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ABSTRACT

In this paper we investigate whether Uranus’s 98° obliquity was a byproduct of a
secular spin-orbit resonance assuming that the planet originated closer to the Sun.
In this position, Uranus’s spin precession frequency is fast enough to resonate with
another planet located beyond Saturn. Using numerical integration, we show that
resonance capture is possible in a variety of past solar system configurations, but that
the timescale required to tilt the planet to 90° is of the order ∼ 108 years; a timespan
that is uncomfortably long. A resonance kick could tilt the planet to a significant 40° in
∼ 107 years if conditions were ideal.

We also revisit the collisional hypothesis for the origin of Uranus’s large obliquity.
We consider multiple impacts with a new collisional code that builds up a planet by
summing the angular momentum imparted from impactors. Since gas accretion imparts
an unknown but likely large part of the planet’s spin angular momentum, we compare
different collisional models for tilted, untilted, spinning, and non-spinning planets. We
find that two collisions totaling to 1M⊕ is sufficient to explain the planet’s current spin
state. Finally, we investigate hybrid models and show that resonances must produce a
tilt of ∼40° for any noticeable improvements to the collision model.

1. INTRODUCTION

Uranus’s 98° obliquity, the angle between the planet’s spin axis and normal to its orbital plane, is
perhaps the most unusual feature in our solar system. The most accepted explanation for its origin
is a giant collision with an Earth-sized object that struck Uranus at polar latitudes during the late
stages of planetary formation (Benz et al. 1989; Korycansky et al. 1990; Slattery et al. 1992; Parisi
& Brunini 1997; Morbidelli et al. 2012; Izidoro et al. 2015; Kegerreis et al. 2018, 2019; Reinhardt
et al. 2019). Collisions between massive objects are an expected part of solar system formation;
indeed, our own Moon was likely formed as a result of a collision between Earth and a Mars-sized
object (Canup & Asphaug 2001). There are problems with a collisional origin to Uranus’s obliquity
though. An Earth-mass projectile grazing Uranus’s pole is a low probability event, and even larger
mass impactors are required for more centered impacts. These impacts could also significantly alter
the planet’s primordial spin rate, yet both Uranus and Neptune spin at similar periods (TU = 17.2
hr, TN = 16.1 hr). Just as with Jupiter and Saturn, the two ice giants likely acquired their fast and
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nearly identical spin rates while accreting their massive gaseous atmospheres (Batygin 2018; Bryan
et al. 2018). Additionally, Morbidelli et al. (2012) argue that for Uranus’s regular satellites to orbit
prograde around the planet, two or more collisions would be necessary. Tilting from 0° to 98° with
a single impact would destabilize any existing satellite system via Kozai interactions, and would
lead to a chaotic period of crossing orbits and collisions. The resulting proto-satellite disk would
preserve its pre-impact angular momentum and hence would form retrograde satellites. Although
the two impactors could be individually less massive than a single one, multiple large impacts are
nevertheless still improbable.

In this paper we will explore an alternative collisionless approach based on the resonant capture
explanation for Saturn’s 27° obliquity. Since Saturn is composed of at least 90% hydrogen and
helium gas, we would expect gas accretion during planet formation to conserve angular momentum
and force any primordial obliquity to ε ∼ 0°. A collisional explanation would then require an impactor
of 6− 7.2M⊕ (Parisi & Brunini 2002), which is even more unlikely than the putative Uranus strike.
If 7M⊕ objects were common in the early solar system, one would expect to find evidence for their
existence (e.g. a higher tilt for Jupiter and perhaps even additional planets). Instead, Saturn’s
obliquity can best be explained by a secular spin-orbit resonance between the precession frequencies
of Saturn’s spin axis and Neptune’s orbital pole (Ward & Hamilton 2004; Hamilton & Ward 2004).
And even Jupiter’s small tilt may have resulted from a resonance with either Uranus or Neptune
(Ward & Canup 2006; Vokrouhlický & Nesvorný 2015). A significant advantage of this model is that
the gradual increase of Saturn’s obliquity preserves both the planet’s spin period and the orbits of
its satellite system, which would eliminate all of the issues present in the giant impact hypothesis for
Uranus (Goldreich 1965).

Uranus’s current spin precession frequency today is too slow to match any of the planets’ orbital
precession rates, but that may not have been the case in the past. Boué & Laskar (2010) posit
that a resonance is possible if Uranus harbored a moon large enough so that the planet’s spin axis
could precess sufficiently fast to resonate with its own orbit. This moon would, however, have to
be larger than all known moons (between the mass of Ganymede and Mars), have to be located far
from Uranus (≈ 50 Uranian radii), and then have to disappear somehow perhaps during planetary
migration.

A more promising solution is instead to place a circumplanetary disk of at least 4.5 × 10−3M⊕
around Uranus during the last stage of its formation (Rogoszinski & Hamilton 2020). Since Uranus
must have harbored a massive circumplanetary disk to account for its gaseous atmosphere, and
Szulágyi et al. (2018) calculate a circumplanetary disk of around 10−2M⊕, capturing into a spin-
orbit resonance by linking Uranus’s pole precession to its nodal precession seems plausible during
formation. Rogoszinski & Hamilton (2020) find that a 70° kick is possible within the accretion
timespan of 1 Myr, and that while a subsequent impactor is still necessary, it only needs to be
0.5 M⊕. The odds of this collision generating Uranus’ current spin state is significantly greater,
but to attain 70° Uranus’s orbital inclination would need to be around 10°. An inclination this
high is a little uncomfortable and hints that further improvements to the model may be necessary.
For instance, Quillen et al. (2018) demonstrated a similar set of resonance arguments that are not
sensitive to a planet’s orbital inclination, and that are capable of pushing a planet’s obliquity beyond
90°. These arguments include mean motion terms which arise naturally if the planets are configured
in a resonance chain (Millholland & Laughlin 2019).
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In this paper we investigate yet another possibility by placing Uranus closer to the Sun where tidal
forces are stronger and precession timescales are shorter. This will require us to make some optimistic
modifications to the planets’ initial configurations in order to generate the desired resonance, as will
be seen below. If our models yield fruitful results, then these assumptions will need to be carefully
examined in the larger context of solar system formation. Furthermore, we will also revisit the
multi-collision explanation as well as hybrid resonance and collision models. We will then critically
compare all of these resonance and collisional models.

2. CAPTURE INTO A SECULAR SPIN ORBIT RESONANCE

2.1. Initial Conditions

Gravitational torques from the Sun on an oblate planet cause the planet’s spin axis to precess
backwards, or regress, about the normal to its orbital plane (Colombo 1966). Similarly, gravitational
perturbations cause a planet’s inclined orbit to regress around the Sun. A match between these two
precession frequencies results in a secular spin-orbit resonance. In this case, the spin axis remains fixed
relative the planet’s orbital pole, and the two vectors precesses about the normal to the invariable
plane. The longitudes of the two axial vectors, φα and φg, are measured from a reference polar
direction to projections onto the invariable plane, and the resonance argument is given as (Hamilton
& Ward 2004):

Ψ = φα − φg. (1)

The precession rate of Uranus’s spin axis can be derived from first principles by considering the
torques of the Sun and the Uranian moons on the planet’s equatorial bulge. Following Colombo
(1966), if σ̂ is a unit vector that points in the direction of the total angular momentum of the
Uranian system, then:

dσ̂

dt
= α(σ̂ × n̂)(σ̂ · n̂) (2)

where n̂ is a unit vector pointing in the direction of Uranus’s orbital angular momentum, and t is
time. Uranus’s axial precession period is therefore:

Tα =
2π

α cos ε
, (3)

where cos ε = σ̂ · n̂. The precession frequency near zero obliquity, α, incorporates the torques from
the Sun and the moons on the central body (Tremaine 1991):

α =
3n2

2

J2(1− 3
2

sin2 θp) + q

Kω cos θp + l
. (4)

Here n = (GM�/r
3
p)

1/2 is the orbital angular speed of the planet, G is the gravitational constant,
M� is the Sun’s mass, rp is the Sun-planet distance, ω is the planet’s spin angular speed, J2 is its
quadrupole gravitational moment, and K is its moment of inertia coefficient normalized by MpR

2
p. For

Uranus today, Mp = 14.5M⊕, Rp = 2.56× 109 cm, K = 0.225 and J2 = 0.003343431. The parameter
q ≡ 1

2

∑
i(Mi/Mp)(ai/Rp)

2(1− 3
2

sin2 θi) is the effective quadrupole coefficient of the satellite system,

1 All physical values of the solar system can be found here courtesy of NASA Goddard Space Flight Center:
http://nssdc.gsfc.nasa.gov/planetary/factsheet/
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and l ≡ R−2p
∑

i(Mi/Mp)(GMpai)
1
2 cos θi is the angular momentum of the satellite system divided by

MpR
2
p. The masses and semi-major axes of the satellites are Mi and ai, cos θp = ŝ · σ̂ and cos θi = l̂i · σ̂,

where ŝ is the direction of the spin angular momenta of the central body and l̂i is the normal to the
satellite’s orbit (Tremaine 1991). Note that Mi �Mp where Mp is the mass of the planet and, since
the satellite orbits are nearly equatorial, we can take θp = θi = 0.

Torques from the main Uranian satellites on the planet contribute significantly to its precessional
motion, while those from other planets and satellites can be neglected. We therefore limit ourselves
to Uranus’s major moons—Oberon, Titania, Umbriel, Ariel, and Miranda. We find q = 0.01558
which is about 4.7 times larger than Uranus’s J2, and l = 2.41× 10−7 which is smaller than Kω by
about a factor of 100. So from Equation 4, the effective quadrupole coefficient of the satellite system
plays a much more significant role in the planet’s precession period than the angular momentum of
the satellite system. At its current obliquity, ε = 98°, Uranus’s precession period is about 210 million
years (or α = 0.0062 arcsec yr−1), and reducing Uranus’s obliquity to 0° results in a precession period
7.2 times faster: 29 million years (or α = 0.045 arcsec yr−1). This pole precession rate is much longer
than any of the giant planets’ fundamental frequencies (Murray & Dermott 1999), but it can be sped
up to ≈ 2 Myr by placing Uranus at around 7 AU. This is just fast enough for Uranus to resonate
with a similar planet—Neptune—located beyond Saturn.

Placing Uranus’s orbit between those of Jupiter and Saturn is not entirely ad hoc. Thommes et al.
(1999, 2002, 2003) argue that at least the ice giants’ cores might have formed between Jupiter and
Saturn (4-10 au), as the timescales there for the accretion of planetesimals through an oligarchic
growth model, when the large bodies in the planetary disk dominate the accretion of surrounding
planetesimals, are more favorable than farther away. The Nice model (Gomes et al. 2005; Morbidelli
et al. 2005; Tsiganis et al. 2005) places Uranus closer to the Sun but beyond Saturn for similar
reasons; however, having the ice giants form between Jupiter and Saturn is not inconsistent with
the Nice model. If Uranus and Neptune were indeed formed between Jupiter and Saturn and later
ejected sequentially, then a secular spin-orbit resonance between Uranus and Neptune is possible. A
related possibility that is also sufficient for our purposes is if Neptune initially formed beyond Saturn
and Uranus between Jupiter and Saturn. Here, however, the similar masses of Uranus and Neptune
becomes more difficult to explain. In the following, we assume that Uranus is fully formed with its
satellites located near their current configurations to derive the spin axis precession rate.

2.2. Method

Calculating Uranus’s obliquity evolution requires tracking the planets’ orbits while also appropri-
ately tuning Neptune’s nodal precession rate. We use the HNBody Symplectic Integration package
(Rauch & Hamilton 2002) to track the motion of bodies orbiting a central massive object using sym-
plectic integration techniques based on two-body Keplerian motion, and we move Neptune radially
with an artificial drag force oriented along the velocity vector using the package HNDrag. These
packages do not follow spins, so we have written an integrator that uses a fifth-order Runge-Kutta
algorithm (Press et al. 1992) and reads in HNBody data to calculate Uranus’s axial orientation due
to torques applied from the Sun (Equation 2). For every time step, the integrator requires the dis-
tance between the Sun and Uranus. Since HNBody outputs the positions and velocities at a given
time frequency different from the adaptive step that our precession integrator uses, calculating the
precessional motion requires interpolation. To minimize interpolation errors, we use a torque aver-
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aged over an orbital period which is proportional to 〈r−3p 〉 = a−3p (1− e2p)−
3
2 , where ap is the planet’s

semi-major axis and ep is its eccentricity. This is an excellent approximation since Uranus’s orbital
period is 105−106 times shorter than its precession period. We tested the code for a two-body system
consisting of just the Sun and Uranus and recovered the analytic result for the precession of the spin
axis (Figure 1).

Figure 1. The calculated relative error of three quantities describing Uranus’s spin axis. Here ω is the unit
vector pointing in the direction of Uranus’s spin axis. ε is the planet’s obliquity and φ is the planet’s spin
longitude of the ascending node. All quantities should be constant with time as the system only contains
the Sun and Uranus. Numerical errors at the levels shown here are sufficiently low for our purposes.

For our simulations we place Jupiter and Saturn near their current locations (5 au and 9 au re-
spectively), Uranus at 7 au, and Neptune well beyond Saturn at 17 au. Leaving Uranus in between
the two gas giants for more than about ten million years is unstable (Holman & Wisdom 1993), but
eccentricity dampening from remnant planetesimals can delay the instability. Scattering between
Uranus and the planetesimals provides a dissipative force that temporarily prevents Uranus from
being ejected, and we mimic this effect by applying an artificial force to damp Uranus’s eccentricity.
We apply the force in the orbital plane and perpendicular to the orbital velocity to damp the eccen-
tricity while preventing changes to the semi-major axis (Danby 1992). With Uranus’s orbit relatively
stable, we then seek a secular resonance between its spin and Neptune’s orbit.

2.3. A Secular Resonance

Capturing into a spin-orbit resonance also requires the two angular momentum vectors, the planet’s
spin axis and an orbital pole, and the normal to the invariable plane be co-planar. Equilibria about
which the resonance angle librates are called “Cassini States” (Colombo 1966; Peale 1969; Ward
1975; Ward & Hamilton 2004), and there are multiple vector orientations that can yield a spin-orbit
resonance. In this case, the resonance angle, Ψ, librates about Cassini State 2 because Uranus’s spin
axis and Neptune’s orbital pole precess on opposite sides of the normal to the invariable plane.

As Neptune migrates outwards away from the Sun, its nodal precession frequency slows until a
resonance is reached with Uranus’s spin precession rate. If the consequence of the resonance is that
Uranus’s obliquity increases (Ward 1974), then its spin precession frequency slows as well (Equation
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4) and the resonance can persist. The time evolution of the resonance angle and obliquity are given
by (Hamilton & Ward 2004):

Ψ̇ = −α cos ε− g cos I (5)

ε̇ = g sin I sin Ψ (6)

where g is the negative nodal precession rate, and I is the amplitude of the inclination induced by
Neptune’s perturbation on Uranus’s orbit. If Neptune migrates outward slowly enough, then Ψ̇ is
small and the two planets can remain in resonance nearly indefinitely.
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Figure 2. A resonance capture. The top panel shows Uranus’s obliquity evolution over time. The middle
panel shows the evolution of the precession frequencies with the dashed line indicating the resonance location,
and the bottom panel shows the resonance angle (Ψ). The solid vertical line at t ≈ 150 Myr indicates when
Neptune reaches it current location at 30 au. In this simulation resonance is established at t = 0.05 Gyr
when Neptune is at ≈ 24 au, and it breaks at t = 0.85 au with Neptune at ≈ 120 au. Stopping Neptune
at 30 au, we find that this capture could account for perhaps half of Uranus’s extreme tilt. Here, Uranus
is located at aU = 7 au, with its current equatorial radius. Neptune’s inclination is set to twice its current
value at iN = 4° which strengthens the resonance.

Figure 2 shows Uranus undergoing capture into a spin-orbit resonance when Neptune crosses ∼24
au en route to its current location at 30 au. Here we have set Neptune’s migration rate at 0.045
au/Myr, which is within the adiabatic limit – the fastest possible rate to generate a capture with
εi ≈ 0°. The adiabatic limit occurs when Neptune’s migration takes it across the resonance width in
about a libration time, which is just 2π/wlib with wlib =

√
−αg sin ε sin I (Hamilton & Ward 2004).

Just as slow changes to the support of a swinging pendulum do not alter the pendulum’s motion,
gradual changes to Neptune’s orbit do not change the behavior of the libration. However, if Neptune’s
migration speed exceeds the adiabatic limit, then the resonance cannot be established. The top panel
of Figure 2 shows Uranus tilting to 60° in 150 Myrs when Neptune reaches its current location, and all
the way to 90° in 600 Myr if we allow Neptune to continue outwards. Planets migrate by scattering
planetesimals, which can decrease inclinations; accordingly, we optimistically assumed an initial value
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Figure 3. The corresponding polar plot to Figure 2 where Neptune is migrating well within the adiabatic
limit. The short period oscillations here are at the pole precession rate while the longer oscillations are the
librations about the equilibrium point which itself is moving to higher obliquities (to the right). The red
dotted circles represents points of constant obliquity in increments of 15°.

for Neptune’s inclination at twice its current value. Because we have increased Neptune’s inclination
and moved Neptune out as fast as possible and yet still allowed capture, one hundred fifty million
years represents a rough lower limit to the time needed to tilt Uranus substantially.

The bottom panel of Figure 2 and Figure 3 both show the evolution of the resonance angle, and the
angle oscillates with a libration period of about 30 Myr about the equilibrium point. The libration
period increases as ε increases in accordance with Equation 3. The noticeable offset of the equilibrium
below Ψ = 0° in Figures 2 and 3 is due to the rapid migration of Neptune (Hamilton & Ward 2004):

Ψeq =
α̇ cos ε + ġ cos I

αg sin ε sin I
. (7)

Recall that g, the nodal precession frequency, is negative, α is positive, and as Neptune migrates away
from the Sun ġ is positive. Since α is constant, α̇ = 0, and so Ψeq is slightly negative in agreement
with Figure 2. We conclude that although a spin-orbit resonance with Neptune can tilt Uranus over,
the model requires that Uranus be pinned between Jupiter and Saturn for an uncomfortably long
few hundred million years. Is there any room for improvement?

Both the Thommes et al. (1999, 2002, 2003) model and the Nice model (Gomes et al. 2005; Mor-
bidelli et al. 2005; Tsiganis et al. 2005) require the planets’ migration timescales to be on the order
of 106 − 107 years. This is incompatible with this resonance capture scenario, which requires at
least 108 years. Speeding up the tilting timescale significantly would require a stronger resonance.
The strength of this resonance is proportional to the migrating planet’s inclination and it sets the
maximum speed at which a capture can occur (Hamilton 1994). Although Neptune’s initial orbital
inclination angle is unknown, a dramatic reduction in the tilting timescale is implausible.

Another possibility is that the gas giants were once closer to the Sun where tidal forces are stronger.
Some evidence for this comes from the fact that the giant planets probably formed closer to the
snow line (Ciesla & Cuzzi 2006) where volatiles were cold enough to condense into solid particles.
Shrinking the planets’ semi-major axes by a factor of 10% decreases the resonance location by about
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3 au, and reduced the obliquity evolution timescale by about 15%. Although this is an improvement,
a timescale on the order of 108 years seems to be the fundamental limit on the speed at which a
significant obliquity can be reached (Rogoszinski & Hamilton 2016; Quillen et al. 2018).

Less critical than the timescale problem but still important is the inability of the obliquity to exceed
90° (Figure 2). The reason for this follows from Equation 4, which shows that Uranus’s precession
period approaches infinity as ε approaches 90°. Neptune’s migration speed then is faster than the
libration timescale and the resonance ceases. This effect is more apparent in Figure 3 which shows
the libration period increasing with the obliquity. The resonance breaks when the resonance angle
stops librating about an equilibrium point and instead circulates a full 2π radians. Quillen et al.
(2018) show that a related resonance that occurs when the planets are also close to a mean-motion
resonance could tilt the planet past 90°, but this, like the resonance considered here, is probably
too weak. Keeping Uranus between Jupiter and Saturn for 108 years is as implausible as the planet
having once had a massive distant moon (Boué & Laskar 2010).

3. OBLIQUITY KICK FROM A SECULAR SPIN-ORBIT RESONANCE
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Figure 4. A resonance kick with a particularly large 40° amplitude. Here Neptune is migrating out rapidly
at an average speed of 0.068 au/Myr, and Uranus’s radius is at its current size. Jupiter, Saturn, and Uranus
are located 10% closer to the Sun than today, and Neptune has an inclination of 4°.

A resonance capture with Neptune may not be able to tilt Uranus effectively, but this resonance
may still contribute significantly on a timescale more compatible with current planetary formation
models. A resonance kick occurs if Neptune’s migration speed is too fast to permit captures (i.e.
exceeds the adiabatic limit). If ġ, the rate Neptune’s nodal precession frequency changes as the planet
migrates, is large enough, then from Equation 5, g cos I shrinks faster than Uranus’s spin precession
frequency α cos ε. Thus Ψ̇ < 0 which drives Ψ to -180°. For a capture, on the other hand, ġ is smaller
so that the resonance lasts more than one libration cycle. A kick can also occur at slower migration
speeds if the relative phase of the two precession axes are misaligned. Figure 4 shows an example of
a resonance kick with a concurrent change in obliquity lasting 50 Myr. Overall, the magnitude of the
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kick depends on Neptune’s orbital inclination, Uranus’s initial obliquity, the migration speed, and
the relative orientation of Uranus’s spin axis and Neptune’s orbital pole at the time the resonance
is encountered. We will explore the entirety of this phase space to examine how effective Neptune’s
resonant kicks are at tilting Uranus.

For a range of seven migration speeds, we ran simulations for initial obliquities ranging from
ε ≈ 0° to ε ≈ 90° in increments of 5°. While Uranus may have originated with zero obliquity
due to gas accretion, this does not need to be the case in general. Impacts, for example, are a source
of at least small obliquities, and the prior spin-orbit resonance discussed by Rogoszinski & Hamilton
(2020) likely induced significant obliquity. For each initial obliquity we sample a range of phase
angles from 0 to 2π.

Figure 5. This figure shows the change in obliquity as a function of Uranus’s initial azimuthal angle where
ε =1°, iN =8° and the system is near the adiabatic limit. Here we sampled 10,000 initial azimuthal angles
from 0° to 360° and raised the inclination even further to emphasize the transition region from kicks (phases
near 0°) to captures (phases near 180°). The annotated points (A,B,C) are discussed further in Figure 6.

Distinguishing kicks from captures is more difficult when Neptune is migrating near the adiabatic
limit, especially at low inclinations, so to highlight this effect we raise Neptune’s inclination to 8° in
Figure 5. This figure shows how the phase angle determines whether the resonance would yield a
kick or a capture. Note, however, that it is actually the phase angle on encountering the resonance
that matters, not the initial phase angle plotted in Figure 5. Also, the outlying oscillations in this
figure are due to librational motion as the final obliquity is calculated only when Neptune reaches
its current location at 30 au. In this case there is a clear division between captures and kicks near
azimuthal angles 150° and 250°. In other cases at lower inclinations, however, the boundaries between
kicks and captures seem more ambiguous.

Figure 6 shows the corresponding polar plots for a selection of points in Figure 5 contrasting the
difference between kicks and captures. Near the adiabatic limit, the phase angle will not librate more
than one or two cycles for captures before the resonance breaks. This is most apparent in Figure
6b where Uranus cycles just over one libration period before the resonance breaks. For comparison,
Figure 3 shows a capture well within the adiabatic limit, and here the phase angle clearly librates
multiple times until the planet’s obliquity reaches ε ∼ 90°. We therefore only identify kicks as a
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(a)

(b)

(c)

Figure 6. These are polar plots of one kick (a) and two captures (b, c) taken from Figure 5. A: The largest
resonance kick at the transition region in Figure 5. The resonance angle undergoes less than one libration
cycle. It approaches 180° and then leaves the resonance. B: A very tenuous capture whose libration angle
exceeds 180° for a few cycles before escaping the resonance creating the large outer circle. C: A resonance
capture well within the capture region in Figure 5. Here the system also breaks free from the resonance
after a few libration cycles. Short period oscillations in these plots are due to the effects of pole precession.
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resonance active for less than one libration cycle. Resonance kicks near the adiabatic limit can also
generate large final obliquities, so we will focus our attention to this region in phase space. As shown
in Figures 4 and 5, it is possible to generate kicks up to ∆ε ∼ 40° for iN = 4° and ∆ε ∼ 55° for
iN = 8°.
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Figure 7. This figure shows the percentage of resonances that produce captures for a range of initial
obliquities and migration speeds. Captures occur most readily in the lower left corner of the figure for small
obliquities and slow migration rates. Here iN = 4°.

In Figure 7 we map the fraction of resonances that produce captures for a range of migration speeds
and initial obliquities. The transition from 100% kicks to 100% captures over migration speeds is
sharpest at lower initial obliquities. This can be understood by considering the circle that Uranus’s
spin axis traces as it precesses; for small obliquities significant misalignments between the two poles
are rare, and the outcome of a resonance is determined primarily by Neptune’s migration speed.
With increasing initial obliquities, large misalignments become more common and the probability of
generating a resonance kick increases (Quillen et al. 2018).

We expect and find that the strongest resonant kick occurs at around the adiabatic limit because
a slow migration speed gives ample time for the resonance to respond. Conversely, a rapid migration
speed would quickly punch through the resonance leaving little time for the resonance to influence
Uranus. Figure 8 depicts the distributions of kicks and captures near the ε = 0° adiabatic limit where
Neptune’s migration speed is roughly 0.068 au/Myr. Looking at the average resonance kicks, we see
that they can reach maximum changes in obliquities of 40° (Figure 4) for iN near twice Neptune’s
current inclination and even greater changes in obliquity for higher assumed iN (Figure 5). This
looks promising, but we need to understand the probability of these large kicks. In fact, looking at
Figure 8 shows that for high obliquities negative kicks are common. For low obliquities, kicks must
be positive since ε itself cannot be negative. However, if Neptune is migrating quickly and ε is large
enough, then the relative phase angle is random resulting in a range of possible obliquity kicks; in
particular if sin(Ψ) is positive in Equation 6, then ε̇ is negative.

Figure 9a shows the maximum possible kicks over all initial obliquities and migration speeds, and
although large kicks are possible, they are rare. Apart from resonant kicks that occur near the
adiabatic limit, which can be seen in this figure as the magenta feature extending linearly up and
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Figure 8. This figure depicts the change in obliquity as a function of Uranus’s initial obliquity. The blue
circles depict resonance kicks, while the red crosses depict resonance captures. Neptune’s migration speed
is 0.068 au/Myr, which is near the adiabatic limit at small initial obliquities. We set iN = 4°. It should be
noted that our sampling of 100 initial azimuthal angles for Uranus is too coarse to resolve any captures for
initial obliquities greater than 55°. It is possible for captures to happen at larger initial obliquities but the
range of favorable phase angles is very small.

to the right, the maximum strength of resonant kicks is typically ∆ε ≈ 10°− 20°. On top of that,
resonance kicks can also decrease obliquities, which is depicted in Figure 9b. If Uranus’s obliquity
was initially large, then the percentage of positive kicks is around 50% tending towards primarily
negative kicks as Neptune’s migration speed decreases. Since about half of all possible resonance kicks
at initial obliquities greater than 10° are negative, the average kick should be low. Figure 9c depicts
the corresponding mean changes in obliquity, and they tend to be weak with mean resonance kicks of
only a few degrees. At low initial obliquities, though, kicks tend to increase the planet’s obliquity by
at least 10°. Generating a large resonance kick would most commonly occur if εi = 0° with Neptune
migrating no faster than 0.1 au/Myr. These figures show that, as a statistical process, resonances
have only a weak effect, and that one needs favorable initial conditions for large kicks.

We could increase Uranus’s obliquity further if it received multiple successive resonance kicks.
This might be achieved with either a resonance between Uranus and another possible ice giant that
may have existed in the Thommes et al. (1999) model, a resonance with its own orbital pole after
Uranus’ spin precession rate was amplified by harboring a massive extended circumplanetary disk
(Rogoszinski & Hamilton 2020), or if Uranus’s precession frequency quickened as the planet cools
and shrinks. The latter process is interesting and merits further discussion.

Uranus was hotter and therefore larger in the past (Bodenheimer & Pollack 1986; Pollack et al. 1991,
1996; Lissauer et al. 2009), and conserving angular momentum requires that a larger Uranus must
spin significantly slower. Both Uranus’s spin angular frequency, ω, and its quadrupole gravitational
harmonic, J2, appear in Equation 4 and change if the planet’s radius changes. Since ω ∝ R−2 and
J2 ∝ ω2 (Ragozzine & Wolf 2009), the result is a slower precession frequency. Here, for simplicity,
we have ignored the contributions of the satellites as including them would soften the response
somewhat. Although this is highly dependent on Uranus’s cooling rate, Bodenheimer & Pollack
(1986) and Pollack et al. (1991) show that Uranus shrank by a factor of 2 on a timescale of order
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(a)

(b)

(c)

Figure 9. (a) This shows the corresponding maximum change in obliquity for resonant kicks depicted in
Figure 7. Diagonal hatching in the four boxes to the lower left in all panels correspond to captures. The scale
ranges from 40° kicks (magenta) to 0° (cyan). (b) This shows the percentage of kicks that yield positive
changes in obliquity. 100% positive kicks are depicted in magenta. (c) This shows the mean changes in
obliquity for resonant kicks. The scale measures the change in obliquity with magenta being the maximum.
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Figure 10. The change in obliquity as a function of Uranus’s initial obliquity for a cooling and shrinking
Uranus with iN = 4°. There are 1900 simulations depicted here.

10 Myr. We simulated this scenario by having Uranus’s radius decrease according to an exponential
function with Neptune stationary at 25 au. Figure 10 shows the resulting kicks as a function of
Uranus’s initial obliquity, and they never exceed 15°. Scenarios that include multiple crossings of
the same resonance would likely still fall short of fully tilting Uranus (e.g. Ward & Hamilton 2004;
Hamilton & Ward 2004; Correia & Laskar 2004).

4. REVISITING THE COLLISION MODEL

4.1. Conditions for Collisions

Recall that the leading hypothesis for Uranus’s tilt is a single Earth-mass impactor striking the
planet’s polar region, but that Morbidelli et al. (2012) argue for two or more collisions. In this section
we consider each of these scenarios and derive the resulting probability distributions for such impacts.
To do this we designed a collisional code that builds up a planet by summing the angular momenta
of impactors to determine the planet’s final obliquity and spin rate under various circumstances,
and we typically run this for a half million randomized instances. Our assumptions are that the
impactors originate within the protoplanetary disk, they approach a random location on the planet
on trajectories that parallel its orbital plane, and all the mass is absorbed upon impact. Because
nearly every object in the Solar System orbits in roughly the same direction, the impactors’ relative
speed would be at most several tens of percent of Uranus’s orbital speed (6.8 km/s). Since we expect
most impactors to follow orbits with lower eccentricities, we sample relative velocities between 0 and
0.4 times Uranus’s circular speed.

Considering that the impactor’s relative velocity is small compared to the planet’s escape velocity
(21.4 km/s), we must also take into account gravitational focusing. For cases where gravitational
focusing is strong, the impact cross section is large and the impactor is focused to a hyperbolic
trajectory aimed more closely towards the planet’s center. Since head-on collisions do not impart
any angular momentum, we expect the planet’s spin state to be more difficult to change when focusing
is included. The impact parameter for this effect is given by b with

b2 = R2
P (1 + (Vesc/Vrel)

2). (8)
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Also, since we do not know how the density profile changes between impacts, we maintain the
dimensionless moment of inertia at K ≡ I

MR2 = 0.225, but vary the planet’s radius as the cube
root of the total mass. Although these assumptions are mildly inconsistent, we find that even large
impacts incident on a mostly formed Uranus yield just small changes in radius, and that the final
spin rates changes by only about 10% for other mass-radius relations. Finally, Podolak & Helled
(2012) suggest a maximum impact boundary of around 0.95 RP as beyond this the impactor simply
grazes the planet’s atmosphere and departs almost unaffected. For simplicity, and in the spirit of
approximation, we ignore this subtlety.

4.2. Accretion of Planetesimals and Protoplanets

In Figures 11a and b, we assume that the planet’s initial spin rate was low to highlight the angular
momentum imparted by impacts. Since V 2

esc = 2GMP/RP , the impact cross section b2 ∝ RP for

Vrel � Vesc. The corresponding probability density distribution of impact locations is d(πb2)
dRP

, which is
constant; therefore, the spin distribution induced from a single collision is flat (Figure 11). However,
if the impactor’s relative velocity is instead much greater than the planet’s escape velocity, then the
impactors will be traveling on nearly straight lines and gravitational focusing does not apply. In
this case a single collision produces a spin distribution that increases linearly, as there is an equal
chance of striking anywhere on the planet’s surface. But since gravitational focusing only varies the
radial concentration of impacts on a planet’s surface, the obliquity distribution for a single impact
onto an initially non-spinning planet with or without gravitational focusing is uniform. A Uranian
core formed from the accretion of many small objects, by contrast, would likely have a very low spin
rate (Lissauer & Kary 1991; Dones & Tremaine 1993a,b; Agnor et al. 1999), since each successive
strike likely cancels out at least some of the angular momentum imparted from the previous impact
(Figures 11 c and d). The planet would also have a narrower range of likely obliquities because the
phase space available for low tilts is small.

The calculation for the planet’s final spin state for many impacts behaves similarly to a random walk,
so from the central limit theorem, each directional component of the imparted angular momentum
can be described by a normal distribution. The theoretical curve of Figure 11c is given by the
probability distribution fL(l), which describes the probability that L, the magnitude of the planet’s
spin angular momentum L =

√
L2
X + L2

Y + L2
Z , takes the value l:

fL(l) =
2l2e−l

2/2σ2

√
2π σ2σz

Φ(0.5; 1.5;−βl2) (9)

(Dones & Tremaine 1993a, Eq. 109). Here σ is the standard deviation for the components of the
planet’s spin angular momentum that lie in the orbital plane, σz is the standard deviation for the
component perpendicular to the orbital plane, and β = σ2−σ2

z

2σ2σ2
z

. The angular momentum imparted is
always perpendicular to the impactor’s trajectory. After multiple impacts, standard deviations are
related by σz ≈

√
2σ, so β < 0. Finally, Φ(0.5; 1.5; βl2) is the confluent hypergeometric function of

the first kind. The corresponding obliquity probability distribution is:

fε(ε) =

∣∣∣∣∣ 1

4
√

2σ2σz

tan(ε)

cos2(ε)

(
tan2(ε)

2σ2
+

1

2σ2
z

)−3/2∣∣∣∣∣ (10)

(Dones & Tremaine 1993a, Eq. 111); we provide derivations of these two equations in the Appendix.
Notice how well these calculations agree with the numerical result for many impacts (Figure 11c and
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Figure 11. (a) The spin distribution for 5 × 105 realizations of a single impact (mi = 1M⊕) on a non-
spinning proto-Uranus with initial mass 13.5M⊕ including the effects of gravitational focusing. ωU is the
current uranian spin angular frequency, and all of the following distributions are normalized so that the
shaded areas equal 1 (with the obliquities in radians); therefore, the solid line that fits the distribution is
the probability distribution function (PDF) P = ωU/ωmax. (b) The corresponding obliquity distribution
(depicted in degrees) with the solid line given by P = 1.0/π. (c) The spin distribution for 100 impacts of
equal mass (mi = 0.01M⊕). (d) The corresponding obliquity distribution for 100 impacts. The dashed lines
tracing the distributions in both of these figures are the analytic results (Equation 9, 10), and a detailed
analysis can be found in the Appendix.

d). Consequentially, decreasing the mass per impactor by increasing the number of impactors in
Figure 11c from 100 to 1000 would shift the peak to slower spin rates by a factor of

√
10. Because

Uranus’s spin period is quite fast, its spin state could not have simply been a byproduct of myriad
small collisions.

Accordingly, we will now consider the intermediary cases with only a few impactors incident on
a non-spinning planet. Figure 12 shows the product of two equal sized hits, and the resulting
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Figure 12. (a) The spin distribution for two impacts of equal mass (mi = 0.5M⊕) onto an initially non-
spinning Uranus. (b) The corresponding obliquity distribution for two equal impacts. The dashed line is
the analytic result for the limit of an Earth mass distributed amongst a large number of particles. (c) A
density plot of the spin frequency vs. obliquity where the value of each pixel is the number of iterations that
yielded that result. Values within 10% of Uranus’s current obliquity and spin rate are contained within the
red rectangle. The probability of falling within this rectangle compared to a similar space around the most
likely value is 0.96, meaning that the current state is a likely outcome.
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Figure 13. (a) The spin distribution for two impacts of masses 0.8M⊕ and 0.2M⊕ onto a non-spinning
planet. (b) The corresponding obliquity distribution for these two unequal impacts. The dashed line is the
analytic result for the limit of an Earth mass distributed amongst a large number of particles. (c) A density
plot of the spin frequency vs. obliquity where each pixel is the number of iterations that yielded those values.
Values within 10% of Uranus’s current obliquity and spin rate are contained within the red rectangle. The
likelihood of falling within 10% of the planet’s current spin state is lU = 0.0062, 0.76 times that of falling
within 10% of the most likely value.
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distributions already resemble the limit of multiple collisions. If the masses of the two impactors
differ significantly, however, the corresponding spin and obliquity distributions are more similar to
the single impact case (Figure 13). Therefore, while the planet’s obliquity distribution may be more
or less flat, its spin rate strongly depends on both the number of strikes and the total mass in
impactors.

N Mi MT Probability (lU ) Normalized Probability

1 1 1.0 5.0×10−3 1.00

2 0.5 1.0 1.1×10−2 2.20

3 0.333 1.0 7.1×10−3 1.42

4 0.25 1.0 4.5×10−3 0.90

7 0.142 1.0 6.4×10−4 0.13

100 0.01 1.0 0 0

2 0.8, 0.2 1.0 6.2×10−3 1.24

1 0.41 0.41 5.2×10−3 1.04

2 0.205 0.41 4.4×10−5 0.001

3 0.137 0.41 2.0×10−6 ∼0

1 3.4 3.4 1.6×10−3 0.32

2 1.7 3.4 2.3×10−3 0.46

Table 1. A Non-rotating Uranus

This table shows the probability of a number of collisions (N) each with mass Mi totaling to MT (in
Earth masses) simultaneously generating a spin rate between 0.9 < ω/ωU < 1.1 and an obliquity between
93◦ < ε < 103◦ out of 5×105 realizations. In this data set, Uranus is initially non-spinning with an obliquity
of 0°, and in general, probabilities decrease with more impactors. The final column divides the probability
by the odds of generating Uranus’s current state from a single Earth-mass impactor (first entry).

Table 1 shows a range of possible collisions onto a non-spinning planet. Here we show that the
smallest amount of mass necessary to push Uranus toward its observed spin state is about 0.4M⊕,
regardless of the number of impacts. The odds of this happening decreases for each additional
collision because each impact needs to hit at exactly the right location. We also provide statistics for
impactors much greater than an Earth-mass in the last section of Table 1. Impactors this massive
would likely violate our no mass-loss assumption, yet the odds of generating Uranus’s current spin
state is still low. A more detailed analysis of these impacts is beyond the scope of this paper; however,
see Kegerreis et al. (2018, 2019) for a smooth particle hydrodynamics analysis on the effects impacts
have on Uranus’s rotation rate and internal structure.

We also explored cases with multiple unequal sized impactors and discovered that the order of
the impacts does not matter, as expected, and that the odds are improved for more similar sized
impactors. An example of this can be seen in Figures 12a & 13a where for the same total mass the
spin distribution for two equally sized impactors is concentrated near Uranus’s current spin state,
whereas the distribution is flatter for two unequal sized impacts. We conclude that a small number
of equal impacts totaling to about 1M⊕ is the most likely explanation for Uranus’s spin state if the
planet was initially non-spinning.
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4.3. Adding the Effects of Gas Accretion

Gas accretion almost certainly provides a significant source of angular momentum, so much so
that we might expect the giant planets to be spinning at near break-up velocities if they accreted
gas from an inviscid thin circumplanetary disk (Bodenheimer & Pollack 1986; Lissauer et al. 2009;
Ward & Canup 2010). Instead, we observe the gas giants to be spinning several times slower, so
there must have been some process for removing excess angular momentum. This mechanism may
be a combination of multiple effects: magnetic braking caused by the coupling between a magnetized
planet and an ionized disk (Lovelace et al. 2011; Batygin 2018), vertical gas flow into the planet’s
polar regions and additional mid-plane outflows from a thick circumplanetary disk (Tanigawa et al.
2012), and magnetically driven outflows (Quillen & Trilling 1998; Fendt 2003). Since both Uranus
and Neptune spin at about the same rates, we suspect that gas accretion is responsible; though,
pebble accretion may also contribute a significant amount of prograde spin (Visser et al. 2020). As
such, the planet’s initial obliquities should be near 0° as the angular momentum imparted by gas is
normal to the planet’s orbital plane.

N Mi MT εi Probability (lU ) Normalized Probability

1 1.0 1.0 0° 4.5×10−3 0.90

2 0.2 0.5 0° 5.4×10−4 0.11

2 0.5 1.0 0° 1.0×10−2 2.00

2 1.0 2.0 0° 4.7×10−3 0.94

2 1.5 3.0 0° 2.5×10−3 0.50

1 1.0 1.0 40° 4.7×10−3 0.94

2 0.25 0.5 40° 9.0×10−4 0.18

2 0.5 1.0 40° 1.0×10−2 2.00

2 1.0 2.0 40° 5.0×10−3 1.00

2 1.5 3.0 40° 2.7×10−3 0.54

1 1.0 1.0 70° 4.8×10−3 0.96

2 0.25 0.5 70° 1.7×10−3 0.34

2 0.5 1.0 70° 1.0×10−2 2.00

2 1.0 2.0 70° 5.0×10−3 1.00

2 1.5 3.0 70° 2.7×10−3 0.54

Table 2. An Initially Slow Rotating Uranus

This table shows the same calculations as in Table 1, but with the planet having an initial spin period of 68.8
hrs. εi is Uranus’s initial obliquity. The normalized probability column divides the Probability by 5×10−3

as in Table 1.

First, we explore cases where the planet initially spins slowly. In Figure 14 we have Uranus’s initial
spin period four times slower than its current value, tilted to 40°, and the planet was struck by two
Earth-mass impactors. In this case, even if Uranus was tilted initially by another method, the odds
of generating Uranus’s current spin state is the same as if the planet was untilted. This is shown in
Table 2, and the entries show similar likelihoods to the non-spinning case. However, both the non-
spinning and slow spinning cases are improbable for two reasons. First, the mechanism responsible
for removing excess angular momentum during gas accretion needs to be extremely efficient. And
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Figure 14. Density plot showing two impacts of equal mass (mi = 1.0M⊕) incident on Uranus with
Ti =68.8 hours and εi =40°. The probability of Uranus’s spin state falling within 10% of the maximum value
is 1.2 times that of the planet’s current state (lU = 0.005).

second, the odds that both Uranus and Neptune were spun up similarly by impacts requires significant
fine tuning.
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Figure 15. Density plot for collisions incident on Uranus with gravitational focusing. Two impacts of equal
mass (mi = 1.0M⊕) incident on Uranus with Ti =17.2 hours and εi =0°. The color bar shows the number of
realizations for that value, and the contour lines contain the values within which a percentage of realizations
are found. The red box contains the space within 10% of Uranus’s current obliquity and spin rate. Uranus
having a spin of 2ωU and ε = 30° is twice as likely as its current state (lU = 0.0042).

Accordingly, we investigate the effects of gas accretion by considering impacts onto an untilted
fast spinning Uranus. Note that since we are adding angular momentum vectors, the order does not
matter; therefore, striking Uranus with a giant impactor before the planet accretes gas will yield the
same probability distributions as the reverse case considered here. For an initial spin period near
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N Mi MT εi Probability (lU ) Normalized Probability

1 1.0 1.0 0° 3.4×10−3 0.68

2 0.25 0.5 0° 0 0

2 0.5 1.0 0° 3.7×10−3 0.74

2 1.0 2.0 0° 4.1×10−3 0.82

2 1.5 3.0 0° 2.6×10−3 0.52

5 0.6 3.0 0° 6.1×10−3 1.22

10 0.3 3.0 0° 7.5×10−3 1.50

15 0.2 3.0 0° 6.0×10−3 1.20

1 1.0 1.0 40° 4.5×10−3 0.90

2 0.25 0.5 40° 1.3×10−3 0.26

2 0.5 1.0 40° 7.4×10−3 1.48

2 1.0 2.0 40° 4.7×10−3 0.94

2 1.5 3.0 40° 2.6×10−3 0.52

1 1.0 1.0 70° 8.3×10−3 1.66

2 0.25 0.5 70° 2.6×10−2 5.20

2 0.5 1.0 70° 1.4×10−2 2.80

2 1.0 2.0 70° 5.7×10−3 1.14

2 1.5 3.0 70° 2.7×10−3 0.54

Table 3. An Initially Fast Rotating Uranus

This table shows the same calculations as in Table 1, but with the planet having an initial spin period of
17.2 hrs. εi is Uranus’s initial obliquity. The final column normalizes the probability column by 5×10−3 as
in Table 1.

Uranus’s current value, the minimum impactor mass increases by
√

2 from ∼ 0.4M⊕ to 0.55M⊕
over the non-spinning case because the planet already has the correct |~L| which must be rotated by
∼ 90° by the impact. However, while the non-spinning case has a relatively flat obliquity distribution,
a fast spinning planet is more resistant to change. For example, striking this planet with a 1 M⊕
object will most likely yield little to no change to the planet’s spin state (see Figure 7(a) in Rogoszinski
& Hamilton (2020)). Introducing more impactors does not change this conclusion appreciably; the
planet still tends to remain with a low tilt and similar spin period. Figure 15 demonstrates this with
the most favorable case of two 1 M⊕ strikes onto an untilted planet already spinning with a 17.2 hrs
period. Additional cases are reported in Table 3.

If Uranus was initially tilted by a 40° resonance kick, its rapid rotation ensures that its spin state
will tend to remain relatively unaffected by subsequent impacts. This can be seen in Figure 16(a)
with a 1 M⊕ strike, where the probability of tilting Uranus to 98° is only 4.5×10−3. The odds do
improve if the number of impacts increases (Figure 16(b)), but they are not better than the non-
spinning case. However, if Uranus was initially tilted by 70° via a spin-orbit resonance (Rogoszinski
& Hamilton 2020), then two 0.5 Earth-mass strikes generates a favorable result (Figure 16(c)). Also,
only in this case will two 0.25 M⊕ strikes yield even better likelihoods (see Figure 8 in Rogoszinski &
Hamilton (2020)). Therefore, if Uranus’s and Neptune’s current spin rates were a byproduct of gas
accretion, then a large resonance kick can significantly reduce the mass needed in later impacts.
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N Mi MT εi Probability (lU ) Normalized Probability

1 1.0 1.0 0° 2.3×10−3 0.46

2 0.25 0.5 0° 0 0.00

2 0.5 1.0 0° 2.6×10−4 0.05

2 1.0 2.0 0° 2.7×10−3 0.54

2 1.5 3.0 0° 2.0×10−3 0.40

1 1.0 1.0 40° 4.1×10−3 0.82

2 0.25 0.5 40° 0 0

2 0.5 1.0 40° 2.0×10−3 0.40

2 1.0 2.0 40° 4.1×10−3 0.82

2 1.5 3.0 40° 2.5×10−3 0.50

1 1.0 1.0 70° 2.1×10−3 0.42

2 0.25 0.5 70° 1.2×10−4 0.02

2 0.5 1.0 70° 3.3×10−3 0.66

2 1.0 2.0 70° 3.0×10−3 0.60

2 1.5 3.0 70° 2.4×10−3 0.48

5 0.8 4.0 0° 3.4×10−3 0.68

10 0.4 4.0 0° 5.0×10−3 1.00

15 0.2667 4.0 0° 4.4×10−3 0.88

Table 4. An Initially Very Fast Rotating Uranus

This table shows the same calculations as in the previous tables, but the planet is spinning with a period of
8.6 hrs.

Finally, the mechanism that removes angular momentum during gas accretion could have been very
weak and Uranus would have been initially spinning very fast. In this case, slowing down Uranus’s
spin rate and tilting the planet over would require very massive impacts. As discussed in the previous
subsection, changing the planet’s spin state with many impactors requires more impacting mass to
compensate for partial cancellations of impact effects. Table 4 shows that ten impacts totaling to 4M⊕
produce plausible outcomes. However, it is unclear how gas accretion would transport the optimal
amount of angular momentum to the ice giants but not to the gas giants, nor is it expected that the
massive impactors required in this scenario would spin both Uranus and Neptune down similarly.
While their obliquity distributions peaks at around 30°, which favors a Neptune formation scenario,
the planets would still likely be spinning twice as fast as they are today (Figure 17). Additionally,
ten independent strikes is less probable than only two, as the solar system would need to have been
populated with many massive rogue planetary cores.

5. SUMMARY AND CONCLUSION

We have searched exhaustively for ways to tilt Uranus to 98°. Since gas accretion provides the giant
planets with a significant source of angular momentum (Bodenheimer & Pollack 1986; Lissauer et al.
2009; Ward & Canup 2010), and the planet’s core was likely to have formed from the accumulation
of pebbles and planetesimals, any primordial spin states were likely to be erased leaving near zero
initial obliquities and relatively fast spin rates. As such, changing the planets’ obliquities significantly
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Figure 16. (a) Density plot showing one impact (mi = 1.0M⊕) incident on Uranus with Ti =17.2 hours
and εi =40°. It is 17.5 times more likely to fall within 10% of the initial state than Uranus’s current spin
state (lU = 0.0045). Notice the sharp spike of over 2000 counts near the planet’s initial spin state. (b)
Two impacts (mi = 0.5M⊕) incident on Uranus with Ti =17.2 hours and εi =40°. The probability of
Uranus’s spin state falling within 10% of the maximum value is 3.5 times that of the planet’s current state
(lU = 0.0075). (c) Two impacts (mi = 0.5M⊕) incident on Uranus with Ti =17.2 hours and εi =70°. The
probability of Uranus’s spin state falling within 10% of the maximum value is 1.8 times that of the planet’s
current state (lU = 0.014).
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Figure 17. Density plot showing ten impacts of equal mass (mi = 0.4M⊕) incident on Uranus with Ti =8.6
hours and εi =0°. The probability of Uranus’s spin state falling within 10% of the maximum value is 2.9
times higher than falling near the planet’s current state (lU = 0.005), as shown in the red box.

without altering the planet’s spin period requires either a specific configuration of large collisions or
a secular spin-orbit resonance.

If impacts were solely responsible for Uranus’s large tilt, then there needed to have been multiple
collisions in order to explain the prograde motion of the Uranian satellites (Morbidelli et al. 2012).
Maximizing the probability of this outcome requires minimizing both the number of impacts and the
mass of each impactor, as there must have been many more rogue Mars-sized cores than Earth-sized
dispersed throughout the early solar system (Levison et al. 2015a,b; Izidoro et al. 2015). We have
shown that, in general, two impacts totaling to 1M⊕ yields the most favorable outcome compared
to all the other possibilities, but the odds generally do not change by more than a factor of a few for
other scenarios. Also, the likelihood of generating Uranus’s current spin state is still very low. An
initially fast spinning planet cannot be tilted easily because of its large initial angular momentum. We
could improve the likelihood of generating Uranus’s spin state by assuming a slower initial spin period
(Figure 14), but this would require an even more efficient method of removing angular momentum
as the planet accretes its gaseous atmosphere; there seems to be little justification for this.

The advantage of the collisionless secular spin-orbit resonance model is that it preserves both
Uranus’s spin rate and its moons’ orbits by gently tipping the Uranian system over. Here we have
investigated a resonance argument with Uranus commensurate with Neptune. We have shown that
Uranus being located between Jupiter and Saturn can augment the planet’s spin precession rate
enough to match with Neptune located beyond Saturn. Capture into resonance can tilt the planet
to near 90°, but only on unrealistic 100 Myr timescales. Resonance kicks, on the other hand, require
just 107 years, but would produce at most a 40° obliquity under ideal circumstances. This resonance
can, however, easily excite Uranus’s obliquity by about 10° or 20°, which would eliminate one of the
impacts required by Morbidelli et al. (2012). As we have seen in Tables 2 and 3, however, an initial
obliquity of 40° does not provide much mass reduction or probability improvements in the subsequent
collisions needed to generate Uranus’s current spin state. We would need to tilt the planet all the
way up to ∼ 70° to significantly reduce the mass of later impacts, which most likely to occur during
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the time that Uranus once harbored a circumplanetary disk (Rogoszinski & Hamilton 2020). Even
in ideal circumstances these non-collisional models cannot drive the planet’s obliquity beyond 90°,
and so large collisions seem unavoidable.

Tilting Uranus is a difficult problem and each of the models that we have considered contains a
major fault. Neptune’s 30° obliquity, by contrast, can be much more easily explained by any one of
these scenarios. Regardless of the planet’s initial spin rate, Figures 14 and 15 show a high probability
of generating Neptune’s current spin state. If Neptune’s spin rate was a byproduct of gas accretion,
then a small impact or an impact near the planet’s center is sufficient to explain Neptune’s low
obliquity. Reinhardt et al. (2019) reinforce this scenario since a head on collision of a large impactor
with Neptune may also explain its core’s higher moment of inertia, in opposition to Uranus’s more
centrally dense interior. Furthermore, if Neptune was instead captured into a spin-orbit resonance,
then we require a less massive disk and a smaller orbital inclination than for Uranus to tilt Neptune
over (Rogoszinski & Hamilton 2020). Since ice giants must have harbored large circumplanetary disks
while accreting their massive atmospheres, then we should expect at least minor obliquity excitations.
Ultimately, a combination of the two models, a spin-orbit resonance followed by a giant impact, may
be the more likely explanation for Uranus’s unusual spin state.
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APPENDIX

A. ANGULAR MOMENTUM AND OBLIQUITY DISTRIBUTIONS

Here we derive the angular momentum and obliquity distributions from accreting multiple small
particles similar to the approach of Dones & Tremaine (1993a). If these particles are isotropically
distributed, then they possess a wide range of eccentricities and inclinations and so there is no
preference to any spin direction. This isotropy breaks down if particles instead orbit within the
planetary disk at low inclinations and eccentricities. This discussion draws heavily from Grinstead
& Snell (2006).

A.1. Angular Momentum Distributions

The calculation for the angular momentum distribution of a planet from multiple strikes at random
locations on the planet’s surface is a random walk scenario. We start with the magnitude of the spin
angular momentum of a planet:

L =
√
L2
X + L2

Y + L2
Z (A1)

where the probability distribution (fLk
(lk)) of each component (Lk) of the angular momentum vector

is described by a normal distribution as a byproduct of the central limit theorem:

fLk
(lk) =

1

σk
√

2π
e−l

2
k/2σ

2
k . (A2)
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As such, to find the distribution of the magnitude of the angular momentum we will first need to
determine the square of each distribution, then the sum of three squares, and finally take the square
root of the sum as seen in Equation A.1.

The distribution of the square of each component (L2
k) can be calculated by assuming that X and

Y are continuous random variables (i.e. ‘variates’ as depicted in upper case), with x and y as specific
elements in the ranges of their corresponding variates (i.e. also called ‘quantiles’ depicted here in lower
case)(Grinstead & Snell 2006). X and Y have cumulative distribution functions FX and FY , and Y is
described by a strictly increasing function as a function of X: Y = φ(X). FY (y) = P (Y ≤ y), where
the right hand side describes the probability that the variate Y is less than or equal to a number y,
which is equal to P (φ(X) ≤ y) = P (X ≤ φ−1(y)) = FX(φ−1(y)).

So for the variate X2 and its corresponding quantile x2:

FX2(x2) = P (X2 ≤ x2) = P (−x ≤ X ≤ x). (A3)

The right hand side can be rearranged accordingly:

P (−x ≤ X ≤ x) = P (X ≤ x)− P (X ≤ −x) (A4)

so that:
FX2(x2) = FX(x)− FX(−x). (A5)

The corresponding density distribution function for an arbitrary variate Y is: fY (y) = d
dy
FY (y).

Starting with FY (y) = FX(φ−1(y)), we take the derivative of each side and employ the chain rule to
obtain: fY (y) = fX(φ−1(y)) d

dy
φ−1(y).

So:

fX2(x2) =
fX(x) + fX(−x)

2x
. (A6)

Since the normal distribution is centered at zero and is symmetric, the density distribution for L2
k

is then:

fL2
k
(l2) =

1

σkl
√

2π
e−l

2/2σ2
k (A7)

which is the distribution for a chi squared with one degree of freedom.
Next, the density distribution of the sum of two independent random variables is their convolution.

Let L2
XY = L2

x + L2
y and its corresponding density distribution:

fL2
XY

(l2xy) =

∫ l2xy

0

fL2
X

(l2xy − l2y)fL2
Y

(l2y)dl
2
y (A8)

where L2
Y ranges from 0 to L2

XY . Note that the standard deviations for both fLX
and fLY

are equal
with σ = σx = σy. Thus, combining Equation A7 and A8:

fL2
XY

(l2xy) =
1

2πσ2

∫ l2xy

0

(
e−(l

2
xy−l2y)/2σ2

(l2xy − l2y)−0.5
)(

e−l
2
y/2σ

2

(l2y)
−0.5
)
dl2y =

e−l
2
xy/2σ

2

2σ2
(A9)

Now let L2 = L2
XY +L2

Z and repeat the above process. The probability distribution fL2(l2) describes
the probability that L2 takes the value l2, and fL2

Z
(l2z) describes the probability that L2

Z takes the
value l2z . We explicitly treat the general case σ 6= σz.
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The density distribution for L2 is:

fL2(l2) =

∫ l2

0

fL2
XY

(l2 − l2z)fL2
Z
(l2z)dl

2
z =

1

2
√

2π σ2σz

∫ l2

0

e−(l
2−l2z)/2σ2

e−l
2
z/2σ

2
z (l2z)

−0.5 dl2z (A10)

let β = σ2−σ2
z

2σ2σ2
z

, γ = βl2z , and dγ = βdl2z , and so

fL2(l2) =
e−l

2/2σ2

2
√

2π σ2σz

1√
β

∫ βl2

0

e−γ γ−0.5 dγ (A11)

Equation A11 is of similar form to Equation 109 found in Dones & Tremaine (1993a). Applying
Equation A6 to fL2 and noting that since L is the magnitude of the planet’s angular momentum,
fL(−l) = 0. We find fL(l) = fL2(l)·2l. The probability distribution describing the angular momentum
of the planet for β > 0, or σx = σy > σz is then:

fL(l) =
le−l

2/2σ2

√
2π σ2σz

1√
β
γ(0.5, βl2) (A12)

where γ(0.5, βl2) is the lower incomplete gamma function. For β < 0 (σx = σy < σz):

fL(l) =
le−l

2/2σ2

√
2π σ2σz

1√
−β

(2l
√
−β) Φ(0.5; 1.5;−βl2) (A13)

where Φ(0.5; 1.5;−βl2) is the confluent hypergeometric function of the first kind. For β = 0, where
σ = σx = σy = σz (isotropic case), the form is particularly simple:

fL(l) =
2l2e−l

2/2σ2

√
2π σ3

. (A14)

A.2. Obliquity Distributions

The obliquity angle (ε) is defined by tan(ε) =

√
L2
x+L

2
y

Lz
= LXY

Lz
. To find the distribution of the

quotient of two independent variants we let Q = X/Y where X and Y are independent random
variables. Then FQ(q) = P (Q ≤ q) = P (X/Y ≤ q). If Y > 0, then X ≤ yq, while if Y < 0, then
X ≥ yq. Therefore, P (X/Y ≤ q) = P (X ≤ yq, Y > 0) + P (X ≥ yq, Y < 0). These constraints
determine the integral limits in the corresponding cumulative distribution:

FQ(q) =

∫ ∞
y=0

∫ yq

x=−∞
fXY (x, y)dxdy +

∫ 0

y=−∞

∫ ∞
x=yq

fXY (x, y)dxdy. (A15)

and density distribution:

fQ(q) =

∫ ∞
0

yfXY (yq, y)dy +

∫ 0

−∞
(−y)fXY (yq, y)dy. (A16)

So for calculating the obliquity distribution, let σ 6= σz, and U = tan(ε) with u = tan(ε) as the
corresponding quantile. Thus:

fU(u) =

∫ ∞
0

lzfLXY
(ulz)fLz(lz)dlz +

∫ 0

−∞
−lzfLXY

(ulz)fLz(lz)dlz (A17)
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which becomes:

fU(u) = 2

∫ ∞
0

|u|l2z
σ2σz
√

2π
e−l

2
zu

2/(2σ2)e−l
2
z/(2σ

2
z)dlz. (A18)

If we let α = u2

2σ2 + 1
2σ2

z
, then the equation is now of the form:∫ ∞

0

t2e−αt
2

dt =

√
π

4α1.5
(A19)

and so when normalized:

fU(u) =

∣∣∣∣ u

4
√

2σ2σzα1.5

∣∣∣∣ . (A20)

We can change variables to obliquity (ε) by setting fε(ε) = du
dε
fU(u) where du

dε
= sec2(ε). We find:

fε(ε) =

∣∣∣∣∣ 1

4
√

2σ2σz

tan(ε)

cos2(ε)

(
tan2(ε)

2σ2
+

1

2σ2
z

)−3/2∣∣∣∣∣ . (A21)

This is equivalent to the obliquity distribution given in Dones & Tremaine (1993a) (Equation 111).
For the isotropic case, σz = σ, the distribution reduces to:

fε(ε) =

∣∣∣∣12 sin(ε)

∣∣∣∣ . (A22)
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