pressure is antiipated sine radiation pressure in the rotating framean be derived from a time-independent potential. Indeed, the addition of ra-diation pressure to solar gravity does not greatly ompliate the problem sinethese fores are idential in both diretion and radial dependene. In fat, thederivation of the Jaobi integral and the zero-veloity urves in the photogravi-tational, restrited, irular three-body problem proeeds along almost identiallines as the \lassial" derivation (Shuerman 1980). Extensive analysis of thestability of the resulting equilibrium points has been arried out by Luk'yanov(1984,1986,1988). We now apply these ideas to Hill's problem, whih, like therestrited problem, has an integral of the motion.Inorporating radiation pressure into the equation of motion (Eq. 2.2), weobtain the following:d2rdt2 = �GMAr2 r̂+ GM�A3 [3x� z℄� 2
� vrot + �GM�A2 x̂; (4.2)where we have taken inoming solar rays to be parallel, an assumption that
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is valid in the viinity of our asteroid. Assuming � is time-independent, the�nal aeleration on the right-hand side of Eq. (4.2) an be integrated to givethe potential �(GM�=A2)x. Taking the salar produt of Eq. (4.2) with vrot,integrating over time and non-dimensionalizing (G = 1;
 = 1, and rH = 1), we�nd:

C = 6r + 3x2 � z2 + 2�� 3�� 13x� v2rot: (4.3)Equation (4.3) depends on the parameter ���1=3 and so, as in the ase of non-zero orbital eentriity, are must be exerised when saling from one asteroid toanother. In partiular, results sale as the Hill sphere only if the parameter ���1=3is kept onstant. This an be shown more expliitly by examining Eq. (4.2) in thesame manner that we studied Eq. (3.3) in Setion 3.1.2. If Qpr and the partileand asteroid mass densities are onstant, then � is inversely proportional to thepartile's radius rg (Eq. 4.1) and ��1=3 is inversely proportional to the asteroid'sradius RA. Thus, simply stated, results from a small asteroid an be applied toa larger one if the produt of the asteroid's radius and the radius of the orbitingpartile is kept onstant (i.e., ��1=3 � (rgRA)�1= onstant).We an derive zero-veloity urves from Eq. (4.3) by setting vrot = 0 andhoosing a partiular value of C. For weak radiation pressure, the shape of theresulting zero-veloity urves di�ers only slightly from the more familiar ZVCs ofHill's problem; for stronger radiation pressure, however, the di�erene is marked.In an attempt to provide the reader with some insight into the onstraints onesape imposed by the ZVCs, we disuss their shape for a moderate value ofradiation pressure, namely that appropriate for 1-millimeter partiles aroundAmphitrite. Several ZVCs are drawn in Fig. 4.1; these are simply plots of Eq. (4.3)with vrot = 0 and z = 0 for di�erent values of the Jaobi onstant C. The smallirles that losely surround the asteroid have large Jaobi onstants; their shapeis primarily determined by the asteroid's gravity (f. disussion by Chauvineauand Mignard 1990a for ZVCs without radiation pressure). As C is dereased, theirles grow larger and begin to distort due to the tidal and radiation-induedaelerations. Beause they both are direted along the x-axis, these perturbationaelerations ause a distortion of the ZVCs along that axis. The tidal potentialis an even funtion of x and thus auses an elongation symmetri about x = 0(see Figs. 2.5 and 2.10). In ontrast, radiation pressure, beause it always atsin the x̂ diretion, auses a non-symmetri distortion, shifting the ZVCs awayfrom the Sun. We see that radiation pressure is dominant for 1-mm partilessine the outer urves of Fig. 4.1 are highly asymmetri. One onsequene ofthis asymmetry is that as the Jaobi onstant is dereased, the urves open awayfrom the Sun before they open toward it. Radiation pressure allows suÆientlyenergeti partiles to esape in the anti-sunward diretion; esape in the sunwarddiretion, whih requires still more \energy," ours more rarely.
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Figure 4.1 Zero-veloity urves, inluding solar radiation, for a 1-mm partilearound Amphitrite. The Sun is loated far out along the negative x-axis and theasteroid is the solid irle (not drawn to sale) at (0,0). Assoiated with eahurve is a unique value of the Jaobi onstant; larger urves have smaller Jaobionstants. The four-pointed star, loated at (370,0), denotes the equilibriumpoint where all fores balane for 1-mm partiles; a seond equilibrium point liesbetween the asteroid and the Sun at (-579,0).
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When disussing Fig. 4.1, we arefully avoided quoting any atual numbersfor the Jaobi onstants or the loation of the point at whih the ZVCs open (see,however, the �gure aption). This was done to keep the disussion general andtherefore appliable to a large range of radiation pressure strengths. In reality,the Jaobi onstant and the points where the ZVCs open are all funtions ofthe relative strength of radiation pressure. To solve for the opening positions,whih our at the equilibrium points of Eq. (4.2), we set the partial derivativesof Eq. (4.3) (with vrot = 0) equal to zero (f. Danby 1988, p. 260). Thus, de�ning

 = �3� 3�� 13 ; (4.4)we �nd two solutions whih lie on the x-axis (y = z = 0) at positions given bysolutions to the ubi: x3 + x2 � 1 = 0; (4.5)where the upper sign refers to the ritial point furthest from the Sun and thelower sign to the one losest to the Sun. Solving Eq. (4.5) for  <� 1 (weak-to-moderate radiation pressure), we obtain xrit � �(1 � =3 + 2=9) and Crit �9 � 6 � 2. We �nd that there are indeed two ritial ZVCs, sine the twoopening points our at di�erent values of the Jaobi onstant. Thus if moreurves with ever-dereasing Jaobi onstants were plotted in Fig. 4.1, we wouldeventually see a tunnel from the asteroid to helioentri spae opening up on theleft side of the �gure. For  >> 1 and xrit > 0, we �nd xrit � �1=2, whihtends toward zero, and Crit � 121=2.
4.4 IntegrationsOur philosophy in adding the e�ets of eentriity and radiation pressure to theesape problem is to separate the two so that a more diret omparison withthe results of Chapter 2 is possible. Aordingly, in all subsequent numerialintegrations, we plae the asteroid on a irular orbit around the Sun. As before,we model the asteroid 29 Amphitrite with the parameters given in Table 2.1. Westart partiles out along the x-axis away from the Sun with a speed suh thatthe orbit would be irular in the absene of all perturbations. As in Chapter3, we allow the veloity vetor to take on one of three inlinations relative tothe orbital plane: prograde (i = 0o), retrograde (i = 180o), or inlined (i = 90o).These inlinations are representative of the three basi lasses of irum-asteroidalorbits in the ase when radiation pressure is absent. The period of integration wasset at �ve asteroid years (� 20 years) to failitate omparison with our previousresults.
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Although these are the same initial onditions used in Chapters 2 and 3,they are partiularly appropriate here for two reasons. First, the radiation andtidal potentials are maximum in the anti-sunward diretion; thus irular orbitsstarting on the positive x-axis have larger Jaobi onstants than irular orbitsof the same radius starting elsewhere. Our results for irular orbits, therefore,are onservative in the sense that at eah distane, we study the initially irularorbit that, energetially, has the least hane of esaping. The seond reasonthat our initial onditions are reasonable is more physial. One of the mostdangerous potential soures for material in the irum-asteroidal environment isa \feeder" satellite, a small body from whih material an be eÆiently removedby meteoroid bombardment (Burns and Hamilton 1991). In ontrast to diretimpats on the entral asteroid in whih material generally esapes or is re-areted, muh of the debris blasted from a moonlet an end up in orbit aroundthe asteroid. We envision the following senario: a \feeder" satellite uninuenedby radiation pressure is ontinually subjeted to a ux of hyperveloity partileswhih blasts debris from its surfae. Although suÆiently energeti to esapethe weak gravity of the satellite, muh of the debris annot esape the asteroid.As the lumps of ejeted material separate exposing small bodies to solar rays,radiation pressure begins to exert its inuene, preferentially eliminating thesmaller partiles. Our integrations begin at the point when mutual gravitationaland shadowing e�ets an be negleted; further evolution of the debris in theaftermath of an impat event is governed by Eq. (4.2).Con�ning ourselves to an orbit of a given starting inlination, we still must�x the initial size of the partile's irular orbit as well as the strength of theradiation pressure as parameterized by ; thus we have a two-parameter spaeto explore. In order to avoid onfusion, we ontinue to display plots for Am-phitrite with distanes measured in asteroid radii and partile sizes measured inmillimeters; to apply these plots to Gaspra (with E = 0) we simply multiply thevertial axis by the ratio of the semimajor axes 2:20=2:55 � 0:86 (Table 2.1) andhange \millimeters" to \entimeters." The hange in the vertial axis omesfrom saling distanes with the size of the Hill sphere (Setion 2.3.3) while thatof the horizontal axis arises from the ondition that the parameter , de�ned inEq. (4.4), be unaltered; keeping  onstant is equivalent to requiring that theprodut of the asteroid and partile radii be onstant as was disussed immedi-ately following Eq. (4.3). Most of the equations to follow, however, depend on thedimensionless quantities r (measured in Hill radii) and ; use of these quantitiesboth simpli�es the appearane of the equations and failitates saling to otherasteroids. The size of the Hill sphere for Amphitrite and Gaspra in asteroid radiiis given in Table 2.1; below we make the onnetion between  and the parti-le's size more apparent. Assuming spherial partiles with the same density asthat assumed for the asteroid (�g = 2:38 g= m3) and a radiation pressure oeÆ-ient of unity (Qpr = 1), we �nd, using Eqs. (4.1) and (4.4) that  is inversely
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proportional to the partile's radius; for AmphitriteA = 0:0673=rg; (4.6)while for Gaspra G = 0:673=rg; (4.7)where rg is the partile's radius in entimeters.
4.4.1 Prograde OrbitsFigure 4.2 shows the fate of several hundred prograde paths followed for �ve or-bits of Amphitrite around the Sun. The piture is remarkably regular; orbits thatshare a ommon fate luster together in one of three distint regions with fewexeptions. The relative strength of radiation pressure inreases from right to leftas the partile's size is dereased: this auses the rapid disappearane of boundorbits. For 10-mm partiles, the division between bound and esape orbits is inagreement with that found analytially (Setion 2.4) and numerially (Fig. 2.15)in the absene of radiation pressure: initially irular prograde orbits are stableout to about 220RA, or about one-half the radius of the Hill sphere. In this re-gion, radiation pressure is strong enough to perturb orbits, but does not have thepower to alter the orbital fates of many partiles. As partile sizes are dereased,inreased radiation pressure is seen to ause only a few extra esapes at largedistanes from the asteroid until we onsider partiles with radii of a millimeter.In the 1-mm olumn of Fig. 4.2 an amazing transition takes plae; bound orbitssuddenly extend only half as far from the asteroid as they did for partiles twieas large, their demise being due to the appearane of a large number of orbitsdoomed to strike the asteroid. For these partiles, radiation pressure is largeenough to indue major osillations in orbital eentriity, exursions so largethat e ! 1 and a ollision with the minor planet is likely. Even more startlingis the disappearane of bound orbits in the next olumn to the left; all orbitsbeyond 20RA, with one exeption, either impat the asteroid or esape from itsgravitational grasp. Partiles in this olumn have radii � 0:5 millimeters; aroundGaspra this orresponds to partiles nearly a entimeter aross! Dereasing par-tile sizes still further yields no surprises; bound orbits do not reappear, and theinreasing radiation pressure auses esapes to our ever loser to the asteroid.Reall that all of the points plotted in Fig. 4.2 orrespond to the fates of par-tiles followed for just over twenty years; for this problem, radiation pressureaomplishes muh in extraordinarily short times!Probably the most interesting portion in Fig. 4.2 is the transition region whereorbits �rst begin to impat the asteroid. Examining the orbits of the eleven 1-mmgrains that rash, we �nd all but three of them, the one losest to the asteroidand the two furthest from it, impat in about a third of an asteroid year. Orbital
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Figure 4.2 The fate of approximately 200 partiles of di�erent radii startedabout Amphitrite on prograde irular orbits of various sizes that evolve underthe inuene of solar radiation pressure; solid irles, open irles, and small dotsorrespond to bound orbits, rash orbits, and esape orbits, respetively. Theolumns of initial onditions are evenly spaed along the horizontal axis. Orbitswith the same fate tend to luster, dividing the plot into three distint regions.Note the rapid disappearane of bound orbits as the partile sizes are redued to1mm and then to �0.5mm. This, of ourse, is due to the inreasing strength ofradiation pressure relative to the asteroid's gravity. For Gaspra, orrespondingpartile sizes would be ten times larger.
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eentriities rise monotonially to a ritial value near unity at whih point theperienter of the orbit dips below the surfae of the asteroid and impat ours.The three exeptions, however, show that this is not the full story. Two of theseorbits survive one stint of large eentriity after whih the orbit irularizes andthe proess begins anew. These orbits rash when the eentriity rises to valuesnear one a seond time. The third orbit, whih is the furthest from the asteroid,survives no less than eight suessive periods of large eentriity before �nallystriking the asteroid during its ninth yle.Several e�ets an ause these deviations from the simple sinusoidal osilla-tions of eentriity predited by Mignard (1982). Sine the orbits under disus-sion are large, the tidal fore from the Sun is signi�ant and annot be ignoredas it is in the idealized ase. This fore will also inuene the orbital eentriityand may either augment or detrat from radiation-indued hanges. Further-more, even in the absene of the tidal fore, orbits of this size have long periodsfor whih the orbital averaging employed by Burns et al. (1979) and Mignard(1982) is generally inappropriate. This will be the ase any time the partile'sorbital elements hange signi�antly during a single iruit around the asteroid.One important onsequene of rapidly varying elements is that if a partile attainsan eentriity of one at some point far from the asteroid, the eentriity mayderease below the ritial value neessary for ollision before the partile su�ersa lose approah. This, in fat, is the reason that the three orbits just disussedsurvive several lose approahes. A �nal onsideration that does not a�et ourintegrations, but would alter orbits around a real asteroid, is the non-spherialshape of typial minor planets. Higher-order gravity terms an signi�antly al-ter the evolution of even a large orbit if, as in the ase under disussion, theeentriity of the orbit is near unity so that lose approahes our.The �sh shape plotted in rotating oordinates in Fig. 4.3 is the amazing or-bit disussed above that narrowly avoids ollision eight times only to impatthe asteroid on the ninth pass. The heavy blak line is the zero-veloity urveappropriate for the initial ondition, a 1-mm partile starting on a irular un-perturbed orbit around the asteroid Amphitrite at 190RA. Although the ZVCis open, the partile never had the hane to taste the freedom of helioentrispae. At �rst sight this is strange, sine the orbit extends nearly to the Lagrangepoint where fores on a stationary partile balane; prograde orbits that reahthis far invariably esape sine the Coriolis aeleration is outwardly direted.Retrograde partiles, however, are stabilized by the Coriolis aeleration and ansafely wander in this region; loser inspetion of Fig. 4.3 reveals that althoughthe orbit begins prograde, it beomes retrograde when farthest from the Sun, atthe very fringes of helioentri spae. In fat, the orbit swithes from prograde toretrograde and bak again periodially, as an be seen from the time history ofthe inlination displayed in Fig. 4.4. These transitions neessarily take plae ate = 1, when the partile's veloity vetor points either diretly toward or away
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Figure 4.3 A 1-mm partile on an initially irular prograde orbit started at190RA about Amphitrite. The initial position is marked with a solid trianglewhose upper apex points in the diretion of the initial veloity; a �lled squaremarks the end of the integration, and a solid irle represents the asteroid itself.In this ase, the square and the irle overlap sine the grain ends its orbitalevolution on the asteroid's surfae. The four-pointed star is the equilibriumpoint, and the heavy urve partially enlosing the orbit is the zero-veloity urveappropriate for this initial ondition; its asymmetry is due to radiation pressure.Although the ZVC shows that the partile is energetially able to esape, thegrain su�ers a more drasti fate.
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Figure 4.4 The time histories of some of the osulating orbital elements for thepath displayed in Fig. 4.3. Plotted are the orbit's semimajor axis, its eentriity,and its inlination. These urves are alulated by integrating the equation ofmotion, and transforming the resulting veloity v and position r into orbitalelements (Danby 1988). Note that the partile swithes from prograde (i = 0o)to retrograde (i = 180o) and bak again periodially eah time the eentriityreahes unity.
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from the asteroid; thus the very fat that the orbit survives so long warns us ofthe dangers of taking the orbit-averaged equations too seriously.The history of the osulating elements in Fig. 4.4 is also enlightening, espe-ially when disussed along with the evolution of the atual orbit. After a singleprograde loop, the orbit swithes to retrograde as the eentriity approahes one;this �rst ours very near the upper part of the zero-veloity surfae in Fig. 4.3.A hange in inlinations from i = 0o to i = 180o or vie-versa an, but neednot, involve losely approahing the ZVC; this only ours if the partile is atthe apoenter of a retilinear ellipse (e = 1). Indeed, Fig. 4.3 has examples oftransitions at varying distanes from the ZVC. The partile then dives in for alose approah to the asteroid whih ours at the small dip in the enter of theeentriity peak. The small redution in eentriity, whih manifests itself inless than an orbital period, is enough to allow the partile to suessfully negoti-ate the treaherous region. The partile subsequently moves outward toward thelower part of the ZVC, �nally returning to its prograde state to repeat the yleanew. The entire yle, in whih the eentriity hanges from zero to unity andbak to zero, takes only four orbits of the partile around the asteroid; learly anorbit-averaging tehnique is invalid here! The inadequay of orbit-averaging analso be seen in the semimajor axis history of Fig. 4.4. Orbit-averaging of bothradiation pressure and the tidal aeleration lead to preditions that the semima-jor axis, a, will remain onstant on timesales larger than the partile's orbitalperiod; these preditions rely on the fat that the orbital elements, a inluded,do not hange muh during a single orbit. Large variations in the semimajor axisshould, therefore, not our on any timesale; the extent to whih this is untrueis a measure of the validity of the averaging approximation.
4.4.2 Retrograde OrbitsFigure 4.5 is the retrograde ounterpart to Fig. 4.2. Qualitatively the two plots arevery similar sine radiation pressure ats analogously on prograde and retrogradeorbits as will be seen below; di�erenes in the plots an be explained by thee�ets of the Coriolis aeleration. As in Fig. 4.2, orbits in Fig. 4.5 are segregatedinto three distint regions ontaining bound, esape, and rash orbits. For weakradiation pressure, suh as that ating on 10-mm partiles, irular orbits arestable out to about the Hill sphere in aordane with the results of Chapter 2.The Coriolis aeleration exerts a powerful inuene on these orbits, keeping thembound at twie the distane of the largest prograde orbits. Retrograde orbits,like their prograde ounterparts, experiene a slight degradation of stability aspartile sizes are dereased; but, as with prograde orbits, an abrupt transitionours for 1-mm partiles: half of the bound orbits are replaed by those thatrash! The rapid erosion of stability is ontinued for grains � 0:5mm in size forwhih bound orbits disappear entirely; omparing Figs. 4.2 and 4.5, we see that
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Figure 4.5 The fate of about 300 partiles of di�erent radii started about Am-phitrite on retrograde irular orbits of various initial sizes; solid irles, openirles, and small dots orrespond to bound orbits, rash orbits, and esape or-bits, respetively. The olumns of As in Fig. 4.2, orbits sharing a ommon fateluster into three distint regions; bound orbits rapidly disappear as partile sizesare dereased to 1mm and then to � 0:5mm. For partiles smaller than 0:1mm,the di�erenes between Fig. 4.2 and this plot are slight.
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the disappearane of bound orbits in eah ase ours for partiles of the samesize. As radiation pressure is inreased, rash orbits ontinue to yield to esapeorbits. Comparing with Fig. 4.2 again, we �nd a few extra rash orbits in theretrograde ase and these rapidly disappear as the strength of radiation pressureinreases; the extra impat orbits an also be attributed to Coriolis e�ets.Figure 4.6 shows the most distant bound orbit in the 1-mm olumn of Fig. 4.5;its initial onditions are appropriate for a grain started at 180RA from Amphitrite.Although we show only the �rst eentriity yle, whih ours over about anasteroid year, this orbit was in fat followed for �ve iruits of the asteroid aroundthe Sun. The eentriity behavior is similar to that of the prograde orbits; itinreases to a value near one, remains at as the \ellipses" in Fig. 4.6 move slowlylokwise, then dereases bak to zero as the partile returns roughly to its initialposition. Beause the orbit is almost periodi, subsequent evolution repeats thatdesribed above although the \ellipses" do not fall exatly atop those alreadypresent. In its �ve-year tour, the partile survives multiple lose approahes, thelosest a mere 1:9RA above the asteroid's surfae! All impat orbits for 1-mmpartiles in Fig. 4.5 have the same sunwardly direted petals and general hara-teristis as the orbit in Fig. 4.6; in the former ases, however, the lose approahesdip below 1RA abruptly utting short the orbital evolution! As with the progradeorbits disussed above, most of these retrograde orbits impat midway throughtheir �rst eentriity osillation, although three of the �ve furthest survive atleast one yle for reasons similar to those disussed in Setion 4.4.1. Movingloser to the asteroid along the 1-millimeter olumn, we �nd that bound orbitshave progressively more distant lose approahes (orresponding to smaller een-triities), although again the orbital shapes are reminisent of Fig. 4.6. Finally,we note that all bound orbits, Fig. 4.6 inluded, are purely retrograde; furtherfrom the asteroid, however, we do enounter orbits that swith between the pro-grade and retrograde states. These outer orbits have short lifetimes sine theyinvariably rash while traversing the often fatal e = 1 regime.
4.4.3 Inlined OrbitsThe situation for inlined orbits (here the term inlined will refer to orbits withi = 90o) is somewhat di�erent than for planar ones. In the orbit-averaged equa-tions of Burns et al. (1979) and Chamberlain (1979) there is a os i term thatis small for inlinations near 90o but equal to �1 for planar orbits. The hangein this term reets simple di�erenes in the orbital geometry whih we willillustrate with disussion of a hypothetial irular orbit around the asteroid.Imagine that a grain is started on a irular orbit fairly lose to the asteroidsuh that its period is muh less than that of the asteroid around the Sun. Ifthe grain is plaed on either a prograde or a retrograde orbit, the angle betweenthe Sun and the partile as measured from the asteroid will irulate between
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Figure 4.6 A 1-mm partile on an initially irular retrograde path starting at180RA; symbols are those de�ned in Fig. 4.3's aption. Although the initialonditions for Figs. 4.3 and this �gure are quite similar, the orbital paths havea very di�erent appearane. The zero-veloity urve for this initial ondition isopen even wider than the one in Fig. 4.3; the fat that the partile does notesape is an example of the poor onstraint imposed by retrograde ZVCs. Onlythe �rst several loops of this orbit are shown, but subsequent motion repeats thepattern shown here.
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0o and 360o every synodi period; reall that the synodi period is the period ofthe partile with respet to the Sun. For a path inlined 90o to the asteroid'sorbital plane, however, the situation is quite di�erent. If the partile is startedon the positive x-axis, then after one quarter of an asteroid orbit, the diretionto the Sun is everywhere perpendiular to our hypothetial unperturbed irularorbit; at this point, the angle whih irulates for the planar ases is onstant!Clearly radiation pressure will at di�erently on inlined orbits than on planarones. Considerations of the averaged equations of motion and the fat that a per-pendiular perturbing fore does not a�et the orbital eentriity (Danby 1988)lead us to the onlusion that driving orbital eentriities to large values will bemore diÆult in the inlined ase.Figure 4.7 veri�es these ideas; bound orbits exist for partiles approximately�ve times smaller than that where the last bound planar orbits are seen. Thesebound orbits in the transition region disappear even more abruptly than in theplanar ase; in the olumn for � 0.2-mm partiles, stable orbits abound andthere are no rash orbits while in the next olumn to the left there are no boundones! Impat orbits sprinkled throughout the region of weak radiation pressureare probably not assoiated with that fore at all; reall the large number of suhorbits for inlinations in the near 90o range for our integrations of the purelygravitational three-body problem (Figs. 2.15 and 3.3). Disounting these exep-tions, the bound, esape and rash orbits separate niely into three regions asbefore. In Fig. 4.7, as in the planar �gures, the right side of the plot smoothlyapproahes results found in Fig. 2.15 in the absene of radiation pressure. Forvery small partiles that are signi�antly inuened by radiation pressure, resultsare in aordane with the planar ases; there are a few more impat orbits thanin the analogous olumns in Fig. 4.2 and a few less than in Fig. 4.9 as ouldbe predited by onsidering the Coriolis aeleration. In this region of all three�gures, orbits rash extremely rapidly; few survive more than the time neessaryto inrease the eentriity to one.
4.5 Analyti Considerations4.5.1 Bound-Esape DivisionFor eah of the orbital lasses (prograde, retrograde, inlined) desribed above,we have found that { to a greater or lesser degree { partiles with similar har-ateristis (partile radius, initial orbit size) share similar fates, and that theboundaries between these fates are sharply de�ned. This suggests that the out-omes for suh partiles are being determined by simple proesses; hene we nowseek the mehanisms that segregate orbits into the three separate regions notedabove. In this setion and the ones to follow, we disuss the fators that ause apartile to esape and to rash, and we develop analytial expressions that de�ne
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Figure 4.7 The fate of approximately 200 partiles of di�erent sizes started onirular paths initially inlined at 90o; solid irles, open irles, and small dotsorrespond to bound orbits, rash orbits, and esape orbits, respetively. Theolumns of These orbits jealously guard their stability until partile sizes areredued to 0.1mm; reasons for this are disussed in the text. Crash orbits in theupper right of the diagram are of the type seen in Fig. 3.5 and are aused bythe tidal fore; those to the lower left, however, are due to radiation pressure.Comparing this �gure to Figs. 4.2 and 4.5, we see few di�erenes for partilessmaller than 0.1mm.
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the divisions separating these areas from eah other and from the region of boundorbits.We know { by analogy with the purely gravitational ase { that, if orbits liewithin losed ZVCs, they will remain bound. Hene, as a riterion for esape,the opening of the zero-veloity urves will prove to be useful, at least in theprograde ase. To onnet ZVCs to the orbits disussed above, we substitute theinitial onditions, y = z = 0 and the initial irular veloity ondition,

v2rot = �� 3dBE�1=2 os i� dBE�2 � 3dBE sin2 i; (4.8)into Eq. (4.3) to obtain:
CBE = 3dBE + 2(3dBE)1=2 os i+ 2d2BE + 6dBE ; (4.9)where CBE is the Jaobi onstant for whih the zero-veloity urves �rst openand dBE is the ritial distane at whih we expet the bound-esape division toour. We solve this equation numerially in eah of the three inlination asesand plot part of the solution urve in Figs. 4.8, 4.9, and 4.10 (dashed line). Ifextended to smaller partiles sizes, the urve would also separate the rash orbitsthat had the potential to esape from those that did not. Although the theoretialresults in all three inlination ases orretly predit that orbital stability is lostas partile sizes are dereased, the urves only sueed in �tting the numerialresults for prograde orbits; the math steadily worsens as the inlination is in-reased. The reason for this is, of ourse, that the derivation of Eq. (4.9) ignoresthe all-important Coriolis aeleration. Not surprisingly, the radial portions ofthe negleted Coriolis term, whih has a os i dependene, provides inreasingstability as the inlination is raised from i = 0o to i = 180o. The situation isompliated by non-radial parts of the Coriolis aeleration, with a sin i depen-dene, whih tend to destabilize orbits. The two e�ets ombine to explain whythe division between bound and esape orbits, as numerially obtained, oursat a similar distane in the prograde and i = 90o ases but muh further out forretrograde orbits (Setion 2.6.1).

4.5.2 Bound-Crash DivisionPartiles risk ollision with the asteroid one their orbital eentriities beome solarge that at perienter their orbits piere the asteroid's surfae: rp = a(1� e) <RA. If we neglet the tidal aeleration { an approximation that is ertainly validfor strong radiation pressure { we an apply Mignard's expression for the een-triity produed by radiation pressure (1982, his Eq. 28) to determine when animpat an our. More preisely, the tidal aeleration an be ignored in deter-mining when esapes will our for orbits with initial semimajor axes<� rH=3 sine
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Figure 4.8 Prograde orbits. Same as Fig. 4.2 but now inluding theoretial linesdividing bound, esape, and rash orbits. The dashed line, disussed in Setion4.5.1, presents a riterion that should separate partiles that are bound fromthose that esape. Similarly, the heavy and lightweight solid urves are thosethat our theory predits for the bound-rash (Setion 4.5.2) and rash-esape(Setion 4.5.3) divisions, respetively.



80

Figure 4.9 Retrograde orbits. Same as Fig. 4.5 with theoretial lines dividingbound, esape, and rash orbits. See Fig. 4.8 and the text for an explanation ofthe three urves.
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Figure 4.10 Inlined orbits. Same as Fig. 4.7 with theoretial lines dividingbound, esape, and rash orbits. See Fig. 4.8 and the text for an explanation ofthe three urves.
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tides ause only small eentriity osillations in this regime. Furthermore, fororbits muh larger than this, the orbit-averaging proedure employed by Mignard(1982) is no longer valid. For initially irular prograde orbits, Mignard's resultfor the variation of eentriity an be rewritten in the useful form

(1� e2)1=2 = n2��2 + n2� + �2�2 + n2� os[(�2 + n2�)1=2t℄; (4.10)where � is related to � via the equations: � = 3=(2�0), and �0 is Chamberlain's(1979) expression for the time it takes radiation pressure to produe the irularveloity, i.e., �0 = (GMA=r)1=2=(�GM�=R2). Loosely, � is the strength of the so-lar radiation pressure relative to the asteroid's loal gravity. For weak radiationpressure (� << 1), the eentriity simply varies with the solar period, whilefor strong radiation pressure e varies more rapidly. Although mathematiallyEq. (4.10) predits a omplex eentriity when the right-hand side of the equa-tion is less than zero (i.e., when � > n� and os < 0), this does not atually ourin the orbit-averaged perturbation equations from whih Eq. (4.10) is derived be-ause e is prevented from exeeding unity by 1 � e2 terms in these equations.What, then, really happens as e approahes one? There are two possibilities: thepartile either an ollide with the asteroid, preventing further evolution of theorbital elements, or, for longer-lived orbits, a prograde-to-retrograde transitionan take plae. Beause Mignard's solution is restrited to prograde orbits, itis unable to predit the prograde-to-retrograde transition and instead suggests aomplex eentriity.It is not diÆult to repeat Mignard's derivation for retrograde orbits. Webegin with the orbit-averaged equations of motion and onsider the planar limiti = 180o (instead of the i = 0o taken by Mignard). With an appropriate hoieof variables, the form of the resulting pair of equations an be made idential tothose for the prograde ase; spei�ally, we �nd that Eq. (4.10) applies equallywell to retrograde orbits. This is a single example of a more general result: ifthe orbital elements, evolving under some perturbation fore, are taken to remainonstant over a single sidereal period, then the resulting orbit-averaged equationswill yield similar histories for prograde and retrograde orbits. Aording to thismodel of the e�ets of radiation pressure, therefore, there should be no di�erenein the fate of initially irular prograde and retrograde orbits sine Eq. (4.10)governs the evolution of both. This is true, of ourse, only as long as the partileremains lose to the asteroid where the Coriolis aeleration, whih enapsulatesthe di�erenes between prograde and retrograde orbits, an be ignored. Furtherfrom the asteroid, di�erenes in the Coriolis aeleration manifest themselves inthe inreased stability of the retrograde partiles noted in the disussion of Figs.4.2 and 4.5. In these regions (e.g., 1-mm rash orbits), Eq. (4.10) does not stritlyapply.A ollision with the asteroid an our when the perienter of the osulating
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orbit dips below the asteroid's surfae. For the large orbits under disussion,this requires an eentriity that is nearly unity. Aordingly, we solve for theminimum � that allows e = 1 in Eq. (4.10); although e annot exeed one,it must neessarily attain this value during a prograde-to-retrograde transition.The ollision riterion is � = n�, whih an be reast as

dBC = 4272 ; (4.11)where dBC is the ritial distane at whih the division between bound and rashorbits is loated. Furthermore, near this division where, by de�nition, � � n�, weexpet that ollisions will our in half the period given by Eq. (4.10), i.e., 2�3=2 �0:35 asteroid years. This simple estimate is in very good agreement with ourobservations for most of the prograde orbits disussed in Setion 4.4.1. Equation(4.11) is also plotted on eah of Figs. 4.8, 4.9, and 4.10 as a solid, heavyweighturve. We �nd reasonable agreement in the prograde and retrograde �gures, buta rather poor math for the inlined orbits. The fat that inlined orbits are moreresistant to radiation pressure-indued impats should not be surprising in light ofthe disussion in Setion 4.4.3. For 1-mm partiles around Amphitrite where thelimits of the theory are strethed the most, we see that bound retrograde orbitsextend further from the asteroid than expeted (Fig. 4.9), while bound progradeorbits extend to distanes less than predited (Fig. 4.8). These di�erenes, whihare due to the negleted Coriolis aeleration, only appear for large orbits andadd stability to retrograde orbits as disussed above.For � 0.5-mm partiles, bound orbits do not extend as far as predited in boththe prograde and retrograde ases. This is due to the �nite size of the asteroidwhih allows impats to our for eentriities less than one. This e�et anbe derived from Eq. (4.10) by putting e = erash, where erash = 1 � RA=dBC .Setting the osine to �1, and solving for �=n� as before, we �nd:
dBC = 4f2(erash)272 ; (4.12)where f(erash) is given by

f(erash) = 1� (1� e2rash) 12erash ; (4.13)and f2(1) = 1 so that Eq. (4.11) is reovered. The solution of Eqs. (4.12) and(4.13) is ompliated sine erash is a funtion of dBC ; in general, the equationmust be numerially solved. In pratie, however, an iterative proedure in whihan initial value of dBC is substituted into the right-hand side of Eq. (4.12) toompute an updated value, onverges to a reasonable estimate relatively rapidly.As an example, onsider the bound-rash division for � 0.5-mm partiles whihEq. (4.11) predits will our at about thirty asteroid radii. For this distane, a
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ollision takes plae when e = erash = 29=30 � 0:97 for whih f2(0:97) � 0:59!Thus instead of ourring at 30 asteroid radii, a single iteration of Eq. (4.12)predits that the division should happen at about 18 asteroid radii; a few moreiterations show that the division is atually nearer to 14RA, whih is in goodagreement with Figs. 4.8 and 4.9. The surprisingly large hange in f2(erash) forerash <� 1 has its origins in the fat that radiation pressure takes a long time tofurther inrease the eentriity of an already highly-eentri orbit.To make our results more useful, we instead solve for the minimum-sized par-tile found in an asteroid's neighborhood by applying Eq. (4.12), and employingEqs. (4.1) and (4.4) to return to more familiar dimensional units. We �nd thatpartiles satisfying the following inequality� rg1 m� <� � 1120f(erash)�� r1RA�1=2�MAmphitriteMAsteroid �1=3�2:55AUa �1=2�Qpr1:0 ��2:38 g m�3� � (4.14)are removed from irum-asteroidal orbit. This formula is appliable only forstrong radiation pressure where the bound-rash division exists (see Figs. 4.8through 4.10), roughly where  >� 1. We �nd for Gaspra that, outside of 10RA,no partiles with rg <� 0:45 m should be found and at Galileo's y-by distaneof � 200RA, all partiles with rg <� 1:4 m should be absent. Subsequent to thesubmission of this work (Hamilton and Burns 1992), Gr�un et al. (1992) reportedthat Galileo's dust instrument, sensitive to partiles larger than 0:1�m, detetedno hits during its y-by of Gaspra. There were also no detetions during the Iday-by (E. Gr�un 1993, private ommuniation).
4.5.3 Crash-Esape DivisionAlthough the riteria desribed in the two preeding setions de�ne the mostinteresting boundaries, namely those that separate regions where partiles anfreely orbit from regions where they annot, we now derive, for ompleteness, anapproximate argument to desribe the urve separating orbits that rash fromthose that esape. Unlike the boundaries disussed in the previous setions, herethere is no nie theory to appeal to so we make the following somewhat arbitraryhoie. We say that if a highly-perturbed partile an omplete a single orbitaround the asteroid, its eventual fate will be to rash into the asteroid. Whilethis is not always true (some orbits near the atual boundary omplete a fewloops before esaping), it does apply to most of our numerial results, espeiallythose for strong radiation pressure. We approximate further by saying that ifour partile has enough \energy" to omplete a quarter of a hypothetial irularorbit, it will omplete a full loop around the asteroid and hene will eventuallyrash. This statement is ertainly approximate sine the path atually followed
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by the partile is ertainly not irular; a look at the shape of the orbits in Figs.4.3 and 4.6, however, shows that the approximation is fairly reasonable. In anyase, partiles with signi�antly less energy have no hope of swinging around theasteroid, while those with more \energy" should be able to. Mathematially, weset the right-hand side of Eq. (4.3), evaluated at (x; y; z) = (dCE; 0; 0) with vrotas given by Eq. (4.8), equal to the same expression evaluated at (0; dCE; 0) withvrot = 0. The result is:3dCE = 2(3dCE)1=2 os i+ 2d2CE + 6dCE ; (4.15)where dCE is the distane to the division between rash and esape orbits. Wenumerially solve Eq. (4.15) to obtain the last de�ning urve whih is plotted inFigs. 4.8, 4.9, and 4.10 as a solid, lightweight urve. This approximate divisionagrees remarkably well with the atual boundary for strong radiation pressure,deviating signi�antly only for large orbits along whih the negleted tidal andCoriolis aelerations are important.
4.6 DisussionThe above alulations and those of other groups have been arried out not somuh to solve new elestial mehanis problems but rather to address a pra-tial question: will the irum-asteroidal environment be hazardous to a y-byspaeraft? Aordingly, a reader might antiipate that we would onlude thishapter with a probability alulation determining the odds of �nding debris ofvarious types in the asteroid's neighborhood. Unfortunately suh alulations arefraught with unertainty sine they involve ompliated supply and loss meh-anisms, many of whih are poorly onstrained. We therefore ontent ourselveswith a qualitative desription of this problem, summarizing possible supply andloss proesses.As pointed out in Chapter 2, by Chauvineau and Mignard (1990a), and bymany others, the distane within whih o-planar prograde material an remaintrapped for short periods about an asteroid irling the Sun is roughly half theHill radius; for o-planar retrograde partiles the size inreases to about a fullHill radius. In extending these ideas to three dimensions, we showed in Setion2.6.2 that bound out-of-plane material an only rise to about two-thirds of aHill radius; we used these results to de�ne a stability surfae within whih boundorbiting material might be found. This surfae overestimates the zone of stability,however, beause nearly all unmodeled proesses, some of whih operate on shorttimesales and others that take ages, are destabilizing. The former dominate,sine they will overwhelm ontinuous supply mehanisms, whih at on longertimesales. Aordingly, the fous of Chapters 2, 3, and this one has been to
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disuss the e�ets that ause hanges to the stability of orbits in time intervalsomparable to the asteroid's orbital period (f. Burns and Hamilton 1991).In assessing the importane of an asteroid's elliptial orbit on the size of thestability zone, we disovered that the dimensions of the zone are roughly pro-portional to the minimum asteroid-Sun distane. Sine the e�ets of an elliptiorbit an be quanti�ed, the safety of a passing spaeraft an be assured simplyby avoiding an asteroid's alulated stability zone. We also found that radiationpressure was remarkably e�etive in sweeping small partiles rapidly out of theirum-asteroidal environment. These grains would normally be expeted to bethe most numerous and, sine the largest of them an severely damage a spae-raft, they pose the greatest threat to a y-by mission. Sine small grains areremoved muh more rapidly than they are resupplied, however, our results de�nea region of spae in whih small orbiting debris will not be found.Many loss mehanisms operate over muh longer timesales. In this ategorywe inlude the long-term e�et of the gravitational tugs of Jupiter and the otherplanets (Chauvineau and Mignard 1990b) as well as lose approahes of otherasteroids whih an disrupt a binary pair (Chauvineau et al. 1991). These e�etsause partiles within the stability zone de�ned above to esape, but their eÆ-ieny is ritially dependent on the unknown rate at whih supply mehanismspopulate the stability zone. Other long-term loss proesses { notably Poynting-Robertson drag, atastrophi fragmentation and sputtering { at most e�etivelyon small grains. These grains are more eÆiently removed by radiation pressure;ollisions, for example, set lifetimes at � 104 � 105 years for partiles betweentenths of millimeters and a few entimeters in radius while radiation pressuretypially removes suh grains in only a few years. The important point to makeis that all of these loss proesses ause the atual region of spae �lled by stableorbits to be smaller than a simple irular three-body model would suggest.Several mehanisms (Weidenshilling et al. 1989, Burns and Hamilton 1991)might supply irum-asteroidal satellites or debris: i) primordial o-aretionproesses like those that are believed to have produed most planetary satellites;ii) formation in a nearly atastrophi ollision like the event thought to havegenerated Earth's Moon; iii) apture of interplanetary debris within the asteroid'sstability zone; iv) a ontinuous ux of impat ejeta leaking o� the asteroid itselfas the latter is bombarded by mirometeoroids; and v) similar ejeta leaving anasteroidal \feeder" satellite. The last of these is thought to be the most feasiblesupplier of irum-asteroidal debris, sine a signi�ant fration of the ejeta anremain trapped in this ase in ontrast to mehanism iv). Unfortunately it is alsothe least alulable!Sine none of these proesses an be quanti�ed well and sine de�nitive ob-servations of life-threatening debris an not be made from the ground, missionplanners have been quite anxious about where in the viinity of an asteroid aspaeraft ould safely y. Clearly this is a very diÆult engineering question.



87
Nonetheless, within the assumptions of the models, the reent researh sum-marized above shows that regions beyond a few hundred asteroid radii will notontain stably trapped partiles and that small partiles will be entirely absentfrom the asteroid's viinity. In addition, it is enouraging that no shemes seemapable of populating the most distant stable orbits. Nevertheless, when enteringunknown territory, one always has a nagging worry that something was ignored,perhaps a new mehanism to stabilize orbits or one to eÆiently generate distantmaterial. For that reason this Ph.D. andidate, at least, has greeted the un-sathed ight of the Galileo spaeraft past 951 Gaspra and 243 Ida, at distanesof � 230RA and � 170RA, respetively, with sighs of immense relief.



Chapter 5
Orbital Perturbation Theory1
5.1 General Remarks on Dust and OrbitalPerturbation TheoryAlthough dust partiles ontain only a tiny fration of the mass in orbit about aplanet, they far outnumber their marosopi ompanions. In planetary systemsthese tiny motes are ubiquitous, both interspersed with marosopi bodies in op-tially thik rings and organized into tenuous strutures of their own. Sensitivedetetors aboard spaeraft have disovered dust strewn throughout planetarysystems, albeit in quantities too faint to be visible (Gurnett et al. 1983, 1987,1991). Clearly the overall distribution of dust in irumplanetary orbits is om-plex; yet the distribution, and the fat that it an indiate the presene of larger,perhaps unseen, soure bodies is of interest to diverse groups of researhers (seeChapter 1). A neessary prerequisite for obtaining suh knowledge is a goodunderstanding of the orbital dynamis of an individual dust grain.Miron-sized dust grains moving along irumplanetary orbits are subjet tostrong non-gravitational perturbations due to sattering of solar photons and dueto Lorentz fores arising from the planet's rotating magneti �eld. The e�et ofthese perturbations on an orbiting dust partile an be determined by inludingthe perturbation fores in the left-hand side of Newton's seond law F = ma(see Chapter 4). In general this equation annot be solved analytially, so we arefored to resort to approximate or numerial methods (see Chapters 2{4, Horanyiet al. 1992, Sha�er and Burns 1992 among others). In many ases, however, weare interested not in the detailed information of how a partile's position andveloity hange with time but only in how the harater of its orbit varies. Inthese ases, the six osulating orbital elements (a; e; i;
,!, and �) de�ned in Figs.1This hapter is based on the paper: Hamilton, D.P. (1993), Motion of dust in a planetarymagnetosphere: Orbit-averaged equations for oblateness, eletromagneti, and radiation foreswith appliation to Saturn's E ring. Iarus 101, 244{264 [opyright 1993 by Aademi Press,In.℄
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5.1 and 5.2 are partiularly useful. Other hoies for these elements, espeiallythe sixth, are also possible (Danby 1988, p. 201). We shall often use M � nt;the mean anomaly, where n = (GMp=a3)1=2 is the partile's mean motion, t isthe time measured from the moment of perienter passage, G is the gravitationalonstant, and Mp is the planetary mass.If the perturbation fores are small ompared to the planet's gravitationalattration, the �rst �ve osulating elements will hange slowly over timesalesmuh longer than the partile's orbital period. Therein lies the primary advantageof the orbital elements: beause they are onneted to the geometry of the orbitand beause they vary slowly with time, the osulating elements allow a diretvisualization of the orbital history of a perturbed body in a way that far surpassesthat possible with a set of positions and veloities. Take, for example, the ase ofan orbit around an oblate planet whih we will disuss below in Setion 5.2. It iswell known that the orbit-averaged solution to this problem is, to high auray,simply a preessing ellipse (Danby 1988, p. 345). The orbit retains its size, shape,and inlination o� the equatorial plane while its node regresses and its perienterpreesses, eah at a onstant rate. By alulating these rates from equations givenbelow and using Figs. 5.1 and 5.2, one an easily piture the resulting orbitalevolution. Attaining the same piture from positions and veloities as funtionsof time requires more omputation and onsiderably greater insight!We note that, tehnially, the osulating elements di�er slightly from geo-metri elements whih desribe the true shape of the orbit; these deviations areof order the dimensionless ratio (�) of the perturbing fore to gravity. For anoblate planet, therefore, the disrepanies are of order J2 (see Greenberg 1981,Borderies and Longaretti 1987). These di�erenes are espeially important whentrue eentriities and inlinations are small ompared to � (e.g., the geometriallyirular orbit disussed by Greenberg, 1981, has a small osulating eentriityand appears as if it is always at its osulating perienter), and when other per-turbations do not strongly a�et an element. Similarly, the rate of hange of themean anomaly is unequal to the mean motion for perturbed orbits; the devia-tions are of order � and are due both to real hanges in a partile's speed as wellas di�erenes between the osulating and geometri elements. Beause we areprimarily interested in how a partile's orbit evolves, we will not use the meananomaly perturbations in this hapter, but merely inlude them in the equationsto follow for ompleteness.The fat that, for modest perturbations, the osulating orbital elements varyslowly in time is useful both numerially and analytially beause it allows thee�ets of a perturbation to be averaged over a single (assumed onstant) Keple-rian orbit. The resulting averaged expressions desribe how the osulating orbitalelements hange in time and are aurate to �rst-order in �. In the following se-tions we treat the strongest perturbation fores ating on lose irumplanetarydust grains { higher-order gravity, radiation pressure, and the eletromagneti
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Figure 5.1 View of an elliptial orbit in the orbital plane. Three of the orbitalelements { the semimajor axis a, eentriity e, and true anomaly � { are depited.Simple geometry shows that the orbit enter is o�set from the planet by a distaneae, the semiminor axis is given by b = a(1� e2)1=2 and the semi-latus retum byl = a(1� e2).
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Figure 5.2 Three additional orbital elements that de�ne the orientation of anelliptial orbit relative to a �xed plane and a referene diretion in that plane.The longitude of the asending node, 
, measures the angle from the referenediretion to the point where the orbit's plane intersets the referene plane; theargument of perienter, !, de�nes the angle between that intersetion point andperienter (the losest approah of the orbit to the entral body); and the inlina-tion, i; measures the angle between the orbital and referene planes. Inlinationis de�ned suh that 0o � i � 180o.
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fore { and derive the appropriate orbit-averaged equations.
5.2 Higher-Order GravityTreatments of the orbital perturbations arising from non-spherial terms in aplanet's gravitational �eld an be found in many texts (e.g., Danby 1988), butwe inlude a short disussion of them in this setion both for ompleteness andto provide a simple example of the orbit-averaging proess that an be omparedwith the more ompliated ones to follow.Beause a planet's spin is responsible for most of the distortion of its gravity�eld, the �eld an be well represented by adding an axially symmetri perturbingpotential

VGR = GMpr 1Xj=2 Jj�Rpr �jPj(os �); (5.1)to the standard point soure potential; the perturbing fore is obtained by takingthe negative gradient: FGR = �mgrVGR: Throughout this hapter the subsripts\p" and \g" stand for \planet" and \grain," respetively; here Rp is the planet'sradius and mg is the mass of the dust grain. The Pj(x) are Legendre polynomialsand the Jj are dimensionless oeÆients that an be evaluated for a partiularplanet to desribe its gravity �eld.To derive the �rst-order, orbit-averaged equations, we rewrite the potentialEq. (5.1) in terms of the orbital elements and average it over time to obtainthe negative of the disturbing funtion. Inserting the disturbing funtion intothe potential form of the planetary equations (Danby 1988, p. 336) we �nd thefollowing equations for the variation of the elements:�dadt�J2 = 0; (5.2)�dedt�J2 = 0; (5.3)�didt�J2 = 0; (5.4)�d
dt �J2 = � 3nJ2R2p2a2(1� e2)2 os i; (5.5)�d!dt �J2 = 3nJ2R2p2a2(1� e2)2�2� 52 sin2 i�; (5.6)�dMdt � n�J2 = 3nJ2R2p2a2(1� e2)3=2�1� 32 sin2 i�; (5.7)
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where the angular brakets denote orbit-averaged quantities (f. Danby 1988, p.347). Tehnially, eah of the orbital elements on the right-hand side of Eqs.(5.2{5.7) should be enased in angled brakets as we ignore their short-periodutuations, but these brakets will be omitted for larity sine we refer only tothe averaged elements throughout this hapter.Notie that Eqs. (5.2{5.7) are trivially integrable even though the full problemis not (Kozai 1959). The �rst three expressions imply that the elements a; e, andi are onstant and, onsequently, the right-hand sides of the �nal three equationsare also �xed. Thus the angles 
 and ! irulate, having values that hangelinearly in time. Sine the irulation times are � (a=Rp)2=J2 times longer thanthe orbital period, the solution to Eqs. (5.2{5.6) is simply a slowly rotatingellipse.The �nal equation merely expresses the average rate at whih a partile om-pletes a single osulating orbit from perienter to perienter; the rate di�ersslightly from the mean motion both beause the partile's average angular speedis hanged and beause the position of perienter slowly shifts. For equatorialorbits, the right-hand side of Eq. (5.7) is positive and the partile ompletes itsradial perienter-to-perienter osillation slightly faster than its unperturbed Ke-plerian ounterpart. This is an expeted result sine, in the equatorial plane,planetary oblateness augments the inward pull of point-soure gravity; the in-reased fore e�etively raises the osillator's \spring onstant" and hene itsfrequeny.
5.3 Radiation PressureFor miron-sized grains in irumplanetary orbit, solar radiation pressure is astrong perturber. In its simplest form, radiation pressure imparts a fore on agrain given by:

FRP = ��GM�R2 ŝ; (5.8)where M� is the solar mass, R is the Sun-planet distane, ŝ is a unit vetorpointing from the planet toward the Sun, and � is the dimensionless ratio of theradiation fore to solar gravity given by Eq. 4.1.This simple expression ignores the anisotropy of re-radiated photons (Poynting-Robertson drag), grain rotation (Yarkovsky e�et), the planetary shadow, andompliations arising from the rotation and �nite angular size of the Sun. Thesee�ets are quite small ompared to the main fore of radiation pressure andan usually be negleted in a �rst approximation. Dissipative fores, suh asPoynting-Robertson drag, however, an be important even if they produe slowhanges beause they a�et the semimajor axis, an element unperturbed by diretradiation pressure. Similarly, e�ets of the planet's shadow makes it possible for
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radiation pressure to alter the semimajor axis of an orbit (Mignard 1984, Horanyiand Burns 1991). Over the short times onsidered here, however, the weak dragfores annot ause appreiable orbital evolution; and we an ignore the shadowe�ets sine these are small and periodi.Orbit-averaged solutions to a partile moving around a spherial planet sub-jet to that planet's gravity and solar radiation pressure have been derived byseveral authors, inluding Burns et al. (1979) and Chamberlain (1979), both ofwhom used Gauss' form of Lagrange's planetary equations for a fore onstantin magnitude and diretion, and Mignard (1982), who used a disturbing funtionapproah and inluded the e�ets of solar motion. All of the above authors didtheir analysis in the plane de�ned by the orbital motion of the planet aroundthe Sun (hereafter alled the elipti plane2) and measured their inlinationsfrom that plane. In the ase of motion about an oblate planet, however, theplanet's equatorial plane is also important - this is espeially true sine mostsoures of irumplanetary dust (planetary rings and inner satellites) reside nearthis plane. It is natural, therefore, to seek an orbit-averaged solution to the or-bital evolution aused by radiation pressure that an be expressed in the planet'sequatorial plane; this is equivalent to adding a non-zero planetary obliquity, ,to the previously derived solutions. In this setion we disuss two approahes toobtaining equatorial equations and then we derive analytial expressions valid forall obliquities.One approah, motivated by the fat that orbit-averaged equations valid inthe elipti plane are already available (Mignard 1982), is to simply translatethese equations into the equatorial plane; this task an only be aomplished ifthe orbital elements themselves an be onverted. Sine the new set of elementsdesribe the same elliptial orbit from a di�erent referene plane, only the angles(i;
, and !) that de�ne the orbit's orientation relative to the plane will be altered(Fig. 5.2) - the other elements (a; e; and �) will be idential in both frames. Weseek, therefore, funtions that relate the new orientation angles to the old. Thesean be obtained either by simple rotations or from spherial trigonometry. As seenfrom the planet's enter, the equatorial plane, the elipti plane, and a partile'sorbital path all appear as great irles on the sky (Fig. 5.3); for simpliity we havehosen to measure eah orbital node from the asending node of the elipti on theequatorial plane. The spherial triangle formed by the intersetions of these greatirles impliitly de�ne the equatorial elements in terms of the elipti elements.Unfortunately, the expressions resulting from translating to equatorial elementsare umbersome enough to defeat the main purpose of orbit-averaging whih is toobtain simple equations for analyti work. Aordingly, we try a di�erent tak.Sine we hope to ombine the e�ets of radiation pressure with other pertur-bations, we need orbit-averaged expressions referened to the equatorial plane2Here we use the term elipti somewhat loosely to avoid onfusion between the planet andpartile orbital planes. Stritly speaking, the elipti refers only to Earth's orbital plane.



95

Figure 5.3 The planet's equatorial plane, the elipti plane, and the dust grain'sorbital plane, eah as projeted onto the sky from the planet's enter. Elementsdesribing the orientation of the grain's orbital plane relative to either of thetwo referene planes are shown; in eah ase, the inertial referene diretion isthe asending node of the elipti on the equatorial plane. Primed quantitiesare elements referened to the elipti plane, unprimed ones are measured along(or from) the equatorial plane, and  is the planet's obliquity. The spherialtriangle formed by the intersetions of these three planes impliitly de�ne one setof elements in terms of the other [(i;
; !)! (i0;
0; !0)℄.



96
and to an inertial diretion. We hoose a right-hand oordinate system enteredon the planet with x̂ pointing to the asending node of the elipti on the equato-rial plane (Fig. 5.3), ŷ in the equatorial plane, and ẑ along the spin axis. Sine, toa good approximation, the Sun is motionless during the time it takes the partileto omplete a single orbit (this will only be inaurate for very distant orbits),we an average over an orbital period while holding the Sun's position onstant.The problem breaks down into three piees: 1) determine the response of theorbit to a onstant fore along eah of the oordinate axes; 2) solve for the Sun'smotion in the equatorial frame; and 3) linearly ombine these solutions.Starting the �rst task, we resolve the solar position in the equatorial frame intoomponents with magnitudes sx; sy; and sz, the time-variable values of whih willbe determined shortly. The solar position as seen from this frame is then simply:ŝ = sxx̂ + syŷ + szẑ: The perturbing potential VRP is obtained from Eq. (5.8)via the relation FRP = �rVRP . Sine the magnitude and diretion of radiationpressure hanges only slightly over a single orbit of the dust grain, we treat theright-hand side of Eq. (5.8) as a onstant and �nd VRP = FRP (sxx+ syy + szz).To average the disturbing funtion, �VRP , over time, we �rst need to express theartesian oordinates x; y; z in terms of orbital elements:x = r sin � os� = r(os
 osu� sin
 sinu os i); (5.9)

y = r sin � sin� = r(sin
 osu+ os
 sinu os i); (5.10)
z = r os � = r sin i sinu; (5.11)where

r = a(1� e2)1 + e os � ; (5.12)and u � ! + � is the argument of latitude. Sine sx; sy, and sz are nearlyonstant during the time it takes to make a single iruit around the planet, onlythe following orbital time-averages are needed:
hxi = �32ea(os
 os! � sin
 sin! os i); (5.13)
hyi = �32ea(sin
 os! + os
 sin! os i); (5.14)and

hzi = �32ea sin i sin!: (5.15)
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We note that hyi an be obtained from hxi by subtrating 90o from the nodein Eq. (5.13) and that all expressions redue appropriately if e or i equals zero.Inserting these expressions into the potential formulation of the planetary equa-tions, we obtain (after some algebra) the following expressions for the variationof the orbital elements: �dadt�RP = 0; (5.16)�dedt�RP = �(1� e2)1=2[sx(os
 sin! + sin
 os! os i)+sy(sin
 sin! � os
 os! os i)� sz os! sin i℄; (5.17)�didt�RP = �e(1� e2)1=2 (sx sin
 os! sin i�sy os
 os! sin i+ sz os! os i); (5.18)�d
dt �RP = �e(1� e2)1=2 (sx sin
 sin!�sy os
 sin! + sz sin! ot i); (5.19)�d!dt �RP = �(1� e2)1=2e [sx(os
 os! � sin
 sin! os i)

+sy(sin
 os! + os
 sin! os i) + sz sin! sin i℄� os i�d
dt �RP ; (5.20)�dMdt � n�RP = ��(1 + e2)e [sx(os
 os! � sin
 sin! os i)+sy(sin
 os! + os
 sin! os i) + sz sin! sin i℄: (5.21)Here 2�=(3n) = �M�a2=(MpR2) is the ratio of the radiation fore to the planet'sgravity at a given semimajor axis. In terms of previous expressions � = 3=(2�0)in Chamberlain (1979)'s notation and �(1� e2)1=2 = 3HF=(2m�) in Burns et al.(1979)'s notation. Eqs. (5.16{5.21) are fully three-dimensional, valid for alleentriities and inlinations.It remains only to determine the oeÆients sx; sy, and sz. Imagine a rotatingelipti oordinate system suh that the Sun remains �xed along the xR-axis. Ingeneral, at time t = 0, the Sun is loated at an angle Æ from the inertial referenediretion in Fig. 5.3. To �nd the oordinates of a unit vetor pointing toward theSun in the equatorial frame, we apply two rotations: �rst a rotation of �n�t� Æaround the normal to the elipti bak to the mutual node, then a rotation
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around the inertial diretion by minus the obliquity to align the referene planes.In matrix notation, the transformation is:ŝ = Rx(�)Rz(�n�t� Æ)x̂R; (5.22)where Rx(�) and Rz(�) are rotation matries around the x and z axes, respetively(see Danby 1988, p. 425). Performing the multipliation, we �nd:sx = os(n�t+ Æ); (5.23)

sy = os  sin(n�t+ Æ); (5.24)and sz = sin  sin(n�t+ Æ): (5.25)Notie that for  = 0; n� = 0; Æ = 0, we have sx = 1; sy = sz = 0 and Eqs. (5.16{5.20) redue to those of Burns et al. (1979) or Chamberlain (1979). Mignard(1982)'s equations are obtained after a little trigonometry, by letting  = 0; Æ = 0and employing the transformation 
 = 
R+n�t. Here 
R is Mignard's longitudeof the nodes whih di�ers from 
 beause the former is measured from a diretionthat rotates at an angular speed n�. With a little trigonometry, we �nd thatEqs. (5.16{5.21 and 5.23{5.25) are also in agreement with expressions derivedindependently by Smyth and Maroni (1993).We have derived Eqs. (5.23{5.25) last to emphasize the fat that the orbit-averaging an be performed for arbitrary sx; sy, and sz as long as their timedependene is slow ompared to the partile's orbital period. For example, weould easily treat the problem of motion around a planet whih orbits the Sunon an elliptial path by simply replaing the argument in the Rz rotation matrixin Eq. (5.22) by an expression valid for the Sun's non-uniform rate. Of ourse,in suh a ase it would also be neessary to add a time dependene to � to allowfor the more important fat that radiation pressure weakens as the planet movesaway from the Sun (f. disussion following Eq. 4.10).
5.4 Eletromagneti Fores5.4.1 General RemarksThe rings and small satellites of the outer planets lie lose to their primaries inenvironments haraterized by swarms of energeti harged partiles trapped bystrong magneti �elds. Immersed in this sea of partiles, a dust grain quiklyaquires an eletri harge by a number of mehanisms (Goertz 1989), the mostimportant of whih are the eletron and ion harging that our as the grain
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sweeps up these gyrating partiles. Unharged dust grains are impated by ele-trons more frequently than by ions beause the thermal speed of the former farexeeds that of the latter - in essene, the eletrons get to the grains before theions do. As a grain beomes more negatively harged, it is able to eletrostatiallyward o� some eletrons while simultaneously attrating a omparable number ofions until a balane is attained (Burns and Sha�er 1989, their Fig. 1). For typialmagnetospheri parameters and miron-sized grains, equilibrium is established ina fration of an orbital period. The addition of other harging mehanisms, suhas photoeletron urrents and seondary eletron emission, usually only perturbsthe equilibrium grain harge, although for high seondary yields suh proessesan lead to multiple equilibria (Meyer-Vernet 1982). Finally, even the equilib-rium harge may gradually hange as the grain's orbit takes it into regions whereplasma populations di�er and as the grain's veloity relative to the plasma varies(f. Burns and Sha�er 1989). Stohasti variations of the grain's harge, whihare generally relatively small and our swiftly, have little e�et on orbital evo-lution (Sha�er and Burns 1994).Despite the omplexity of these harging mehanisms, it is often a good ap-proximation to assume that the equilibrium harge on a grain is onstant. Take,for example, the orbital elements displayed in Fig. 5 of Horanyi et al. (1992)whih show an eentri orbit that ranges from 1 out to 7 saturnian radii. Al-though the relative veloity between the grain and the o-rotating plasma variestremendously, hanges in the equilibrium potential are limited to �5%. This isin agreement with Burns and Sha�er (1989)'s Fig. 1 whih shows a weak de-pendene of the equilibrium potential on veloity. Potentially more serious arethe utuations in a grain's harge ause by spatial and temporal variations inthe density and temperature of the magnetospheri plasma. Beause the plasmadensity in the E ring is relatively large, a grain's harge adjusts to its surround-ings muh more rapidly than it orbits the planet (Horanyi et al. 1992). If wemake the reasonable assumption of ylindrially symmetri spatial variations inthe plasma parameters, it an be shown, with the formalism to be introduedbelow, that the semimajor axis and eentriity of the grain's orbit hange inalmost the same way as they do for a onstant harge. Sine the purpose of thissetion is to aount for the �rst-order e�ets of the Lorentz fore, heneforth wewill make the simplifying assumption of onstant harge. In Chapter 6, we willreturn to omment further on the validity of this approximation for the spei�ase of Saturn's E ring.Planetary magneti �elds are responsible not only for trapping the eletronsand ions that harge up a dust grain, but also for the resulting orbital pertur-bations su�ered by suh grains. In the standard model, these �elds are assumedto arise from two soures: urrents interior to a given radial distane from theplanet and urrents exterior to this distane; onnetions between the regionsare ignored. Beause of the assumed lak of urrents in the region of interest
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(J � r � B = 0), the magneti �eld an be derived from a salar magnetipotential � in analogy with the eletri potential. The j; k omponent of thesalar magneti potential in the frame rotating with the planet is given by theusual spherial harmoni expansion:

�j;k = Rp�Rpr �j+1[gj;k os(k�R) + hj;k sin(k�R)℄P kj (os �); (5.26)where j is an integer ranging from one to in�nity, k is an integer ranging fromzero to j, and �R = � � 
pt, with the subsript 'R' denoting the rotating o-ordinate system. Here � and � are the angular spherial oordinates de�ned inthe non-rotating frame. The gj;k and hj;k are �eld oeÆients with units of gausswhih an be evaluated for eah planet (for Saturn see Connerney et al. , 1984;Sha�er and Burns, 1992, tabulate values for the giant planets and give additionalreferenes). In Eq. (5.26) we have ignored the (usually small) ontributions fromthe exterior urrents; their e�ets an be readily inluded (Au~na et al. 1983a)when neessary (e.g., beyond a few planetary radii in the Jovian system). TheShmidt-normalized assoiated Legendre polynomials P kj (x) are de�ned in termsof the regular Legendre polynomials; the relevant expressions an be found inSha�er and Burns (1992). Finally, the magneti �eld ontribution from the j; komponent of the potential is Bj;k = �r�j;k; (5.27)while the total �eld in the rotating frame is obtained by summing all of theindividual omponents
B = 1Xj=1 jXk=0Bj;k: (5.28)

Two ways exist to obtain the Lorentz fore valid in a non-rotating frameentered on the planet. Although the methods give idential results, they areoneptually quite di�erent and it is instrutive to go through eah argument.In the �rst method, we alulate the fore in the rotating frame as FEM =q(vrel= � B) with vrel = v � (
p � r), where vrel is the orbital veloity ofthe dust grain relative to the rotating frame, v is its veloity relative to a non-rotating planetoentri oordinate system, 
p is the spin vetor of the planet,  isthe speed of light, and q is the harge on the grain. Employing speial relativityto transform the fore bak to the non-rotating frame, we �nd that it is unalteredto �rst-order in v= and hene:FEM = qf[v � (
p � r)℄�Bg: (5.29)
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The preeding disussion makes it quite lear that the Lorentz fore vanishesfor an equatorial irular orbit at the synhronous distane: there the veloityrelative to the magneti �eld is zero and thus no fore is present.The seond way to treat the problem is to transform the magneti �eld fromrotating oordinates to non-rotating ones before alulating the fore. Utilizingspeial relativity again, we �nd that the magneti �eld is unhanged (negletingterms of order 
pr= << 1), and that an eletri �eld E = �(
p � r) � B ispresent in the non-rotating frame. This is the so-alled \o-rotational eletri�eld" disussed by Burns and Sha�er (1989) among others. The Lorentz foreis then alulated from FEM = q[E+ (v=�B)℄ and Eq. (5.29) is obtained onemore. This disussion highlights the role of the magneti �eld; it illustrates thatpart of the Lorentz fore does no work and, as we shall see, is less able to inuenethe orbital elements.Although the magneti �eld an be expressed as a gradient of a potential, theeletromagneti fore, beause of its veloity dependene, annot. We are there-fore unable to use the disturbing funtion approah that was applied to radiationpressure and instead must use Gauss' form of the planetary equations. Theseequations are given in orbital oordinates where the aeleration at a partiu-lar point on the orbit is resolved into orthogonal omponents whih are radial(R̂ = r̂), normal to the orbit (N̂), and tangential (Ĉ) to a irle in the orbitalplane that passes through the point. The Lorentz fore, Eq. (5.29), is written inequatorial spherial oordinates whih are onverted into the orbital oordinatesby use of Eqs. (5.9{5.11) and the following expressions:

�̂ = �os isin �N̂� sin i osusin � Ĉ; (5.30)and
�̂ = �sin i osusin � N̂+ os isin � Ĉ: (5.31)Carrying out the transformation and keeping trak of all terms, we �nd that thenormal, radial, and tangential omponents of the Lorentz aeleration an berepresented as:

N = qmg��vrB� sin i osusin � + vrB� os isin � �BrvC +Br
pr os i�; (5.32)
R = qmg��vCB� os isin � � vCB� sin i osusin � +B�
pr sin ��; (5.33)

C = qmg�vrB� os isin � + vrB� sin i osusin � +Br
pr sin i osu�; (5.34)
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where vr and vC are the radial and irular parts of the veloity and the Bi arethe appropriate magneti �eld omponents. These three equations are valid forany magneti �eld. Finally we need to express the radial and irular veloityomponents of a Keplerian elliptial orbit in terms of the orbital elements; fromonservation of orbital energy and angular momentum we have:

vr = �GMpa �1=2 e sin �(1� e2)1=2 ; (5.35)and
vC = �GMpa �1=2 1 + eos�(1� e2)1=2 : (5.36)

5.4.2 The Aligned DipoleWe begin by disussing the axisymmetri (k = 0) terms in the magneti �eldexpansion given by Eqs. (5.26{5.28) as they have no time dependene and anbe readily orbit-averaged. Of these, the j = 1 term is the strongest so we fouson it �rst. The magneti �eld produed by this g1;0 term is a spin-axis aligneddipole whih has the following omponents:
Br = 2g1;0�Rpr �3 os �; (5.37)
B� = g1;0�Rpr �3 sin �; (5.38)

B� = 0: (5.39)for onveniene, and in analogy with Eq. (4.1), we de�ne a dimensionless param-eter, L, as a rough measure of the strength of the eletromagneti fore relativeto the planet's gravity. We take the g1;0 term of the magneti �eld given in Eqs.(5.37{5.39), evaluate Eq. (5.29) in the equatorial plane with v = 0, and divideby the planet's gravitational fore (note this is similar to the parameter � de�nedby Sha�er and Burns 1987). The result is:
L = qg1;0R3p
pGMpmg : (5.40)Inserting the fore resulting from Eqs. (5.37{5.39) into the planetary perturbationequations and performing the time-averages we obtain:�dadt�g1;0 = 0; (5.41)
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�dedt�g1;0 = �nL4 e(1� e2)1=2 sin2 i sin(2!); (5.42)�didt�g1;0 = nL4(1� e2)1=2 e2 sin i os i sin(2!); (5.43)�d
dt �g1;0 = nL(1� e2)1=2 �os i� 1(1� e2)� n
p��; (5.44)�d!dt �g1;0 = nL(1� e2)1=2 �� os2 i+ 3 os i(1� e2)� n
p��; (5.45)�dMdt � n�g1;0 = �2nL: (5.46)These expressions have been simpli�ed from exat formulae by dropping termsof high order in e and i. Nevertheless, Eqs. (5.41{5.46) are quite aurate evenfor very large inlinations and eentriities as we shall soon see.The eletromagneti fore, like radiation pressure, makes non-zero ontribu-tions to variations in the eentriity and inlination but these ontributionsdepend on powers of sin i and e; they are therefore quite small unless the or-bit under onsideration is both highly-eentri and signi�antly-inlined. Thus,at least for small inlinations and eentriities, the e�et of the planet's dipolarmagneti �eld is not unlike that of J2 (the planet's quadrupole gravitational �eld)sine both fores primarily ause preession. This rude similarity should not besurprising sine, at least near the equator plane, both fores have strengths thatdiminish rapidly with distane and diretions that are predominantly radial. Foreletromagnetism, the nodal and apsidal preession rates are dependent on inli-nation, eentriity, and the semimajor axis as are their J2 ounterparts. Unlikethe gravitational ase, however, the eletromagneti rates vary onsiderably rel-ative to one another for irular orbits of di�erent sizes near the equatorial plane(ompare Eqs. 5.44{5.45 with 5.5{5.6). Close to synhronous orbit (n = 
p), forexample, the nodal rate vanishes, while the apsidal rate is zero further from theplanet near the plae where 3n = 
p. Inidentally, as synhronous orbit is ap-proahed in the limit (n! 
p; e! 0; i! 0), the Lorentz fore vanishes as doesthe nodal rate, but the perienter rate does not. How an a fore whih is zeroall along an orbit ause orbital evolution? The solution to this apparent paradoxis, of ourse, that it does not; a irular orbit has no unique perienter so the fatthat an ill-de�ned angle fails to vanish is unimportant. For small eentriities,perienter exists, the Lorentz fore is non-zero, and Eq. (5.45) gives the orretpreession rate.
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5.4.3 The Aligned QuadrupoleAs in the gravitational ase, inlusion of the higher-order axisymmetri (k = 0)terms in the magneti �eld expansion requires that the lower-order terms betreated more arefully (i.e., taken out to the next order in L), a task that rapidlyinreases in algebrai omplexity. For gravity, a treatment inluding just the J2term is a good approximation beause J3 and the other odd harmonis are allexeedingly small for the giant planets, and beause the �elds produed by thelarger, even harmonis fall o� very quikly with inreasing distane. Aord-ingly, we might hope that higher-order symmetri terms in the eletromagnetiexpansion ould be ignored as well. We �nd, however, that the axisymmetriquadrupole has a non-trivial inuene on orbital dynamis; its importane anbe easily understood by noting that near the equator, the radial omponent ofthe dipole magneti �eld is small (of order i). In ontrast, the quadrupole �eldis primarily radial and its magnitude atually exeeds the radial dipolar �eld fororbits with small inlinations. When rossed into a transverse veloity, the radial�eld produes a strong normal fore whih perturbs the inlination, node andperienter; hene we expet that quadrupole e�ets will be important for theseelements. Further expansion to inlude the symmetri otupole and higher k = 0terms is unneessary, as the radial and theta omponents of the ombined dipoleand quadrupole magneti �eld dominate ontributions from higher-order terms.Rather than repeating the derivations of Setion 5.4.2 for the symmetriquadrupole term (an arduous task!), we will treat only the ase of small inli-nations whih is of the most interest for planetary appliations. For inlinationssmaller than 30o, the theta omponent of the magneti �eld is dominated bythe dipole term and so we ignore the small quadrupole ontributions to thatomponent. The radial omponent of the quadrupole �eld

Br = 32g2;0�Rpr �4(3 os2 � � 1); (5.47)however, is important. The largest e�et of the radial quadrupole �eld on aslightly inlined orbit is to produe a normal fore; onsequently, we ignore Eqs.(5.33) and (5.34) and onsider only Eq. (5.32); this fore a�ets only the inli-nation, node, and perienter derivatives. The �rst two terms of Eq. (5.32) areidentially zero beause we have ignored the theta omponent of the quadrupole�eld and there is no phi omponent. Furthermore, it turns out that the �nal termalso ontributes nothing. Performing the muh-simpli�ed averaging alulation,we obtain: �didt�g2;0 � 32nL�g2;0g1;0��Rpa �� n
p� e os!(1� e2)5=2 ; (5.48)�d
dt �g2;0 � tan!sin i �didt�g2;0 (5.49)
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�d!dt �g2;0 � � os i�d
dt �g2;0 (5.50)where approximation signs have been used instead of equal signs to remind thereader that these equations represent only part of the quadrupole perturbations,albeit the most important ontributions for low-inlination orbits. In this limit,additional quadrupole perturbations are insigni�ant when ompared to the ef-fets of the aligned dipole.Notie that, with a little manipulation, the form of Eqs. (5.48{5.50) is iden-tial to the sz omponent of the radiation pressure equations (Eqs. 5.18{5.20).This ours beause both sets of equations arise from small, nearly onstant ver-tial fores being applied to an orbit; we will take advantage of this similarityin Setion 5.5 to follow. The sin i in the denominators of Eqs. (5.19) and (5.49)simply expresses the fat that, for low inlinations, the orbital node is poorlyde�ned and small perturbations an fore large hanges in that element.

5.4.4 Asymmetri TermsUp to now, we have ignored the non-axisymmetri (k 6= 0) terms in the magneti�eld expansion; this is a good approximation for the almost perfetly alignedsaturnian �eld (Connerney et al. 1984), but not for the magneti �elds of theother giant planets. Thus non-axisymmetri magneti �eld terms merit a briefdisussion. First of all, we note that asymmetri terms are more diÆult to treatthan the symmetri ones sine the planet's rotation auses the �eld's orientationto hange rapidly. Typially, a planet's spin period is omparable to the orbitalperiod of an inner orbit; for this type of orbit there is not a unique timespanover whih to average. In ontrast, distant orbits have periods that are so longthat we an average the magneti �eld �rst over a single spin period and thenover the orbital motion. Following this proedure, we �nd that all of the non-axisymmetri terms in Eq. (5.26) average to zero (i.e., they give no ontributionto orbital evolution in this limit).Enouraged by this result, we might be tempted to ignore the e�ets of thenon-axisymmetri terms even lose to the planet, arguing that they will onlyindue small periodi osillations. For most orbits this is true, but at spei� lo-ations orbital and spin frequenies are ommensurate and the averaging proessis invalid (f. Sha�er and Burns 1992, Burns et al. 1985). These \Lorentz" res-onanes an be treated by isolating the ommensurate terms in Eqs. (5.32{5.34)for use in the planetary equations, but for now we ignore the non-axisymmetriterms and aept the fat that the orbit-averaged equations derived in this se-tion will not be valid near resonant loations. We analyze Lorentz resonanes inChapter 7.



106
5.5 Coupled PerturbationsIn the irumplanetary environment, all three perturbation fores disussed above(higher-order gravity, the eletromagneti fore, and radiation pressure) onspireto perturb the orbits of miron-sized dust grains. Sine the fores are generallysmall, the orbit-averaged equations derived in the previous setions an be simplysummed to aount for the umulative e�et of all perturbations:�d�dt �total =Xj �d�dt �j; (5.51)
where � is any of the six osulating orbital elements. The resulting expressions areumbersome, but several hundred times faster to numerially integrate than theirNewtonian ounterparts. In addition, the output of the Newtonian equations(vetor position and veloity) must be translated into osulating orbital elements.As a demonstration of the validity of our derivations, we ompare numerialintegration of the Newtonian (Fig. 5.4) and orbit-averaged (Fig. 5.5) equationsfor a 1-miron grain harged to -5.6 Volts, approximately the potential expetedin the saturnian environment (Horanyi et al. 1992, Fig. 1). The initial onditionsin both ases are appropriate for a grain launhed from the moon Eneladus onan initially irular, oplanar orbit at 3:95Rp; the Sun is initially at its maximumheight above the equatorial plane (90o past the asending node of the elipti onSaturn's equator - Fig 5.3). Plotted are the �ve osulating orbital elements andthe solar angle �� (de�ned below). All six panels of the two plots agree quitewell whih reassures us that the approximations made in the previous setionsare valid.The most notable di�erene between Figs. 5.4 and 5.5 appears in the semima-jor axis traes; in the �rst �gure, the semimajor axis displays a peuliar \fuzzi-ness," while no evolution whatsoever of this element is apparent in the seond.The disrepany is due to e�ets that our during a single orbital period; inFig. 5.4 these e�ets are learly visible while in Fig. 5.5 they do not exist beausethey have been averaged out. These short-period terms arise when the vetorposition and veloity are translated into the osulating orbital elements; in thepresene of perturbations, the values of the elements depend on the point alongan orbit at whih they are alulated. The di�erene in these values over a singleorbit is �rst-order in the small dimensionless quantities J2, �=n, and L, and theosillations in osulating semimajor axis are greater for larger eentriities as anbe readily seen in the plot. By noting the value of a in Fig. 5.4 at points wheree � 0, however, we see that no long-term hange ours in the semimajor axis inagreement with Fig. 5.5. The fat that the rapid and sometimes disontinuoushanges in ! and 
 that our at low e and i are not perfetly reprodued (seeFigs. 5.4 and 5.5 at t � 8 years for example) is unimportant sine these variablesbeome singular as e and i, respetively, tend toward zero.
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Figure 5.4 Osulating orbital elements plotted against time from integrations ofthe full Newtonian equations of motion. The integrations shown in this �gure andin the following one used idential initial onditions: a spherial grain 1 mironin radius (�g = 1g=m3; Qpr = 1) harged to a potential of -5.6 Volts initiallyreleased from Eneladus at 3:95Rp on a irular Keplerian orbit in the equatorialplane. Fores operating on the orbit inlude: the monopole and J2 omponentsof the gravity �eld, radiation pressure (no shadowing), and the Lorentz forefrom an aligned dipole. The agreement between the two methods is very goodand is disussed further in the text. Other values of interest are the three di-mensionless parameters J2 = 0:01667, �=n = 0:00012, L = �0:00295; the ration=
p = 0:32439, and the initial preession rates, as given by Eqs. (5.59) and(5.60), _
xy(e � 0) = �345o/year and _!xy(e � 0; �� = 90o) = 315o/year. Thedi�erene between the two rates is roughly the initial slope of the solar angletrae in the sixth panel.



108

Figure 5.5 Osulating orbital elements plotted against time from integrations ofthe orbit-averaged equations of motion. This integration followed the evolutionof an orbit subjet to the idential fores, and starting with the same initialonditions, as the orbit in Fig. 5.4. The agreement between the two �guresis impressive. The most notieable disrepany, the semimajor axis history, isdisussed further in the text.
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The agreement between Figs. 5.4 and 5.5 also enourages qualitative andquantitative desriptions of evolution based on the orbit-averaged equations. Toassist this endeavor, we write out Eq. (5.51) expliitly. As noted above, mostsoures for irumplanetary dust are thought to be the small moons and ringsorbiting lose to their planet; these objets move on nearly irular orbits inthe equatorial plane. While radiation pressure an ause eentriities of someinitially irular orbits to grow quite large as we will see in Chapter 6, it is oftendiÆult for grains to attain orbits signi�antly inlined to the equatorial plane.This supposition holds for orbits lose to the planet and away from the Lorentzresonant loations. A useful limit for analyti work, therefore, is that of nearlyequatorial orbits. We keep only the leading terms in sin i for eah element andalso take i < , whih is a reasonable assumption in most ases (Jupiter is apossible exeption as  � 3o). Additionally, we assume that  <� 30o so thatos  � 1; this, of ourse, is not a good approximation for Uranus with  � 98o!Using Eq. (5.51) to sum the e�ets of all of the fores disussed in the previoussetions, we �nd, with the help of some trigonometri identities:�dadt� = 0; (5.52)�dedt� = �(1� e2)1=2 sin��; (5.53)�didt� = Z os!; (5.54)�d
dt � = Z sin!sin i + _
xy; (5.55)�d!dt � = �Z sin!sin i + _!xy; (5.56)where �� � 
 + ! � n�t� Æ (5.57)is the solar angle, approximately the angular di�erene between the longitudes ofthe Sun and the orbit's perienter measured in the equatorial plane; the hangein this angle is given by: _�� = _
xy + _!xy � n�: (5.58)The preession rates arising from oblateness, eletromagneti, and radiation fores(exluding the terms proportional to Z, de�ned immediately below) are:

_
xy = � 3nJ2R2p2a2(1� e2)2 + nL(1� e2)3=2�1� e2 � n
p�; (5.59)
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and

_!xy = 3nJ2R2pa2(1� e2)2 � nL(1� e2)3=2�1� e2 � 3n
p�+ �(1� e2)1=2 os��e ; (5.60)
the Z terms are exluded for reasons that will beome apparent in the followingsetions. Finally, the quantity

Z = e(1� e2)1=2 ��sz + 32(1� e2)2nL�g2;0g1;0��Rpa �� n
p��; (5.61)represents the ontributions of the two vertial fores in the problem; the out-of-plane omponent of radiation pressure and the fore arising from the alignedquadrupole �eld. These two fores are small and do not ause substantial orbitalevolution; notie that the terms proportional to Z in Eqs. (5.55{5.56) are equaland opposite so that for small i, the absolute longitude of perienter $ = 
+ !is unaltered. Nevertheless, the fores are important beause they inuene thevertial extent of an orbit as will be disussed in greater detail below.The presene of J2, L, and � in all of the above expressions indiate the e�etsof oblateness, eletromagnetism, and radiation pressure, respetively; Eq. (5.53),for example, shows that eentriity, in this low inlination limit, is driven solelyby radiation pressure. Additional approximations to the set of equations (5.52{5.56) an be made for spei� situations. For example, we an drop the ele-tromagneti terms for orbits around bodies with insigni�ant magneti �elds(ertainly Venus and Mars; and presumably Pluto, asteroids, and omets) or forsmall unharged objets (atoms and moleules) around any planet. In the latterase, Eq. (4.1) would need to be altered sine geometrial optis are not valid foratoms and moleules (f. Smyth and Maroni 1993).In this hapter we have set up a framework within whih the most powerfulnon-gravitational fores an be treated. The expressions that we derived aregeneral and appliable in numerous loales throughout the solar system. In thenext hapter we apply our results to one of these objets: Saturn's di�use E ring.



Chapter 6
Saturn's E ring1
6.1 IntrodutionIt is important to understand the dynamis of the very faint rings surroundingthe giant planets sine, owing to the rarity of ollisions, suh entities o�er anexellent opportunity to learn the fundamental proesses a�eting the motionof individual ring partiles. Beause the partiles omprising the ethereal ringsare usually small, however, the orbital evolution of even a single partile an bequite omplex: in addition to the usual gravitational perturbations (e.g., dueto planetary oblateness and embedded satellites), small grains are also subjetto radiation pressure and eletromagneti fores (Chapter 5) as well as weakervariations due to drags, and harge variations (Burns 1991). All these proessesare ative to some extent in the dense rings as well, but they are obsured byother perturbations, espeially ollisions and olletive e�ets.Perhaps the best studied of all the ethereal rings is Saturn's E ring. Muh ofthe interest in this three-dimensional struture arises beause the Cassini spae-raft will make many passes through this region. Reently, Showalter et al. (1991)have ombined spetrophotometri data of the E ring from ground-based mea-surements with that from the Pioneer 11 and Voyager enounters. Their mostimportant �ndings are: the ring extends from <�3 to >� 8RS (the equatorial radiusof Saturn RS=60,330 km); its optial depth pro�le peaks sharply near the orbitof Eneladus (aE = 3:95RS), making this satellite the suspeted soure of thering, with a simple power law deay that is sharper inward [� � (r=aE)15℄ thanoutward [� � (aE=r)7℄ of Eneladus' orbit; in general, the ring shows a gradual in-1This hapter is based on three papers: Horanyi, M., J.A. Burns, and D.P. Hamilton (1992),The dynamis of Saturn's E ring partiles. Iarus 97, 248{259 [opyright 1993 by AademiPress, In.℄, Hamilton, D.P. (1993), Motion of dust in a planetary magnetosphere: Orbit-averaged equations for oblateness, eletromagneti, and radiation fores with appliation toSaturn's E ring. Iarus 101, 244{264 [opyright 1993 by Aademi Press, In.℄, and Hamilton,D.P., and J.A. Burns (1993), The origin of Saturn's E ring: Self-sustained, naturally. Siene,submitted.
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rease in vertial thikness with distane from Saturn, ranging from ' 6; 000 kmat its inner boundary to ' 40,000 km at its outer edges but has a loal mini-mum at the orbit of Eneladus, where the thikness is only ' 4; 000 km; and,perhaps most puzzling of all, the size distribution of the partiles is very nar-row, being omposed mainly of partiles with 1(�0:3)�m radii. In this hapterwe suggest that many of these observations an be understood in terms of theshort-term dynamis of single partiles injeted at Eneladus; a shemati of theE ring, showing its relation to Eneladus and the main rings, is given in Figure6.1. We will demonstrate that, to some degree, the E ring's optial depth pro�leresults from the ompeting e�ets of the perturbations due to planetary oblate-ness and the Lorentz fore, whih allow solar radiation pressure to indue quitelarge eentriities for a seleted partile size range inluding the miron-sizedgrains thought to be present in the ring. This mehanism is apable of spreadingmaterial quite quikly aross large radial distanes from Saturn and produinga sharply peaked optial depth pro�le; its e�etiveness is found to be stronglysize-dependent, whih is onsistent with the E ring's very narrow partile size dis-tribution. In the following three setions we use analyti and numerial methodsto understand the radial, azimuthal, and vertial struture of Saturn's E ring.
6.2 Radial StrutureIn order to understand the �rst-order radial struture, we begin with a simpleanalytial model based on the results of the previous hapter. In order that suha model be analytially tratable, we make a number of simplifying assumptions.First, we inlude only the perturbations from oblateness, solar radiation pressureand the Lorentz fore, negleting all weaker perturbations (e.g., drag fores). Inaddition, we assume that the harge on a dust grain orbiting in the E ring isnearly onstant whih is in aord with the �ndings of Horanyi et al. (1992),although with a more extreme plasma model, this need not be the ase. In thissetion, we also neglet variations in the inlination and the node, sine for smallinlinations, these elements do not a�et the ring's radial struture. Finally,we initially assume low eentriities, although this assumption will be relaxedshortly. For small eentriities, Eqs. (5.53), (5.58), (5.59), and (5.60) beome�dedt� = � sin�� (6.1)�d��dt � = �e os�� + _$xy (6.2)where _$xy, de�ned to be

_$xy = 3nJ2R2p2a2 + 2n2L
p � n�; (6.3)
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Figure 6.1 The saturnian system. The solid entral disk represents Saturn andimmediately exterior to it are the optially thik A and B rings (hathed). TheE ring overs the stippled region outside the main rings and enompasses theorbits of at least four major saturnian satellites: Mimas, Eneladus, Tethys,and Dione. For larity, we show only Eneladus' orbit (the irle of radiusamoon � 3:95RS) and that of an E-ring grain whih originated on Eneladus(ellipse with adust = 3:95RS and edust = 0:5). The orbital turning points A(apoenter) and P (perienter) of the partile's orbit are loated at distanesadust(1 + edust) and adust(1 � edust) from Saturn. E-ring partiles ross the orbitof Eneladus at the points I1 and I2 and an venture within the radial distaneof the opaque main rings only if they y above or below them.
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represents the uniform motion of perienter relative to the Sun in the absene ofradiation pressure. Before solving Eqs. (6.1) and (6.2), let us qualitatively disussthe solutions.The �rst two terms on the right side of Eq. (6.3) are muh larger than n�and, sine the grain harge and hene L is expeted to be negative (Horanyiet al. 1992), these two terms ompete against one another. Thus, the perienteran be gravitationally dominated (preession with _$xy > 0), stopped ( _$xy=0)or eletromagnetially dominated (regression with _$xy < 0). Whih of thesesituations ours will depend on the partile's size, harge and its position inthe magnetosphere. We now disuss the simple ase in whih _$xy = 0. Sinethe seond term on the right side of Eq. (6.3) is strongly size-dependent (seeEq. 5.40), near anellation of the two terms will our only for a narrow rangeof partile sizes. For the expeted onditions in the E ring (� � �5V, �=0.2yr�1), the ritial grain size is rg = 1�m, very similar to the size of the grainsatually observed in the ring.In onnetion with initial onditions, presuming the E-ring partiles originateon Eneladus, we make three observations: i) the esape veloity from the satelliteis probably less than 10�2 times the satellite's orbital veloity; ii) eletromagnetiperturbations alone do not introdue large orbital veloity hanges (Sha�er andBurns 1987); and iii) Eneladus' orbit is nearly irular. Aordingly we assumethat the grain is launhed at 3.95 RS onto an approximately irular Keplerianorbit. From suh a starting ondition (e � 0), Eq. (6.2) shows that �� willswiftly turn to �=2 and then will stay loked; simultaneously, by Eq. (6.1), theeentriity grows at the onstant rate � (Horanyi et al. 1990).Of ourse the eentriity an only inrease until the orbit intersets the outeredge of the A ring at 2.27RS where ollisions with the opaque ring will eliminatethe partile; written in terms of orbital eentriity, this ondition is eoll � 0.43.(Naturally, this applies only to partiles staying in the equatorial plane whereasbelow we will �nd that ollisions with the main rings are less likely one theinlination is allowed to be non-zero.) Aording to Eq. (6.1), suh an eentriitywill be ahieved in a little more than 2 years. To summarize, one-miron partilesinjeted at Eneladus with � � �5 volts, will be rapidly dispersed owing to theireentri orbits and then will be lost by ollisions with the A ring. We must reall,however, that it is the �ne balane between the perturbations due to oblatenessand the Lorentz fore that anhors the perienter in this ase, thereby allowingsolar radiation pressure to indue large eentriities.For the general ase, where _$xy 6= 0, one an most readily solve Eq. (6.1)and Eq. (6.2) by transforming to the variables P � e sin�� and Q � e os��,whih are found to desribe simple harmoni osillations. In terms of the originalvariables, the solution is
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e = 2�_$xy ����sin� _$xy2 t����� (6.4)

�� = modulo� _$xy2 t; ��+ �2 ; (6.5)assuming the initial ondition e(t = 0) = 0. The eentriity hanges periodiallyas the perienter moves at a onstant rate from �=2 to 3�=2 (for _$xy > 0), atwhih point �� jumps bak to �=2 again (for a geometrial representation of thissolution, see Horanyi and Burns 1991). The period of the eentriity variation isP = 2�= _$xy and the maximum eentriity (within the approximation of smalle) is emax = 2�= _$xy.As seen in Eqs. (5.40) and (6.3), _$xy, and therefore emax, is very sensitive tothe grain size. For a spei� partile size, one an ompute the range of voltagesthat will produe preession rates suh that eoll is ahieved. Larger voltagesause the Lorentz preession rate to dominate that from the planet's oblatenesswhile for smaller voltages the onverse holds; both ases mitigate the abilityof solar radiation pressure to produe high eentriities. Figure 6.2 displaysthe maximum eentriity emax ahieved by partiles of three sizes and variousvoltages near those of the nominal E-ring grains. Partiles on 2-D orbits arelost to the main rings when the perienter dips into the A ring, whih oursfor eoll = 0:43. As we will see below, three-dimensional orbits survive until theorbital nodes interset the A ring (this always happens before the orbit intersetsthe planet) whih ours for e0oll = 0:65 (Setion 6.4). The urves to the left(right) of the at tops in Fig. 6.2 orrespond to _$xy < 0 ( _$xy > 0). Beausepartiles of di�erent sizes are spread in suh dramatially di�erent ways, thepopulation of grains that is present at the outskirts of the E ring ould di�eronsiderably from that introdued at Eneladus. As an illustration of this e�et,onsider a population onsisting of three sizes (0.5, 1.0, and 1.5�m) injeted atEneladus. The eentriity histories of these partiles, plotted in Fig. 6.3, di�ersigni�antly and the maximum values ahieved are in agreement with Fig. 6.2.An exellent test of our model an be made by the Cassini spaeraft whihwill arry out omplete photometri observations of the E ring and in-situ dete-tions of the dust partiles omposing it. These data sets will onstrain partilesize distributions aross the E ring. Indeed, the importane of radiation pressurewill be shown if a wide distribution of partile sizes is found to be present nearthe orbit of Eneladus but only a very seleted size range is seen elsewhere. Amore diret test involves using Cassini's dust detetor to see whether the partilessensed at distanes from Eneladus are on eentri orbits.We now ompute the radial optial depth distribution due to grains movingon elliptial orbits. For di�use strutures like the E ring, the optial depth isproportional to the time a grain spends within any given radial interval, r tor+�r, whih in turn is inversely proportional to rvr, where vr is the average radial
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Figure 6.2 The maximum eentriity emax = 2�= _$xy that is ahieved aordingto Eq. (6.4), as a funtion of the assumed (onstant) surfae potential for varioussize grains (heavy lines) introdued at Eneladus (at 3.95RS). The results fromnumerial integration are also shown (dashed lines); the di�erenes between theurves at large eentriities learly signal the breakdown of the assumption thate � 1. The urves are trunated at e0oll = 0:65, the eentriity at whih allthree-dimensional orbits with a = 3:95RS will interset Saturn's A ring; partileson�ned to the ring plane will be lost one they reah eoll=0.43 when the orbitalperienter dips into the outer A ring.
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Figure 6.3 History of orbital eentriities for 0.5, 1.0, and 1.5�m partiles evolv-ing under oblateness, eletromagnetism, and radiation pressure as they moveabout Saturn with orbital semimajor axes of 3.95RS. In eah ase, partiles aretaken to be iy spheres of density 1.0g/m3 at a potential of -5Volts. For 0.5�mpartiles, the Lorentz fore dominates orbital preession and the orbit spins toorapidly for radiation pressure to reate substantial eentriities. Similarly, for1.5�m partiles, oblateness dominates and the orbit preesses swiftly in the oppo-site diretion with the same outome. For 1.0�m partiles, however, the Lorentzand oblateness preessions largely anel, allowing radiation pressure to greatlyperturb the orbital eentriity; note that a single eentriity osillation oursin one preession period. The symbols D, T, and M identify the orbital een-triities at whih partiles launhed from Eneladus will ross the orbits of thesatellites Dione, Tethys, and Mimas, respetively.
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veloity over the interval onsidered; the extra r in the denominator appearsbeause the area of an annulus of width �r over whih these partiles are spreadis 2�r�r. In terms of the orbital elements the radial veloity an be written as

vr = �GMpa �1=2 [a2e2 � (r � a)2℄1=2r : (6.6)The radial optial depth pro�le due to a single partile moving along a Keplerianorbit of a given eentriity is then
� e(r) = To[a2e2 � (r � a)2℄1=2 ; (6.7)where To is a normalization onstant; learly this is valid only for distanes be-tween the orbit's radial turning points [i.e., for a(1�e) � r � a(1+e)℄; elsewhere� e(r) = 0. Fig. 6.4 plots Eq. (6.7) for several eentri orbits; note the symmetryabout r = a and the enhaned optial depth at the orbital turning points.A partile evolving under radiation pressure, however, does not have a on-stant orbital eentriity as assumed immediately above, but by ombining Eqs.(6.4) and (6.7), and integrating over a full yle of the eentriity variation, we�nd that a single partile ontributes to � as
�(r) = T1 2�= _$xyZ0 � e(r)dt ; (6.8)

where T1 is another normalization onstant.Equation (6.8) desribes a distribution sharply peaked at the radial distaneof the soure itself (Fig. 6.5). This ours beause the partile i) spends sub-stantial time at low eentriity, and ii) even when at higher e, always passestwie through its initial radius on eah orbit. We note that the optial depthdistributions in Figs. 6.4 and 6.5 are eah symmetri about the soure's orbitdespite the fat that eah partile spends more time at apoenter of its orbit thanat perienter; this possibly ounterintuitive result arises beause the apoenterpartiles are spread over a proportionally larger annulus.Figure 6.2 shows that our low-eentriity approximation is reasonable fore <� 0:3 but may not be good for larger eentriities where nonlinear e�etsbeome important. In Fig. 5.5, for example, the sinusoidal osillations of the e-entriity are notieably distorted. To extend our results to higher eentriities,we numerially integrate partile orbits and use these to infer the ring's optialdepth as a funtion of radial distane. In order to onstrut these ring pro�les,we followed grains of three harateristi sizes (0.5, 1.0, and 1.5�m) with iden-tial initial onditions and noted their radial positions every 10 days. We thenonstruted radial optial depth pro�les (Fig. 6.6) from the resulting orbits, nor-malizing the former in the same manner as in Fig. 6.5. For illustrative purposes,
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Figure 6.4 The pro�le of optial depth vs. radius plotted for grains with orbitsof semimajor axis = 3.95 RS and various eentriities. The urves, whih areunde�ned at eah orbit's perienter and apoenter, are trunated there for larity.The reason for the symmetry about 3:95RS is disussed in the text.
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Figure 6.5 The radial optial depth ontribution of a single partile during afull period of its eentriity osillation for emax = 0:3; 0:5 and 0.7 (solid lines).These urves were onstruted by �rst subtrating a onstant value from thesolution of Eq. (6.8) and then normalizing the peak at Eneladus' position tounity; this proedure is similar to the bakground sky subtration performedon photographi plates. This normalization proess auses the area under eahurve to di�er, but does preserve the symmetry around r = a in eah ase.Also plotted (dotted line) is the inferred radial brightness distribution basedon the observations and represented by two power-law drop-o�s from Eneladus(Showalter et al. 1991).
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Figure 6.6 The optial depth pro�les (ontinuous lines) for grains of radii 0.5(top), 1.0 (middle), and 1.5 (bottom) mirons. All grains were given the sameinitial onditions, the orbits were sampled every 10 days for 90 years, and theurves were normalized as in Fig. 6.5. Also plotted for omparison are the Showal-ter et al. (1991) observations (dashed line). The plot learly demonstrate theenhaned mobility enjoyed by the one miron-sized grains. The three maximalustered near 4RS in the entral panel are due to the fat that the grain's orbitaleentriity does not derease to exatly zero on every yle (see seond panel ofFig. 5.5).
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we ignored possible ollisions with the inner saturnian rings even though someof our orbits attain maximum eentriities dangerously lose to e0oll ' 0:65.As with our analyti result (plotted in Fig. 6.5), the optial depths in the threesimulations (Fig. 6.6) have sharp peaks near the soure with steep drop-o�s oneither side.The radial range overed by one-miron grains mathes the observed widthof the E ring well, arguing onviningly for a population of one-miron grains.Both our analyti and numerially derived optial depth pro�les are symmetriabout Eneladus' orbit, however, in ontradition to the asymmetry displayed bythe observed ring (Showalter et al. 1992). We will return to address this point inSetion 6.5.
6.3 Azimuthal Struture: Eentriity andSolar Angle6.3.1 Low Eentriity CaseAs disussed above, the large, almost-periodi variation in the eentriity dis-played in Figs. 5.4 and 5.5 is responsible for most of the E ring's struture.In ontrast, the semimajor axis remains essentially onstant and the inlinationstays small. Due to the latter fat, substantial variations in 
 and ! do not sig-ni�antly a�et the radial or azimuthal struture of the ring. Furthermore, sinethe governing equation (Eq. 5.53) for eentriity in this low-inlination limitdepends only on the solar angle and the eentriity itself, these two variablesan be deoupled from the rest, as in Setion 6.2. Aordingly we disuss theeentriity and the solar angle in this setion and the elements i, 
, and ! inthe next.Ideally, we would like to �nd an exat solution for Eq. (5.53) and Eq. (5.58)valid for arbitrary eentriities but, due to the presene of nonlinear 1 � e2terms, we have been unable to do so. By ontrast, for small eentriities _�� isnearly a onstant, and a solution, in whih the eentriity varies sinusoidally,an easily be found (Burns et al. 1979, Horanyi et al. 1992). In the present ase,however, we are interested in highly-eentri orbits and so are fored to ontentourselves with a qualitative desription of the orbital evolution based on these twoequations. First, as predited by Eq. (5.53) and seen in Fig. 5.5, the eentriityalways grows when 0o <� �� <� 180o and shrinks when 180o <� �� <� 360o. When_�� � 0, �� in Eq. (5.53) remains nearly onstant, the elliptial orbit keeps a givenorientation with respet to the Sun, and the eentriity hanges monotonially.In the low-eentriity solution, an exat anellation of the preession rateswith an assoiated permanent growth of eentriity is possible but, as seen inEqs. (5.59) and (5.60), the rates atually depend on di�erent powers of 1 � e2
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whih ause an imperfet anellation as the eentriity varies. At large e, thesenonlinear e�ets are important and signi�antly inuene the azimuthal strutureof the ring.In order to study the nonlinear e�ets, we must �rst understand the simplease when these terms are absent; this situation is approximated in Fig. 5.5 wheree2 is always relatively small. As Fig. 5.5 shows, at t = 0 the solar angle �� isimmediately driven to 90o by radiation pressure; this ours beause, for smalleentriities, the �nal term in Eq. (5.60) dominates _��. After the eentriityrises slightly, the �nal term is less important so that the solar angle regresses on-tinually from t = 0 to t � 8:5 years under the gravitational and eletromagnetiterms in Eqs. (5.59) and (5.60); in this example, the regression rate is nearlyuniform beause, for these relatively low eentriities, nonlinear terms are small.The vertial \jumps" in ��, an example of whih ours at t � 5 years in Fig. 5.5,are simply due to the fat that the angle is plotted modulo 360o. As soon as thesolar angle rosses zero, the eentriity begins dereasing until eventually it issuÆiently small that the �nal term in Eq. (5.60) dominates again. As before, thisterm attempts to drive �� to 90o ausing the angle to beome positive and theeentriity to inrease. The yle repeats almost periodially with departuresfrom periodiity arising from the sensitive dependene of _�� on e.Beause of the oupling between e and the solar angle, the largest eentri-ities in Fig. 5.5 are attained when the perienter of the orbit is pointed towardthe Sun (�� = 0o). At this time, apoenter is direted away from the Sun and,aordingly, partiles reah their maximum distane from the planet in this di-retion [r = a(1 + e) - see Fig. 5.1℄. Thus, if the E ring were omposed solelyof suh partiles, it would be asymmetri in azimuth, extending further in theantisolar diretion than in the solar diretion. A less negatively harged grainor, alternatively, a slightly larger partile, would have an initially preessing solarangle so that the maximum eentriity would our when the apoenter of theorbit points toward the Sun (�� = 180o). Sine the true E ring is likely omposedof an ensemble of grains with slightly di�erent sizes, shapes, and/or harges, itwill probably inlude both preessing and regressing orbits with some apoenterspointing toward and others away from the Sun. This ensemble predits that theE ring will be shaped like a Saturn-entered ellipse, extending to equal distanesin the solar and antisolar diretions and less far in the perpendiular diretions.Figure 6.7 plots suh an ensemble.A fore-aft bulge of this type ould not be identi�ed in the available Voyagerimages (M.R. Showalter 1991, private ommuniation). In addition, inbound -outbound di�erenes in Voyager plasma absorption detetions, whih have beeninterpreted as aused by an asymmetri E ring (Sittler et al. 1981), ould not bedue to the E ring studied here beause our partiles are too small and too widelyseparated to be e�etive absorbers. Although suh a distribution would minimizethe ring's apparent radial extent as viewed from Earth, little or no asymmetry
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Figure 6.7 The Saturn-entered ellipse. The Sun lies o� along the negative x-axisand Saturn (not to sale) is at (0,0). To form this plot, we alulated the orbits oftwo di�erent grains (0.97�m and 1.2�m, eah harged to -5.5Volts) and plottedthem together on this �gure. The sizes were hosen so that the smaller partile'ssolar angle regresses while the larger partile's preesses; eah attains a similarmaximum eentriity (� 0:4). Eah grain's orbit lies within a irular shapedregion with its enter o�set from Saturn. Large grains extend further toward theSun while small grains are found preferentially on the far side of Saturn.
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would be visible to terrestrial observers sine Saturn's phase angle (Earth-Saturn-Sun angle) annot exeed six degrees. We emphasize, however, that these resultsdo not inlude the e�ets of 1� e2 terms that we now onsider.
6.3.2 High Eentriity CaseTo demonstrate how larger eentriities produe nonlinear e�ets, we onsiderthe orbital evolution of a 1 miron grain harged to -5.4 Volts (as opposed to -5.6Volts for Fig. 5.5); all other initial onditions as well as the operating fores remainunhanged. The resulting orbital evolution, obtained from numerial integrationsof Eqs. (5.52{5.56), is displayed in Fig. 6.8. The only di�erene between the twoases is the slightly altered grain harge, yet striking dissimilarities are apparent inboth the eentriity and solar angle traes. In Fig. 6.8, the solar angle initiallyregresses as it does in Fig. 5.5, but the regression is slightly less rapid; thisallows the eentriity to grow large enough to reverse the sign of _�� beforethe solar angle dips below zero. As a result, sin�� is larger for a longer periodof time permitting the eentriity to inrease substantially. The augmentedeentriity auses the solar angle to preess through 180o, at whih point theeentriity �nally begins to derease and a yle similar to that disussed above isestablished. Azimuthal asymmetry arises beause the stronger 1�e2 dependeneof the gravitational preession terms in Eq. (5.59) and (5.60) auses the orbitto preess for large e whih always leads to a maximum extension in the solardiretion (�� = 180o). Although for this orbit, e is large enough that the grainwould atually be lost to the main saturnian ring system, the orbital evolutiondisplayed here is typial for a large range of similar initial onditions.We now summarize the relevane of these results to the E-ring problem. Con-sider an ensemble of grains with slightly di�erent sizes and voltages, but alllaunhed from Eneladus on initially irular orbits. A fration of the grains inthis ensemble will have emax <� 0:4; these will be relatively uninuened by thenonlinear 1�e2 terms and will lead to a \Saturn-entered ellipse" like Fig. 6.7. Inaddition, however, our ensemble will ontain grains that ahieve large eentri-ities. These partiles all preess eventually (the orbit in Fig. 5.5 almost attainsthe largest eentriity possible with a stritly regressing solar angle), and so themaximum eentriity always ours when the apoenter is pointed toward theSun. Furthermore, beause preession is rapid for very large eentriities, themost elongated orbits sweep through a large range of perienter angles (see thesolar angle and eentriity panels between t = 6 and t = 7 years in Fig. 6.8),resulting in distant partiles in all diretions on the sunward side of Saturn. Sinethe real ring ontains both dynamial lasses, an Eneladus-derived E ring mightbe expeted to extend � 1:2 times as far in the solar and perpendiular dire-tions as in the antisolar diretion. In ontrast to low eentriity, this distributiondisplays nearly its full radial extent when viewed from Earth.
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Figure 6.8 Osulating orbital elements plotted against time from integrationsof the orbit-averaged equations of motion; these agree well with full Newtonianintegrations (not shown). The same fores operating in Fig. 5.5 are presenthere, and the initial onditions are idential to those in Fig. 5.5 exept thegrain's voltage has been hanged slightly to -5.4 Volts. This small hange inthe voltage dereases the strength of the eletromagneti fore (L = �0:00284)whih in turn, hanges the preession rates to _
xy(e � 0) = �338o/year and_!xy(e � 0; �� = 90o) = 315o/year; all other quantities retain the values noted inFig. 5.5's aption. These slightly di�erent preession rates drastially a�et theeentriity history.
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The above disussion expliitly assumes that the harge on a grain remainsonstant throughout its orbital evolution. Could a varying partile harge disruptthe behavior seen here? Realistially, small rapid utuations in a grain's voltageour as the grain's position in the magnetosphere (where plasma densities andtemperatures might vary) and its veloity relative to the plasma hange. A de-lay in the response of the grain's voltage to loal onditions an a�et long-termevolution of semimajor axes (Burns and Sha�er 1989), but over the short timesonsidered here, this proess is unlikely to be important. Beause the hargeutuations are fast ompared to the orbital period, however, they should betreated before averaging the perturbation equations over an orbit. As arguedabove, this will not seriously inuene the orbital semimajor axis and een-triity. The inlination and preession equations, however, are more stronglya�eted. A di�erene in the inlination equations only adjusts the magnitudeof Z (Eq. 5.61), however, whih does not seriously alter the behavior of Eqs.(5.54{5.56). Slightly di�erent eletromagneti preession rates would still anelthe gravitational rates, although at a minutely di�erent grain size. Most im-portantly, the 1 � e2 dependene of the eletromagneti preession rate ouldbe hanged signi�antly (exponent < �2); in this ase, the nonlinear e�et thatfavors an E ring with a minimum extension in the antisolar diretion would bereversed; the E ring would then have its small dimension in the solar diretion.In any ase, an asymmetry of some sort is likely to persist.Finally we point out that the surfae brightness of the E ring depends notonly on these dynami onsiderations but perhaps even more on the distributionof partile sizes and shapes present in the E ring. This distribution determinesthe number of grains in eah of the dynamial lasses disussed two paragraphsbak. If orbits with lower eentriities (Fig. 6.8) are most prevalent, for instane,then the surfae brightness will be dominated by the \Saturn-entered ellipse."Whatever the size distribution though, the E ring's surfae brightness shoulddisplay measurable azimuthal asymmetry.

6.4 Vertial Struture: Inlination, Node, andPerienterHaving ompleted our disussion of the omponents responsible for azimuthalvariations, we now fous on the smaller perturbations to the E ring's vertialstruture. These perturbations arise from weak normal fores whih inueneonly the elements i, 
, and !. We start by disussing Figs. 5.5 and 6.8, simula-tions that do not inlude the e�ets of the aligned quadrupole, for simpliity (i.e.,g2;0 is arti�ially set to zero), although our derivations are general and will allowus to return to the important inuene of the quadrupole term shortly. Perhapsthe most unusual behavior displayed by the elements i, 
, and ! in Figs. 5.5
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and 6.8 is the fat that the argument of perienter loks, alternately to ! = +90owhen the physial loation of perienter is above the equatorial plane (Fig. 5.2),and to ! = �90o when perienter is below the plane. This loking is orrelatedwith the solar position suh that the orbital perienter is always displaed to thesame side of the equatorial plane as the Sun. In all �gures, the Sun starts at itsmaximum elevation above the equatorial plane (the summer solstie in Saturn'snorthern hemisphere) and remains above the plane for one quarter of its orbitalperiod of � 29:5 years rossing the equatorial plane at t � 7:4; 22:1, and 36:9years.At �rst sight this loking may seem unimportant: sine inlinations are small,what di�erene does it make that perienter is always elevated out of the equato-rial plane by a few tenths of a degree? There are several answers to this question.First, sine these orbits periodially attain highly-eentri orbits, an E-ring par-tile an dip in very lose to the main saturnian ring system. Beause the mainrings are so thin (Cuzzi et al. 1979, Siardy et al. 1982), however, even small inli-nations ause E-ring grains to rise well above the main rings and hene ollisionswith these rings an only take plae at orbital nodes. Loking the perienter to�90o puts both the nodes along the latus-retum of the ellipse (Fig. 5.1), max-imizing the ability of an orbit of a given eentriity to avoid interseting theinner rings. Suh orbits an spread E-ring material aross the maximum radialrange. A ollision with the A ring is inevitable when a(1 � e2) = 2:27RS fromwhih, for a = 3:95RS, e0oll ' 0:65; this always ours before ollision with Saturn[a(1� e00oll) = 1 or e00oll ' 0:75.℄Additionally, perienter loking alters the probability for an impat into asaturnian satellite sine most moons lie at low inlinations relative to Saturn'sequator. Most notably, this phenomenon enhanes the probability of reimpatinto Eneladus sine an E-ring partile's node lies at a radial distane a(1 � e2)whih, for small e, is very lose to Eneladus' orbit at r = a. Finally, and perhapsmost interestingly, this dynamial e�et suggests that the vertial struture ofthe E ring is time-variable over a single orbit of Saturn around the Sun. Beforedisussing the rami�ations of this time variability, we wish to understand theloking analytially.The behavior of ! suggests that the angle is attrated to a stable equilibriumpoint, and so we seek suh a solution. First, however, we note that there areseveral plaes in Fig. 6.8 (e.g., near t = 7; 13; 22 ... years) where the argumentof perienter is not strongly loked to its equilibrium value; in these loales,osillations in ! are large and irulation an our. These deviations happeneither when the Sun passes through the equatorial plane (roughly every 15 years)and the argument of perienter begins its transfer from one equilibrium value tothe next or when the orbital eentriity is small, in whih ase the perienteris poorly de�ned and an irulate rapidly as predited by the �nal term inEq. (5.60). To avoid these problems, we hoose to initially study the loking
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e�et for non-zero and onstant values of e and sz, ignoring the time-dependeneof these parameters. We will return to justify and relax this approximationshortly. Setting !eq = �90o (the subsript \eq" stands for equilibrium) andremembering that inlination must be positive, we �nd that Eq. (5.56) is zeroonly when

sin ieq = ���� Z_!xy ���� (6.9)whih, from Eq. (5.55) leads tod
dt ����eq = _
xy + _!xy: (6.10)Finally, setting Eq. (5.56) equal to zero and utilizing Eq. (6.9) yields an improveddetermination of !eq: sin!eq = sign( _!xy=Z): (6.11)We hek the solution given by Eqs. (5.54{5.56) for stability by linearizing itabout the equilibrium point. Here we set � = �eq +��, where � is any of i, 
,and !, to �nd: �d�idt � = �ieq _!xy�!; (6.12)�d�
dt � = � _!xy�iieq ; (6.13)�d�!dt � = _!xy�iieq ; (6.14)whih an be trivially solved to yield:�i = ieq!0 os( _!xyt+ �0); (6.15)
�
 = �!0 sin( _!xyt+ �0); (6.16)
�! = !0 sin( _!xyt+ �0); (6.17)where the initial onditions !0 and �0 are independent of i;
, and !. Thusosillations about the equilibrium point are stable and have frequeny _!xy whih,for the parameters of Fig. 6.8, orresponds to a period of � 1 year. The fat thatthe osillation period is short ompared to the harateristi periods of e and szjusti�es our earlier treatment of these latter parameters as onstants; sine e andsz both hange slowly with time, the rapid osillations are able to stay entered
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on the slowly drifting equilibrium value. These results, Eqs. (6.9{6.17), seemto be in good agreement with Figs. 5.5 and 6.8. Eq. (6.11) orretly preditsthat perienter and the Sun always lie on the same side of the equatorial planesine _!xy > 0 and, with no quadrupole term, Z hanges sign every time the Sunrosses the equatorial plane. Furthermore, Eq. (6.9) shows that the inlinationapproahes zero when Z is small whih ours either when the Sun is in the ringplane or when e! 0, as we already inferred from Figs. 5.5 and 6.8. Additionally,several features of Eqs. (6.15{6.17) an be heked against the full numerialintegrations. As expeted, the osillations in all three elements have eentriity-dependent periods of approximately one year and, as predited by Eq. (5.60), thisperiod dereases for large eentriities (the inlination trae in Fig. 6.8 providesa nie example). Furthermore, sine no disernible osillations appear in the solarangle, whih is basially the sum of 
 and !, the osillations in these angles mustbe equal in magnitude and 180o out of phase as predited by Eqs. (6.16) and(6.17). Additionally, we �nd that the i osillations peak one-quarter of a periodbefore the ! osillations as predited by Eqs. (6.15{6.17), although the phasedi�erene is diÆult to detet in these �gures.We now onstrut vertial pro�les in the same manner as the optial depthpro�les (Fig. 6.6) of Setion 6.2 and display the results in Fig. 6.9. The hara-teristi wedge-shape of eah plot is due to perienter loking whih keeps orbitalnodes near Eneladus. By de�nition, vertial o�sets are minimum near orbitalnodes and hene the ring is thinnest there. The radial dependene of the ringthikness from our simulation for one-miron grains (Fig. 6.9) qualitatively imi-tates Showalter et al. (1991)'s interpretation of the Baum et al. (1981) ground-based observations desribed in Setion 6.1. Like the atual E ring, our modelfor solely one-miron grains has a greater thikness at its outer edge than loseto the planet, and is thinnest at its soure. Although the relative proportionsare roughly orret, the magnitude of the predited thikness is � 10 times lessthan the observed thikness. In fat, the problem is even worse sine these plotsare time averages; a snapshot of the ring at a partiular instant in time will �ndall orbital apoenters either above or below Saturn's equatorial plane and henethe ring will be less thik. We will have more to say about this disrepany inSetion 6.5.We now add the e�ets of the aligned quadrupole term to the array of foresinuening the dust grain. Figure 6.10 shows the orbital history of a grain withidential properties and initial onditions as the partile in Fig. 6.8; the onlyhange is that the magneti �eld from whih the Lorentz fore is alulated nowinludes the aligned quadrupole omponent. The eentriity and solar angletraes in Fig. 6.10 are basially unhanged from Fig. 6.8, thus the results ofSetions 6.2 and 6.3 stand, but the i, 
, and ! traes are substantially altered.Inlinations of nearly a degree (three times larger than in Fig. 6.8) are attained- the e�ets of the quadrupole term are de�nitely important for Saturn's E ring!
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Figure 6.9 A satter diagram in the r = (x2 + y2)1=2; z plane for the orbitsdisussed in Fig. 6.6. The vertial struture for the one-miron grains is similarto the struture displayed by the atual E ring, although the heights attained inour simulations are a fator of � 10 too small.



132

Figure 6.10 Osulating orbital elements plotted against time from integrations ofthe orbit-averaged equations of motion. Again, the results agree well with the fullNewtonian integrations whih are not shown. Initial onditions and numerialquantities are the same as in Fig. 6.8, but the additional e�ets of the alignedmagneti quadrupole have been inluded. Note the striking di�erene in the iand ! traes in the two �gures. The magneti �eld oeÆients used for Saturnare g1;0 = 0:2154 gauss and g2;0 = 0:0164 gauss (f. Connerney et al. 1984).
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Furthermore, the perienter favors loking to �90o over loking to 90o; this anbe easily explained by onsidering how the addition of the quadrupolar termhanges Z. Using the values given in the �gure aptions, we �nd that the seondterm in Eq. (5.61) is always negative and, for small e, its magnitude is less thanthe maximum value of the �rst. Thus Z will be predominantly negative and,as predited by Eq. (6.11), ! will usually be found near �90o. When the Sunis high above the equatorial plane, however, Z is positive and ! loks to 90oas observed in Fig. 6.10. Sine the two terms in Z have di�erent eentriitydependenies, the time spent with ! � 90o will vary from one oasion to thenext. This same sharp eentriity dependene of the quadrupole ontribution toZ is also responsible for the di�erene in maximum inlinations observed in Figs.6.8 and 6.10.If all E-ring partiles originated from Eneladus and had parameters like thosehosen for Fig. 6.10, we would expet that inner portions of the ring (the perien-ter sides of instantaneously elliptial orbits) would be o�set to the south of theequatorial plane when the Sun is not too far to the north. The outer portions ofthe ring, of ourse, would be o�set in the opposite diretion. There is not a singlesolar position at whih orbits transfer from one equilibrium to the next; as theSun rises in the northern sky, orbits with low eentriities swith �rst, followedby those with greater eentriities. In addition, a more realisti ensemble ofdi�erent partile sizes and shapes would ause further smear in the time whenorbits swith equilibria sine � and L vary signi�antly with partile properties.So when the Sun is to the north of the equatorial plane, the situation is diÆultto assess. Conversely, when it is to the south, Z is negative and all orbits in theensemble should have their perienters depressed toward the south. We see thatthis is indeed the ase in Fig. 6.11 whih, like Fig. 6.9, is a time-averaged plot.The e�ets of di�erent initial onditions and additional satellite soures forE-ring partiles further ompliates the issue; these fators an ause the initialonditions to be far from the equilibrium point. When this is true, the osillationsin ! an be large enough to ause irulation of that element and this washesout the asymmetry disussed above. Assuming that dust grains originate fromsatellites, they will always start on nearly irular orbits for whih the equilib-rium inlination is ieq = 0 (Eqs. 5.61 and 6.9). Several e�ets an ause initialinlinations to di�er from zero most notably the small underlying inlination ofthe soure satellite itself, and the dispersion of grain launh veloities. We �nd,numerially, that initial inlinations of more than about 0:5o for grains launhedfrom either Eneladus or Tethys ause osillations large enough to destroy theloking. This uto� an also be found analytially from Eq. (5.56). It is reason-able to assume that most of the grains esape from their soure moon with theminimum possible energy; in this ase esape will our along the Saturn-satelliteline (f. Figs. 2.10 and 2.11) with minimal hange to the initial inlination. Theorbits of Eneladus and Dione are negligibly inlined, but those of Tethys and
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Figure 6.11 Vertial satter plot. The atual three-dimensional path traed outby the partile of Fig. 6.10 has been ollapsed into this two dimensional �gure.Note that vertial struture has been dramatially altered from that displayed inFig. 6.9's entral panel. The asymmetry arises from Saturn's non-zero symmetriquadrupolar term (g2;0).
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Mimas have inlinations that exeed a degree; thus, nominally, grains launhedfrom Eneladus will have their perienters loked while those from Tethys willnot. Summing the ontributions of several soure satellites and di�erent initialonditions ompliates the piture, but we believe that some vertial asymmetryand time-variability are likely to remain.
6.5 Evidene for Additional Satellite SouresThe main problem with our simple model, whih assumes a single soure at Ene-ladus, is the fat that we �nd, in ontrast to the atual ring, a radial distributionthat is symmetri about the soure satellite (see Fig. 6.6). This symmetry isquite robust sine it arises diretly from the geometry of elliptial orbits (Setion6.2). One possible solution is that drag fores, whih ause outward evolutionof orbits, are responsible for the asymmetry. This is unlikely, however, sinethese fores operate timesales muh longer than the typial lifetimes of E-ringgrains (see Setion 6.6.1). A more promising hypothesis is that there are addi-tional soures of E-ring material further out in the ring. Besides Eneladus, themoons Mimas, Tethys, Dione, and the Lagrangian ompanions of the two lattersatellites all lie within the E ring. Mirometeoroid ollisions or impats of E-ringpartiles themselves into the moons ould loft material o� these small bodies.Sine miron-sized partiles originating from nearby satellites will most likelyhave equilibrium potentials similar to that of grains from Eneladus, perienterpreession rates will math for partiles similar in size to those onsidered here.As eentriities grow and material spreads radially, these grains will merge withthose emanating from Eneladus. These soures would reate distributions sim-ilar to those in Fig. 6.5 but peaking at di�erent distanes from Saturn; the sumof these distributions would neessarily be asymmetri and might better maththe observations.Additional soure satellites alleviate another problem, namely that materialintrodued from Eneladus annot reah the outer limits of the known E ring(8RS) beause, with the orbit's �xed semimajor axis (see Eq. 5.52), any eentripath that reahes beyond about 6:5RS would also penetrate the opaque innerrings. Material from outer satellite soures, however, an easily reah the nom-inal outer limit of the E ring. Furthermore, in ontrast to the linear model ofSetion 6.3.1, the nonlinearity of the orbit-averaged equations onsidered in Se-tion 6.3.2 auses some orbits with nearly maximum eentriities to be orientedperpendiular to the Sun-Saturn line. Thus our model suggests that the E ring,as seen from Earth, ould display nearly its full breadth. This orretion may beenough for a primary soure of dust grains at Eneladus and a weaker soure atTethys or one of its Lagrangian ompanions (a � 4:89Rp) to aount for the fullwidth of the E ring as observed from Earth. This additional soure at Tethys'distane is also onsistent with the extra material seen in the viinity of that
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moon (Showalter et al. 1991's Fig. 11).Finally, the vertial struture disussed in Setion 6.4 may provide furtherdynamial evidene for a seondary soure of partiles from Tethys. If Eneladuswere the ring's only soure, our numerial simulations would predit maximumthiknesses of about 7,500 km (if orbital perienters are loked) and 15,000 km(if perienters are not loked - see below). As noted above, however, the E ringis about 40,000 km thik at its outer edge, still quite a bit broader than ourpreditions based on Fig. 6.10. Grains launhed from Tethys, however, attaininlinations of � 2:5o and, beause of Tethys' relatively large orbital inlination,the orbital perienters are not loked. When ombined, these e�ets lead to apredited thikness of >� 40; 000 km at the outer edge of the E ring, a �gure thatis in agreement with the observations.Could other mehanisms, most notably Lorentz resonanes, provide the in-rease in thikness without an additional Tethys soure? While most of thestrongest Lorentz resonanes lie very lose to Saturn, we note that just interiorto Eneladus there is an important seond-order 3:1 resonane driven by the tilteddipolar �eld whose strength is proportional to eig1;1 (Chapter 7). If we assumea 0:8o tilt in Saturn's magneti dipole, whih is that initially proposed by Nesset al. (1982) (f. Au~na et al. 1983b), we �nd that the resonane is suÆientlystrong to break perienter loking for some orbits. Numerial simulations indi-ate that inlinations an subsequently be pumped up to a few degrees. Thus weonlude that while a Tethys soure aounts niely for the observed inlinations,the 3:1 Lorentz resonane ating on material launhed from Eneladus may alsobe able to do so. In either ase, however, the breadth of the E ring and its radialasymmetry about Eneladus' orbital radius still argue for a Tethys soure.
6.6 Consequenes of Highly Eentri Orbits6.6.1 Collisions with Embedded SatellitesAfter the preeding disussion of the detailed dynamis of individual grainslaunhed from Eneladus, we turn now to the question of the ring's origin. Severalmehanisms have been suggested for lofting small dust grains o� Eneladus intoorbit around Saturn, inluding volanoes (Pang et al. 1984a,b) and/or geothermalativity (Ha� et al. 1983), as well as the impat of a omet (MKinnon 1983).Evidene supporting either of the �rst two suggestions is sant; the Voyagerspaeraft found no indiations of volanoes or geysers on Eneladus, althoughthe satellite does have a relatively young surfae (<� 1 billion years). Furthermore,the suggestion that Tethys ontributes material to the E ring is diÆult for all ofthese models to aommodate, as it requires ativity undeteted by Voyager ontwo satellites in the former ases, and an improbable pair of ometary impatsin the latter. In the next few setions, we propose a self-sustaining model of
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the E ring whih follows naturally from onsidering the onsequenes of highly-eentri orbits.The E ring shares the region between 3 and 8RS with an ensemble of moonsthat travel along nearly irular paths (Table 6.1); aordingly, one the orbitsof E-ring partiles beome moderately eentri, they will ross the paths ofthese satellites (see Figs. 6.1 and 6.3). Given a satellite of radius Rmoon on alow-eentriity orbit at radial distane amoon, a grain on a \rossing" orbit willstrike the moon with an e-folding timesale of:

Tol � �(sin2 idust + sin2 imoon)1=2� amoonRmoon�2�UrU �Torb; (6.18)where Torb = 2�adust=vdust is the dust grain's orbital period, adust is its semimajoraxis, and vdust is its orbital veloity ( �Opik 1976). In Eq. (6.18), U is the relativeveloity between the moon and the dust grain, Ur is its radial omponent, andthe orbital inlinations idust and imoon (Table 6.1) are measured relative to theplane of the main ring system. The ratio Ur=U is nearly independent of edust and,to within < 20%, equals one. Typial times for dust grains launhed from moonswithin the E ring to reimpat the soure satellite are given in Table 6.1 assuming,for illustrative purposes, that idust = 0:1o and adust = amoon. The value hosenfor idust does not signi�antly a�et ollision timesales for Mimas and Tethyssine these satellites are signi�antly inlined. Moreover, the orbital nodes ofgrains launhed from the uninlined satellites (Eneladus, Dione) beome lokednear the radial position of the soure (Setion 6.4), making Eq. (6.18) somewhatof an overestimate. Sine orbital loking tends to enhane impat probabilitiesonto the soure satellites, we hoose a value for idust that is somewhat lower thantypial E-ring inlinations (see Fig. 6.10). Thus the entries in (Table 6.1) applyreasonably well to the atual E ring.The albedo patterns of the saturnian satellites may support the notion thateentrially-orbiting E-ring grains ommonly strike these bodies. A distributionof eentri orbits having Eneladus' semimajor axis will preferentially strike theleading (trailing) fae of exterior (interior) satellites sine ollisions will our nearapoenter (perienter). Hene, assuming that impats ause surfae brightening,one an explain why Tethys and Dione, satellites exterior to Eneladus, havebrighter leading hemispheres while Mimas, whih lies interior to Eneladus, has abrighter trailing hemisphere (Verbiser and Veverka 1992). Erosional brighteningof the leading hemisphere is onsistent with an enhaned meteoroid ux to thefront faes of the exterior satellites (Clark et al. 1986, Veverka et al. 1986, Burattiet al. 1990), but annot aount for Mimas' brighter trailing side. Furthermore,Eneladus itself is photometrially similar aross diverse geologi zones suggestingthe presene of a ubiquitous surfae layer of miron-sized grains (Buratti 1988),perhaps due to a long history of sandblasting by E-ring material.The grain-moon ollision timesales in Table 6.1 are extremely rapid: Ene-
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Table 6.1 Satellites within the E ringName amoon emoon imoon Rmoon �moon vesape vmoon Tol(RS) (o) (km) (g/m3) (km/s) (km/s) (years)Mimas 3.08 0.02 1.53 195 1.17 0.16 14.3 200Eneladus 3.95 0.00 0.02 250 1.24 0.21 12.6 19Tethys 4.89 0.00 1.09 525 1.26 0.44 11.4 98Telesto (T+) 4.89 0.00 0.00 12 (1.0) 0.009 11.4 17,000Calypso (T-) 4.89 0.00 0.00 12 (1.0) 0.009 11.4 17,000Dione 6.26 0.00 0.02 560 1.44 0.50 10.0 19Helene (D+) 6.26 0.01 0.20 16 (1.0) 0.012 10.0 51,000Rhea 8.74 0.00 0.35 765 1.33 0.66 8.5 120
Physial and orbital properties of the satellites are from Burns (1986). The�nal three olumns are alulated from v2esape = 2GMmoon=Rmoon, v2moon =GMs=amoon, and Eq. (6.18), respetively; the mass of Saturn is Ms = 5:688 �1029g. The mass densities of the leading and trailing Lagrangian ompanions ofTethys (T+, T-) and the leading ompanion of Dione (D+) are unmeasured.
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ladus, immersed in the heart of the E ring, sweeps up the entire ring in a hara-teristi time of 20 years. Without a supply of new material, the E ring should havelost more than 50% of its mass in the interval between its disovery (Feibelman1967) in 1966 and the Voyager y-bys in 1981. Sine it is unlikely that the E ringis disappearing so quikly, a mehanism that ontinuously replenishes the ringmust exist. In partiular, a burst of ativity in the distant past, { through vol-anism, geysers, or large impats { is inapable of aounting for the E ring thatwe observe today. Whatever proess reates E-ring partiles must be ourringnow.
6.6.2 Collisional Yield; a Self-Sustaining RingWhat are the onsequenes of these frequent grain-moon ollisions? First wenote that impats are energeti sine dust grains on highly-eentri orbits strikeembedded satellites at large relative veloities. From expressions for the radialand tangential veloity omponents of an ellipti orbit, the relative speed betweena partile traveling on a low-inlination, arbitrarily-sized, eentri orbit and amoon moving along a irular, nearly equatorial path is approximatelyvol � evmoon; (6.19)where vmoon, the orbital speed of the moon, is roughly 10km/s (Table 6.1). Re-markably, this simple expression is aurate to about 10% for partile orbits of allsizes and shapes as long as the ollision does not our too near an orbital turn-ing point (Fig. 6.1). Owing to the large eentriities of E-ring grains, ollisionveloities often surpass 5 km/s, a value far in exess of satellite esape veloities(Table 6.1). These hyperveloity impats ejet an amount of mass greatly ex-eeding that of the impator (O'Keefe and Ahrens 1977) into irum-saturnianorbit where it merges with the E ring.Sine miron-sized impats add material to the E ring, the ring may sustainitself with these ollisions; only a small fration of the ollisional ejeta, however,is omposed of the dynamially-favored, miron-sized grains. As Fig. 6.3 demon-strates, grains that fall outside this speial size window never attain the higheentriities neessary for energeti ollisions; instead they eventually enounterthe soure satellite in low-veloity ollisions that liberate little or no mass. Thusa self-sustaining E ring requires that, on average, the ollision of a miron-sizedgrain must ejet at least one miron-sized fragment.Can a miron-sized impat aelerate a omparable-sized fragment to esapeveloity? Clearly the answer to this question depends on the nature of the olli-sion and on the esape veloity of the impated satellite. The ollisional fragmentsof interest are similar in size to the projetile and they must survive intat, whihsuggests spallation (Melosh 1989). Due to anellation of the initial ompres-sional and the reeted rarefation stress waves, spall fragments are only lightly
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shoked and an exeed the projetile in size. A few experiments (Frish 1990,1991, Eihhorn and Koshny 1992), in whih small hyperveloity projetiles ol-lide with iy targets, yield large, rapidly-moving spall fragments. Unfortunately,these experiments give inonlusive answers to our question for Eneladus sinethe measured speeds of the fastest projetile-sized ollisional fragments are simi-lar to that satellite's esape veloity. Perhaps the miron-sized yield of a typialollision is unusually high owing to Eneladus' surfae regolith of miron-sizeddebris (Buratti 1988).Energeti grain-moon ollisions are also suggested by the vast quantity of OHmoleules observed in the E-ring region whih seems imply a quantity of H2Otwenty times more than traditional soures an supply (Shemansky et al. 1993).The ollisions that we have argued are apable of lofting a miron-sized objetinto spae liberate many times that muh mass in the form of water moleules andtiny aggregates. The E-ring soure is 10-100 times more eÆient than others (e.g.,mirometeoroid bombardment, sputtering) and an easily generate the observedpopulation of OH moleules (Hamilton and Burns 1993a).
6.6.3 Collisions with RingsAs noted above, some fration of E-ring material will also interat with the inte-rior G, F, and A rings of Saturn (Table 6.2) (Showalter and Cuzzi 1993, Showalteret al. 1992, Dones et al. 1993). The resulting ollisions deplete the E ring andreate many small ejeta fragments in the target rings. However, in additionto bombardment by E-ring grains, the rings of Saturn are also struk by inter-planetary meteoroids. Whih soure dominates? We alulate that the massux of E-ring grains onto Eneladus exeeds the interplanetary ux (taken to be4:5 � 10�17g/m2s from Cuzzi and Durisen (1990) by 104 (Hamilton and Burns1993a). At the F and G rings, where E-ring uxes are redued, this ratio dropsto 10-100, and for the outer 100km of the A ring, to 1-10. Regions interior to theoutermost A ring are shielded from E-ring grains, and so the interplanetary uxdominates there.Most ollisionally-dominated rings, like the main rings of Saturn, have powerlaw size distributions with q � 3:0 (Zebker 1985). Interestingly, both the Fand G rings display anomalously high q's, 4.6 and 6, respetively (see Table 6.2),suggesting an exess of very small dust partiles. The dustiness of these rings maybe augmented by high veloity impats of E-ring motes into the dusty omponentsof the F and G rings. Suh ollisions are atastrophi and at to steepen the sizedistribution. We suggest that the unique size distributions of the F and G ringsare determined, in part, by the inux of E-ring grains.The outer few hundred kilometers of the A ring are brighter and dustier thanits inner parts (Dones et al. 1993). The additional ux of small partiles to theexterior part of the ring may brighten large ring members (in the same manner
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Table 6.2 Properties of the outer saturnian ringsName inner edge outer edge �small �large q omment(RS) (RS)A 2.03 2.27 <�0.03 0.7 �3 � 100m thikF 2.32 2.32 0.1 0.02 4.6�0.5 ore of >m objetsG 2.75 2.88 2 e-6 2.5 e-8 6.0�0.2 ore of >m objetsE <3.00 >8.00 1 e-5 ? - peak at 3.95 RS
Here �small is the optial depth in dust partiles with radii in the miron andsubmiron range while �large is the optial depth in partiles larger than 1mm.Distributions of partile sizes within a ring are usually well approximated bypower laws of the form r�qg , where rg is the partile size and q, the power lawindex, is listed for the A, F, and G rings. Saturn's E ring is not well representedby a power law; it seems to have a monodisperse size distribution (Showalteret al. 1991)
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that it seems to brighten Mimas, Eneladus, Tethys, and Dione) and/or augmentthe prodution of dust (as in the F and G rings).
6.6.4 Intrapartile CollisionsAs mentioned above, the E ring gains mass during typial impats of miron-sizedgrains with embedded satellites. Sine the rate of mass inrease is proportionalto the number of ring members, the ring would inrease in mass exponentiallywith time without a mehanism to quenh this growth. Intragrain ollisions,where the loss rate is quadrati in the number density of ring members, willeventually overwhelm a linear soure and will stabilize the ring at a partiularoptial depth. If the E ring is marginally self-sustaining and intragrain ollisionsare atastrophi, then at steady state grain-grain and grain-moon ollisions shouldour with roughly similar probabilities. In the atual ring, the ross-setionalarea of E-ring partiles is a few times that of Eneladus, and so the intrapartileollision rate is similar to the grain-moon ollision rate as expeted.
6.6.5 Computer SimulationsIn order to test whether the E ring might be self-sustaining, we use a omputersimulation ontaining more sophistiated versions of the simple ideas disussedabove. Our model inludes all of the moons and rings listed in Tables 6.1 and6.2, and onsiders a disrete spetrum of seven partile sizes (0.4�m - 1.6�min steps of 0.2�m). Prior to running our models, we numerially followed theorbital histories of grains of all sizes launhed from eah moon, and reordedthe average inlination, maximum eentriity, and the period of the eentriityosillation (f. Fig. 6.3). These three parameters are used to approximate thee�ets of orbital perturbations and hene serve as the dynamial inputs to ourmodel.The ollisional yield for a hyperveloity impat into a moon depends onlyon the target's esape veloity and surfae properties, and the impator's kinetienergy. We assume that in order to send one projetile-sized fragment into spae,the impat energy must exeed the kineti energy of the esaping fragment by afator of 100-400. We further onsider that the amount of esaping ejeta saleswith the impat energy and that intragrain ollisions are entirely atastrophi.Finally, individual ollision rates and yields are folded together with dynamialevolution to alulate a matrix of transition rates (e.g., the rate at whih 1.2�mgrains from Eneladus reate 0.8�m grains at Tethys). The di�erential equationsgoverning the population of grains of given sizes assoiated with spei� moonsare then numerially integrated (f. Colwell and Esposito 1990).Table 6.3 shows the results of one of our simulations; we see that, as in theatual E ring, most partiles in the miron-range are loalized at Eneladus.
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Eneladus is seleted as the dominant soure for several reasons: the non-zeroinlinations of its neighbors substantially redue their ollision probabilities (Ta-ble 6.1); the large esape veloities of Tethys, Dione, and Rhea limit their olli-sional yields; and Mimas-derived partiles are quikly lost to the inner saturnianrings. Besides mimiing the radial struture of the true E ring, our simulatedring has a mass and a peak optial depth within a fator of three of the observedvalues; this agreement reinfores our assertion that intrapartile ollisions in fatdetermine these quantities. The results presented in Table 6.3 are typial; betterapparent agreement ould be fored by tweaking parameters.The only element of our model that stands in ontrast to observations is thesize distribution whih shows an exess of submiron grains rather than beingmonodisperse at 1�m (Showalter et al. 1991). Suh a result is not unexpeted;it follows learly from our assumptions that miron-sized impats reate equalamounts of mass in eah size bin and that smaller grains are swept up at roughlythe same rate as their more massive brethren. Furthermore, sine a substantialpopulation of submiron dust is observed in the F and G rings, it might also beexpeted in the E ring. Nevertheless, the presene of many small partiles in themodel's output disagrees with the most straightforward interpretation (Showalteret al. 1991) of Voyager observations, namely that the E ring has an appreiablylower optial depth in submiron partiles than in miron grains (M.R. Showalter1993, private ommuniation). The above model is so suessful in aounting forvarious features of the E ring and its embedded satellites that one might wonderhow this disrepany an be explained. Our model may inorretly reproduethe atual ejeta size distribution or may underestimate loss rates for submirongrains. Furthermore, the interpretation of the observations assumes that partilesizes are uniform throughout the E ring (M.R. Showalter 1993, private ommuni-ation) and yet we have seen that submiron dust remains on�ned to a narrowband around the soure's radial loation (Fig. 6.3). Perhaps, miron-sized dustappears to dominate beause it alone is found aross the entire E ring.
6.6.6 Impliations for Other RingsIn the previous setions, we have shown how dusty rings may be generated andhave suggested that the E ring is one member of this lass. High-veloity impatsinto satellites sustain the E ring through the addition of ejeta, and ring partilesare lost in atastrophi grain-grain ollisions. The resulting steady-state ring hasa alulable mass and optial depth that agree with the measured quantities. Ingeneral a self-sustaining ring of this type requires only i) advantageously-loatedsoure satellites that are proper sizes and ii) a mehanism for inreasing ring-partile orbital eentriities and thereby enhaning ollisional yields. The smalljovian satellites Metis and Adrastea satisfy these two onditions; thus the faintring surrounding and inward of these two satellites may be similarly generated.
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Table 6.3 Steady-state partile population for the E ring0.4�m 0.6�m 0.8�m 1.0�m 1.2�m 1.4�m 1.6�mMimas 9.3 e+22 1.1 e+22 1.3 e+21 1.4 e+20 3.4 e+20 2.6 e+20 2.5 e+20Eneladus 7.5 e+22 4.3 e+22 1.1 e+22 1.4 e+21 1.5 e+21 5.6 e+20 2.1 e+20Tethys 6.0 e+22 9.8 e+21 2.1 e+21 2.1 e+19 3.8 e+18 3.6 e+16 7.2 e+14Dione 4.9 e+21 4.0 e+20 5.9 e+19 1.1 e+16 2.1 e+14 3.2 e+13 2.5 e+12Rhea 4.7 e+20 1.6 e+18 4.3 e+14 7.7 e+12 3.2 e+11 0 0Total 2.3 e+23 6.4 e+22 1.5 e+22 1.6 e+21 1.8 e+21 8.2 e+20 4.6 e+20
The �nal, near steady-state population of a simulated E ring. Eah size/moon binwas started with a population of 1018 partiles and the ring was allowed to evolvetoward ollisional steady state for 500 years. Most hanges in the populationourred over the �rst hundred years when grain-grain ollisions were rare. Thetotal volume of our steady-state E-ring model is equivalent to a sphere of radius35 meters whih orresponds to a maximum optial depth of about 30% that ofthe true E ring. The umulative ross-setional area of these ring partiles is1.1 times that of Eneladus. Although we neglet the Lagrangian ompanionsof Tethys and Dione in this simulation for simpliity, their ontributions may beimportant.
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6.7 Future Observations and Preditions6.7.1 Ground-BasedThe most favorable time for ground-based observations of the E ring ours whenSaturn's main rings, as seen from Earth, appear edge-on; this last ourred in1979-80 and will next happen in 1995-96. At these times, the signal from theE ring is strong due to the long optial path length through the region, andsattered light from the main rings is dramatially dereased. Sensitive observa-tions made during this period should be apable of extending the known innerand outer limits of the ring sine these apparent boundaries (Table 6.2) are mostlikely due to the weakening of signal relative to bakground. This is espeiallytrue in the inner region where the bright glare from the main rings ompliatesinterpretation. Our model predits that material should be present inward to theedge of the A ring.Beause the predited azimuthal struture of the E ring is symmetri as viewedfrom the Sun, it is very unlikely that any asymmetry will be seen from Earth. Thevertial asymmetry should, however, tehnially be visible to terrestrial observers,although the magnitude of the e�et may be too small to be notieable. Whenthe Sun is nearly in the ring plane, the quadrupole dominates perienter lokingand dust exterior to Eneladus' orbit (a = 3:95Rp) should be o�set slightly to thenorth; interior to Eneladus it should be found slightly to the south (Fig. 6.11).The magnitude of the o�set depends on the unknown properties of the ensembleof grains that make up the E ring; o�sets should inrease, however, with radialdistane from Eneladus. Grains originating from Tethys, however, will be dis-tributed more symmetrially about the equatorial plane and so the vertial o�setmay disappear at large distanes where Tethys-derived grains predominate.
6.7.2 From SpaeraftThere are de�nite hints of vertial asymmetry from the Voyager y-by missions.Showalter et al. (1991) ite evidene from Voyager images entered at about 4Rpfor a northern o�set of several hundred kilometers - larger than that expeted bydi�erenes between the equatorial and Laplae planes. The o�set predited byEqs. (6.9{6.11) is small at this distane beause it is just outside the positionwhere the orbital nodes lie. Sine the Sun was elevated only � 4o north ofthe equatorial plane at the time of the y-by, the quadrupole term should stilldominate the solar term and material exterior to the nodes should be elevatedslightly to the north as observed. In addition, Voyager 1 swept through the E ringat a distane of about 6:1Rp, near the Dione \lear zone," and returned data fromits PWS instrument, whih was disovered to be sensitive to dust impats. Thesedata imply an o�set to the south (W. Kurth 1992, private ommuniation). Mostof the material in this region probably originates from Tethys, in whih ase the
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orbital perienters are not loked; thus we annot easily predit the sense of theobserved o�set.Questions about the soures of dust and possible asymmetries in the E ring'sstruture are diÆult to answer from ground-based observations alone. Beausesingle partile dynamis dominate olletive e�ets in the E ring, detailed in-formation on individual partile orbits, whih an most easily be obtained fromspaeraft observations, are desirable. The soures of E-ring material should beeasily identi�ed when the Cassini orbiter, with its sophistiated dust detetor,arrives at Saturn and makes repeated passes through the region. The missionshould also be able to determine the nature and extent of any azimuthal andvertial asymmetry.



Chapter 7
Resonanes1
7.1 IntrodutionGravitational orbital resonanes, in whih the frequeny of a perturbing fore isommensurate with a natural orbital frequeny, have fundamental importanein the solar system. Satellites resonate with one another as in the saturnianMimas-Tethys and Eneladus-Dione pairs as well as the famous jovian Io-Europa-Ganymede triple. At resonant loations in the main rings of Saturn, satellitesause density and bending waves, and sometimes form gaps and ringlets. Somefeatures in the saturnian rings have even been asribed to tiny perturbationsfrom axially asymmetri terms in the planet's gravitational �eld (Franklin et al.1982, Marley and Poro 1993). Sine gravitational resonanes are so ommon inthe solar system, might non-gravitational resonanes also be prevalent? This isalmost ertainly true; however examples of suh resonanes will only be foundby looking in the right plaes. Sine non-gravitational fores an ompete withgravitational ones solely when partiles are small, we expet these resonanes forpartiles with radii less than a few mirons. The faint ring systems of the giantplanets are omposed primarily of tiny partiles and so suh loales are ideal sitesto seek out signs of non-gravitational resonant interations.These signs are learly present both in the main jovian ring (Burns et al.1985) and in Saturn's E ring (Chapter 6). In the former loation, Lorentz (ele-tromagneti) resonanes, whih arise from Jupiter's spinning magneti �eld, areapable of pumping up the eentriity and inlination of ring partiles. In par-tiular, the transition between the main ring and the vertially extended haloours at a loation where the ratio of the orbital frequeny to the planet's spinrate is nearly 3:2 (Burns et al. 1985). Partiles drifting inward and aross thisstrong resonant loation inrease their inlinations by a fator of several hundred(see Sha�er and Burns 1992). As we have seen in Chapter 6, the partiles in1This hapter is based on the paper: Hamilton, D.P. (1993), A omparison of Lorentz,planetary gravitational, and satellite gravitational resonanes. Iarus, submitted.
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Saturn's di�use E ring are also in nearly resonant orbits although this time thedriving fore is radiation pressure instead of eletromagnetism. Beause E-ringorbits retain a given orientation with respet to the Sun for an extended period oftime, radiation pressure is able to build up large orbital eentriities and spreadmaterial aross the full breadth of the E ring (Chapter 6).Other non-gravitational resonanes have also been identi�ed, among themshadow resonanes (Horanyi and Burns 1991, Mignard 1984) and resonant hargevariations (Burns and Sha�er 1989, Northrop et al. 1989). In the former, on-ditions hange in the planetary shadow (radiation pressure and the photoeletriurrent shut o�) whih ours naturally one per orbit; suh orbits are thus intrin-sially resonant. Shadow resonanes may be responsible for the strange azimuthalasymmetry seen in the main jovian ring and in its halo (for a desription of theasymmetry, see Showalter et al. 1987). Resonant harge variations our whenthe harge on a dust grain hanges with a period that is ommensurate with thegrain's orbital period; the termination of the photoeletri urrent during shadowpassage provides a simple example, while another depends on variations in theurrent ow to a grain as its position and veloity hange along its orbit.Beause gravitational resonanes have been extensively studied, it is valuablewhen studying non-gravitational e�ets to draw from the body of knowledge al-ready amassed. Aordingly, the primary emphasis of this work is to explore thesimilarities of non-gravitational and gravitational orbital resonanes by ompar-ing and ontrasting their struture and e�ets on orbiting partiles. We hooseto look at two di�erent types of gravitational resonanes { those due to an or-biting satellite and those due to the \lumpiness" of an arbitrarily shaped planet{ and we pik Lorentz resonanes both beause of their importane at Jupiterand beause of their similarity to gravitational resonanes (Hamilton and Burns1993b). In the interest of brevity, heneforth we adopt the following notation:LR = Lorentz resonane, SGR = satellite gravity resonane, and PGR = plane-tary gravity resonane. By omparing three di�erent types of orbital resonanes,we progress in understanding the traits that underlie all orbital resonanes andthose that are unique to partiular ones.A seond goal of this hapter is the mathematial haraterization of theLorentz perturbation whih is useful for several appliations. As noted above,Lorentz resonanes are known to play a key role in the jovian ring (Burns et al.1985). They are also suspeted of being important elsewhere, perhaps aount-ing for dust found over the Neptunian pole (Hamilton et al. 1992), ausing largerinlinations in the saturnian E ring (Chapter 6), and aounting for urious phe-nomena at the orotation distane (Showalter et al. 1985). These resonaneshave been analytially treated by Sha�er and Burns (1987) and more reentlyby Sha�er and Burns (1992) who used a perturbed harmoni osillator modelof resonane. Here we instead follow the standard elestial mehanis approah;sine gravitational perturbations have been treated in this way, similarities and
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di�erenes between resonanes might be more readily apparent. Furthermore,the elestial mehanis approah has several advantages over the harmoni osil-lator approah, the most obvious of whih is that the results of perturbations aredesribed by slowly-varying orbital elements whih allow graphi visualization oforbital evolution.The importane of Lorentz resonanes in many of the above appliations re-mains speulative beause resonant strengths are poorly known; indeed, even thestruture of these resonanes is not well understood. In Setion 7.2, we attemptto retify this situation by expanding the Lorentz fore out to seond-order insmall quantities e and i. In Setion 7.3, we ompare SGRs, PGRs, and LRs anddisuss underlying symmetries ontained in their expansions. We add the impor-tant dissipative e�ets of drag fores in Setion 7.4, following whih we presentour onlusions.
7.2 Expansion of Perturbing Fores7.2.1 Planetary GravityWe begin by disussing perturbations to two-body motion arising from smalldeviations in a planetary gravity �eld. This well-studied problem shares manyaspets with the Lorentz perturbation and, aordingly, failitates our later dis-ussion of that fore. Beause we onsider only small perturbations, solutions tothe full problem di�er only slightly from the exat solution to the two-body prob-lem. Aordingly, we make use of the orbital elements sine these will hangerelatively slowly in time. The basi task then, is to write the perturbation interms of osulating orbital elements so that the time rate of hange of eah ofthese elements an be determined. We now sketh the derivation following theomprehensive treatment of Kaula (1966).Working in a planet-entered referene frame rotating at the planet's spinrate 
p, the gravitational potential � outside an arbitrarily-shaped body an beshown to satisfy Laplae's equation, r2� = 0 (Danby 1988). The solution ofLaplae's equation in spherial oordinates for a ylindrially-symmetri planet,is given by Eq. 5.1. For an asymmetri body, solving Laplae's equation leads tothe standard spherial harmoni expansion of the gravitational potential:

� = �GMpRp 1Xj=0�Rpr �j+1 jXk=0[C�j;k os(k�R) + S�j;k sin(k�R)℄P kj (os �); (7.1)
where, as before, G is the gravitational onstant, Mp and Rp are the planetarymass and radius, and r; �; �R are the usual spherial oordinates de�ned in therotating frame. These oordinates an be translated into the non-rotating frameby the identity �R = �� �0, where �0 = 
pt is the longitude of a referene point
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on the rotating planet. The P kj (x) are assoiated Legendre polynomials (Kaula1966, Sha�er and Burns 1992). Finally, the oeÆients C�j;k and S�j;k are di-mensionless quantities whose values are set by the mass distribution within theplanet. Note, however, that several onventions exist for normalizing the asso-iated Legendre polynomials (Stern 1976); beause the hoie of normalizationalters the numerial values of C�j;k and S�j;k, are must be taken when these oef-�ients are evaluated. Kaula (1966) for instane, uses unnormalized polynomialsin the main text, but quotes numerial values for the Earth (through j = k = 6,his Tables 3 and 4) in whih a spherial harmoni normalization (his Eq. 1.34)has been used. To further ompliate matters, the same polynomials arise whenthe magneti �eld is expanded, but these are onventionally Shmidt-normalizedwhih di�ers from both of the above hoies (see Sha�er and Burns 1992). Wehoose to Shmidt-normalize the gravity oeÆients to failitate the omparisonof PGRs and LRs, and plae asterisks on the oeÆients as a reminder of thisunonventional hoie.The disturbing funtion, i.e., the negative of Eq. 7.1 rewritten in terms of or-bital elements, is found by onverting the spherial oordinates to orbital quanti-ties and substituting into Eq. 7.1; the relevant expressions, Eqs. (5.9{5.11), allowr; �, and � to be replaed by a; e; i;
; u, and �. As in the previous hapters, a ande are the semimajor axis and eentriity of the elliptial orbit, i is the orbitalinlination, and 
 is the longitude of the asending node; the argument of lati-tude, u, and the true anomaly, �, vary rapidly and nonlinearly in time (Fig. 7.1).We therefore replae these latter two quantities with the longitude of perienter$, whih hanges slowly, and the mean longitude of the partile �, whih variesnearly linearly in time. In addition, this hoie auses all referene angles to bemeasured from the same zero-point in spae whih makes the symmetries of theexpansion most apparent (see Setion 7.3.1 below). The elements employed inour expansions are therefore: a; e; i;
; $; and �.We eliminate the argument of latitude with the expressionu = $ � 
 + � (7.2)(Fig. 7.1), leaving only the true anomaly �, whih always appears inside trigono-metri funtions, to be translated. Beause expressions relating os � and sin �to trigonometri funtions of the mean anomaly M are available (e.g., Smart1953, p. 41), we proeed by using multiple-angle identities to �rst write our series(Eq. 7.1) in terms of sums and produts of os � and sin �. We do this using asymboli algebra program (MACSYMA), although with are it an be done an-alytially (Kaula 1966). Next the substitutions for os � and sin � are employed;these expressions are omplex, involving Bessel funtions and their derivatives,but an be redued to the form Pj Bjej os(jM) where the Bj are onstants(Smart 1953, p. 41). These expressions onverge only for e < 0:66, a onstraintof little importane sine most appliations are to low-eentriity orbits. Finally,
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Figure 7.1 Orbital elements. The symbols A and P stand for apoapse and peri-apse, respetively, while AN and DN refer to the asending and desending nodes.Longitude angles (e.g., �;$, and 
) are measured from a spei�ed referene di-retion in spae. Node angles (e.g., 
) are measured to the asending node whilearguments (e.g., u and !) are measured from this point. Similarly, perienterangles (e.g., $ and !) are measured to periapse while anomalies (e.g., �) aremeasured from there.
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we omplete the transformation to our orbital elements by replaing M via theidentity M = ��$.The resulting expression is quite omplex, ontaining produts and quotientsof in�nite power series in the eentriity. We simplify by formally multiplyingand dividing the various series so that eah term in the full expression ontainsonly a single power of the eentriity. Next, we replae all produts and pow-ers of trigonometri funtions with multiple-angle expressions; these steps areomputationally intensive and tedious, and therefore are best left to symboliprograms. The �nal result is the disturbing funtion, a series ontaining termsof the following form:f(a; e; i; :::) os(A��+ A�0�0 + A$$ + A

 + A0); (7.3)where the Aj are integer onstants and f is a funtion of a; e; i and the �eldoeÆients C�j;k and S�j;k. Readers interested in more expliit analyti results forthe disturbing funtion relevant to planetary gravity �elds should onsult Kaula(1966)'s Setion 3.3.We wish to ompare these results with those that arise from the Lorentzfore onsidered in the next setion, but beause a disturbing funtion annot bede�ned for the Lorentz fore, we must derive time rates of hange of the orbitalelements in both ases. These rates are obtained by inserting the disturbingfuntion into Danby (1988)'s Eq. (11.9.9) whih gives six new series, one for therate of hange of eah orbital element, eah of whih ontains terms of the formof Eq. (7.3). We use expressions for dn=dt; de=dt; di=dt; d
=dt; d$=dt, andd�=dt where the mean motion is given by

n = �GMpa3 �1=2: (7.4)The variable d�=dt enapsulates all perturbative hanges to a partile's orbitalmean motion; it is equivalent to Danby (1988)'s d�1=dt, and satis�es d�=dt =d�=dt�n. To failitate the omparison of inlination and eentriity resonanes,we Taylor-expand the six series in e and i and trunate so that only terms seond-order in small quantities remain. Our results for seleted quadrupole and otupoleomponents of the planetary gravity �eld are presented in Table 7.1. Many of thepatterns seen in Table 7.1 [e.g., the similarity of the oeÆients of the time ratesof hange of the eentriity (inlination) and the perienter (node)℄ follow fromthe fat that these expressions are derived from a single disturbing funtion.
7.2.2 The Lorentz ForeIn addition to planetary gravity, a harged dust grain in orbit around a planetresponds to the Lorentz fore arising from the rotating magneti �eld assoi-ated with the planet (Setion 5.4.1). Close in, the magneti �eld B rotates at the
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Table 7.1 The seond-order expansion of perturbations due to the C�2;2 and C�3;2omponents of the planetary gravitational �eld. The �rst olumn ontains theresonant argument, 	 = A�� + A�0�0 + A$$ + A

 [see Eqs. (7.3) and (7.8)℄.When the disturbing funtion is expanded to seond-order in the small quantities(e and i), dn=dt is given to seond-order, de=dt and di=dt to �rst-order, and theangular quantities d
=dt, d$=dt, and d�=dt to zeroth-order. The response for theS�2;2 and S�3;2 omponents (Eq. 7.1) are obtained from these by the transformationC� ! S� and 	 ! 	 � �=2. Setion 7.4.1 gives an example of how to use thistable.
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planet's onstant spin rate
p, and the Lorentz fore is given by Eq. 5.29. Assum-ing that the magneti �eld is evaluated in a urrent-free region (J � r�B = 0),the only remaining onstraint that must be satis�ed is Maxwell's equationr�B =0 (Stern 1976, Setion 5.4.1). Taking B = �r�mag, we �nd that r � B = 0is automatially satis�ed, and r2�mag = 0 with solutions like Eq. (7.1) above.Hene

B = �Rpr 1Xj=1�Rpr �j+1 jXk=0[gj;k os(k�R) + hj;k sin(k�R)℄P kj (os �); (7.5)
whih is merely a ombination of Eqs. (5.26{5.28). Reall that the gj;k and hj;kare planetary magneti �eld oeÆients with units of gauss [Sha�er and Burns(1992) tabulate values for the giant planets and give additional referenes℄.A measure of the relative strength of the Lorentz fore is given by the param-eter L de�ned in Eq. 5.40; the Lorentz fore an be treated as a perturbation togravity for grains satisfying L << 1. Assuming typial grain potentials of a fewVolts (e.g., Horanyi et al. 1992), this inequality translates to grains larger thanseveral tenths of a miron in radius. For many appliations, inluding the jovianring (Showalter et al. 1987) and the saturnian E ring (Showalter et al. 1991),dust grains are inferred to be miron-sized and gravitationally dominated; henea perturbation approah is appropriate.Sine the Lorentz fore depends on veloity, it annot be written as the gradi-ent of a potential and thus an eletromagneti disturbing funtion does not exist.Therefore, in order to obtain the time rates of hange of the orbital elements fora general fore, we proeed as follows:1. Resolve the fore into three orthogonal omponents: one normal to the orbitalplane, the seond oriented radially, and the third perpendiular to the others.2. Insert these omponents into the perturbation equations of elestial mehanis(e.g., Danby 1988, Eq. 11.5.13).3. Convert all quantities into orbital elements.The �rst step has already been aomplished for the Lorentz fore in Setion 5.4.1(Eqs. 5.32{5.34). Next we insert the expressions forBr, B�, and B� from Eq. (7.5)into the fore omponents whih are in turn substituted into the perturbationequations.Finally, we rewrite the perturbation equations in terms of our set of orbital el-ements; this step losely parallels that disussed above for the planetary gravitydisturbing funtion. For eah of the six perturbation equations, we �rst on-vert the spherial quantities (r; �; �) to orbital elements using Eqs. (5.9{5.11),after whih we replae u and � with 
; $, and M (see Eq. 7.2 and the follow-ing disussion). After simpli�ation, we are again left with a series of terms of
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Eq. (7.3)'s form. Our result for the response of a harged grain to magnetidipole, quadrupole, otupole, and selet higher-order terms, trunated to seond-order in e and i, is given in Table 7.2. The (g1;0 : 	 = 0) and (g2;0 : 	 = 0) termsagree with low-order expansions of Eqs. (5.41{5.46) and Eqs.(5.48{5.50) as theyshould.
7.3 Properties of the Expansions7.3.1 Orbital SymmetriesDespite the fat that the expansions listed in Tables 7.1 and 7.2 arise from verydi�erent perturbations, remarkably similar patterns are evident in eah ase. Forinstane, in both expansions the power of the eentriity in a given term is relatedto the oeÆient of the perienter angle, and the same holds for inlinations andnodes. Furthermore, in both ases, the oeÆients of the angular quantities in ev-ery resonant argument sum to zero. These patterns are reminisent of d'Alembertrelations whih onstrain the form of SGRs, imposing symmetries that have beenreognized for as long as the satellite disturbing funtion has been expanded. A-ording to Brown and Shook (1933), the relation between perienter oeÆientsand eentriity powers was �rst disussed by d'Alembert (1754); a more om-plete list of symmetries present in the seular part of the disturbing funtion anbe found in Applegate et al. (1986). We now present simple physial argumentsfor the origin of four of these symmetries; our �rst argument is not new (e.g.,Applegate et al. 1986, Message 1991), but we have found no referene for thefollowing three. The onstraints imposed by the symmetries are quite general,applying not only to SGRs, PGRs, and LRs, but to any orbital perturbation and,indeed, to any quantity that an be written in terms of orbital elements.Any physial quantity, Q, (e.g., a position, veloity, or perturbing fore om-ponent, the disturbing funtion, a perturbation equation, et.) that is expressedin terms of orbital elements an be written as a funtion of many variables,Q = F (�1; �2; �3; :::; �1; �2; �3; :::); (7.6)some of whih are longitude angles (�j) and some of whih are not (�j). For theLorentz perturbation (see Setion 7.2.2 and Table 7.2), the set of �j inlude thequantities fa; e; i; L; gj;k; hj;kg while the set of �j is simply f
; $; �; �0g. Sinethe longitudes are angular quantities, F must be periodi in eah of them. Awell-behaved periodi funtion an be expanded as a Fourier series in eah ofits yli variables; performing this expansion of Eq. (7.6) yields a series whoseterms have the following form:f(�1; �2; �3; :::) os(	); (7.7)
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Table 7.2 The seond-order expansion of perturbations due to the Lorentz forewith � = n=
p. All dipole, quadrupole, and otupole as well as a few of theimportant higher-order terms are given in separate subtables. The �rst olumnontains the resonant argument, 	 = A��+A�0�0 +A$$ +A

 [see Eqs. (7.3)and (7.8)℄. As with planetary gravity, we expand dn=dt to seond order in e andi, de=dt and di=dt to �rst order, and the angular quantities d
=dt, d$=dt, andd�=dt to zeroth order. By onvention, the h0;k are taken to be zero; the responseto the other hj;k terms an be obtained from this table by substituting hj;k in forgj;k and subtrating �=2 from 	. An example illustrating the proper use of thistable for the g3;3 omponent is given in Eqs. (7.26{7.28) of Setion 7.4.1.
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where the funtion f plays the role of an amplitude and	 = A0 +Xj Aj�j: (7.8)
This series is summed over all possible unique sets of integer Aj's. Now, althoughall quantities pertaining to an arbitrary orbit may be expressed in the generalform of Eq. (7.7), the onverse is not true; not all funtions of this form representvalid physial quantities. We now disuss onstraints on the form of Eq. (7.7)that all physial quantities must obey.The �rst and best-known onstraint arises from the fat that all longitudeangles are measured from the same referene diretion, or zero-point, in spae(e.g., Applegate et al. 1986). Beause spae is isotropi, the hoie of referenediretion is arbitrary, and hene its seletion an in no way a�et a given orbitor the perturbations ating on it. We hoose a new zero-point of longitude byadding an angular quantity Æ to eah of the longitude terms and require thatEq. (7.6) be invariant under the transformationlongitude angles! longitude angles + Æ (7.9)(Fig. 7.1). Sine the invariane holds for arbitrary values of the variables �j and�j , the onstraint applies separately to eah term in the Fourier series. If Q isunaltered by Eq. (7.9), then ombining Eqs. (7.7{7.9) yields:f(a; e; i; :::) os(	) = f(a; e; i; :::) os(	 + ÆXj Aj): (7.10)
Now sine Æ is arbitrary, Xj Aj = 0: (7.11)
Thus the longitude oeÆients ontained within eah term of any physial quan-tity must sum to zero. Notie in partiular that this rule is stritly obeyed byeah term of the perturbation expansions listed in Tables 7.1 and 7.2.Unlike the zero-point of longitude, the line of nodes for a given orbit isuniquely determined by the intersetion of the orbital plane with a given refer-ene plane. Nevertheless, it is an arbitrary hoie to measure angles with respetto an orbit's asending node rather than its desending node. If we adopt theunonventional hoie of using the desending node, the following modi�ationsmust be made to the usual orbital elements:node angles! node angles + �

arguments! arguments� �
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i! �i: (7.12)The �rst two transformations adjust the angles so that they are measured relativeto the new referene point, the desending node (Fig. 7.1). As seen from thedesending node, the orbit dips below the referene plane in the diretion oforbital motion and thus the new inlination is negative. Sine the transformationmerely amounts to desribing the same orbit from a di�erent referene point,as with the zero-point of longitude, no analyti expression an depend on thishoie.In an entirely analogous manner, the line of apsides is determined for aneentri orbit, but one an measure angles from either perienter or from apo-enter. By hoosing to measure from apoenter, the usual orbital elements mustbe modi�ed as follows:periapse angles! periapse angles + �

anomalies! anomalies� �
e! �e: (7.13)As with the node above, the �rst two transformations adjust angles so that theyare measured relative to the new referene point (Fig. 7.1). The third transfor-mation, in whih the sign of the eentriity is reversed, is neessary so that thetransformed distane and veloity omponents along the elliptial orbit retaintheir original values. If Q is unaltered by the transformations, as are dn=dt,d
=dt, d$=dt, and d�=dt, then the following expressions onstrain the form ofEq. (7.7): f(a; e; i; :::) os(	) = f(a; e;�i; :::) os(	 + � A
) (7.14)and f(a; e; i; :::) os(	) = f(a;�e; i; :::) os(	 + � A$); (7.15)whih redue to f(a; e; i; :::) = (�1)A
f(a; e;�i; :::) (7.16)and f(a; e; i; :::) = (�1)A$f(a;�e; i; :::): (7.17)When Q is de=dt [di=dt℄, it hanges sign under the transformation Eq. (7.13)[Eq. (7.12)℄ and an extra minus sign appears on the left-hand side of Eq. (7.17)
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[Eq. (7.16)℄. Thus the funtion f is not arbitrary; indeed, it must be either evenor odd in eah of the variables e and i. Furthermore, the parity of f with respetto e or i determines the parity of the orresponding angular quantity's oeÆient.This onstraint is learly evident for eah of the entries in Tables 7.1 and 7.2; thetime derivatives of the mean motion and the angular quantities obey Eqs. (7.16)and (7.17) while de=dt and di=dt di�er by a minus sign). The symmetries alsorequire that power series expansions of f ontain all even (or all odd) powers ofe and i, a fat that is apparent in high-order expansions of SGRs (Murray andHarper 1993), PGRs (Kaula 1966), and LRs (Hamilton, unpublished).The �nal simple symmetry that we disuss arises from reetion of a systemthrough the xy plane. Imagine working in a left-handed oordinate system inwhih angles are measured from the negative ẑ axis rather than the positive one(Fig. 7.2). The orbital elements are a�eted by the hange; the asending nodeof an orbit in the original xyz oordinate system beomes the desending nodein the new system. Sine the usual orbital elements inlude the longitude ofthe asending node, hanging to the new system neessitates adding � to anglesthat measure the loation of the node and subtrating � from arguments mea-sured from that loation (i.e., the �rst two lines of the transformation given byEq. 7.12). With this transformation, we sueed in desribing the same orbitfrom two di�erent referene frames. For SGRs, the transformation must be per-formed on all satellite orbits and the requirement that Eq. (7.7) be unaltered bythe transformation implies that the sum of the node oeÆients must be even.Taken together with Eq. (7.16), this in turn implies the well-known result thatno �rst-order inlination resonanes exist for SGRs.For PGRs and LRs, the situation is more ompliated sine the gravitationaland magneti �elds must also be desribed in the new oordinate system. In-deed, ẑ ! �ẑ implies �̂ ! ��̂, � ! � � �, and P kj (os �) ! (�1)j+kP kj (os �)(Fig. 7.2). To retain the original on�guration of the gravity �eld, the quantityC�j;kP kj (os �) must be unaltered and hene we also hange the �eld oeÆientsC�j;k ! (�1)j+kC�j;k. With these transformations, we sueed in desribing theidential problem from two di�erent oordinate systems; and, as before, the re-sults of a perturbation annot depend on the hoie of referene diretions. ForPGRs, f is proportional to one of the C�j;k and if Q is invariant under the hangeof oordinate systems, then the onstraint on Eq. (7.7) takes the form:C�j;k os(	) = (�1)j+kC�j;k os(	 + �A
) (7.18)or (�1)A
 = (�1)j+k. The above disussion applies equally well to LRs, but anadditional minus sign is introdued when the �nal ross produt in the Lorentzfore is alulated in the left-handed oordinate system (Eq. 5.29). Summarizingour results for the three resonanes, we have:SGRs : Sum of node oeÆients is always even;
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Figure 7.2 An orbit seen from two oordinate systems. In the xyz system, ANmarks the position of the asending node sine the polar angle � dereases asthe satellite moves away from this point (i.e., the orbit asends above the xyreferene plane). As seen from the xy(�z) system, however, the polar angle is� � � and AN is the desending node sine the polar angle inreases in thediretion of orbital motion.
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PGRs : j + k + A
 is always even;LRs : j + k + A
 is always odd: (7.19)Notie that the results for PGRs and LRs do not exlude �rst-order inlinationresonanes. In fat, �rst-order inlination resonanes our for PGRs when j+ kis odd and for LRs when j + k is even (f. C�3;2 term in Table 7.1 and g2;2 termin Table 7.2).The symmetries presented in Eqs. (7.9), (7.12), (7.13) and (7.19) are widelyappliable. Besides onstraining the form of the expansions of SGRs, PGRs, andLRs presented here, they apply diretly to any form of an arbitrary perturbation(e.g., eah of the orbit-averaged perturbations given in Chapter 5). Moreover,the symmetries hold for all physial quantities that are written in terms of orbitalelements whih an be espeially useful for spot-heking ompliated expressions.For instane, the expansions for sin � and sinE in Danby (1988, p. 437) do notmanifest the symmetry implied by Eq. (7.13) and hene annot be orret; validexpressions an be found in Smart (1953).

7.3.2 The HamiltonianThe properties disussed above are shared by all perturbations simply beauseof the nature of orbital elements. The resulting rules explain many of the pat-terns that are apparent in Tables 7.1 and 7.2. Additional similarities are presentbeause in eah of the problems there is a unique rotating frame in whih the per-turbation is onstant in time; for SGRs the frame rotates at the angular rate ofthe perturbing satellite, while for PGRs and LRs, it rotates at the planetary spinrate. When expressed in this rotating frame, F = ma ontains both a entrifugalterm and a Coriolis term. Nevertheless, a onserved quantity of the motion (en-ergy) an be found by taking the dot produt of the equation of motion with vrel(vrel is the veloity relative to the rotating �eld) and integrating over time; forSGRs, this proedure yields the lassial Jaobi onstant (Danby 1988, p. 253).To zeroth-order in the perturbing fore, the onserved quantity H is given by:
H = �GMr � 12
2p(x2 + y2) + 12v2rel; (7.20)where, for SGRs, 
p here and below is understood to be the mean motion ofthe perturbing satellite. The �rst term is the gravitational potential energy, theseond is the potential orresponding to the entrifugal fore, and the �nal termrepresents the partile's kineti energy. Beause of its perpendiularity to vrel,the Coriolis fore does not ontribute to Eq. (7.20). In applying Eq. (7.20) toSGRs, we neglet the small ontribution of the perturbing satellite whih is agood approximation when one is not too lose to the satellite (f. Roy 1978, p.129). For PGRs, we neglet the higher-order gravitational oeÆients whih isa reasonable approximation. Finally, the Lorentz perturbation, like the Coriolis
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aeleration, is perpendiular to vrel (see the disussion immediately prior toEq. 5.29) and so its term disappears when dotted with the veloity, leaving theenergy integral unaltered. This is true even if the partile's harge varies withtime (Horanyi and Burns 1991). Thus Eq. (7.20) is the exat integral of themotion for the Lorentz perturbation. We now onvert this onstant of the motioninto orbital elements to see how it onstrains the form of our expansions. Thisonversion was �rst aomplished by Tisserand (Roy 1978, Eq. 5.50). We �ndRsyna + 2� aRsyn�1=2(1� e2)1=2 os i = C; (7.21)where Rsyn is the radial position of synhronous orbit and C is a onstant. Weuse


p = �GMpR3syn �1=2 (7.22)and Eq. (7.4) to replae the distanes in Eq. (7.21) with frequenies. Sine weare interested in expressing the onstraint in terms of our derived time rates ofhange, we di�erentiate and obtain
1n� n
p�(1�e2)1=2 os i�dndt � 3e os i(1� e2)1=2�dedt��3(1� e2)1=2 sin i�didt�= 0 (7.23)

whih, to lowest-order in e and i, redues to
3nededt + 3nididt + �1� n
p�dndt = 0: (7.24)Equations (7.23) and (7.24) provide a link between variations in a; e; and i whihan be used in a number of appliations. For example, Burns and Sha�er (1989)and Horanyi and Burns (1991) have used planar versions of Eq. (7.23) in ele-tromagneti problems to obtain de=dt when da=dt (or dn=dt) is known, whileSha�er and Burns (1992) were the �rst to apply a variant of Eq. (7.24) to elui-date properties of Lorentz resonanes. The expressions an also be used to hekderivations; the orbit-averaged eletromagneti expressions (Eqs. 5.41{5.43), forinstane, obey Eq. (7.23) as they must. Indeed, it is not diÆult to see whatthe eentriity ounterpart to Eq. 5.48 must be. We now disuss how Eq. (7.23)onstrains the form of our expansions given in Tables 7.1 and 7.2.For any orbit, the hanges in the orbital elements imposed by the full pertur-bation must satisfy Eq. (7.23). In general, many terms add together to produethese hanges, but at resonant loations the e�ets of a single term dominateall others. At these loations, the resonant term itself must obey Eq. (7.23),but elsewhere it need not. The expansion of PGRs (Table 7.1) illustrates thisproperty niely; only at resonane, where n=
p � jA�0=A�j, do single resonant
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terms satisfy Eq. (7.24). The situation for Lorentz resonanes is even simpler.As an be seen in Table 7.2, eah term satis�es Eq. (7.24), regardless of the valueof �(= n=
p), and thus the umulative perturbation automatially does too.
7.3.3 Additional PatternsIn the previous few setions we have disussed simple physial ideas that putstrong onstraints on the form of all resonanes; here we investigate rules of amore limited sope. Some of these apply to just one type of resonane whileothers follow from mathematial properties of the expansions rather than fromsimple physial arguments.Several additional physial rules further onstrain the form of Lorentz reso-nanes. First, the Lorentz fore must vanish for a irular uninlined orbit atthe synhronous distane, sine there the veloity relative to the magneti �eldis zero (Eq. 5.29). This fat is reeted in the expansion of Table 7.2; all dn=dt,de=dt, di=dt and d�=dt terms disappear in the limit n ! 
p; e ! 0; i ! 0 (seeSetion 5.4.2). The d
=dt and d$=dt terms need not vanish in this limit as theseorbital elements are unde�ned for planar and irular orbits, respetively (Se-tion 5.4.2). Furthermore, onsideration of Eqs. (5.29) shows that the Lorentzexpansion splits into two piees, one arising from the v � B omponent of thefore (� terms in Table 7.2), and one due to (
p � r) � B (onstant terms inTable 7.2). Sine the v � B fore an do no work in the non-rotating frame,the orbital energy, and hene dn=dt, is unaltered. Thus there are no � terms inTable 7.2's dn=dt entries.Some patterns an best be explained mathematially. One suh regularity seenin both Tables 7.1 and 7.2 is that the powers of the eentriity and inlination inthe dn=dt equation equal or exeed the arguments of the orresponding angularquantities in 	. This property an be shown to be true by arefully followingthrough the expansion of the perturbing fores; it stems from the fat that eahappearane of a � or u is aompanied by an e or i respetively. Furthermore, thestruture of the perturbation equations (Danby 1988, Eq. 11.5.13) also insuresthat the power of e in the de=dt and d$=dt equations are, at most, one and twolower than A$ while the power of i in the di=dt and d
=dt terms follow the samepattern with respet to A
. Finally, the fat that the numerial oeÆient in thede=dt and d$=dt (di=dt and d
=dt) terms are usually idential, to �rst order,also follows from the struture of the perturbation equations.For typial resonant arguments, the equality in the patterns disussed inthe above paragraph holds exatly. The only exeptions are resonanes at syn-hronous orbit whih have arguments of the form A�� A�0. Additionally, thesestrange resonanes are the only ones that inuene the d�=dt equation, althoughthe e�et is weak sine � � 1. Examining the 2� � 2�0 resonant argument (seethe C�2;2 entries of Table 7.1 and in the g3;2 entries of Table 7.2), we see that the
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gravitational version of this resonane has more inuene on the orbital elementsthan the Lorentz version does. This manifests the fat that the Lorentz foreweakens in the viinity of synhronous orbit.The resonant arguments of Tables 7.1 and 7.2 all have jA�0 j = k, whihfollows diretly from the fat that the gravitational and magneti �elds for theappropriate oeÆients have k-fold longitudinal symmetry. This onstraint, takentogether with Eqs. (7.11) and (7.19) and the above disussion, allows us to preditwhih resonant arguments will appear for a given �eld oeÆient. In omparingTable 7.1's C�3;2 and Table 7.2's g2;2 entries, for example, we see that all possible�rst- and seond-order resonant arguments (those for whih jA
j+ jA$j � 2) arepresent. The g3;2 entries also ontain all possible arguments of order two, but a feware missing from the C�2;2 entries. The missing arguments are best explained bylooking at the mathematial expansion of the planetary gravity resonanes (Kaula1966). Properties of the series expansions for PGRs show that all arguments withA� = 0 and A$ = �2 as well as those that satisfy j � k+A
 < 0 annot appearin the expansion. The missing term (C�2;2 : 	 = �2�0 + 2$) is an example of theformer onstraint while (C�2;2 : 	 = 4��2�0�2
)'s absene illustrates the latter.
7.3.4 Global Struture; Considerations of ResonaneStrengthAlthough the ideas disussed above signi�antly onstrain the struture of indi-vidual resonanes, they put few restritions on the global properties of the entireexpansions. Aordingly, in this setion we address the distribution and relativestrengths of resonanes in eah of the three ases.To a �rst approximation, the distributions of SGRs, PGRs, and LRs relative tosynhronous orbit are almost idential beause the nodal and apsidal frequeniesare slow ompared to the mean motions and, onsequently, an be ignored whenalulating rough resonane positions. For all three problems, Nth-order reso-nanes (N = jA
j+ jA$j) are loated inside synhronous orbit when jA�j < jA�0 jand outside that position when jA�j > jA�0 j. The radial loation of resonane, a,is determined by aRsyn = �
pn �2=3 =����A�A�0 ����2=3: (7.25)As in Setion 7.3.2, for SGRs Rsyn and 
p are understood to be the perturbingsatellite's distane and mean motion, respetively. We use Eq. (7.25) to plotthe positions of several �rst-order resonanes (N = 1) and two seond-order ones(N = 2) in Fig. 7.3. These resonanes luster together most tightly in the viinityof synhronous orbit { adjaent resonanes beome arbitrarily lose for large A�.Higher-order resonanes behave similarly although Eq. (7.25) shows that theyextend further from synhronous orbit than their �rst-order ousins.
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Figure 7.3 Loation of the several strong �rst-order (solid lines) and two rep-resentative seond-order (dashed lines) Lorentz resonanes around Jupiter. ForJupiter, Rsyn = 2:24 planetary radii. The �gure applies equally well to planetarygravity resonanes and, if the perturbing satellite is at Rsyn, to satellite reso-nanes. In Setion 7.4, we �nd that dust grains spiraling toward synhronousorbit an beome trapped at resonant loations while those dragged away fromsynhronous orbit experiene resonant jumps in either the inlination or eentri-ity. Both of the displayed seond-order resonanes arise from the g4;3 omponentof the magneti �eld. Sine the seond-order 1:3 resonane is found far beyondthe 1:2 resonane (Eq. 7.25), we see that higher-order resonanes over a broaderradial range than �rst-order ones do.
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Although resonanes lie in similar positions for eah perturbation, their strengthsrelative to one another vary depending on the details of the perturbing fore. Forexample, eah �eld oeÆient (e.g., g2;2) produes two �rst-order resonanes, oneinside Rsyn (	 = �� 2�0 +
) and one outside (	 = 3�� 2�0�
). For LRs, thestrengths of these two resonanes are related sine, to a sign, they have identialentries (Table 7.2); for PGRs, though, the entries di�er (Table 7.1). More im-portant, however, is the morphology of resonanes in the viinity of synhronousorbit. For SGRs, synhronous orbit is oupied by the perturbing satellite andso resonant strengths rise as this loation is approahed. Sine resonanes bothinrease in strength and derease in separation as synhronous orbit is neared,it is inevitable that resonane overlap eventually ours. At this point, single-resonane models of orbital motion are inappropriate and haoti motions pre-dominate; Wisdom (1980) has shown that resonane overlap ours at a distaneproportional to �2=7, where � is the satellite-to-planetary mass ratio. UnlikeSGRs, PGRs and LRs tend to weaken as synhronous orbit is approahed sinethese resonanes depend on suessively larger powers of Rp=a (Fig. 7.3, and Ta-bles 7.1 and 7.2). Thus the spaing and strength e�ets ompete, and it is notimmediately obvious whih dominates; Sha�er and Burns (1987), however, arguethat this variety of resonane overlap does not our for Lorentz resonanes.Instead, a di�erent type of resonant overlap happens for PGRs and LRs. Justas the main energy levels of the hydrogen atom resolve into a multiplet of losely-spaed levels, so a detailed examination of resonant loations reveals a similar �nestruture. Eah individual resonant loation (e.g., 3:2 in Fig. 7.3) resolves intoa luster of resonanes with a �xed ratio A�=A�0 and di�erent nodal and apsidaloeÆients. These resonanes lie at slightly di�erent loations due to the non-zero seular preession rates d
=dt and d$=dt whih arise from the axisymmetriomponents of SGRs, PGRs, and LRs (e.g., the gj;0 terms of Table 7.2). For SGRsand PGRs, inlination resonanes lie further from synhronous orbit than een-triity resonanes; this is due to the fat that seular gravitational perturbationsause orbital nodes to regress and orbital perienters to preess. For LRs, thesituations is more ompliated beause both gravitational and eletromagnetiperturbations inuene the preession rates. In some ases, the Lorentz fore anause the opposite behavior, i.e., nodal preession and apsidal regression(see the g1;0 and g3;0 omponents of Table 7.2). Thus inlination resonanes maybe loser to synhronous orbit than eentriity resonanes. Finally, sine theeletromagneti preession rate depends on L, and hene on the harge-to-massratio of a dust grain, an ensemble of partiles of di�erent sizes will experiene res-onanes in a range of slightly di�erent loations. For some harge-to-mass ratios,the strong �rst-order inlination and eentriity resonanes are lose enough tointerfere with one another, leading to resonant overlap and haos (see Sha�erand Burns 1992's Fig. 5).In the expansions of PGRs and LRs presented in Tables 7.1 and 7.2, we
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have assumed that the gravitational and magneti �eld oeÆients are time-independent and thus the �elds rotate as rigid objets (i.e., at a single fre-queny). In reality, however, these oeÆients probably hange slowly [f. Levy(1989) for LRs at Jupiter℄ and, in some ases, even rapidly [f. Marley (1991),Marley and Poro (1993) for PGRs at Saturn℄. Unfortunately, the physis driv-ing these hanges, espeially those of the magneti �eld, are poorly understoodwhih preludes a quantitative disussion. Nevertheless, we an determine thequalitative e�ets of gradual hanges in the �elds by analogy with satellite reso-nanes. In SGRs, the perturbing satellite has three distint orbital frequenies:its rapid mean motion and slower nodal and apsidal preession rates. If the pre-ession rates are suppressed, all orotation resonanes (whose arguments dependon quantities of the perturber that are gradually hanging) disappear from thedisturbing funtion. In an entirely similar manner, the inlusion of slow driftfrequenies to both the PGR and LR problems introdues orotation resonanesthat are slightly separated from the nominal resonant loations (Fig. 7.3).Beause orotation resonanes a�et only the perturbee's mean motion, theyare often of minor importane. When a satellite is the perturber, however, thepaired interations of a orotation resonane and a nearby eentriity resonaneare apable of longitudinally on�ning ring ars (Goldreih et al. 1986, Poro1991). Thus the existene of orotation resonanes in the other two ases may notbe entirely aademi. In partiular, we suggest that similar trapping mehanismsmay operate in some faint rings that are inuened by Lorentz fores.
7.4 Coupling with Drag Fores7.4.1 Resonant EquationsAting alone, mean-motion resonanes are apable of induing moderately-large,periodi hanges in the orbital elements of nearby partiles. Nonetheless, beausethe majority of possible orbits are far from resonant loations, resonant e�etsmight seem to be unimportant. Not so! When oupled with a drag fore, whihauses seular evolution of an orbit's mean motion, the importane of resonanesis greatly enhaned sine drag fores will inevitably transport distant partilesinto resonant loations where they an be strongly perturbed. Furthermore, dragfores allow resonant perturbations to seularly hange orbital eentriities andinlinations as we will demonstrate below. Depending on the diretion of the drift,drag fores ating at resonane an ause jumps in the value of e and/or i as wellas resonant trapping with an assoiated sustained growth in those elements.The importane of the oupling between drag fores and resonanes was �rstreognized by Goldreih (1965) who argued that tidal drags ause satellites toevolve into, and subsequently beome stably trapped in, satellite mean-motionresonanes. Sine then, the apture proess has been reexamined (Greenberg
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1973a), individual examples have been analyzed (e.g., Sinlair 1975, Greenberg1973b), and Hamiltonian methods have been applied to the proess (Peale 1976,Henrard 1982, Borderies and Goldreih 1984, Dermott et al. 1988, Malhotra1991). In these next few setions we argue that partiles drifting into PGRs andLRs display similar dynami behavior to that seen at SGRs. We also illustratehow our LR expansion an be applied to the study of partiular resonanes.Small partiles that make up di�use ring systems are not signi�antly in-uened by tidal fores; instead several additional drag fores operate on thesepartiles. Plasma and atmospheri drags arise from motion through swarms ofharged and neutral moleules that orotate with the planet; aordingly, thesedrags slow partiles inside of Rsyn and speed up those outside of this position.Orbital evolution, therefore, is away from the synhronous loation. Poynting-Robertson drag arises from the asymmetri sattering and re-radiation of photons(Burns et al. 1979) and always auses orbits to lose energy and evolve inward.Finally, resonant harge variations arise from the lag in the response of a grain'sharge as its orbital motion takes it into regions with di�erent harging urrents.Depending on the plasma parameters, resonant harge variations an ause thesemimajor axis to either inrease or derease (Burns and Sha�er 1989, Northropet al. 1989). Although these drag fores only operate on small partiles they,like tidal evolution, an bring material to resonanes and inuene the subse-quent dynamis. The analogous proess for interplanetary dust { evolution underPoynting-Robertson drag into resonanes with the planets { was �rst reognizedby Gold (1975) and later numerially studied by Gonzi et al. (1982). Severalreent papers revisit and extend the early results (e.g., Jakson and Zook 1989,1992, Weidenshilling and Jakson 1993, Roques et al. 1993, Lazzaro et al. 1993).After the disussion of Setion 7.3, it should not be surprising that LRs andPGRs behave almost identially to SGRs when oupled with a drag fore. Themain di�erene is due to the existene of strong �rst-order inlination-type PGRsand LRs. In fat for LRs, inlination resonanes are usually stronger than theorresponding eentriity ones (Table 7.2). Thus, while a distribution of dustevolving through a set of SGRs might be expeted to remain roughly planar dueto the dominane of eentriity-type resonanes, this will not be the ase forPGRs and espeially LRs as the jovian halo so elegantly demonstrates (Burnset al. 1985). To emphasize this point, we treat a �rst-order inlination-typeresonane in this setion although the struture of the equations, and hene theresonant dynamis, is idential for an eentriity resonane (see Table 7.2 andHamilton and Burns 1993b).In writing a set of equations valid for the passage of a grain through anisolated resonane, we inlude the drag fore as well as the perturbation's resonantand seular terms. We speialize the equations to the 3:2 �rst-order Lorentzinlination resonane whih is thought to ause the transition from the mainjovian ring to its interior halo (Burns et al. 1985). Sine a �rst-order inlination
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resonane does not strongly a�et e;$, and � (see Table 7.2), we ignore hanges inthese elements. The governing equations ome from the (g3;3 : 	 = 2�� 3�0+
)entry of Table 7.2. Taking � = n=
p � 3=2, the appropriate expressions aredndt = �3in2� os(2�� 3�0 + 
) + _ndrag (7.26)

didt = �n�2 os(2�� 3�0 + 
) + _Idrag (7.27)
d
dt = n�2i sin(2�� 3�0 + 
) + _
se; (7.28)where _
se is the nearly onstant seular preession rate arising from eletromag-neti and gravitational fores; its presene slightly alters the physial loation ofresonane. Drag terms inuene eah of Eqs. (7.26{7.28), but ontributions tod
=dt are negleted as they are dominated by _
se. Finally, the limited radialextent of the resonane zone justi�es treating _ndrag as a onstant. We de�ne theresonane strength to be

� � p10L2 �(g23;3 + h23;3)1=2g1;0 ��Rpa �2 � (0:05)L; (7.29)or one-third of the dn=dt oeÆient taken from the (g3;3 : 	 = 2��3�0+
) entryof Table 7.2. In the �nal approximation, we have used parameters appropriate forthe jovian 3:2 resonane, namely g1;0 � 4:218 G, g3;3 � �0:231 G, h3;3 � �0:294G (Au~na et al. 1983a), and a=Rp � 1:7. At Jupiter, a miron-sized grain hargedto a potential of +5V, has L � 0:028 and hene � � 0:0014, a value orders ofmagnitude greater than typial SGR strengths. Furthermore, sine drag foresat on small partiles muh faster than tidal fores inuene large ones, evolutionof dust partiles in Lorentz resonanes proeeds orrespondingly more rapidly.To improve our alulation of �, we would need to inlude additional ontri-butions from the gj;3 and hj;3 (j = 5; 7; 9; :::) �eld oeÆients, but unfortunately,the values of these oeÆients are unknown for all non-terrestrial magneti �elds.Nevertheless, we an get a rough upper bound on the error in � by assuming thatthe higher-order �eld oeÆients are roughly equal in magnitude to the otupoleoeÆients [for the terrestrial magneti �eld, the oeÆients derease in magni-tude with inreasing order { (Stern 1976)℄. In this ase, the higher-order termsontribute <� 0:5� to the resonane strength. There are also terms in Eqs. (7.26{7.28) that depend on larger powers of e and i, but these ontributions amount to<� 0:1� for onditions present in the Jovian ring.Finally, we note that the struture of the equations (7.26{7.28) is appropriatefor all �rst-order inlination resonanes; only the onstant oeÆients in eahequation di�er from one resonane to the next (Table 7.2). Seond-order (Nth-order) resonanes di�er only in that the power of i in eah of the dn=dt, di=dt,



173
and d
=dt equations is (N � 1) larger. The (g4;3 : 	 = 5� � 3�0 � 2
) and(g4;3 : 	 = � � 3�0 + 2
) entries of Table 7.2 are eah seond-order inlinationresonanes; their positions relative to Jupiter are given in Fig. 7.3. Eentriityresonanes of all orders are idential in form to inlination resonanes if all i's arereplaed by e's. Beause all of these di�erent types of resonanes have a similarstruture, we expet the same type of dynami behavior at eah of them.
7.4.2 Resonane TrappingWhat happens to partiles that drift into resonane? The question is most exatlytreated by transforming Eqs. (7.26{7.28) into anonial variables from whih apendulum-like Hamiltonian an be de�ned (f. Peale 1976). Suh an analysisshows that for an isolated resonane there are two possibilities depending onthe diretion from whih the resonane is approahed: resonane trapping andresonant jumps. A trapping probability, whih depends on the relative strengthsof the resonane and the drag fore, is assoiated with the former. Unfortunately,the Hamiltonian results are awkward to interpret in terms of the orbital elements,the variables that have geometri meaning. Aordingly, the purpose of this andthe following setion is to give simple desriptions and approximate formulaein terms of orbital elements without resorting to a Hamiltonian analysis. In sodoing, we further emphasize the similarities between SGRs, PGRs, and LRs.When a partile enters the resonane zone and subsequently is stable againstperturbations that attempt to dislodge it, the partile is said to have been trappedinto resonane. For the partile to remain trapped, its orbital period must staynearly ommensurate with the foring period, and hene the average value ofdn=dt must be zero. This an only our when the �rst term in Eq. (7.26)balanes the seond. Thus very large drag rates prelude trapping or, put anotherway, for a given drag rate many resonanes, espeially higher-order ones, aretoo weak to trap passing partiles. In Fig. 7.4, we show what happens to agrain that enounters the 3:2 inlination resonane while slowly drifting towardsynhronous orbit. Resonant perturbations stop the evolution of the mean motionand simultaneously ause the inlination to grow. The latter growth an be easilyexplained with the energy onstraint, Eq. (7.24).Although drag fores need not produe hanges in the orbital elements thatsatisfy Eq. (7.24) (resonant harge variations are an exeption and will be dis-ussed separately below), the resonant portion of the perturbation must. Sinethe umulative perturbations for n; e, and i are written as sums of resonant anddrag terms (Eqs. 7.26 and 7.27), we solve for the resonant terms and substitutethese into Eq. (7.24). The energy onstraint takes the form

ededt + ididt = _ndrag3n �1� n
p�+ e _edrag + i _Idrag: (7.30)
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Figure 7.4 Resonane Trapping. A plot of the orbital evolution numeriallydetermined by Eqs. (7.26{7.28) for jovian parameters � = 1:4 � 10�3 and_ndrag = �10�5
2p. Plotted against Np, the number of jovian rotations, are themean motion ratio n=
p, the inlination i, and the resonant angle 	. Initialonditions are n = 1:6
p; i = 0:01, and 	 = 0. The resonant angle 	 librateswith small amplitude around a value slightly less than 270o as ould have beenantiipated by setting equation (7.26) to zero and solving for 	. The dashedline omes from Eq. (7.32) and, for these parameters, is i � 0:0037N1=2p . It hasbeen o�set slightly to the left for larity. Integrations of the full equations ofmotion, both for SGRs (f. Dermott et al. 1988's Fig. 11) and LRs (Hamilton,unpublished), show behavior qualitatively similar to this.
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As it stands, Eq. (7.30) is diretly appliable to mixed resonanes (all of theseond-order resonanes with gj;k oeÆients satisfying j + k=odd), whih inu-ene both e and i. For nearly irular orbits at inlination resonanes, however,eentriities are only weakly perturbed and an usually be ignored. Further-more, drag fores typially do not strongly a�et orbital inlinations so the _Idragterm an be dropped. Taking these approximations yields

ididt = _ndrag3n �1� n
p�; (7.31)whih an be diretly integrated to
i = si20 + 2 _ndragt3n �1� n
p�; (7.32)where i0 is the initial inlination and t = Np(2�=
p) is time, with Np the numberof jovian rotations (f. Hamilton and Burns 1993b). The predition of Eq. (7.32)agrees well with the numerial integration of Eqs. (7.26{7.28) presented inFig. 7.4. We note that Eqs. (7.31) and (7.32) are appliable to inlinationresonanes of all orders and that similar expressions apply to nearly planar orbitsat eentriity resonanes. Inidentally, Eq. (7.31) an also be obtained diretlyfor the 3:2 inlination resonane by setting dn=dt = 0 in Eqs. (7.26{7.28) andsolving for i di=dt.As an interesting aside, onsider the ase where resonant harge variationsause evolution through a Lorentz resonane. Beause the drag fore is entirelyeletromagneti, the full perturbation satis�es Eq. (7.24). If a partile beomestrapped in a resonane, then dn=dt is zero and hene e de=dt+ i di=dt = 0. Thusthere an be no seular inrease in one element without a orresponding dereasein another.Equation (7.30) shows that partiles trapped in resonanes systematiallyhange their inlinations and/or eentriities. Evolution toward synhronousorbit makes i inrease while evolution in the opposite sense auses it to derease(Eq. 7.32). Beause Eq. (7.32) gives nonsensial results for shrinking inlinations(the quantity inside the square root beomes negative), partiles drifting awayfrom synhronous orbit annot stay in resonane forever. In fat, by linearizingEqs. (7.26{7.28) around the equilibrium inlination, it an be shown that solu-tions in whih i dereases are unstable and so partiles do not beome trappedat all. Conversely, when drifts are toward synhronous orbit, i inreases and thelinearization yields stable solutions.Thus we �nd that trapping into pure inlination-type and eentriity-typeSGRs, PGRs, or LRs ours only when drifts are toward the synhronous loation(Fig. 7.3); in suh ases, the energy integral Eq. (7.24) requires that there be anassoiated \square root" growth in e or i (Eq. 7.32 and Fig. 7.4).
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7.4.3 Jumps at ResonaneWhen drifts are away from synhronous orbit, or when the drag rate is too highfor resonant trapping to our, disrete jumps in the inlination (or eentriity)happen instead. In this setion we disuss the mehanism that leads to resonantjumps and derive a simple expression to approximate the jump amplitude in thelimiting ase of slow drag (f. Hamilton and Burns 1993b).Figure 7.5 shows the orbital history of a dust grain drifting away from syn-hronous orbit and through the jovian 3:2 inlination resonane. Far from res-onane, the angle 	 is seen to irulate rapidly and the resonane has littleinuene on the motion of an orbiting dust partile. As drags bring the partileloser to resonane, however, 	 starts librating about a value near 90o; beause oftheir os	 dependene, however, dn=dt and di=dt are still not strongly perturbed(Eqs. 7.26 and 7.27). Eventually, the equilibrium point about whih librationours beomes unstable (one an solve for the point at whih this ours fromEqs. 7.26{7.28). The resonane variable 	 drifts away from 90o, and resonantperturbations to dn=dt overwhelm the drag fore, quikly pushing orbits arossthe resonane zone. At this point 	 starts irulating rapidly in the oppositesense, resonant perturbations dwindle in strength, and drag fores dominate or-bital evolution one again.It is lear from Fig. 7.5 that both n and i experiene jumps during pas-sage through resonane. Sine the jumps are aused by resonant fores, theirmagnitudes are neessarily related by Eq. (7.24). In partiular, for inlinationresonanes, eentriities are una�eted and so

i di = ��dn3n��1� n
p�; (7.33)where dn and di are the jump amplitudes; the former an be approximated simplyfrom the width of the region over whih resonant perturbations are signi�ant,whih we estimate to be roughly the resonane's libration width. We obtainthe libration width by setting d	=dt = 0 and using Eqs. (7.26{7.28) to solveseparately for the largest possible mean motion (nmax) and the smallest (nmin);the libration width is then simply jdnj � nmax � nmin. For grains drifting awayfrom synhronous orbit through a �rst-order inlination resonane, we �nd themean motion jump,
dn � �2n�i ����1� n
p �����1� n
p�; (7.34)whih, ombined with Eq. (7.33), yields the inlination jump,

di � 2�3i2 ����1� n
p ����3: (7.35)
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Figure 7.5 Jumps at resonane. A plot of the orbital evolution deter-mined by Eqs. (7.26{7.28) with parameters appropriate for a 1-miron grain:� = 1:4 � 10�3; _ndrag = 10�5
2p. Initial onditions are n = 1:4
p; i = 0:01, and	 = 0. Notie that the jumps in mean motion (semimajor axis) and inlinationour simultaneously near n � 3
p=2 as required by Eq. (7.33). The resonantargument 	 librates around a value near 90o until passage through the resonaneours, after whih it irulates. Integrations of the full equations of motion, bothfor SGRs (f. Dermott et al. 1988's Fig. 5) and LRs (Hamilton, unpublished),show behavior qualitatively similar to this.
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As they stand, these expressions are ambiguous sine it is unlear what valuei has. For nearly irular orbits that drift into strong �rst-order resonanes,however, di � if , where if is the inlination immediately after the jump. Weapproximate the inlination during resonant passage with i � if=2 � di=2, whihallows us to express eah jump amplitude purely as a funtion of the resonane'sloation and strength:

di � 2��3�1=3����1� n
p ����; (7.36)
dn � �2n(3�2)1=3�1� n
p�: (7.37)As usual, the above disussion applies equally well to all �rst-order eentriityresonanes. Applying Eqs. (7.37) and (7.36) to our jovian example and takingthe appropriate parameters from Fig. 7.5's aption, we estimate dn = 0:03
p anddi = 0:08, values lower than, but in reasonable agreement with, the numeriallydetermined jumps observed in Fig. 7.5. We have also veri�ed the funtionaldependene of di on � and 1 � n=
p in additional numerial experiments. Thenumerially-determined �nal inlination in Fig. 7.5 is � 5:5o whih orrespondsto partiles rising � 10; 000 km above the jovian equatorial plane, a value inagreement with the ring's observed half-thikness of 8; 000�10; 000 km measuredby Showalter et al. (1987). Thus the vertial thikness of the jovian halo isonsistent with miron-sized grains drifting through the 3:2 Lorentz �rst-orderinlination resonane.Here, and in the preeding setion, we have demonstrated that when dragfores bring partiles to mean-motion resonanes, either trapping or resonantjumps an our. Beause the results of a partiular enounter depend so stronglyon the diretion of drag-indued orbital evolution, however, ertain resonane-drag ombinations manifest only a single type of behavior. For instane, tidalfores typially drive inner satellites toward outer ones and so the most ommonresonant phenomena for SGRs is trapping (f. Goldreih 1965). Conversely, atLorentz resonanes, plasma and atmospheri drags ause orbits to evolve awayfrom the synhronous loation whih leads to resonant jumps. In Table 7.3, wesummarize the typial outome of ouplings between eah of the resonanes anddrag fores disussed above. In all ases, the dynamial outome of an interationdepends on the diretion of drag-indued orbital evolution at a given resonantloation, not on the struture of the partiular resonane. This serves to re-emphasize the fat that resonanes arising from very di�erent perturbations aredynamially similar.
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7.5 SummaryIn this hapter, we present the �rst disturbing-funtion-style expansion of theLorentz fore (Table 7.2). Our expansion, whih is to seond order in een-triities and inlinations, provides simple equations valid for �rst-order e and iresonanes as well as for seond-order e2, i2, and ei resonanes. To lowest-order,our equations for Lorentz resonanes have the same form as those derived forgravitational resonanes whih aounts niely for the similar dynamial behav-ior that we have observed in numerial integrations.We trae many of the similarities between di�erent types of resonanes to basiorbital symmetries that onstrain the funtional form of all quantities { and heneall perturbations { expressed in terms of orbital elements. In partiular, theseorbital symmetries aount for several of the patterns long notied in expansionsof the satellite disturbing funtion. Additional regularities are due to the fat thatthe three perturbations onsidered in this hapter { SGRs, PGRs, and LRs { areall onstrained by a nearly idential integral of the motion. This integral existsfor an arbitrary orbital perturbation provided that a rotating frame an be foundin whih the perturbation, or at least the resonant part thereof, is independentof time.Our results imply that the orbital dynamis displayed at mean-motion reso-nanes are fundamental. The �rst-order struture of a given resonane is deter-mined primarily by orbital symmetries and by the integral of the motion. Theharater of the perturbing fore is important only in determining absolute reso-nane strengths.
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Table 7.3 Results of resonane-drag interationsResonane Drag Fore Typial DynamisSGR Tidal TrappingSGR Plasma & Atmos. & Poynt.-Rob. Trapping & JumpsPGRy Tidal & Plasma & Atmospheri JumpsPGR Poynting-Robertson Trapping & JumpsLR Tidal (Inompatible)LR Plasma & Atmospheri JumpsLR Poynting-Robertson Trapping & JumpsAll Resonant Charge Variations ???
y Here we have assumed a stati gravity �eld for PGRs whih is a good approxi-mation for the terrestrial planets. Sine gravitational modes of the giant planetsan rotate rapidly (f. Marley 1991), resonant loations are signi�antly alteredand, hene, both types of dynamial behavior an our.



Chapter 8
Future Diretions
In the preeding hapters, we have developed analytial and numerial tools thatare useful for treating the orbital motions of dust partiles irling asteroids,omets, and planets that themselves move on orbits around the Sun. We haveapplied our methods to several partiular objets, demonstrating the importaneof non-gravitational fores for hypothetial entimeter-sized satellites of an aster-oid, for partiles that make up Saturn's wedge-shaped E ring, and for those thatorbit within the main jovian ring. These examples, however, are just a few of thesolar system's many dusty features and we hope to apply the intuition gainedfrom the problems onsidered within these hapters to these additional faint ringstrutures. In this �nal hapter, we briey tour the various planetary systems,disussing the dusty environments of eah in turn and highlighting problems inwhih dust plays an important role. Beause planets di�er in their sizes, oblate-nesses, satellite retinues, magneti environments, and distanes from the Sun,partiular dynamial e�ets vary greatly in importane. Indeed, we maintainthat it is the variations in the interplay of dynamial fores that ause the greatdiversity found in faint ring strutures throughout the solar system.
8.1 The Inner Solar SystemThe irumplanetary environments of Merury and Venus are likely to be amongthe most pristine in the solar system sine eah planet is devoid of satellites (Burns1973) and, hene, of major soures apable of supporting populations of irum-planetary dust. Although impats with the planetary surfae an theoretiallyloft material into bound orbits, suh impats are neessarily large, and relativelyrare. Furthermore, the proess itself is very ineÆient sine bound material typ-ially reimpats the surfae swiftly (see Chapters 2{4 and Burns and Hamilton1991). Even this meager prodution mehanism is unavailable at Venus, whosedense atmosphere prevents most { if not all { impat ejeta from esaping intospae.
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Several deades ago, the terrestrial environment, with its single large anddistant Moon, was almost as pure. Saling the results of Chapter 4 to lunarejeta, we �nd that partiles with radii <� 1�m are ung from the Earth-Moonsystem by radiation pressure, while objets with radii up to � 10�m are rapidlyfored onto highly-eentri orbits whih penetrate Earth's atmosphere (f. Peale1966, Allan and Cook 1967). More massive ejeta is swept up by the Moon in lowveloity ollisions that our with harateristi timesales of thousands of years.Sine large-impat events are neessary to raise signi�ant amounts of debris o�the lunar surfae and suh impats are rare, the inferred ring of lunar debris isvery sparsely populated.Probably the dominant soures of debris near Earth today, however, are themyriad arti�ial satellites irling our world and the fuel-spraying booster roketsthat put them there. The most rowded regions are in low-Earth orbit, wheremost manned missions have own, and geosynhronous orbit, whih is beominginreasingly rowded with ommuniation satellites (f. Kessler and Cour-Palais1978, Kessler 1985, and Hehler 1985). These orbiting objets at as soures forsmall partiles as paint hips ake o�, and additional material is more forefullyremoved by high veloity impats of orbital debris and interplanetary miromete-oroids. Debris in the � 1�10�m range is highly perturbed by radiation pressureand eletromagneti e�ets; muh of this debris is fored to enter Earth's at-mosphere within a few years (Horanyi et al. 1988). This dynamial e�et hasinteresting rami�ations for the urrent population of orbital debris in the nearEarth environment, some of whih was sampled by the Long Duration ExposureFaility, a satellite that was reovered in early 1990 after spending nearly sixyears in low-Earth orbit (f. MDonnell et al. 1992).Most distant of the terrestrial planets, Mars is attended by two small moons,Phobos and Deimos, that orbit at several planetary radii. Suh moonlets areideal soures for irumplanetary dust sine veloities needed for debris to esapetheir surfaes are slight (Soter 1971). Dubinin et al. (1990) reported evidenefor a putative ring of debris around Mars, and several papers have subsequentlyaddressed the issue theoretially (Horanyi et al. 1990, 1991, Juh�asz et al. 1993).These e�orts explored the dynamis displayed by orbiting grains, and preditedthe size distribution and number density of partiles in the martian dust halo.We an improve our understanding of the martian environment by adding severalimportant e�ets negleted by previous works.First, the earlier papers ignore the preession indued by Mars' oblatenesswhih is partiularly important for grains launhed from Phobos. There, theapsidal preession rate (2.78 rad/yr.) is similar to Mars' orbital motion (3.34rad/yr.) resulting in a lose anellation of the motion of perienter relativeto the Sun. Just as in Saturn's E ring (f. Chapter 6), this near anellationallows radiation pressure to substantially inrease orbital eentriities. Withoutthe oblateness term, Juh�asz et al. (1993) alulate that grains with radii in the
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1� 7�m range launhed from Phobos will rash into Mars (f. Chapter 6); withoblateness, this range inreases to 1� 40�m. Additionally, the expressions usedfor the rates at whih moonlets sweep up partiles are inaurate for grains highlyperturbed by radiation pressure; this makes the alulated dust densities furthersuspet. Finally, the possibility that a signi�ant population of dust is raised byollisions of ring partiles with the tiny martian moons should be onsidered (f.Chapter 6). Sine orbits are highly-perturbed, ollisions at speeds of 1-3 km/sare ommon; and beause esape veloities from the moonlets are of order 5 m/s,suh impats an liberate signi�ant amounts of debris.
8.2 The Outer Solar SystemBeause their extensive retinues of tiny satellites serve as exellent soures, thegiant planets rule signi�antly dustier environments than their terrestrial ounter-parts. Satellites vary tremendously in their dust prodution rates; large objets,suh as the Galilean satellites of Jupiter, Saturn's Titan, and Neptune's Triton,are poor soures beause they retain nearly all impat ejeta. Rather than dis-ussing eah satellite soure individually, however, in this setion we will insteadfous on the expeted dynamial behavior in spei� regions that are ommonto all planets, noting possible appliations when appropriate. In this manner,we hope to highlight points of partiular interest without beoming unneessarilytedious.Approahing any planet from the edge of its Hill sphere, the �rst regimeenountered is one in whih miron- and larger-sized dust partiles are domi-nated by three fores: planetary gravity, solar gravity, and radiation pressure.The results of Chapters 2{4 are thus diretly appliable to grains launhed fromdistant satellites, many of whih orbit at signi�ant frations of a Hill Sphere:Jupiter's retrograde luster at � 0:4rH , its prograde group and Saturn's Phoebeat � 0:2rH , and Saturn's Iapetus and Neptune's Nereid at � 0:05rH . Grainslaunhed from these objets ahieve large eentriities, but an also attain veryhigh inlinations relative to the planet's equatorial plane sine they are not in-uened by fores that ause preession about this plane. This lass of orbitsseems apable of explaining some of the miron-sized debris deteted by the Voy-ager spaeraft's Planetary Radio Astronomy (Warwik et al. 1982, 1986, 1989)and Plasma Wave Siene (Gurnett et al. 1983, 1987, 1991) instruments in thesaturnian, uranian, and neptunian systems. Although most impats ourrednear the respetive ring plane rossings, some irumplanetary material was alsofound at large inlinations at Saturn (Gurnett et al. 1983) and Neptune (D. Tsin-tikidis 1992, private ommuniation), and perhaps at Uranus. It seems likely thatthis material originates from exterior satellites and is distributed along highly-eentri and inlined orbits.Suh a distribution of very eentri orbits an also transfer material radially;
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in the saturnian system, the observable onsequenes of this are striking. Dustblasted o� Saturn's retrograde Phoebe, for instane, is transported inward toIapetus, preferentially hitting that satellite's leading hemisphere (Soter 1974,Mignard et al. 1994). If we aept an external origin for Iapetus' olor, it is notsurprising that the satellite's leading side is very dark, muh like Phoebe. Thetrailing side of Iapetus, however, is iy in omposition and exeedingly bright.Thus it seems likely that the gradual ontamination of iy Iapetus by tiny grainsoriginating from Phoebe has, over billions of years, produed the greatest albedovariation present on any satellite in the solar system.At distanes of typially � 5 � 30 planetary radii, the e�ets of planetaryoblateness and the eletromagneti fore beome important. Radiation pressureis still reasonably inuential, orbital veloities are larger, and material reol-lides with soure satellites on rapid timesales. Lorentz resonanes are relativelyunimportant sine only very weak, high-order ones are present this far from theplanet. These dynamial fores are similar to those dominant in Saturn's E ring(f. Chapter 6), and hene the possibility for E-ring-like objets elsewhere inthe solar system should be investigated. At Jupiter, the equivalent region liesamid the Galilean satellites whih are too large to be e�etive soures of dust.Moreover, reollision timesales are rapid and relative veloities are too smallto support a self-sustaining ring. For similar reasons, the lassial satellites ofUranus, and Neptune's giant moon Triton also prove to be inadequate soures.Ironially, the losest analog to the saturnian E ring may enirle a terrestrialplanet { Mars. Maximum orbital eentriities in the two rings are omparable,and as noted above, the martian ring may be self-generated through energetigrain-moon ollisions. Additional types of self-sustaining rings may form prefer-entially in regimes loser to the entral planet.Approahing to within a few radii of the giant planets, oblateness and ele-tromagneti fores strengthen, the importane of radiation pressure wanes, andorbital veloities inrease as do reollision frequenies. This is the domain domi-nated by Lorentz resonanes, the most powerful bullies of the planetary neighbor-hood. Charged dust partiles drifting into areas ontrolled by these strong reso-nanes, are forefully ejeted from the resonane zone with a strong kik in theirorbital eentriity or inlination. The most dramati example of a Lorentz reso-nane is, of ourse, the transition between the main jovian ring and its vertiallyextended inner halo, but Lorentz resonanes { both the eentriity and inlina-tion varieties { are almost ertainly important elsewhere in the jovian system, andat Uranus and Neptune (Fig. 8.1). Several opaque rings in the latter two systemsare loated near strong Lorentz resonanes; resonantly perturbed eentriitiesmay augment relative veloities, ollisional yields, and perhaps even ause thedusty omponent of some rings to be self-sustaining like Saturn's E ring. Greatswaths of dust enshroud Uranus and Neptune, and several dusty ring features arefound near Lorentz resonanes too. Uranus' � ring nominally lies a few thousand
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Figure 8.1 Radial loations of rings and Lorentz resonanes at Uranus and Nep-tune. Rings are drawn as solid ars and are labeled near the �gure's edges whileLorentz resonanes are signi�ed by dashed ars that are labeled in the enter ofthe �gure. The stippled regions in Neptune's system represent dust sheets; dustis also found in omplex strutures throughout the region oupied by the mainuranian rings. Solid irles represent satellites: Cordelia at Uranus and (headinginward) Galatea, Thalassa, Despoina, and Naiad at Neptune. Several ring stru-tures are loated suggestively near Lorentz resonanes: the Adams and Leverrierrings, and the inner and outer boundaries of both the 1989N4R and the uranianring system. Many of these assoiations may be oinidental, espeially sinerings and resonanes eah inhabit the region of spae near the entral planet.Nevertheless, Lorentz resonanes almost ertainly inuene the orbital motionsof the dusty omponents at both planets.
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kilometers from the strong 2:1 Lorentz resonane, and the ring's �ve-fold den-sity utuation advertises that interesting dynamis are involved (Fig. 8.1). Theneptunian ring ars are in a 42:43 gravitational resonane with the small satelliteGalitea, but they are also near the 3:2 Lorentz resonane. The latter may ausedust to leak out of the ar sites into the muh fainter Adams ring that ompletelyenirles the planet. A dust sheet begins near the 5:3 Lorentz resonane, only toterminate just short of the 2:1 resonane in an opaque ondensation of materialthat omprises the Leverrier ring (Fig. 8.1).Bak at Jupiter, a more omplete analysis of the main ring and the halois warranted, espeially onsidering the forthoming observations of the Galileoorbiter. The struture of the vertially extended halo ontains information onthe properties of the partiles passing through the 3:2 resonane { primarily theirsize distribution and eletri potential, Sine jump amplitudes depend on partilesizes, halo grains should be non-uniformly layered, with larger ones tending to befound loser to the equatorial plane. Given the optially determined partile sizedistribution of Showalter et al. (1987) and the details of the resonane interationdisussed in Chapter 7, the vertial struture of the halo should be alulable.Suh a derivation would provide an independent dynamial hek of Showalter(1987)'s optially-derived size distribution, and ould also onstrain the grainpotential.Finally, partiles somewhat smaller than those onsidered in this thesis arestrongly inuened by eletromagneti e�ets and an exhibit non-intuitive be-havior. Neither the perturbations shemes employed in Chapters 5{7, nor theadiabati theory of harged partiles are appropriate for the motions of thesesubmiron grains sine the fores of gravity and eletromagnetism are ompara-ble in strength. At Jupiter, these fores ombine to ause rapid radial ejetionof positively harged dust grains. Those interior to synhronous orbit are sent to�ery deaths in the jovian atmosphere, while those exterior are aelerated to highveloities that take them rapidly away from Jupiter into interplanetary, and theninterstellar, spae. Suh high-veloity dust streams have reently been detetedby the Ulysses spaeraft, and models assuming a gossamer ring (an outwardextension of the main jovian ring) soure (Hamilton and Burns 1993) and anIo soure (Horanyi et al. 1993a,b) have reently been developed. The motions ofneutral atoms and moleules in irumplanetary orbits are dominated by gravityand the resonant sattering of sunlight (Smyth and Maroni 1993); onsequentlythe dynamis displayed by suh atoms is akin to the dynamis that we have inves-tigated here. Additional surprises ertainly await investigations of the dynamisof atoms and submiron-sized dust.In these past few pages, we have taken a rapid tour of the solar system,seeking out partiular areas where dust is ommon and where the methods of thisthesis might suessfully be applied. The results of any suh exerise dependsstrongly on perspetives whih are ontinually hanging as progress is made;
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thus an area emphasized here may later prove less interesting than another thatwas overlooked. A thorough study of one area leads to new insights into entirelydi�erent problems, and it is the antiipation of these insights that fuels ontinuedinvestigations of dynamial phenomena.



Appendix A
Symboli Orbital Expansions
Computer algebra systems are inreasingly useful tools in sienti� researh asadvanes in both hardware and software design ontinue to vastly improve theperformane of these symboli pakages. A striking example of this trend isMurray and Harper (1993)'s reent expansion of the planetary disturbing funtionto eighth-order in eentriities and inlinations; the information ontained ineah of this volume's 436 pages is generated entirely symbolially. With the aidof omputer algebra, the authors improved on the presentation of previous works(Peire 1849, Le Verrier 1855, Brouwer and Clemene 1961), ferreted out insidiouserrors made in these earlier expansions, and extended their analysis beyond thelimits of human endurane.In a less dramati way, the symboli program used to generate the entrieslisted in Table 7.2 saved this author weeks of alulations and tedious error hek-ing. It is the purpose of this appendix to enourage and assist those interestedin applying symboli methods to similar problems by presenting and explainingthe relatively simple MACSYMA ode used in Chapter 7.As entire books have been written about symboli algebra (Harper et al.1991 give a wonderful omparison of the main omputer algebra pakages; for anintrodution to MACSYMA, onsult Rand 1984), our purpose is not to teah thelanguage, but rather to demonstrate the power of symboli methods and to larifythe proess employed in our orbital expansions. Nevertheless, a ertain amountof explanation is neessary. In the sample MACSYMA session that follows, linesbeginning with C onstitute MACSYMA input (the program) while those startingwith D are MACSYMA output. The input lines an be typed interatively, orsubmitted all at one in a bath mode. Within a single line, \:=" is used to de�nea funtion (e.g., line C2) while a single olon sets up a rule for later substitution(e.g., line C22 { here line D22 merely ehoes the input).The partiular example under onsideration expands the g1;0 aligned dipolarportion of the magneti �eld, but the extension to the other �eld omponentsis straightforward. The program's ow roughly follows the explanation given in
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setion 7.2.2. Here, we �rst obtain equations that de�ne the magneti �eld, whihwe then substitute into expressions for the fore omponents. These, in turn, areplugged into expressions for the time rates of hange of the orbital elements.Finally, the rates of hange are Taylor-expanded out to the desired order. Wenow give spei� line-by-line omments, following whih we present the programitself.Lines C2 and C3 de�ne the Legendre polynomials and lines C4 and C5 seletthe symmetri dipole term (TH� �). The program then performs additionalsubstitution steps and prints the appropriate Legendre polynomial, \P," andits derivative with respet to �, \dP," in lines D9 and D13. Lines 14{21 areunimportant here, sine these pertain to the assoiated Legendre polynomialsneessary for asymmetri magneti �elds (MLON� �0, PHI� �). Lines D22, D23,D32, and D33 simply translate the spherial oordinates into orbital elements[f. Eqs. (5.9), (5.10), and (5.11), BW� 
℄ and lines D24{D26 give the r, �,and � omponents of an aligned dipolar magneti �eld [f. Eqs. (5.37), (5.38),and (5.39), RP� Rp℄. Various expressions for ellipti orbital motion appear inlines D27{D33; [f. Eqs. (5.12), (5.35), (5.36), and (5.40), WP� 
p℄. In linesD34 through D36, the magneti �eld omponents are written in terms of orbitalelements.Lines C37{C42 de�ne the aeleration omponents in the orbital oordinatesystem [see Eqs. (5.32), (5.33), and (5.34)℄, and lines C43{C52 de�ne the rates ofhange of the orbital elements (Danby 1988, p. 327). The next three lines replaethe variablesM , u, and � with the orbital elements that appear in Table 7.2; herePLON� � and CW� $. The equation of enter, expanded out to fourth-order ineentriity is used for �; for higher-order expansions this equation would have tobe modi�ed. Line C56 determines the order of the expansion; typial runs takefrom several minutes to several hours on a Sun SPARC 1 workstation, dependingon this quantity and on the partiular �eld omponent being expanded. Eahtime derivative is then Taylor-expanded to order \EPOW=2" in both of thesmall quantities E and I. We avoid E2I2 terms while retaining E2 and I2 termsby employing a trik: we substitute E*IOE in for I and do the Taylor expansionto seond-order in E; sine the IOE's ag the plaes where I's belong, the reversesubstitution (I replaing E*IOE) is employed after the expansion to orret theexpression. Finally, we all trigredue, whih uses identities to eliminate powersof trigonometri funtions in favor of trigonometri funtions of sums of angles.Lines D63, D70, D77, D84, D99, and D130 give the �nal output for dn=dt, de=dt,di=dt, d
=dt, d$=dt, and d�=dt, respetively. These lines ontain all of the datafound in the g1;0 subtable of Table 7.2.
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