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Dynamical resonant structures in meteoroid stream orbits
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ABSTRACT
Herein we use the Canadian Meteor Orbit Radar (CMOR) data set to search for evidence of a
resonant swarm in the Taurid meteoroid stream at the 7:2 Jovian resonance. We use a numerical
method to estimate the reduction in radar orbit measurement uncertainty required to detect
this feature in a data set. This is highly dependent on the proportion of observed particles that
are members of the resonant swarm. However, we find that a meteor radar with uncertainties
a factor of 10 lower than those of the current CMOR will be sufficient for detection to be
possible, if the meteor shower consists of more than 5 per cent resonant particles (considered
likely given the results of visual meteor studies). Such an improvement will require accurate
removal of deceleration errors from pre-atmospheric meteor velocities, and improvement to the
robustness of echo inflection point identification algorithms and interferometric measurements.

Key words: comets: individual: 2P/Encke – meteorites, meteors, meteoroids.

1 IN T RO D U C T I O N

Meteoroid particles ejected from cometary or asteroidal parent bod-
ies are subject to gravitational and non-gravitational forces. These
act to perturb such particles from their initial orbits, and eventually
may cause their removal from the Solar system by collision with
an additional body or by expulsion from the Solar system. Non-
gravitational forces include radiation pressure, Poynting–Robertson
and solar wind drag forces, and magnetic field effects. Gravitational
effects include direct perturbations caused by planetary bodies, and
resonance effects, generally of Jupiter or Saturn, but theoretically
also as a result of any large body in the Solar system.

As well as causing dispersal of particles, such resonances are
able to concentrate or protect bodies at specific locations. Resonant
swarms can be formed as a result of the ejection of particles by a
resonant or near-resonant comet. Particles injected into the stream
by the parent comet each have slightly different orbits, with a small
proportion having the correct dynamics to place them inside a res-
onance, particularly if the comet already librates within a given
resonance. These particles can remain in this region for relatively
long periods of time, their existence inside the resonance (or near a
librating comet) protecting them from planetary perturbations and
other such effects that act to more quickly disperse other stream
particles. Inside the resonance, these particles are concentrated in
a narrow range of mean motions, thus producing enhanced shower
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flux at the Earth when the displacement between the Earth’s position
and the resonance centre is small. Built up over a number of comet
returns to the resonance centres, these regions have relatively high
particle density, and are wider than outburst dust created by dust
trails from a single comet pass. These dust trails produce outbursts
because the particles are young and have not had sufficient time to
disperse into the stream background. It is important to distinguish
between relatively old, wider resonant swarms or filaments injected
into the region over a number of years, and young dust trails of
recently released material.

A resonant swarm at the 7:2 Jovian resonance in the Taurid mete-
oroid stream was proposed and described by Asher, Clube & Steel
(1993). This paper also examined records of elevated Taurid me-
teor observations from 1931 to 1988, and found five occasions that
have |�M| less than 40◦ (where �M is the displacement in mean
anomaly of the resonant centre from the point at which the Earth
and swarm orbits cross in space and time), suggesting a potential
link. The nearby 3:1, 4:1, 10:3 and 11:3 Jovian resonances were
found incapable of matching these observations. The authors con-
struct a table of predicted years (‘swarm-encounter’ years) in which
the swarm may be observed on Earth: these are years for which
|�M| ≤ 40◦.

Observational evidence in support of the existence of this stream
is given by Asher & Izumi (1998), Beech, Hargove & Brown (2004)
and Dubietis & Arlt (2007). This swarm theory was proposed in
conjunction with the fragmentation of a ‘giant’ proto-Encke comet
over the past ∼2 × 104 yr, which may have inhabited a resonant orbit
for a fraction of its lifetime (Asher & Clube (1998). A concentration
of particles in a resonant swarm at the 7:2 resonance is possible even
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without the existence of such an object. However, formation of a
resonant swarm is more difficult without a resonant or near resonant
parent object.

It may be possible to observe this swarm in meteor radar orbit
data. Below, we demonstrate that the Taurid swarm is expected to
be among the most easily observed resonance effects in radar data.
It is expected that the size of the swarm and the measurement un-
certainties of the radar will limit the observability of the swarm.
In this paper, we investigate these limitations to develop an under-
standing of the capability of radar techniques in discerning resonant
swarms.

2 TH E C A NA D I A N M E T E O R O R B I T R A DA R

Data from the Canadian Meteor Orbit Radar (CMOR) are used to
investigate the observability of resonance features in meteor orbit
radar. This is a three-station pulsed meteor radar operated by the
meteor group at the Department of Physics and Astronomy, Univer-
sity of Western Ontario, London, Canada. Situated near Tavistock,
Ontario, Canada (80.772◦W, 43.364◦N), it has two remote sites
8.1 km and 6.2 km from the central site. The three stations form an
angle of 96.◦8. It is a SKYiMet radar system (see Hocking, Fuller
& Vandepeer 2001) with a peak power of 6.0 kW capable of three
frequencies (17.45, 29.85 and 38.15 MHz). A five-element interfer-
ometre allows the determination of echo directions to ∼1◦ (above
20◦ elevation). CMOR uses vertically directed arrays resulting in
almost all-sky coverage down to ∼20◦ elevation. A pulse repetition
frequency of 532 Hz and a pulse length of 75 µs are used. Radiant
directions have an uncertainty of ∼6◦ (due to the uncertainty in the
measurement of time-delays). The limiting radar magnitude is +7.5
for meteors for which orbits are achievable, equivalent to a velocity-
dependent mass limit of ∼10−7 kg and size limit of ∼0.2 mm for an
average velocity of 30 km s−1 (Brown et al. 2010). Further details
are available in Jones et al. (2005).

CMOR meteor velocities are determined using multi-station tim-
ing. Errors in time inflection picks are roughly 0.7 of the interpulse
time, corresponding to errors of the order of 1.3 ms. This time in-
flection pick error dominates the error in the final velocity, which
is of the order of 10 per cent. A pre-t0 Fresnel oscillation method
is used to provide speeds with uncertainties ∼5 per cent for ap-
proximately 10 per cent of meteors that have high signal-to-noise
ratio Fresnel patterns (Hocking 2000). Deceleration corrections are
computed using empirical expressions determined by comparing the
raw radar-determined speeds with the speeds found in photographic
studies of major meteor showers (Brown et al. 2004).

3 R ESONA N T SWARMS IN METEORO ID
ST REA M S

Here, we evaluate which meteor streams are most likely to pro-
vide evidence of resonant effects in meteor orbit radar data. This
will provide the most promising stream candidate for study in the
current data set. Meteoroid streams in which resonant effects have
been observed include the Quadrantids, Perseids, Leonids, Orionids,
June Bootids, Lyrids, Ursids and Taurids (see Froeschlé & Scholl
1986; Wu & Williams 1995; Jenniskens et al. 1998; Jenniskens &
Betlem 2000; Emel’yanenko 2001; Asher & Emel’yanenko 2002;
Sato & Watanabe 2007; Trigo-Rodrı́guez et al. 2007; Rendtel 2008;
Spurný & Shrbený 2008). From the analytic study of Emel’yanenko
(2001), the Perseids, Eta Aquarids, Orionids, Lyrids, Leonids and
June Bootids have dynamics that may allow stable swarms to form

at resonance locations. Ryabova (2006) also notes that the Gem-
inid stream may contain a resonant concentration due to its close
proximity to the narrow 7:1 and 8:1 resonance regions.

To evaluate the observability of resonance effects in these streams
in CMOR data we consider the position of the radiant of the cor-
responding meteor shower, the velocity of incoming meteors, the
zenith hourly rate (ZHR) and the resonance width. The radiant dec-
lination will determine whether a radar system at a given latitude can
observe the shower. The velocity is used to determine semimajor
axis values for the particle orbits, but most importantly is indicative
of uncertainties: observational radar uncertainties increase as the
geocentric velocity of the particle increases, and are dependent on
the relative impact geometry with the Earth, being greater for head-
on collision. Therefore, high Earth-impact velocities can increase
the difficulty of observing small-scale structure in the semimajor
axis. The ZHR is the number of meteors expected to be observed
per hour on a clear, moonless night with the shower radiant at the
zenith (Williams & Murad 2002). This parameter can be used as
a relative measure of meteor shower strengths: showers of higher
ZHR are more likely to produce statistics sufficient to overcome
large measurement uncertainties. However, ZHR values are usually
based on visual observations, and are not always representative of
the shower rates at the radar mass level. Therefore, here we instead
use the ‘maxZ’ parameter defined in Brown et al. (2008) as ‘the
relative activity strength at maximum’ (Brown et al. 2008). The
resonance width will determine if a resonant feature is important
with respect to uncertainties: a very small resonant width compared
with measurement uncertainties will make detection difficult as the
uncertainties will restrict the ability to sense small-scale features.

Table 1 summarizes approximate values for the above parameters
for the showers of interest. All of the showers are within the ob-
serving limits for CMOR, having declinations greater than ∼−20◦.
The effect of different impact velocities (Vg) is demonstrated by
a representative semimajor axis uncertainty δa at the resonance
semimajor axis, which we determine using CMOR data. A useful
measure defined here for deciding the potential for observation of
resonance effects by radar in a given meteor shower is the ratio of
the approximate width of the resonance to this representative δa.
The greater the resonant width is in comparison to the uncertainties
(thus the higher the ratio), the higher the chance that the resonant
feature will be discernable above the uncertainty broadening of the
radar data. These values are also given in Table 1. Indeed, a reso-
nant feature that is too wide will blend easily into the background
dust cloud. Thus a relatively low resonant width, but a high ratio of
resonant width to semimajor axis uncertainty, is preferred. We find
the best showers (in order), chosen for their relatively high ratio,
are the Quadrantids, Taurids and Geminids.

We choose the Taurids for continued study due to the lack of
observational support for resonant effects in the Geminids, and
the large radar meteor uncertainties that will result from the larger
velocities and semimajor axis values of the Quadrantids. The obser-
vational evidence in visual meteor data for the Taurid swarm at the
7:2 Jovian resonance and the relatively low uncertainties in Taurid
velocities and semimajor axes make the Taurid 7:2 resonant swarm
a good candidate for a radar search.

4 TH E TAU R I D ME T E O R C O M P L E X

The Taurids are a Northern Hemisphere meteor shower observed
in October–November. Commonly, the shower is defined by the
Northern and Southern Taurid branches. These are part of a wider
Taurid Complex, which includes the day-time showers ζ Perseids
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Table 1. Parameters of use in determining the suitability of meteor showers in resonant studies. ‘Dec.’ is the shower
mean declination; ‘Vg’ is the shower mean geocentric velocity, with the associated error as measured by CMOR; ‘a’ is
the shower mean semimajor axis; ‘Res’ is the known or theorized (marked with ?) Jovian resonance in which shower
particles are involved; ‘aR’ is the approximate semimajor axis location of the resonance; ‘width’ is the approximate
resonant width, generally taken from Emel’yanenko (2001); ‘δa’ is the range of uncertainties in CMOR semimajor
axis values at a; maxZ is the relative activity strength at maximum (an instrumentally biased proxy for a ZHR-like
measure of strength) and ratio is the ratio between the resonant width and δa (a measure of the how appropriate the
shower is for radar resonance studies).

Shower Dec. Vg a (au) Res aR (au) Width (au) δa (au) maxZ Ratio

Quadrantids +48.5 42 ± 4 3.14 2 : 1 3.28 0.17 1.5–3.5 238 0.11
Perseids +56.9 62.1 ± 7.2 ∼25 1 : 11 25.7 1.4 128–230 103 0.011
Leonids +21.6 69 ± 6.8 9.8 5 : 14 10.3 0.13 20–38 82 0.0065
Orionids +15.5 66.4 ± 6.3 18 1 : 6? 17.2 1.0 55–105 132 0.018
Eta Aquarids −0.7 64.6 ± 6.2 16.16 1 : 5? 15.2 0.9 45–80 277 0.020
Lyrids +32.6 47.3 ± 4.1 45.7 1 : 12? 27.3 1.8 140–260 36 0.013
N Taurids +21.0 28.1 ± 2.9 2.12 7 : 2 2.25 0.05 0.6–1.6 31 0.083
S Taurids +8.0 27.9 ± 3.7 2.07 7 : 2 2.25 0.05 0.6–1.6 56 0.083
Geminids +32.1 35 ± 3.8 1.37 7 : 1 1.42 0.006 0.17–0.57 817 0.036
Ursids +74.6 37.6 ± 5.1 4.62 6 : 7 5.76 0.09 5.5–11.57 29 0.016

and β Taurids, and multiple minor streams observed in September to
December (night-time showers), and May to July (day-time show-
ers corresponding to the passage of the Earth through the stream’s
second node) (Stohl & Porubcan 1990; Babadzhanov, Williams &
Kokhirova 2008). A number of asteroids have also been associated
with this complex. The ‘Giant Comet’ hypothesis was formed par-
tially to account for the presence of these objects (Clube & Napier
1984; Asher, Clube & Steel 1993): however, the apparent asteroidal
nature of many Taurid complex bodies puts this hypothesis in doubt
(Jenniskens 2006). Additionally, Valsecchi et al. (1995) found that a
dynamical mechanism involving secular resonances is able to trans-
port bodies from the asteroid belt to the Taurid region, though such
a process requires a long time-scale.

The potential resonant concentration of particles at the 7:2 Jo-
vian resonance is usually investigated using a time-based approach
where the years in which the resonant swarm should be visible
are calculated. Here, however, we seek evidence for the swarm in
the semimajor axis distribution, and only in Northern and Southern
Taurids. A possible detection of the swarm in semimajor axis data
is given in Steel, Asher & Clube (1991). Furthermore, there are in-
sufficient years of CMOR data to search for evidence for increased
Taurid rates in swarm years. Orbital element data only encompass
one swarm-encounter year (2005). Single-station data are available
for more years, but this would not allow extraction of Taurid parti-
cles from the data set, as a received signal from at least three stations
is required for an orbit to be calculated. Additionally, despite the
presence of stronger resonances in the Taurid vicinity (such as the
3:1 and 4:1 Jovian resonances), only the 7:2 resonance is studied
because Asher & Clube (1993) find that only this resonance can
explain the observed yearly rates of Taurid meteoroids.

As for Kirkwood gaps, resonant effects should be evident as a
peak around the location of the 7:2 resonance at a semimajor axis
a = 2.256 au. Here, a number of methods are employed to attempt
to extract evidence of this resonant swarm in CMOR radar data.

4.1 Extracting Taurid data

We extract Taurid from the CMOR orbital data sets (of the meteor
group at the University of Western Ontario, London, Canada) 2002–
2007 using solar longitude limits, right ascension and declination,
and velocity specifications for the shower in CMOR data (Brown

et al. 2008). This resulted in separate data sets of Northern and
Southern Taurids, of 1617 and 6032 meteoroids, respectively. These
are combined here, unless otherwise stated.

Given that the extended Taurid stream encompasses showers ei-
ther side of the Northern and Southern Taurids, and also in June
each year, additional resonance information may be acquired by
extension of the data set to include these showers. However, here
we extract only Northern and Southern Taurids as determined by
the previous CMOR shower survey of Brown et al. (2008).

Though only the CMOR data set is examined here, the techniques
developed in this work are applicable to the general problem, and
can be used to investigate whether evidence exists for any dynamical
feature in meteoroid streams in any radar data set. Our purpose here
is, in addition to searching for evidence of the 7:2 Taurid swarm, to
establish a procedure for tackling searches for small-scale structure
in radar meteoroid stream data.

5 TH E R E S O NA N T W I D T H O F T H E 7 : 2
J OV I A N R E S O NA N C E

Here, we determine the resonant width, or size of the region of
influence, for the 7:2 Jovian resonance at Taurid orbital elements.
This is important here as such knowledge aids in the search for
this resonance in the data set; in the confirmation that a particular
feature meets resonant feature criterion and in determining the upper
limits on radar sensitivities and orbital resolution that would enable
detection of the resonance.

5.1 Definition of the resonant width

Broadly, the libration or resonant width describes the influence of
the resonance: the variations in orbital elements (particularly semi-
major axis) that the resonance can produce or the extent (again usu-
ally in semimajor axis) over which the resonance exerts a significant
effect. Values of the width from these two definitions should agree
and also match the observed widths of physical resonance features,
such as the Kirkwood Gaps in the Asteroid Belt. In many cases it is
thus important to determine the resonance width in semimajor axis,
as this is closely related to the size of observable resonance features
in the Solar system. In this section we assume that the resonance
width refers to a semimajor axis interval, unless otherwise stated.
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Mathematically, the width can be defined (from the first defini-
tion above) as a maximum libration amplitude by considering the
librational motion within resonance. Considering a particle at the
exact resonance position, the width is then equal to the maximum
change in energy or semimajor axis that can occur and still leave
the particle in resonance (defined by the presence of libration). Note
that this defines a half width, and care must be taken to determine
whether a full width (from resonance edge to resonance edge) or
half width (from resonance centre to resonance edge) is given by a
particular method.

Here, we consider two existing methods for determining the
width or strength of a given resonance. First, the derivation for
an approximate libration width expression is outlined as given in
Murray & Dermott (1999): this comprises the purely theoretical
standard libration width approximation, valid at low eccentricities.
This approximation can be used to give an approximate resonant
width. Secondly, there exists a semi-analytic or numerical method
available for determining resonance strength, developed by Tabare
Gallardo (Gallardo 2006). Due to the limitations of both methods
at high eccentricities, we primarily use a numerical method for this
investigation (see Section 5.4).

5.2 An analytic resonant width expression

An analytic expression for the resonant width is derived by Murray
& Dermott (1999). Determination of the resonant width of a given
resonance requires both the disturbing function and Lagrange’s
planetary equations (see Roy 1988; Murray & Dermott 1999). A
simplification of the disturbing function is required to allow an
analytic derivation of an expression for the resonant width: this re-
quires reduction to a circular (e = 0), planar (all inclinations zero),
restricted case (negligible mass for the inner perturbed body). These
restrictions provide simplified equations of motion in orbital ele-
ments. Use of a pendulum model to produce an expression for the
total energy of the system provides an expression for the resonant
width in semimajor axis:

δamax = ±
(

16

3

|Cr |
n

e|j4|
) 1

2

a. (1)

This can be used to directly obtain a resonant width from the knowl-
edge of the resonance and the three bodies involved. Orbital ele-
ments required are eccentricity e and semimajor axis a. Here, n is
the mean motion and Cr describes a strength term, and is given by

Cr = Gm′

na2a′ fd(α) =
(

m′

mc

)
nαfd(α). (2)

Here m′ is the mass of the outer perturbing body (Jupiter), mc is
the mass of the central body (Sun), f d(α) is a function of Laplace
coefficients describing the direct terms of the expansion of the
disturbing function, α = a/a′, and G = n2a3/mc is used.

For the first-order resonances, it is more appropriate to use
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These expressions are valid for orbits with low eccentricities
(eccentricity less than ∼0.3) and low inclinations, and are only
easily computable for resonances for which the product αf d(α)
is easily obtainable. These values are given for certain first- and
second-order interior resonances in chapter 8 of Murray & Dermott
(1999). These include the 2:1, 3:2, 4:3, 3:1, 5:3 resonances, but not
the 7:2 resonance.

5.3 The semi-analytic resonance strength program
of Gallardo (2006)

The semi-analytic method of Gallardo (2006) evaluates the dis-
turbing function R(σ ) numerically, and then calculates a resonance
strength SR(a, e, i, ω) = 〈R〉 − Rmin, where 〈R〉 is the mean value of
R(σ ) with respect to σ (equivalent to the resonant argument ϕ), and
Rmin is the minimum value of R(σ ). These resonance strengths are
notably different from the other methods in that they are expressed
in energy units with k2m = 1, k being the Gaussian constant of
gravity. In order to compare these values to semimajor axis reso-
nant widths of other methods, we must convert SR in energy units
to a semimajor axis width. Here, we derive this conversion using
the expression for the expansion of the disturbing function for the
circular, planar restricted problem as given by Murray & Dermott
(1999):

〈R〉 = Gm′

a′ [fs,1(α)e2 + fd(α)e|j4| cos ϕ]

where

ϕ = j1λ
′ + j2λ + j4�.

This is simplified using Cr as given in equation (2) and

Cs = Gm′

na2a′ fs,1(α) =
(

m′

mc

)
nαfs,1(α).

This simplification produces

〈R〉 = Csna2e2 + Crna2e|j4| cos ϕ.

Gallardo’s resonant strength is the amplitude of the disturbing
function R(σ ). Murray and Dermott’s expression is a simple cosine
function with amplitude Crna2e|j4|, so that we find

SRapprox = Crna2e|j4|. (4)

By substituting this into the expression for δamax (equation 1) we ob-
tain an expression for the resonant width as a function of Gallardo’s
resonant strength:

δamax = ±
(

16

3

SRapproxa
3

GM	

) 1
2

(5)

Here the mean motion expression n =
√

μ

a3 is also used, where

μ = GM	. Similarly, for first-order resonances we obtain

δamax

a
= ±

(
16

3

SRapprox

n2a3

) 1
2
(

1 + SRapprox

27e4n2a2

) 1
2

+ 2SRapprox

e2n2a2
.

(6)

Because this method relies on low eccentricity approximations, it
is expected that these conversion formulae will only be valid for
eccentricities less than ∼0.3.

The strengths for Jovian resonances determined using Gallardo’s
program ATLAS for the region 2–2.5 au and for Taurid eccentricity,
inclination and argument of perihelion are shown in Fig. 1.

5.4 A numerical width determination method

The resonance width can also be determined by simple examina-
tion of the dynamics of a body within the resonance over time. This
can be accomplished using an integrator such as the Hierarchical
N-body (HNBody) integrator (Rauch & Hamilton 2002). Here,
we use HNBody to inject particles into Taurid-like orbits in the
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Figure 1. Resonant strengths as calculated for Taurid orbital elements e,
i and ω from the amplitude of the disturbing function using SR(e, i, ω) =
〈R(σ )〉 − Rmin using numerical techniques and programs developed by
Gallardo (2006).

vicinity of the 7:2 resonance and study their continuing motions over
104 yr. The maximum size of oscillations of a particle in resonance
provides the resonant width. An additional measure of this width is
the size of the region inside which librational motion occurs.

HNBody is appropriate for use in self-gravitating systems with
one object dominating the mass of the system, such as is the case for
the Solar system. It is primarily a symplectic integrator, but provides
Runge–Kutta and Bulirsch–Stoer integrators that are useful in cases
where the symplectic integrator cannot provide sufficient accuracy.
The fourth-order Runge–Kutta integrator is most suitable for our
problem due to the highly eccentric Taurid orbits.

In our implementation of the meteoroid resonant problem, Sun,
Jupiter and a number of test meteoroid particles are included in the
integrations. We find that the exclusion of other planets and aster-
oids causes negligible error in the resonant width. The meteoroids
are given initial orbital elements of Taurid meteoroids, with the ex-
ception of the semimajor axis, which is varied slowly between each
of the test meteoroids. The Taurid orbital elements used are e =
0.83, i = 5.◦4, 
 = 152.◦7, 
 + ω = 37.◦3 (Jenniskens 2006). The
mean longitudes of both Jupiter and the particles are zero at present.

We first analyse a region constrained near the 7:2 resonance cen-
tre. We present the results obtained for one meteoroid particle in
interaction with the Sun and Jupiter. The particle is given a semima-
jor axis that starts it within the resonance (2.2505 au). Fig. 2 shows
the orbital element variations of such a particle over 104 yr. This
particle can be identified as resonant by the relatively long period
and large amplitude oscillations visible in semimajor axis (of pe-
riod ∼260 yr). These oscillations are also present in the eccentricity,
superimposed on much longer scale oscillations caused by plane-
tary (Jovian) perturbations (with period ∼3000 yr). Smaller scale
variations exist, also the result of predictable Jovian perturbations.

A small movement in the starting semimajor axis of the me-
teoroids (to 2.2305 au) moves the particle outside the resonance.
Fig. 3 shows the orbital element variations for this particle: the ab-
sence of the large resonant oscillations in the semimajor axis and
eccentricity confirms that this particle is not resonant. While the
characteristics of semimajor axis oscillations are a good indicator
of resonant behaviour, below we use a more rigorous libration test
to confirm this.

Figure 2. Behaviour of orbital elements over 104 yr of numerical integra-
tion, for particles at Taurid elements e = 0.83, i = 5.◦4, 
 = 152.◦7, 
 +
ω = 37.◦3 and at a = 2.2505 au. Medium-period resonant oscillations (of
period ∼260 yr) and long-term variations are clearly visible.

Figure 3. Behaviour of orbital elements over 104 yr of numerical integra-
tion, for particles at Taurid elements e = 0.83, i = 5.◦4, 
 = 152.◦7, 
 +
ω = 37.◦3 and at (b) a = 2.22305 au. Only longer-term variations are visible
(which is outside of the resonance).

To examine the semimajor axis oscillations at a variety of po-
sitions simultaneously, we analyse a range of particles that scan
through the resonance. These provide an indication of the size of
the oscillations in semimajor axis over the resonance region (in
semimajor axis). We achieve this by stepping through the 7:2 res-
onance region in steps of 0.0005 au, with starting semimajor axes
of 2.22 to 2.28 au. The particles are given a mean longitude of
327◦ and Jupiter a mean longitude of 0. These conditions pro-
vide the maximum resonant width, and indicate the approximate
location of the resonant centre. For each particle, we compute an
approximate maximum size for the oscillations in semimajor axis
by taking the difference of the maximum and minimum values over
the 104 yr integration. The result is approximately equal to twice
the amplitude of the oscillations. This method is limited in accuracy
for several reasons, including the presence of long-term variations,
but it is found to be sufficiently accurate for our purposes. These
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Figure 4. The variation in approximate size of resonant semimajor axis
oscillations for particles at starting locations of 2.21 to 2.30 au. The labels
indicate the resonant feature width and height that can both define the width
of the resonance.

Figure 5. The variation in approximate size of resonant oscillations for
particles at starting locations of 2.22 to 2.92 au, compared with the variation
in the resonant argument. The resonant argument range is equivalent to twice
the libration amplitude.

approximate ‘resonant widths’ (as defined in Section 5.1) can be
plotted as a function of semimajor axis position to create a pictorial
representation of the resonance effects in that region (Fig. 4). Fig. 5
demonstrates the agreement of the change in the resonant argu-
ment (double the libration argument) and the change in the size of
semimajor axis oscillations. For the 7:2 resonance at Taurid orbital
elements the major libration argument is

ϕ = 7λJ − 2λP − 5�P .

The structure seen in Fig. 4 defines a ‘resonant feature’ that
contains valuable information on the dynamics of the resonance.
The height of this feature gives the maximum size of the oscillations
a particle is able to undergo within the resonance. This is similar

to the classical definition for resonant width or libration width: the
maximum librational motion possible without the particle being
lost from the resonance. The width of the feature provides a more
physical definition of resonant width: it is the size of the resonant
region in which amplified oscillations are present. Furthermore,
Fig. 5 demonstrates that the dynamics shown by this resonant feature
will represent the librational dynamics of the resonance: the area
of enhanced semimajor axis oscillations is in agreement with the
region in which the libration argument is constrained to a small
range of values, and thus the resonant feature well describes the
location and extent of the major Jovian resonances in that region.

We find that the width and height of the resonant feature have
values (0.047 ± 0.001) au and (0.047 ± 0.003) au, respectively. We
consider the width of the resonant feature to be the more accurate
measure of the resonant width as it has a lower uncertainty and is
less susceptible to other factors, such as asymmetry of the resonant
feature and the definition of the size of small-scale super-imposed
perturbations. This is therefore used to give our final resonant width:

(0.047 ± 0.001) au.

The only previous result for the resonant width of the 7:2 res-
onance at Taurid orbital elements is that given by Asher & Clube
(1998), who find that librations are possible between 2.23 and 2.28
au, implying a libration width of ∼0.05 au. Our final resonant width
is in good agreement with their result.

5.5 Demonstration of the limited effect of the addition
of all planetary bodies

We now use the resonance behaviour in the region 2 to 2.5 au to
demonstrate that only Jupiter significantly affects the width of the
7:2 Taurid resonance. Fig. 6 shows the resonant behaviour at Taurid
eccentricity and inclination, for orbits with semimajor axis values
1 to 4 au (the asteroid main belt region). Resonant strengths from
Gallardo (2006) are shown for major resonances to indicate that
each resonance feature is present at the expected locations of these
major resonances.

The region 2 to 2.5 au is the ‘Taurid region’. Fig. 7 shows the
resonant behaviour in this region, for integrations for all planets and
for Jupiter only. It is evident that little error results from excluding

Figure 6. The resonance activity at Taurid orbital elements (e = 0.83, i =
5.4, ω = 115.4) at semimajor axes values 1.0 to 4.0 au. Gallardo resonant
strengths (doubled for visibility) are given by the stem plot below.
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Figure 7. Resonant features for the region 2.0–2.5 au, with a comparison
between the case with Jupiter only (crosses) and the case with all planets
(dots). Errors in resonant widths are within 0.002 au.

other planets. We ran a similar test including four major asteroids in
the Taurid region (Ceres, Pallas, Juno and Vesta), but these bodies
produced no significant difference to the distribution of Fig. 7.

5.6 Comparison of analytic, semi-analytic
and numerical methods

Here, we compare resonant width values (in semimajor axis) given
by the three methods outlined in this section. The analytic method
is as given in Murray & Dermott (1999): it is derived using a simple
pendulum model, and applies in the circular, planar restricted case
(see Section 5.2). The semi-analytic method is that developed in
Gallardo (2006) (see Section 5.3), which can output a ‘strength’
for a given resonance, at a given set of orbital elements. The nu-
merical method (see Section 5.4) is the subject of the majority of
this work, and involves a numerical determination of the resonant
width directly from integrated particle orbits. The purpose of this
comparison is to determine the accuracy of the numerical method,
and to verify that its results agree with the resonant widths expected
by other methods.

The HNBody numerical method we describe here does not in-
clude other planetary bodies or radiation effects, though in general
it is able to. This method is not, however, restricted by the assump-
tions of other methods. The analytic approximation requires low
eccentricities and zero inclinations, and the Gallardo semi-analytic
method assumes that the perturbing planet has zero eccentricity
and inclination. HNBody integrations make no orbital element as-
sumptions, and are valid for all orbital elements. Both the analytic
and semi-analytic methods deal with an individual resonance, which
does not allow for interference effects between different resonances.

HNBody considers all gravitational effects of included planets and
also includes separate resonant splitting components of the same
resonance.

In consequence, there will be intrinsic discrepancies between the
brute-force numerical HNBody method and the verification meth-
ods, but there should still be a good level of agreement, particularly
if HNBody is limited to restrict the differences. In particular, we
set the eccentricity and inclination of Jupiter to zero for agreement
between the three methods.

The numerical widths used here are the ‘width’ of each resonant
feature. To obtain an accurate width using the above numerical
process, we first determine the mean longitudes that describe the
resonant centres. These can be estimated using dominant resonant
argument equations for each resonance. There will be a small error
in this resonant centre due to the presence of resonant splitting
terms, but this does not create a large error in the resulting resonant
width.

For the analytic case, we use equation (1) to provide direct com-
parison values. However, its use is expected to be limited to low
eccentricities (below values of 0.3) due to the circular orbits as-
sumption inherent in its derivation. To evaluate this equation we
require the knowledge of the relevant direct term in the expansion
of the disturbing function f d(α). This is difficult to compute, but
is given as a product αf d(α) with α = a/a′ for simple first- and
second-order internal resonances in Murray & Dermott (1999). We
therefore restrict our comparison to the 2:1 and 3:1 resonances: at an
eccentricity of 0.1 for the 2:1 resonance (as high eccentricity orbits
in the vicinity of the 2:1 resonance can experience close encounters
with Jupiter); and at eccentricities between 0.1 and 0.83 for the
3:1 resonance.

Comparison of the resonant strengths calculated by Gallardo’s
semi-analytic method with the numerical approach given here re-
quires our conversion of Gallardo’s strengths to semimajor axis units
(equations 5 and 6). The resulting resonant widths are only valid
for low eccentricity, zero inclination cases as we developed these
equations from the circular planar restricted form of the disturbing
function given by Murray & Dermott (1999).

Table 2 summarizes the analytic, semi-analytic and numerical
widths for the 2:1 resonance. Fig. 8 contains the same information
for the 3:1 resonance. We divide numerical widths by two in order
to give a half width or amplitude that can be directly compared to
the analytic and semi-analytic amplitudes. Percentage differences
between the methods do not exceed 10 per cent for low eccentric-
ity values e ≤ 0.4. As expected, higher differences between the
methods occur at high eccentricities, as a result of the circular as-
sumption used to generate the analytic and semi-analytic equations.
This is also illustrated in Fig. 9, which shows that the analytic
strength model we derived here (given by equation 4) diverges from
Gallardo’s resonant strengths after e ∼ 0.4.

Because the αf d(α) terms cancel out for the Gallardo width equa-
tion, for comparison of the Gallardo method and the numerical
method only there is no restriction to only certain simple reso-
nances such as the 3:1 and 2:1 resonances. The 7:2 resonance is

Table 2. Numerical resonant widths, analytic width and semi-analytic width approximations for the 2:1 resonance
for an eccentricity of e = 0.1. Percentage variations are with respect to the numerical widths.

Resonance Numerical (au) Analytic (au) Semi-analytic (au) Per cent variation Per cent variation
analytic semi-analytic

2:1 0.0635 0.0701 0.0648 −9.4 −2.0
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Figure 8. Comparison of numerical resonant widths, analytic widths and
semi-analytic width approximations for the 3:1 resonance at eccentricities
0.1–0.83.

Figure 9. Comparison of ‘Gallardo’ strengths determined analytically
(given by equation 4), and the Gallardo strengths given by the ATLAS pro-
gram, for the 3:1 Jovian resonance. It can be seen that the Gallardo strengths
given by the ATLAS program, and those determined here from the analytic
approximation, diverge after an eccentricity of ∼0.4. The divergence here
indicates the error from our conversion of the Gallardo strengths (in energy
units) to semimajor axis widths, using equation (5).

not studied here as this is very weak at low eccentricities. Fig. 10
compares the numerical and Gallardo widths for the 4:1 resonance
at various eccentricities. The percentage differences in the methods
are less than ∼5 per cent for all eccentricities except e = 0.83.

We find that the numerical widths do not agree with the analytic
and semi-analytic widths within the uncertainties of the numerical
width method. This is not unexpected, due to the limitations of the
various methods, as described at the beginning of this section.

Overall, less than ∼10 per cent differences between the numeri-
cal widths and the comparison methods are found for eccentricities
e < 0.4. It is difficult to know what fraction of the variation is from
HNBody, and what fraction is a result of inadequacies of the ana-
lytic and semi-analytic approximations. The variation is limited by
setting the eccentricity and inclination of Jupiter to zero. Neverthe-

Figure 10. Comparison of numerical resonant widths and semi-analytic
width approximations for the 4:1 resonance at eccentricities 0.1–0.83.

less, the worst-case scenario is that the differences in the numerical
resonant widths are in fact ∼10 per cent: this can be considered an
upper limit for the total inaccuracy of this numerical width method.
While the accuracy of the numerical width method is interesting
from a theoretical perspective, in this case only an accuracy suit-
able for application to the meteor orbit radar data is required. Such
10 per cent uncertainties are supportable for this problem: CMOR
uncertainties in semimajor axis can be up to ∼30–40 per cent in
individual Taurid orbits.

5.7 Summary

We achieve a numerical value of (0.047 ± 0.001) au for the width
of the 7:2 resonance for Taurid-like orbits. Three methods for deter-
mining the resonant width have been found to agree to ∼10 per cent.
This may be considered an upper limit of the error in the numerical
width method. It is therefore concluded that the resonant width for
the 7:2 resonance for Taurid orbital elements is

(0.047 ± 0.005) au.

One benefit of the Gallardo strength program is the computation
time: the strengths of a large number of resonances can be calculated
to high precision in seconds, while the numerical width method
may require tens of minutes to calculate the resonant width (or
several hours if several planets are included), and requires the use
of both HNBody and an additional script to process the output orbital
elements. However, the simple numerical width method presented
here is capable of determining the importance of resonances at any
orbital elements (as is also given by Gallardo 2006), and additionally
provides a physical value which defines the region of influence of
the resonance. This numerical width method is thus most useful in
the case where information is required on a specific resonance, or
in which there is a requirement for a semimajor axis width, as is the
situation here. In other situations, the method of Gallardo (2006)
may provide a faster approach to analysing the effects of several
resonances for objects with high eccentricity or inclination.

6 STATI STI CAL METHODS

In order to investigate the existence of a swarm at the 7:2 Jo-
vian resonance, we conduct a search for evidence of a statistically
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significant feature at the location of the resonant centre (at a =
2.25 au) in the semimajor axis distribution of the selected Taurid
meteoroids. The resonant width determined in Section 5 provides
the expected width of the feature in semimajor axis. However, no
knowledge is available on the height of the peak the swarm can
produce. In Sections 6 to 8, a search for evidence for the resonant
swarm in the CMOR Taurid data set is outlined. Section 9 investi-
gates the effects of radar measurement uncertainties on the ability
to detect a resonant feature.

6.1 Statistics of variations from a mean curve

We first use a simple statistical test to determine whether the sizes
of the small scale (less than ∼0.5 au) variations in the CMOR
Taurid semimajor axis distribution are consistent with the size of the
random fluctuations expected for this size of data set. This involves
fitting a model distribution to the data excluding the region in which
the resonance centre is expected to be present. Our resulting data
set should not contain any signature of the resonance region. We
obtain variations by subtraction of the model distribution and the
data distribution. The standard deviation of these variations can then
be compared with the size of the variations in the resonance region.

Ideally, a model of the physical underlying distribution would
be used, including knowledge of observational biases. Since such a
theoretical model is unknown, the actual model fit chosen is not a
concern as long as it describes the data well: an eighth-order poly-
nomial fit is chosen to model the underlying distribution of the data.
Higher-order polynomials can produce non-monotonic behaviour
or be overdetermined. Again, such issues are not of concern here
provided the polynomial fits the data, particularly given that there is
no attempt here to make predictions outside the data range. For the
polynomials used here, undesirable behaviour can occur beyond
the range over which the polynomial fitting is applying, but the
eighth-order polynomial works well within the range of the data.

We create a semimajor axis histogram with a bin width equal to
0.04 au. This is chosen as it is approximately the size of the resonant
width for the 7:2 resonance and thus is approximately the expected
size of the resonant feature. We remove an area around the expected
location of the resonance in order to ensure any signature of the
resonance does not bias the mean curve fit produced. In principle,
the large measured uncertainties of the CMOR data will broaden
such a resonant feature to cover a large area: this is further addressed
in Section 9. The removed section is centred on the known resonance
centre at 2.25 au.

It is necessary to remove the largest section possible around the
resonance centre that still produces a satisfactory fit to the whole
data set. To test for the optimum number of data bins to remove,
we monitor the fitting of the data using the standard deviation. We
progressively remove an increasing set of points either side of the
position of the resonance centre, and find that the fitting is good and
the standard deviation steady up until the removal of about 14 data
bins. After this point the fitting diverges from the data distribution,
and the standard deviation begins to rapidly increase (see Fig. 11).
This is the result of removing in excess of 20 per cent of the data
points before completing the fitting. For this study the region 2.0 au
to 2.5 au is removed (a total of 12 histogram bins: a safe choice
below 14 points) before fitting an eighth-order polynomial to the
histogram (see Fig. 12).

The variations between the polynomial fit and the CMOR data
distribution (in units of standard deviation of the variations) are
shown in Fig. 13. Five peaks are observed at or above 1.95 standard
deviations: in a statistically random distribution ∼4 are expected, as

Figure 11. The variation of the standard deviation of the resulting variations
as an increasing percentage of the data around 2.25 au is removed.

Figure 12. The observed CMOR Taurid data semimajor axis histogram,
with the fitted eighth-order polynomial fit determined from the data (black
line), but with the section 2.0–2.5 au removed, as explained in the text.

Figure 13. The variations determined by subtraction of the CMOR data
histogram bin numbers from the polynomial fitting to the reduced data set.
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5 per cent of fluctuations are expected to exceed 1.95 standard devi-
ations. Similarly, there are 20 peaks above 1 standard deviation, and
a statistically random distribution is expected to have ∼24 (32 per
cent). While these numbers do not match exactly, they are within
acceptable fluctuation ranges given the small number examined.
This suggests the fluctuations in the CMOR data distribution have
a random statistical origin. In particular, there is only one sample
variation greater than 2 standard deviations in the region 2.0 to
2.5 au (the region in which resonance indications are expected to
be present). However, this feature is below the fitted curve (a vari-
ation of −2.64) and therefore is not evidence of a resonant peak.
Moreover, there are fluctuations of this size in regions known not
to contain a resonant swarm. These reasons allow us to disregard
this feature as unrelated to our present problem. However, the res-
olution of the issue does benefit from an alternative approach: this
is provided by the Monte Carlo method in the next section.

6.2 Monte Carlo random testing

The aim of this section is to determine whether a random selection
of particles from the test distribution (an eighth-order polynomial)
can, by chance, form features of the same level of significance as
observed in the Taurid meteor data. This would suggest there is no
evidence for a resonant feature in the current data.

We use a simple Monte Carlo method to select a random sample
of semimajor axis values from a cumulative distribution created
from an eighth-order polynomial model distribution. The result is
a data set of random meteors that is the same size as the original
CMOR Taurid data set (of 7649 meteoroids). This is used to produce
a semimajor axis histogram (examples of which are seen in Fig. 14)
that can be compared with the CMOR Taurid distribution of Fig. 12
(for particles larger than ∼0.2 µm). Using the process of Section 6.1,
we determine the statistical fluctuations of this random distribution
from a mean polynomial curve. In a very large data set of semimajor
axis values these variations would be close to zero, as there would
be little or no statistical fluctuations. Thus, in this case the size of the
variations determines the size of fluctuations from the mean curve
that can be expected from statistics alone. If the residual fluctuations
in the real data are of the same size as or lower than these variations,
then it is possible to conclude that the fluctuations in the real data
are statistically insignificant.

Figure 14. Four examples of random selections of 7649 particles from an
eighth-order polynomial distribution (shown as the overlying bold curve on
each histogram). Note their similarly in appearance to Fig. 12.

Figure 15. The maximum and minimum bin values (thin black lines) at
each point here form a band inside which the majority of the CMOR Taurid
semimajor axis histogram distribution (bold solid line) falls.

We create 600 such distributions of 7649 random meteor semi-
major axis values. In order to compare the statistical fluctuations of
the observed Taurid distribution and the random distributions from
the Monte Carlo process, the number of variations in each data set
that exceed 2, 3 and 4 standard deviations is counted. For the obser-
vational CMOR data, 12 features are 2 standard deviations above
the mean of the eighth-order polynomial fit, three exceed 3 standard
deviations, and two exceed 4 standard deviations. For the artificial
data, the average numbers of features (over the 600 data sets) ex-
ceeding 2, 3 and 4 standard deviations, respectively, are 12.12, 3.92
and 1.13. These values are in close agreement with those for the
CMOR data.

A second simple test using these random data sets involves the
simple maximum and minimum of the random data sets at each
point. We produce 500 random distributions and calculate the max-
imum and minimum bin heights at each semimajor axis (see Fig. 15).
The CMOR data distribution falls within the maximum and min-
imum bounds produced by the random distributions, except at a
sharp section with positive gradient (a < 1.5 au). In this region the
errors are a result of the poor fitting of the polynomial distribution.
These errors are tolerated as this is not the region in which resonant
signatures are expected. We therefore conclude that the CMOR data
fluctuations can be produced by random distribution for at least the
region a > 1.5 au.

7 Y E A R LY VA R I AT I O N S

Traditionally, the Taurid resonant swarm is investigated by compar-
ison of data over several years. It is possible to compute a measure
of the distance of the swarm from the Earth. As already stated in
Section 1, this can be given by �M, which is defined as the dis-
placement in mean anomaly of the resonant centre from the point
at which the Earth and swarm orbits cross in space and time. In
years in which �M is small, significant increases in Taurid meteors
numbers are expected due to the resonant swarm. Asher & Clube
(1993) produce a list of such ‘swarm encounter’ years, defined as
year for which |�M| < 40◦ on November 23 (the expected swarm
encounter date). In the period of the CMOR observations used
here, only 2005 is a ‘swarm encounter’ year. In this year |�M| <

11◦, which confirms that this is expected to be a good year for
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observations of this swarm: it is the closest November swarm en-
counter for 17 yr.

We therefore repeat the statistical analysis of Section 6.1 for the
individual years 2002 to 2007, to determine whether there is any
significant difference in the semimajor axis distribution of 2005
relative to non-swarm years. However, in contrast to the method
given in this section, only five points either side of the resonant
centre location are removed before a mean fit curve is produced.
This is because the 2005 data produce unstable fittings for six or
more points removed each side (see Section 6.1 for the test used
to determine this). This is a consequence of the reduced size of the
data set.

The histograms and the resulting mean curves for 2004, 2005 and
2006 are displayed in Fig. 16. Table 3 gives the number of features
that are more than 1, 2 and 3 standard deviations above the mean
curves for the years 2002 to 2007. We make two observations.

Figure 16. Histograms and mean curve fittings for 2004, 2005 and 2006
CMOR Taurid data.

Table 3. The number of features in excess of 1, 2 and 3 standard
deviations for CMOR Taurid data for 2002–2006. Here ‘No. 1
std’ denotes the number of features that are more than 1 standard
deviation away from the mean curve for that year. The final row
gives the expected (comparison) numbers for the number of his-
togram bins used here drawn from the expected fluctuations in a
random population.

Year No. 1 std No. 2 std No. 3 std

2002 18 6 1
2003 18 6 1
2004 15 6 2
2005 17 7 1
2006 17 6 1
2007 19 6 2

Approx. expected number 24 4 0 or 1

(i) The size of the data variations is nearly, but not exactly, con-
sistent with the size expected for random statistical fluctuations.
Histograms of the variations have a roughly Gaussian form. The
numbers of features expected do not agree exactly with those given
for 2005 in Table 3. However, the differences are not sufficient to
conclude that there are significant differences between the variations
observed and Gaussian random variations.

(ii) The data variations, as quantified in Table 3, are consistent be-
tween each year. There is no significant difference between the vari-
ations for 2005 and those for other (non-swarm encounter) years.
Thus, there is no evidence of additional features due to the presence
of the resonant swarm in 2005.

8 H I GHER QUA LI TY TAURI D O RBI TS

It is possible to extract higher quality orbits from the total CMOR
Taurid data set. These are the result of higher-precision velocity
measurements made possible by the presence of Fresnel oscillations
in the amplitude and phase of the meteor echo. Such echoes have
≤5 per cent speed errors instead of about ≤10 per cent (Jones
et al. 2005), and should therefore provide more reliable semimajor
axis values. If the Fresnel oscillation pattern is sufficiently distinct
(generally for meteors with a high signal-to-noise ratio), then both
a time-delay speed and a hybrid Fresnel/pre-t0 speed are achievable
(see Hocking 2000 for further detail). Following Wiegert & Brown
(2005), we form a new data set containing only echoes for which
a Fresnel/pre-t0 speed is given, and for which the two speeds agree
within 3 per cent. The resulting data set has 1025 meteors, 200 of
which are from the year 2005. However, we find that neither the new
data set nor the meteors from 2005 in this data set display evidence
of the 7:2 resonant swarm: using the method given in Section 6.1
the variations of both data sets do not significantly exceed those
expected as a result of random fluctuations (see Table 4).

As mentioned above, these meteors have in-atmosphere speed
uncertainties of approximately ≤5 per cent, as opposed to about
≤10 per cent for the time-delay speed method. Heliocentric velocity
(VH) uncertainties are related to semimajor axis (a) uncertainties by
(Galligan 2000)(

�a

a

)
= V 2

H

1 − V 2
H
2

(
�VH

VH

)
. (7)

Here, speeds are relative to the Earth’s orbital speed, GM	 = 1,
RE = 1 and it is assumed that rh = 1 au. VE and RE are the velocity in
space and the radius of the Earth, respectively; G is the gravitational
constant and M	 is the solar mass.

Table 4. The number of features in excess of 1, 2 and 3 standard deviations
for CMOR Taurid data for a restricted data set containing higher-quality
orbits, defined by echoes for which the time-lag and Fresnel/pre-t0 velocities
agree to 3 per cent. Results are shown for the whole data set, and for echoes
from the year 2005 only. Here ‘No. 1 std’ denotes the number of features that
are more than 1 standard deviation away from the mean curve for that year.
Alternate rows give the expected (comparison) numbers for the number of
histogram bins used for each data set.

Year No. 1 std No. 2 std No. 3 std

All years 19 4 1
Approx. expected number all data 24 4 0 or 1

2005 8 1 0
Approx. expected number 2005 data 10 1 or 2 0
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The uncertainty in heliocentric velocity �VH will include errors
from several sources, most notably from errors in atmospheric de-
celeration calculations. Thus, it can be deduced that reducing the
error in the in-atmosphere speed by a factor of 2 will reduce the
semimajor axis uncertainties by not more than a factor of 2. In Sec-
tion 9, we see that such a reduction is not expected to allow us to
resolve a resonant feature of the size expected.

An analysis therefore suggests that there is no evidence for a
resonant swarm in CMOR-detected Taurids in the combined data
sets, in the 2005 data set or within higher quality orbits. This may
indicate that the measurement uncertainties are too large for such
small-scale structure to be visible; or that the mass distribution of
the swarm is such that there are few radar-sized particles in the
swarm. We test the former in the following sections.

9 NUM ERIC A L STUDY O F O BSERVATIONA L
UNCERTAIN TIES

It is important to gain an understanding of what issues observational
uncertainties may cause in the identification of any resonant peak. In
particular, such uncertainties will broaden the Taurid semimajor axis
distribution and individual resonant features. It is useful, therefore,
to determine whether such features are detectable after they are
broadened by the meteor radar orbital uncertainties, or what level
of reduction in these uncertainties we require for such features
to become significant. For this study the uncertainties we use are
semimajor axis uncertainties. The results are applicable to velocity
uncertainties also, as reducing the velocity uncertainties by a factor
x will reduce the semimajor axis uncertainties by the same factor x
(see equation 7).

Our method involves a ‘convolution’ (or, here, an addition) of the
following.

(i) The overall distribution of non-resonant Taurids: this is mod-
elled here by the observed Taurid distribution from the CMOR data
set. This may contain a small component of resonant swarm mete-
oroids, but this would make little difference to the results obtained,
as it is seen above that the level of fluctuations from a random curve
is consistent with the expected level of statistical fluctuations.

(ii) A modelled resonant peak: this is modelled by randomly se-
lecting a number of meteoroids NR from a Gaussian curve with
the standard deviation equal to one quarter of the resonance width
(determined to be ∼0.047 in Section 5). This is because the full res-
onant width is equated with the 2σ 95 per cent confidence section of
the Gaussian distribution: the resonant width is defined as spanning
4σ across the Gaussian distribution. The number of meteoroids NR

injected into the swarm determines the height of the peak. We vary
this as no information is available on the height of the resonant
features in semimajor axis distributions. We will usually express
this as a percentage of the total number of particles in the combined
data set. Here, this is also called the ‘resonant feature strength’.

(iii) The (assumed) Gaussian profiles for the uncertainty on each
individual observed particle: we convert each data value from (i)
and (ii) above from a point into a Gaussian profile in order to
simulate the effect of uncertainties. We use the given semimajor
axis uncertainties in the CMOR data sets for the standard deviations
σ for each Gaussian profile. Each Gaussian is scaled to have an area
of 1 under the curve.

We conduct two separate tests using this model. The first assumes
zero uncertainties and thus only combines distributions (i) and (ii)
above. We use this ‘perfect’ data case to demonstrate the absolute
lower size limit of a resonant feature that can be detected in a meteor

Figure 17. Model resonant features with NR = 200 meteoroids in the
resonance (i.e. 2.4 per cent of the total data set are in the model resonant
feature). The left-hand figure demonstrates the selected peak alone, and the
right-hand figure its addition into the Taurid distribution.

radar data set (of the size of the CMOR Taurid data set used here).
This is given in Section 9.2. The second test includes uncertainty
broadening and thus all three distributions above are used. This test
is given in Section 9.3.

The addition of uncertainty broadening can also be thought of
as two distributions – the Taurid distribution and a model resonant
feature – each composed of many individual Gaussians instead of
many individual points (delta functions). This convolution is dealt
with numerically by creating a histogram Gaussian to represent each
point. Each Gaussian histogram meteoroid is defined from −4σ to
+4σ , with steps of 0.04 au (approximately the expected width of
the resonance feature): thus, each meteoroid will cover a different
number of bins depending on its corresponding uncertainty. The
standard Gaussian formula is used:

G = 1

σ
√

2π
exp−

(
z2

2σ 2

)
,

where z defines the size of the region covered by the Gaussian me-
teor in semimajor axis (−4σ to +4σ ). By adding these Gaussian-
broadened meteoroids we achieve a histogram of the semimajor
axis distribution similar to that seen in Fig. 12, but in which each
meteoroid is fractionally split over several bins. We scale the re-
sulting distribution in situations where the peak of the convolved
distribution exceeds the peak of the original CMOR distribution.
This is to ensure that the statistics remain comparable (to allow the
standard deviation for the original data set variations to be used: see
Section 9.1).

Fig. 17 shows a representative model resonant feature peak of
200 meteoroids (2.5 per cent) randomly selected from the model
Gaussian, and the complete distribution achieved by the addition of
the fictitious resonant feature meteors to the Taurid data set. Un-
certainties are now applied to the combined data set of Fig. 17(b).
We then determine whether the peak is statistically significant on
application of uncertainty broadening. We can then vary the per-
centage or number of meteors in the swarm, which is unknown. We
can also reduce the applied uncertainties by applying a fractional
multiplication factor to the orbital uncertainties in the CMOR data
set.

9.1 A statistical test

A statistical test is required to evaluate whether the resonant fea-
ture is statistically significant, both in the ‘perfect’ data case and
in the uncertainty-broadened case. For consistency we use the first
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statistical test carried out on the CMOR data distribution (see Sec-
tion 6.1). In summary, this involves the following.

(i) Removal of the resonant area of the distribution (approxi-
mately 2.0 to 2.5 au).

(ii) Fitting of a test distribution to the remaining sections of the
distribution.

(iii) Analysis of the variations between the distribution of interest
and the fitted distribution.

This was completed previously by comparing the variations (of
(iii) in the statistical test summary) to the standard deviation of the
variations themselves. Here, we use the standard deviation of the
variations of the original data distribution as the comparison value.
This is because the uncertainty broadening will remove the small
statistical fluctuations. Thus, the statistical fluctuation information
is contained only in the standard deviation of the variations of the
original CMOR data.

By comparison with the statistical fluctuations in the CMOR data
distribution, we conclude that a peak is considered significant if two
conditions are fulfilled.

(i) The peak is above 3 standard deviations.
(ii) Two adjacent points are above 2 standard deviations.

The second condition is required because it is expected that these
peaks will cover more than one histogram bin, and will not resemble
the sharp statistical fluctuation features seen in Fig. 13. We expect
the feature to be a peak, not a trough, such that the variations should
be positive if the distribution of interest is subtracted from the fitted
distribution.

In addition, the model resonant peak involves a random element
in the selection of particles from a Gaussian. This means that the
decision as to whether a particular resonant feature peak size is
significant may vary each time the process is run. Thus, we require
a positive detection of the peak in 20 successive tests in order to
conclude that the peak is statistically significant for that uncertainty
level and peak size.

9.2 Perfect data

Here, we apply a statistical test to a ‘perfect’ data set with a range
of sizes for the test resonant peak. ‘Perfect data’ are defined here
as data with no uncertainties or negligible uncertainties in the mea-
sured semimajor axis values: it is a consideration of the case in
which statistical variations are larger than observational uncertain-
ties. Therefore, no uncertainty broadening is included at this stage:
only a resonant peak of a specific size (given by the number of
particles in the peak) is added. We then use the above process to
determine whether the resulting peak is statistically significant, and
thus observable.

We first run this test 20 times and determine the first peak size
that is significant in all 20 tests. This is found to be a peak of 108
meteoroids: 1.39 per cent of the total number of particles in the dis-
tribution (for a data set of this size). This provides a result that can
be compared with the uncertainty broadening case (Section 9.3). A
higher accuracy test is then run, where this process is run 1000 times
and the point at which 99 per cent of trials result in a significant
peak is determined (see Fig. 18). An added resonant feature greater
than or equal to 1.44 per cent (112 meteoroids) fulfils this criterion.
Additionally, any peak with size greater than 1.53 per cent (119
meteoroids) produces significant features 100 per cent of the time.
We determine an uncertainty of four meteoroids from the difference
between the limiting values determined in 20 and 1000 consecutive

Figure 18. The variation in the number of trials for which a significant
peak is found, for a variety of fictitious resonant peak sizes. Above 112
meteoroids in the peak it can be seen that 99 per cent of trials result in a
significant peak.

Figure 19. The lowest resonant peak which is statistically significant for
‘perfect’ data (i.e. data with no uncertainties) for 99 per cent of trials is
one with 112 meteoroids (1.4 per cent of a data set of this size). The
combined semimajor axis distribution containing the CMOR Taurid data
and the ficticious resonant peak is shown in (a), along with the eighth-order
polynomial fit to the data set (without the resonant region 2.0 to 2.5 au).

tests. Thus, ∼(1.44 ± 0.05) per cent is the lower limit on the pro-
portion of the stream that must be resonant in order for detection
to be made by radar for this size of data set. A distribution with a
peak of this limiting size and the variations from the polynomial fit
are shown in Fig. 19. Variations between the data histogram and the
eighth-order polynomial are given in Fig. 20.

9.3 Data with varying uncertainty levels

Here, we determine the approximate uncertainties (relative to those
of CMOR) required of a meteor radar system for it to be capable
of detecting a Taurid resonant swarm. This requires the addition of
uncertainty broadening, as outlined in Section 9. To accomplish this
we apply a range of fractional multiplicative factors to the uncer-
tainty Gaussians based on CMOR uncertainties. We then determine
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Figure 20. The variations between the data histogram (with resonant peak)
and polynomial fit distributions, scaled to the standard deviation of the
variations of the original CMOR data set.

which uncertainty levels result in statistically significant detections
of the modelled resonant peak, for a range of sizes for this peak.

The range of integer-value ‘uncertainty reduction factors’ from
three to 14 is explored. These factors represent values by which the
uncertainties are divided: that is, an ‘uncertainty reduction factor’ of
3 represents a reduction in the uncertainties to 1

3 of their original val-
ues. An uncertainty reduction factor of 2 requires an unrealistically
large number of particles in the resonant swarm for a statistically
significant peak to be observed. Therefore, we do not include un-
certainty reduction factors less than 3. Furthermore, we find that the
method is less robust after the modelled resonant swarm comprises
∼40 to 50 per cent of the total data set, as after this point the con-
volution starts to move the peak of the distribution away from the
Sun (see Fig. 21). However, the percentage of the total number of
Taurid particles that are in the 7:2 Taurid resonant swarm is unlikely
to be higher than 40 per cent (see below). If this method were to be
applied in a situation where a swarm may comprise more that 50 per

Figure 21. The effect of high resonant feature particle numbers on the con-
volved data set. An example of the behaviour of the numerical convolution
at an uncertainty reduction factor of 2 at a resonant feature strength of 6000
(44 per cent of the total data set). The distribution is dominated by the res-
onant feature. However, a statistical test would not be able to find evidence
of a resonant feature unless the underlying Taurid distribution was known.

cent of the total data set, use of this numerical convolution would
require a different model for the overall distribution of non-resonant
Taurids.

This restriction also implies that an uncertainty reduction factor
of 1 (i.e. no change to the current uncertainties) will not result in
a significant detection of the resonant swarm, unless more than
50 per cent of observed Taurids are resonant, which is unlikely.
Thus, broadening as a result of the uncertainties of the CMOR data
set will not allow observation of the Taurid resonant swarm.

For uncertainty reduction factor values greater than 14 the method
reaches its limitation as the uncertainties begin to become smaller
than the histogram bin size used. This only affects the smallest
semimajor axis values at first (with the lowest absolute uncertain-
ties), but will affect the whole distribution for very high uncertainty
reduction factor values. An improved algorithm would be able to
deal with this situation. However, given that by a reduction factor
of 14 the resonant feature values required for significance are close
to those required in the ‘perfect’ case, this is not pursued here.

For each uncertainty reduction factor we determine the minimum
modelled resonant peak size required. The method for this is given
in Section 9.1. Uncertainties are given by the difference in resonant
peak size between a size for which 1

20 tests provide a statistically
significant result, and one that allows 20

20 to pass. This is usually
a maximum of ∼3 meteoroids, though in some cases it is one
meteoroid or less. As an example, this is demonstrated using the
size of the resonant feature required at an uncertainty reduction
factor of 9. Fig. 22 shows the percentage of tests that produce a
significant result for resonant feature sizes of 2.37 to 2.42 per cent
(equivalent to 186 to 190 particles for an initial data set of 7649
meteoroids). The minimum significant resonant feature size for
which all 20 tests produce a significant result is 2.42 per cent (190
meteoroids). The uncertainty is one meteoroid (or 0.013 per cent
of this total data set), as only one ‘resonant feature size’ below
190 meteoroids can produce a significant result (see Fig. 22). The
resulting broadened distribution and variations from the mean curve
are given in Figs 23 and 24. In particular, it is interesting to note
the broad, smooth form of the variations in Fig. 24 compared with
those for the ‘perfect’ data case in Fig. 20. We recognize that these
uncertainties will be larger as a result of the limitation of using the

Figure 22. The variation in the number of trials for which a significant peak
is found, for a variety of fictitious resonant peak sizes, and at an uncertainty
reduction factor of 9. Above 190 meteoroids in the peak it can be seen that
100 per cent of the 20 consecutive trials resulted in a significant peak.
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Figure 23. The lowest resonant peak which is statistically significant in
100 per cent of 20 trials for uncertainty-broadened data with an ‘uncertainty
reduction factor’ of 9. This is a feature with 190 meteoroids (2.4 per cent of
a data set of this size), with an uncertainty of ±3 meteoroids. The combined
semimajor axis distribution containing the CMOR Taurid data and the fic-
ticious resonant peak, both uncertainty broadened, is shown along with the
eighth-order polynomial fit to the data set (without the resonant region 2.0
to 2.5 au).

Figure 24. The variations between the data histogram (with resonant peak)
and polynomial fit distributions, scaled to the standard deviation of the
variations of the original CMOR data set, for a feature with 190 meteoroids
(2.4 per cent of a data set of this size), with an uncertainty ±3 meteoroids.

current CMOR Taurid distribution in the method. This is difficult
to quantify but is addressed to some extent in Section 9.5.

Fig. 25 shows the resonant feature strengths that are observable
for a given reduction in the radar uncertainties. This figure can be
used either to determine the required minimum uncertainty reduc-
tion factor for a CMOR-type radar for a given resonant feature size
or to determine the required minimum resonant feature size for a
given level of uncertainty reduction.

The values given in Fig. 25 are only valid for the size of CMOR
data set used here. An uncertainty reduction factor of 14 will allow
a swarm of a similar size to be detected as for the perfect data
(120 meteoroids for a reduction in uncertainties of 14 and 108 for

Figure 25. The resonant feature strength detectable for each inverse uncer-
tainty reduction factor. For example, a reduction in uncertainty by a factor
of about 9 (or inverse 0.11, which is the fraction by which CMOR uncer-
tainties must be multiplied) is required to observe a resonant feature with
200 particles (2.6 per cent of the data set).

a ‘perfect’ data). This implies that a limit is reached by the radar
uncertainties: after a reduction in uncertainties of 12 to 14 statistical
variations will largely govern the visibility of resonant swarms, and
further improvement in the radar will not assist greatly in detection.
This study and the ‘perfect’ data study thus imply that for radar
data sets of this size, swarms which comprise less than ∼1.5 per
cent of the meteoroid stream are unlikely to be detectable using this
methodology, regardless of the uncertainties of the radar system.

Therefore, for a radar data set of this size, and with the require-
ment that resonant meteoroids comprise more than ∼2 per cent of
the radar Taurid data set, a radar with improvement in uncertainties
given by a reduction factor of 12 or higher (equivalent to 8 per
cent of the current uncertainties) should be able to detect a resonant
swarm in Taurid meteoroids (assuming that the radar system has
approximately the same mass sensitivity as CMOR). A resonant
peak that is 2.2 per cent of the number of Taurids in the data set
should be detectable by reducing CMOR uncertainties by a factor
of 10. Such an enhancement is considered feasible with the current
techniques of radar systems and signal processing.

9.4 Visual data on Taurids

The uncertainty reduction levels considered above require the
knowledge of the approximate proportion of Taurids that are reso-
nant. This is difficult to determine, and is dependent on the location
of the swarm with respect to the Earth, the number of particles in
the swarm and the size distribution of these particles. Since few
radar observations of the Taurid swarm exist, we must use visual
observations to obtain estimates of the size of the resonant swarm.
Results from visual meteoroid studies will only be applicable to
radar data if the number of radar-sized particles in the swarm is
similar to the number of visual particles.

We use the activity profile (of ZHR as a function of solar longi-
tude) for visual Taurids of 2005 given in Dubietis & Arlt (2007) to
estimate the maximum proportion of 2005 Taurids that are resonant.
ZHR is an indicator of particle numbers: an actual mass flux is de-
pendent on the population index. However, Dubietis & Arlt (2007)
find that the population index of visual Taurids is roughly constant,
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fluctuating around a population index of 2.4. We use simple area
calculations to determine the approximate number of meteoroids
in the 2005 profile, compared with the number of meteoroids in
a typical annual profile averaged over 1985–2004. We find that
the enhanced ‘swarm’ region of the profile (the region that differs
markedly from the typical annual profile) contains ∼30 per cent of
the meteoroids contained in the total 2005 profile. For 1988 and
1998 this provides 23 and 41 per cent, respectively. These values
cannot be considered highly accurate, and are only indicative. The
three years tested here represent optimal years for swarm detection,
with the mean longitude of the resonant centre of the swarm being
within 15◦ of the mean longitude of the Earth. However, the propor-
tion of swarm meteoroids and maximal ZHR values (calculated by
Dubietis & Arlt 2007) is not well correlated with the proximity of
the swarm to the Earth. This is still an issue after consideration of
the presence of a full moon in some years – particularly in 1995 and
1998. This could reflect other variations in observational geometry
of the swarm.

Additionally, the proportion of swarm particles detected by visual
methods may be larger than that detected by radar methods, because
it is possible that larger particles are more easily trapped in the
resonance if ejected from a resonant or near-resonant comet [such
as is observed for Leonid meteoroids (Jenniskens & Betlem 2000)].
This may depend on the ejection mechanism for the Taurid resonant
particles.

For these reasons, we cannot be precise here on the expected
proportion of swarm particles in radar data sets. In general, however,
we expect that the proportion of particles will not exceed 20–30 per
cent of the total data set for a swarm year. This is equivalent to ∼5–8
per cent of the total CMOR data set spanning the years 2002–2007.

9.5 Variation with the data set size

Here, we determine the variation of the results of Section 9.3 as a
function of the size of the data set. This serves two purposes here: (i)
to determine the effect if an improved radar is operated for a shorter
or longer time than the 2002–2007 period producing the CMOR data
set used here; and (ii) to determine the required number of particles
in any one year required to produce a statistically significant result
for a given reduction in uncertainties.

These aims require modifications to be made to the numerical
method given in Section 9. To obtain a representative data set that
has the same distribution shape as the CMOR Taurid semimajor
axis distribution, but is composed of a different number of particles,
we employ the Monte Carlo method given in Section 6.2. This
allows the random selection of a given number of particles from
an eighth-order polynomial fit to the CMOR Taurid semimajor axis
distribution. We calculate a standard deviation of the variations
between the random data set and this fitted curve in order to perform
the statistical test given in Section 9.1. The uncertainty values for
each semimajor axis are determined using a quadratic fitting to
the CMOR data uncertainties, which provides the uncertainty as a
function of semimajor axis. We add a random component to each
uncertainty to model the scatter in uncertainty values, again using
a fitting to the CMOR data. The remainder of the methodology is
identical to that used in Section 9. Due to the fact that the distribution
is now randomly produced, the uncertainty levels will be much
higher than previously (where only the model resonant feature was
produced randomly). However, this modified method is more robust
as it accounts for the variations in the statistical fluctuations that can
occur, whereas the results of Section 9.3 depend on the statistical

Figure 26. The variation in the size of the resonant peak (as a percentage of
the size of the total data set) required for a statistically significant detection
at each level of uncertainty reduction, relative to the CMOR uncertainties
of the current data set. Each line shows a different number of particles in
the source data set. The lower three lines (15298, 7649 and 3825 meteors)
represent data sets of double, equal and half the size of the CMOR data set
used in this article. The upper line (1470 meteors) represents the number of
particles detected in the 2005 swarm year by CMOR: that is, this provides
the approximate percentages of meteoroids that must be in the observable
radar Taurid stream in order for detection to be made based only on 1 yr
of data. This is important given that the swarm’s location relative to the
Earth is only optimal for observation every 3 to 5 yr. The bold points
above the curves demonstrate the resonant feature strengths required for a
95 per cent probability of a significant detection of the resonant swarm for
a given uncertainty reduction factor and data set size.

fluctuations of an improved data set being the same as those in the
current CMOR Taurid data set.

We choose four sizes of test data sets:

(i) the size of the CMOR data set used here (7469 meteors).
(ii) half the size of the CMOR data set (3825 meteors).
(iii) double the size of the CMOR data set (15298 meteors).
(iv) the size of the CMOR data set for 2005 (1470 meteors).

The final data set size is important as it provides the requirements
for detection of the swarm in one year of data. This is necessary
because the swarm is only in a good location for observation relative
to the Earth once every 3 to 5 yr (see Section 7).

For each data set, and for each integer-value uncertainty reduc-
tion factor of 3 to 10, we find the first resonant feature strength
that produces 20 consecutive significant tests (see Fig. 26). Fig. 26
identifies the approximate resonant feature size that can be observed
for a given uncertainty in meteor radar semimajor axis data. It can
also provide the approximate uncertainty reduction required in or-
der to detect a feature of a given size. As expected, a smaller data
set requires a larger resonant feature for significant detection to
be made. However, the differences in the required resonant feature
strength are not as large as the differences in the size of the data
set. For example, Case (iii) only decreases the size of the resonant
feature required by 15–25 per cent compared to Case (i). Similarly,
Case (ii) produces significant detection of a resonant feature 25–
40 per cent larger than Case (i).

As mentioned above, there will be significant fluctuations in the
results due to the random element of the method. This error is
evaluated by testing a region around a number of the points in
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Figure 27. The number of tests resulting in a significant resonant feature
for each resonant feature strength at data sets of sizes 1470, 3825, 7649
and 15298, for uncertainty reduction factors 4 and 8. Arrows on each graph
indicate the values of resonant feature strength plotted in Fig. 26.

Fig. 26. For each data set size, for uncertainty reduction factors of 4
and 8, we test between 50 and 100 resonant feature strength values
(in steps of five or 10) either side of those resonant strength values
given in Fig. 26. Again, we run 20 tests for each set of values. In
Fig. 27, the number of tests out of 20 that produce a significant
result for each resonant feature strength is plotted. The resonant
feature strength values used to produce Fig. 26 are indicated by
arrows on each graph. It is evident that the values given in Fig. 26
refer to the resonant feature strengths that will in all but two cases
provide a greater than 80 per cent chance of detecting a significant
feature. The two exceptions are for data sets of size 15 298 and 1470
meteors, with uncertainty reduction factor of 8: in these cases there
is a greater than 70 per cent of detecting a significant feature. In
both cases an increase in the resonant feature size of less than 5 per
cent would produce a greater than 80 per cent chance of success.

The resonant feature strength (for each uncertainty reduction fac-
tor) that would allow a significant detection of the resonant feature
in 95 per cent (19 out of 20) of cases is also of interest. It is at this
level of confidence that we expect a radar with such an orbital mea-
surement uncertainty (or uncertainty reduction) to be able to detect
a swarm of that resonant feature size. For an uncertainty reduction
factor of 4, values ∼10 per cent greater than those in Fig. 26 are
required to achieve a significant resonant peak in 95 per cent of
cases. For an uncertainty reduction factor of 8, values 11–17 per
cent greater are required. The bold points in Fig. 26 demonstrate
the 10–17 per cent improvement in the results required to provide a
95 per cent probability of detecting the resonant swarm in the given
values.

If one year of data from a swarm close-approach year is available,
then the expected proportion of resonant swarm particles will be
higher than in a general data set: it may be as high as 20–30 per cent
for a strong swarm encounter year (see Section 9.3). If this is the

case, it is possible that a radar with an improvement of measurement
uncertainties of only a factor of 4–5 could detect this resonant swarm
(see Fig. 26). The required improvement in uncertainties will depend
on whether there is approximately the same number of radar-sized
swarm particles as visual-sized particles. However, as long as the
resonant swarm results in a 5–6 per cent increase in radar-sized
particles, a radar with uncertainties one tenth of those of the CMOR
data set used here should be capable of detecting the swarm.

1 0 S U M M A RY A N D C O N C L U S I O N S

The detection of a meteoroid resonance swarm with a radar system
requires improvement of the orbital uncertainties. In this work we
find no evidence for the 7:2 Taurid resonance swarm in CMOR data,
which should theoretically be amongst the most easily observed
resonance effects in radar data (see Section 3). In addition, the
uncertainties of the CMOR data set used here (which are typical of
current systems) are too large to allow observation of the resonant
swarm. The level of improvement required is highly dependent
on the size of the resonant swarm, and the resulting increase in the
number of Taurid particles observed in a swarm year. If the resonant
swarm comprises 20–30 per cent of resonant particles in a swarm
year, then potentially one year of observations with a meteor orbit
radar with orbital uncertainties a factor of 5 lower than CMOR
could detect the swarm; however, if the swarm comprises only 5–
6 per cent of the total Taurids, a factor of 10 improvement in the
radar uncertainties would be required. These factors of reduction in
semimajor axis uncertainties are equivalent to the required reduction
factors for the velocity uncertainties. The size of the swarm that can
be observed is found to plateau after an improvement in orbital
uncertainties of a factor of ∼10 (see Fig. 25). At this point a swarm
consisting of ∼5 per cent of the Taurid data set would be observable
in about one year of radar data. Therefore, improvements above a
factor of 10 are not likely to greatly improve the chance of observing
a resonant swarm.

Such improvements in meteor radar measurement uncertainties,
though they present technical difficulties, may be feasible with cur-
rent techniques of radar systems and signal processing. In particular,
the addition of more stations and with the ability to recover phase in-
formation and interferometry from multiple stations would produce
an overconstrained system of equations for speed/trajectory deter-
mination. These would allow the calculation of the deceleration of
meteors in the Earth’s atmosphere, and would significantly improve
the velocity uncertainties for detected particles. This approach is
the motivation behind an improved CMOR II radar which will have
five remote stations in addition to the home site (Brown et al. 2010).
Higher sampling rates (achieved by an improvement in the pulse
repetition frequency) would also improve orbital uncertainties. The
Fresnel velocity method can provide a factor of ∼2 improvement in
the velocity uncertainties in comparison to the time-delay method
(see Section 8). An additional important method of determining
meteoroid velocities is the Fresnel transform method, developed by
Elford (2001). This method is capable of producing speeds with pre-
cision of ∼0.1 km−1, compared with uncertainties of ∼3 km s−1 for
a 30 km s−1 meteor with the time-delay method: equivalent to a
10 per cent velocity uncertainty (Baggaley & Grant 2004). How-
ever, it is limited to use for meteors with high signal-to-noise ratios.
It is therefore expected that improvement of deceleration calcula-
tions provides the greatest chance of reaching the required accuracy
for detection of resonant structures.
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