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a b s t r a c t 

We present observations at optical wavelengths with the Cassini Spacecraft’s Imaging Science System of 

the Phoebe ring, a vast debris disk around Saturn that seems to be collisionally generated by its irreg- 

ular satellites. The analysis reveals a radial profile from 80–260 Saturn radii ( R S ) that changes behavior 

interior to ¼110 R S . We attribute this to either the moon Iapetus... sweeping up small particles, or to orbital 

instabilities that cause the ring to flare up vertically. Our study yields an integrated I / F at 0.635 µm 

along Saturn’s shadow in the Phoebe ring’s midplane from 80–250 R S of 2 . 7 
+0 . 9 
¡0 . 3 

£ 10 ¡9 . We develop an 

analytical model for the size-dependent secular dynamics of retrograde Phoebe ring grains, and compare 

this model to the observations. This analysis implies that 1) the “Phoebe” ring is partially sourced by 

debris from irregular satellites beyond Phoebe’s orbit and 2) the scattered light signal is dominated by 

small grains ( r 20 µm in size). If we assume that the Phoebe ring is generated through steady-state mi- 

crometeoroid bombardment, this implies a power-law size distribution with index > 4, which is unusually 

steep among Solar System rings. This suggests either a steep size distribution of ejecta when material is 

initially released, or a subsequent process that preferentially breaks up large grains. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Using the Spitzer infrared space telescope, Verbiscer et al. 

(2009) discovered a vast dust ring around Saturn, far beyond the 

bright main rings. This debris disk was dubbed the Phoebe ring af- 

ter the largest of Saturn’s distant irregular satellites, which seems 

to be the dominant source for the material. Approximately three 

dozen known irregular satellites (see Jewitt and Haghighipour, 

20 07; Nicholson et al., 20 08 , for reviews) form a swarm of mu- 

tually inclined, overlapping orbits—a relic of their capture process 

( ́Cuk and Burns, 2004; Ćuk and Gladman, 2006; Nesvorný et al., 

20 03; 20 07; Pollack et al., 1979 ). This led to a violent collisional 

history among these bodies continuing since early times ( Bottke 

et al., 2010 ). Smaller collisions must be ongoing, both with circum- 
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planetary objects too small to detect observationally, and with in- 

terplanetary meteoroids (cf., Cuzzi and Estrada, 1998 ). 

While the disk is diffuse, the debris from these dark ir- 

regular satellites ( Grav et al., 2015 ) can have important conse- 

quences. Iapetus, the outermost of the large, tidally locked, reg- 

ular satellites has a leading side approximately ten times darker 

than its trailing side. Many years before its discovery, Soter 

(1974) (see also Bell et al. 1985; Buratti and Mosher 1995; Cruik- 

shank et al. 1983 ) hypothesized that inward transfer of such 

debris through Poynting–Robertson drag might explain Iapetus’ 

stark hemispheric dichotomy. Burns et al. (1996) , and more re- 

cently Tosi et al. (2010) and Tamayo et al. (2011) , showed that 

indeed, Iapetus should intercept most of the inspiraling ma- 

terial as it plows through the cloud, and that the longitudi- 

nal distribution of dark material on Iapetus can be well ex- 

plained by dust infall under the action of radiation pressure. Ad- 

ditionally, Denk et al. (2010) ; Spencer and Denk (2010) showed 

that runaway ice sublimation and redeposition could accentuate 

initially subtle albedo differences to match the observed stark 

contrast. 

http://dx.doi.org/10.1016/j.icarus.2016.04.009 

0019-1035/© 2016 Elsevier Inc. All rights reserved. 
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Furthermore, this process of collisional grinding among the 

irregular satellites should be ubiquitous among the solar (and 

perhaps extrasolar) system’s giant planets ( Bottke et al., 2010; 

Kennedy and Wyatt, 2011 ), and this debris should also fall onto 

the respective outermost regular satellites. Indeed, the uranian reg- 

ular satellites exhibit hemispherical color dichotomies ( Buratti and 

Mosher, 1991 ), and Tamayo et al. (2013a ) showed that this could 

similarly be explained through dust infall, though the dynamics 

are additionally complicated by Uranus’ extreme obliquity ( Tamayo 

et al., 2013b ). Bottke et al. (2013) argue the same process has oc- 

curred in the jovian system. As the only known debris disk sourced 

by irregular satellites, the Phoebe ring therefore presents a unique 

opportunity to learn about generic processes around giant planets, 

both in our Solar System and beyond. 

Tamayo et al. (2014) , hereafter THB14, detected the Phoebe 

ring’s scattered light at optical wavelengths, using the Cassini 

spacecraft in orbit around Saturn. THB14 combined these optical 

measurements with the thermal emission data of Verbiscer et al. 

(2009) , finding that Phoebe ring grains have low albedos similar 

to the dark irregular satellites ( Grav et al., 2015 ). More recently, 

Hamilton et al. (2015) combined detailed numerical models of dust 

grains’ size-dependent spatial distributions with new data from the 

Wide-Field Infrared Survey Explorer (WISE) to extract the particle- 

size distribution in the disk. They found that the Phoebe ring ex- 

tends out to at least 270 Saturn radii 1 ( R S ) and has a steep particle 

size distribution. However, the Phoebe ring is so faint (normal op- 

tical depth » 10 ¡8 ) that scattered light from the planet dominates 

the signal inside ¼100 Saturn radii ( R S ). This is too far out to detect 

an inner edge swept out by Iapetus, which orbits at ¼59 R S . 

In this paper we present results from a new Cassini data 

set with a substantially higher signal-to-noise ratio than that of 

THB14. This renders the faint Phoebe ring signature clearly visible 

in our images, and we are able to additionally extract the Phoebe 

ring’s radial structure. We begin by presenting our data analysis, 

and by describing our data reduction methods in Section 2 , and 

our results in Section 3 . In Section 4 , we then semi-analytically 

investigate the expected 3-D structure of the Phoebe ring, which 

should exhibit interesting dynamics closer to Iapetus, where the 

Sun stops being the dominant perturbation (as it is for grains at 

large Saturnocentric distances), and Saturn’s oblateness becomes 

important. In Section 5 we compare our model to the data and 

we summarize our results in Section 6 . 

2. Methods 

2.1. Data reduction 

The main observational challenge is that the scattered light sig- 

nal from Phoebe ring grains is exceedingly weak ( I / F » 10 ¡9 ). Ad- 

ditionally, from Cassini’s nearby vantage point, the Phoebe ring’s 

thickness spans several tens of degrees; the Phoebe ring therefore 

appears as a uniform background across the 3.5’ £ 3.5’ field of 

view of Cassini’s Imaging Science System (ISS) Wide-Angle Camera, 

WAC ( Porco et al., 2004 ). We now briefly summarize the technique 

that THB14 developed to overcome these obstacles. 

The key is to detect the deficit of scattered light from unillu- 

minated Phoebe ring grains lying in Saturn’s shadow. Not only is 

the shadow narrow enough to be captured within a single WAC 

field of view, its apparent position relative to the background stars 

shifts as the spacecraft moves in its orbit. THB14 examined sev- 

eral exposures of the same star field as Saturn’s shadow moved 

through the images. By subtracting images from one another, the 

1 For this work we adopt R S = 60,330 km, the convention used for calculating 

Saturn’s gravitational moments. 

constant background could be attenuated while retaining the mov- 

ing shadow’s signal. 

The signal-to-noise ratio can be substantially improved by po- 

sitioning the spacecraft closer to the long axis of Saturn’s shadow, 

which lengthens the column of Phoebe ring material along lines of 

sight that intersect the shadow (see Fig. 1 in THB14). On day 269 

of 2013 (September 26 th ), in Rev 197 (Cassini’s 198 th orbit about 

Saturn), we executed such an observation with Cassini only ¼6 Sat- 

urn radii ( R S ) from the shadow’s axis (compared to ¼22 R S in the 

observations of THB14). We also maximized the shadow’s move- 

ment across the field of view by taking images at the beginning 

and end of our observation window. 

The geometry is summarized in Fig. 1 . Over the span of the ob- 

servation, the spacecraft (red point) does not move appreciably on 

the scale of the figure, but enough for the shadow to move across 

a large fraction of the camera’s 3.5 0 £ 3.5 0 field of view (see Fig. 2 

and accompanying details below). The bottom panel additionally 

shows the radial ranges spanned by each observation (material be- 

yond these limits contributed to fewer than 10% of pixels in each 

pointing). The shadow is wider in the top panel due to shadow- 

ing by the rings. We also note that the depicted model for the 

Phoebe ring is simplified—it has been cut off at the orbital distance 

of Iapetus, which should intercept most of the material ( Tamayo 

et al., 2011 ), and it is drawn as symmetric about Saturn’s orbital 

plane. In reality, the Phoebe ring should begin warping toward Sat- 

urn’s equatorial plane in the innermost regions of the disk (see 

Section 4 ). 

The corresponding observations for the outer section of the 

Phoebe ring (rev197o) are shown in Fig. 2 . 

These observations (rev197o) comprise 50 220-s WAC expo- 

sures 2 (using the clear filter CL1), centered on a point in the 

Phoebe ring 160 R S from the planet, at right ascension (RA) = 

223 . 7 ±, declination (Dec) = ¡13 . 5 ±. In addition to the observations 
shown in Fig. 2 we obtained 47 exposures, 3 centered on a loca- 

tion 110 R S from Saturn, at RA = 225.0 °, Dec = ¡14 . 6 ±. We denote 

this data set further ‘inward’ rev197i. The total observation win- 

dow spanned 18 hours and 45 minutes, and time was evenly split 

between rev197o and rev197i. We collected all images in 2 £ 2 

summation mode due to data-volume constraints, and calibrated 

them with the standard Cassini ISS Calibration (CISSCAL) routines 

( Porco et al., 2004; West et al., 2010 ) to apply flat-field corrections 

and convert the raw data to values of I / F , a standard measure of 

reflectance. 

2 Image names W 1758855456 _ 1 , W 1758855824 _ 1 , W 1758856192 _ 1 , 

W 1758856560 _ 1 , W 1758856928 _ 1 , W 1758857296 _ 1 , W 1758857664 _ 1 , 

W 1758858032 _ 1 , W 1758858400 _ 1 , W 1758858768 _ 1 , W 1758859136 _ 1 , 

W 1758859504 _ 1 , W 1758859872 _ 1 , W 1758860240 _ 1 , W 1758860608 _ 1 , 

W 1758860976 _ 1 , W 1758861344 _ 1 , W 1758861712 _ 1 , W 1758862080 _ 1 , 

W 1758862448 _ 1 , W 1758862816 _ 1 , W 1758863184 _ 1 , W 1758863552 _ 1 , 

W 1758863920 _ 1 , W 1758864288 _ 1 , W 1758878396 _ 1 , W 1758878764 _ 1 , 

W 1758879132 _ 1 , W 1758879500 _ 1 , W 1758879868 _ 1 , W 1758880236 _ 1 , 

W 1758880604 _ 1 , W 1758880972 _ 1 , W 1758881340 _ 1 , W 1758881708 _ 1 , 

W 1758882076 _ 1 , W 17588824 4 4 _ 1 , W 1758882812 _ 1 , W 1758883180 _ 1 , 

W 1758883548 _ 1 , W 1758883916 _ 1 , W 1758884284 _ 1 , W 1758884652 _ 1 , 

W 1758885020 _ 1 , W 1758885388 _ 1 , W 1758885756 _ 1 , W 1758886124 _ 1 , 

W 1758886492 _ 1 , W 1758886860 _ 1 , W 1758887228 _ 1 . 
3 Image names W 1758887712 1 , W 1758888080 _ 1 , W 1758888448 _ 1 , 

W 1758888816 _ 1 , W 1758889184 _ 1 , W 1758889552 _ 1 , W 1758889920 _ 1 , 

W 1758890288 _ 1 , W 1758890656 _ 1 , W 1758891024 _ 1 , W 1758891392 _ 1 , 

W 1758891760 _ 1 , W 1758892128 _ 1 , W 1758892496 _ 1 , W 1758892864 _ 1 , 

W 1758893232 _ 1 , W 1758893600 _ 1 , W 1758893968 _ 1 , W 1758894336 _ 1 , 

W 1758894704 _ 1 , W 1758895072 _ 1 , W 1758895440 _ 1 , W 1758895808 _ 1 , 

W 1758896176 _ 1 , W 1758896544 _ 1 , W 1758910652 _ 1 , W 1758911020 _ 1 , W 

1758911388 _ 1 , W 1758911756 _ 1 , W 1758912124 _ 1 , W 1758912492 _ 1 , 

W 1758912860 _ 1 , W 1758913228 _ 1 , W 1758913596 _ 1 , W 1758913964 _ 1 , 

W 1758914332 _ 1 , W 1758914700 _ 1 , W 1758915068 _ 1 , W 1758915436 _ 1 , 

W 1758915804 _ 1 , W 1758916172 _ 1 , W 1758916540 _ 1 , W 1758916908 _ 1 , 

W 1758917276 _ 1 , W 1758917644 _ 1 , W 1758918012 _ 1 , W 1758918380 _ 1 . 
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Fig. 1. Sunlight enters from the left, and Saturn casts a shadow (black rectangle) extending to the right. The spacecraft is plotted as a red circle, along with lines of sight 

to the center of the field of view for our inner (rev197i) and outer (rev197o) observations (described below in more detail). The top panel represents a cross-section along 

Saturn’s orbital plane, through which Saturn’s shadow passes, and which corresponds to the Phoebe ring’s midplane. The bottom panel shows a vertical cross-section along 

the plane defined by the planet’s shadow and its orbit pole, as well as color-coded double arrows denoting the radial extent spanned by each observation. All distances are 

to scale, except for Saturn and its rings, which have been expanded by a factor of 10 to highlight their misalignment. In both panels, the shadows show the actual size of 

Saturn and its rings. The black dashed line in the top panel shows the intersection between Saturn’s orbital and equatorial planes. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Top left and top middle panels show averages of the first 25 and second 25 images in the rev197o pointing (with grayscale ranging from I / F = [0,10 ¡6 ] ). The 

corresponding panels below show the modeled dip in brightness along Saturn’s shadow (range = [ ¡1 . 4 £ 10 ¡9 , 0] , i.e., three orders of magnitude smaller than above). 

Subtracting the two average images (top right panel), attenuates the background signal while retaining the shadow signature (modeled in the bottom right panel). To obtain 

the top right panel, we also filtered out noisy pixels, rebinned and smoothed the data. The I / F range in the rightmost panels is [ ¡1 . 4 £ 10 ¡9 , 1 . 4 £ 10 ¡9 ] , and the bright and 

dark spots in the bottom left of the top right panel are the differenced signature of the irregular satellite Siarnaq, which happened to be in the field of view. The field of 

view spans distances of » 90 R S (bottom of each image) – 300 R S (top) from Saturn. Our models in the bottom three frames assume a uniform ring and are described in detail 

in Section 2.2 . 

Following the techniques described in THB14, we first removed 

faulty pixels from the analysis, as well as ones with an I / F greater 

than a cutoff of 8 £ 10 ¡8 . Additionally, we found that removing 

particular images from the analysis improved our fits, due to off- 

sets in the background levels between images at the level of our 

signal. To quantitively decide what images should be thrown out, 

we first calculated each image’s mean brightness across the pixels 

that were not in shadow, as well as the standard error on each ex- 

posure’s average I / F . We then compared each image’s mean value 

to the median across all exposures. If the deviation was greater 

than ten standard errors from the median, we discarded the image. 

Finally, we employed the iterative procedure described in 

THB14 for removing cosmic rays and otherwise discrepant pixels, 

and applied a second iteration of image cuts as described above. In 

the end, our protocol retained 58% of all pixels for analysis in both 

data sets (with 7 of the 50 images removed altogether in rev197o, 

and 5 out of 47 in rev197i). This effectively removed the stars from 

the images and ensured a smooth background, allowing us to ex- 

tract the faint Phoebe ring signal (this filtering process was used 

to obtain the right panels in Fig. 2 ). 

2.2. Data modeling 

To quantitatively analyze the signal shown in Fig. 2 , we again 

adopted the procedure of THB14. This involved computing a 

simple shadow model (including a penumbra) for an oblate Saturn 
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Fig. 3. Left panel shows the real differenced data, corresponding to the top right panel of Fig. 2 . The middle panel shows the prediction assuming the best-fit homogeneous 

model for the Phoebe ring, and the right panel shows the result of subtracting the middle panel from the left one. The residuals suggest that there is substantial variation 

in the dust-grain number density as a function of distance from Saturn. The gray-scale range is the same as given in Fig. 2 . 

hosting completely opaque A and B rings. The shadow was cor- 

rectly oriented and projected for the time of observation with the 

Navigation and Ancillary Information Facility (NAIF) SPICE toolkit 

( Acton, 1996 ) in each of the Cassini images. We then calculated 

lines of sight for each pixel in the Cassini images through the 

shadow model, integrating each pixel’s total pathlength through 

the shadow (see Fig. 1 in THB14). 

To attenuate the constant background and extract the Phoebe 

ring signal, we generate a mean image of the » 50 exposures, 

and subtract this average from each of the images. We then per- 

form the same process on the set of modeled pathlength “images.”

Given their limited signal-to-noise-ratio data, THB14 assumed that 

there was a simple linear relationship between a pixel’s I / F de- 

crease and its corresponding line of sight’s pathlength through the 

shadow. This corresponds to a homogeneous Phoebe ring with con- 

stant dust-grain number density. 

Fig. 3 shows our best-fit model when we similarly assume 

the Phoebe ring to be spatially homogeneous. While a constant- 

number-density Phoebe ring satisfactorily fit the noisier data of 

THB14, we see that our improved data deviate strongly from this 

model. In addition, the pattern in the residuals in Fig. 3 indicates 

that the Phoebe ring is fainter at increasing distance from the 

planet. For this investigation, we therefore relax the homogene- 

ity assumption and probe the Phoebe ring’s radial structure (we 

assume there is no azimuthal variation across the shadow as the 

shadow’s width represents less than 1% of the ring’s circumfer- 

ence). We note that one might expect such radial variation given 

the ring’s expected radial extent » 60 ¡ 270 R S ( Hamilton et al., 

2015 )—if there were comparable amounts of material at different 

radii from Saturn, then the number density of particles would fall 

with distance as grains get spread over annuli of increasing vol- 

ume. 

To model a radially varying Phoebe ring, we break it up into 

annuli that are each 10 R S wide. We then assume that the I / F from 

the Phoebe ring in a given pixel is the sum of linear contributions 

proportional to the pathlengths through each of these annuli, 

I / F = 

�  

i 

m i p i , (1) 

where the sum runs over all the annuli, p i is the pathlength of the 

pixel’s line of sight through the i th ring, and m i is the brightness 

per unit pathlength through the i th annulus. We connect the m i to 

the physical size and spatial distributions of Phoebe ring grains in 

Section 4.3 , but begin by obtaining empirical fits to the data using 

Eq. (1) , assuming that the m i follow a power law with amplitude A 

and power-law index n , 

m i = Ar n i , (2) 

where r i is the distance from Saturn to the middle of the i th an- 

nulus. 

Fig. 4. Observed vs. predicted I / F values (black). By fitting a line to these points 

(dashed), we can use the slope to correct A ( Eq. (2) ). This stretches/compresses the 

predicted I / F differences to match the expected slope of unity (blue points). How- 

ever, while this model matches the overall slope, the fit deviates from a straight 

line at large predicted I / F differences due to a poor choice of the radial power-law 

index ( Eq. (2) ). This model used n = ¡0 . 5 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

As above, we generate differenced observed and predicted im- 

ages. To quantitatively fit the data, we then bin all pixels by their 

predicted I / F values, calculate the mean predicted and observed I / F 

values in each bin, and estimate observed bin errors as the stan- 

dard error ¾i /N 

1 / 2 
i 

, where ¾ i and N i are the standard deviation and 

number of pixels in bin i , respectively. We then perform a least- 

squares fit to the line observed I / F = predicted I / F (solid black line 

in Fig. 4 ). 

Because the model ( Eq. (1) ) is linear in the amplitude A , we 

don’t fit for it separately. Instead, we guess an approximate am- 

plitude for A and first fit a straight line to the data (letting the 

slope vary, black line in Fig. 4 ). We then divide our initial A value 

by the best-fit slope, and recalculate predicted I / F values to obtain 

a line of unity slope (blue line, Fig. 4 ). Of course, a wrong value 

of n will still yield a bad fit (see the deviations at the ends of the 

lines), since the overall shape will deviate from a straight line even 

if the overall slope is approximately correct. This procedure to ob- 

tain the amplitude removes one of the fitted parameters, reducing 

the computational cost (for each model we predict and bin » 10 7 

pixel values). We tested that using this procedure and only fitting 

for n consistently recovers the same models as when one fits for 

both parameters simultaneously. 

3. Results 

3.1. Single power-law 

We began by fitting models of the form Eq. (2) for values of 

n ranging from ¡5 to 3 with a step size of 0.125. For the outer 
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Fig. 5. Visualization of the three parameter broken power-law model, along with 

the semimajor axes of Iapetus and Phoebe, and the radial range captured in the 

data (right of dashed blue line). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

pointing (rev197o), we found a best-fit power-law index n = 

¡1 . 125 , which yielded a reduced Â2 of 1.18 with 111 degrees of 

freedom. For the inner pointing data (rev197i), we instead found 

a minimum Â2 at n = ¡0 . 875 , corresponding to a reduced Â2 of 

2.78 with 79 degrees of freedom. 4 Although this model substan- 

tially improved upon the assumption of a homogeneous Phoebe 

ring (reduced Â2 of 27.1 with 106 degrees of freedom), the lower 

slope and high reduced Â2 of the inner pointing indicate a single 

power law does not satisfactorily fit the data. Upon further inves- 

tigation, we found that the single power-law assumption tends to 

overpredict the I / F at small distances from Saturn ( ¼100 R S ). The 

compromise reached by the power-law fit thus tends to produce 

similar (though subdued) residuals to those for the homogeneous 

Phoebe ring model shown in Fig. 3 . 

3.2. Broken power-law 

In order to address our excess I / F prediction closer to Saturn, 

we then considered a broken power-law model, 

m i (r i < R k ) = Ar n Inner 
i 

, (3) 

m i (r i > R k ) = Ar n Outer 
i 

, (4) 

where R k is the radial location of the ‘knee’, where the power-law 

index shifts (see Fig. 5 ). Fitting the amplitude A as discussed above, 

we now have three parameters, n Inner , n Outer and R k . 

We began by coarsely sampling a large section of parameter 

space. Based on this initial investigation, we then settled on a finer 

grid of 2244 models, sampling n Inner from -3 to 5 in steps of 0.5, 

n Outer from ¡5 to 0 in steps of 0.25 and R k from 70 R S to 180 R S 
in steps of 10 R S . We found multiple local minima and dozens of 

models which offered compelling fits to the data (the global min- 

imum reduced Â2 value was 0.993 and 1.665 for the outer and 

inner pointings, respectively). 

To check whether the best-fitting models indeed resembled 

each other, we graphed the various models and overplotted Â2 

contours ( Fig. 6 ). All models with reduced Â2 within 25% of the 

4 We find that the inner pointing consistently yields worse fits than the outer 

one. This may be due to complicated ring structure induced by the shifting equilib- 

rium Laplace plane for small particles ( Rosengren and Scheeres, 2014; Tamayo et al., 

2013b ), or by close encounters with Iapetus. These processes are not captured by 

our simple empirical model, but we pursue them in Section 4 . 

best-fit model ( Â2 = 0 . 99 and 1.67 for the outer and inner point- 

ing, respectively) lie within the darkest level surfaces, and addi- 

tional contours are plotted at 1.5 and 1.75 times the minimum re- 

duced Â2 . 

The rapid increase in reduced Â2 across the contours of 

Fig. 6 show that the data indeed constrains the Phoebe ring’s ra- 

dial profile. As one would expect, the outer pointing (left panel) 

better constrains the radial profile at large distances, while the in- 

ner pointing (right panel) yields a narrower Â2 distribution close 

to Saturn. Additionally, the darkest contours from the two panels 

in Fig. 6 show good agreement between the inner and outer point- 

ing data. 

The models ( Fig. 6 ) suggest that the Phoebe ring’s radial pro- 

file exhibits a steeper power-law decay at large radii that levels off

closer in. 

3.3. Alternate parametrizations of the data 

The range in models that fit the data well ( Fig. 6 ) is a conse- 

quence of the experimental setup. In order to maximize the col- 

umn of shadowed material along the line of sight, we performed 

the observations when Cassini was almost in Saturn’s umbra (for 

these data, Cassini lay ¼5 R S from the shadow axis, observing ma- 

terial » 100 R S away). Therefore, each pixel measures an integrated 

I / F deficit accumulated over a broad range of distances from Sat- 

urn. This fundamentally limits the amount of radial information 

that can be extracted from the data. 

Alternatively, we can constrain the integrated I / F from the 

Phoebe ring looking (approximately radially) outward along the 

disk’s midplane (in which the shadow lies). This can be approxi- 

mated as the area under model curves plotted in Fig. 6 . As shown 

in the cumulative integrals of Fig. 7 , we are better able to con- 

strain this accumulated I / F than the individual contributions from 

separate radial slices. To show the range in models like in Fig. 6 , 

we plot the same reduced Â2 contours. In order to make these cu- 

mulative plots, we must choose an inner radius to begin the inte- 

gral. We chose the boundary radius where fewer than 10% of pixels 

were influenced by Phoebe ring material lying inside this distance. 

This corresponded to 80 R S and 100 R S in rev197i and rev197o, re- 

spectively (shown as the leftmost vertical red lines in the left and 

middle panels of Fig. 6 ). 

We can obtain a simple estimate for the integrated I / F along 

the Phoebe ring’s midplane by taking the mean integrated value 

across the models in the darkest contours of Fig. 7 . While it is 

difficult to calculate rigorous error bars for our measurements 

(see Appendix A ), we choose to estimate the errors by taking the 

boundaries of the second contour shown in Fig. 6 , which encom- 

passes models that had a reduced Â2 less than 1.5 times the best- 

fit model’s value. This should be a conservative estimate given the 

large number of degrees of freedom (see Appendix A ) and the 

fact that the reduced Â2 contours rise steeply beyond this contour 

(compare the second to third contours in Figs. 6 and 7 ). We find 5 

that the Phoebe ring’s integrated I / F from 80 to 250 R S along the 

disk’s midplane is 2 . 7 +0 . 9 
¡0 . 3 

£ 10 ¡9 . 

To connect these empirical fits to physical ring parameters, we 

now consider a dynamical model for Phoebe ring grains. 

4. A dynamical model for the Phoebe ring 

The observational data indicate that the Phoebe ring’s den- 

sity does not decline with distance from the planet in a uniform 

way. Instead, something happens interior to 110 R S that causes its 

brightness profile to become significantly flatter. 

5 We took the values from the inner pointing data in the range [80, 100] R S , and 

those from the outer pointing over [100, 250] R S , adding the errors in quadrature. 
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Fig. 6. The best-fitting radial profiles for the Phoebe ring. In each panel, the data mostly constrain the radial range between the two red lines (fewer than 10% of pixels are 

influenced by Phoebe ring material lying outside this region). The best-fit model’s reduced Â 2 was 0.99 and 1.67 for the outer and inner pointings, respectively. Contours 

bound the models with reduced Â2 less than 1.25, 1.5 and 1.75 times the value for the best-fit model. The right panel overlays the best contour for each of the two data 

sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. At each x -value, we integrate the models from Fig. 6 from 80 R S (rev197i) or 100 R S (rev197o) to the radius in question. The contours show the spread in integrated I / F 

values for models that had reduced Â2 values in a given range (same contours as Fig. 6 ). The left gray panel corresponds to the outer pointing data, the right cyan panel 

corresponds to the inner pointing data. The inner endpoints to the integrations were chosen as the first radial slice that influenced at least 10% of pixels in the dataset. The 

red line indicates the radius beyond which fewer than 10% of pixels are affected by Phoebe ring material. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

One possibility is that this feature is due to Iapetus sweeping 

up material, as is theoretically expected ( Tamayo et al., 2011; 

Tosi et al., 2010 ). While the observed flattening of the Phoebe 

ring’s radial profile occurs at roughly twice the orbital distance 

of Iapetus, the m oon may be intercepting grains on orbits that 

are rendered highly eccentric by radiation pressure. An alternate 

possibility are instabilit ies in the equilibrium Laplace surface, 

which governs Phoebe ring grains’ vertical orbital evolution. 

Rosengren and Scheeres (2014) found that for certain grain sizes, 

local Laplace equilibria can become unstable as grains evolve 

inward, forcing them to suddenly oscillate around a newfound, 

distant equilibrium. A ring composed of single-sized dust grains 

in this range would therefore puff up at a characteristic distance 

from Saturn, while a distribution of particle sizes in this range 

would grow vertically more gradually. This effect would thus also 

tend to decrease the density of dust particles in Saturn’s shadow, 

and thus the observed brightnesses. 

In order to assess the above possibilities, and interpret our 

observational results, one must construct a dynamical model for 

Phoebe ring grains. We begin by assessing the 3-dimensional ge- 

ometry involved. 

The shadow cast by Saturn lies in the planet’s orbital plane. This 

is the equilibrium orbital plane for particles far from Saturn, and 

thus the symmetry plane for the Phoebe ring at large distances, 

making our observations possible. But as dust grain orbits decay 

inward, they will follow the local equilibrium plane, which grad- 

ually shifts toward Saturn’s equatorial plane (see Section 4.1 ). An 

infinitely thin Phoebe ring would therefore follow a warped sur- 

face like that shown in Fig. 8 . The real Phoebe ring has a thickness 

about the equilibrium surface that is set by the orbital inclination 

that particles inherit from Phoebe (the thickness increases linearly 

with distance from Saturn, to a value of ¼40 R S at Phoebe’s distance 

of 215 R S , Verbiscer et al. 2009 ). Because closer to the planet the 

ring lifts out of the plane probed by Saturn’s shadow (the planet’s 
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Fig. 8. On the left is an oblique view from above of the warped equilibrium surface that an infinitely thin Phoebe ring would follow. On the right is an edge-on view. 

The horizontal plane in the edge-on view corresponds to Saturn’s orbital plane, which is the plane in which Saturn casts its shadow. If Phoebe-ring material were spread 

evenly from Phoebe to the central planet, our method would observe an inner edge to the ring due to material tilting off the plane that is probed by Saturn’s shadow. 

The only exception would be if the Sun happened to be aligned with the line along which Saturn’s orbit plane intersects its equatorial plane (vantage point shown in right 

panel)—along this line, material would extend inward to the planet; however, in our data, the Sun lies at about 49 ° from this line of nodes. All distances are in Saturn radii. 

orbital plane), observing an inner edge to the Phoebe ring using 

our technique does not necessarily point to Iapetus sweeping up 

material. Of course, in this case Iapetus might (and should) never- 

theless be carving out an inner edge to the Phoebe ring; this would 

just occur in a region inaccessible to our observation technique. 6 

In order to address this issue, we now consider the dynamics of 

particle orbits as they decay inwards toward Saturn. We will use 

these results below to generate a Monte Carlo simulation of the 

Phoebe ring’s 3-D structure. In particular, we study the evolution 

of dust-grain orbits under the simultaneous influence of radiation 

pressure, tidal solar gravity, and Saturn’s oblateness. Note that we 

are ignoring the gravity of Iapetus, which could alter the dynam- 

ics at semimajor axes where the orbital periods of the particle and 

Iapetus form a near-integer ratio. In addition, we approximate Sat- 

urn’s orbit as circular. 

There are many possible trajectories depending on grains’ 

initial conditions, their physical radius, and the position of the 

Sun at the time of their launch. To try and circumvent the 

computational cost associated with this large phase space, we 

develop an analytical model for the dynamics, which we then 

sample from at random times to build up the 3-D structure of 

the Phoebe ring. To make analytic progress, we assume that the 

evolutions of the eccentricity and the inclination are decoupled. 

In particular, we calculate the inclination evolution assuming a 

circular orbit, and evaluate the eccentricity evolution assuming a 

planar orbit. This amounts to ignoring second-order eccentricity 

terms in the equations of motion for the inclination evolution 

and vice-versa. These assumptions are only rigorously correct for 

circular orbits around a planet with zero obliquity (so that all 

perturbations act in the same plane); however, they are reasonable 

approximations as long as the planet’s obliquity is not too large 

(Saturn’s obliquity ¼26.7 °) and the orbital eccentricities are mod- 

erate. We will compare our analytic results to direct integrations 

below. 

4.1. Inclination evolution 

Because, under the perturbations stated above, the inclination 

evolution is slow compared to both the particle’s orbital timescale 

6 Iapetus orbits in a plane intermediate between Saturn’s equatorial and or- 

bital planes, but would nevertheless sweep up the material as the dust grains’ 

and m oons mutually precess into configurations where collisions are possible (see 

Tamayo et al., 2011 ). 

around Saturn and Saturn’s orbital period about the Sun, one can 

profitably average over these fast oscillations. When considering 

only the effects of the quadrupole potentials from the planet’s 

oblateness and the Sun’s gravity, one then obtains the classical re- 

sult that, for a given circumplanetary orbit’s semimajor axis, an 

equilibrium plane exists between the planet’s equatorial and or- 

bital planes. Particle orbits in this so-called Laplace plane remain 

in the plane (in this sense it is an equilibrium plane), whereas 

inclined orbits will precess around the Laplace plane normal at 

approximately constant inclination. The local Laplace plane rep- 

resents a compromise between the oblateness perturbations that 

dominate close to the host planet and are symmetric about its 

equatorial plane, and the solar perturbations that dominate far out 

and are symmetric about the planet’s orbital plane. Thus, the lo- 

cal Laplace plane nearly coincides with the planet’s orbital plane 

for distant particle orbits (e.g., those of the irregular satellites), 

while progressively smaller orbits have their respective Laplace 

planes transition toward the planet’s equatorial plane (see Fig. 8 ). 

The shift between these configurations occurs at approximately the 

Laplace radius r L , where the torques from the two perturbations 

roughly balance ( Goldreich, 1966 ), or 

r L 
5 ¼ 2 J 2 R p 

2 a p 
3 (1 ¡ e 2 p ) 

3 / 2 M p 

M �
, (5) 

where J 2 is the quadrupole coefficient from an axisymmetric ex- 

pansion of the planet’s gravitational potential, R p , M p , a p and e p 
are the planet’s radius, mass, orbital semimajor axis and eccentric- 

ity, respectively, and M � is the Sun’s mass. Considering the contri- 

bution of the inner satellites to Saturn’s effective J 2 , r L at Saturn is 

¼55 R S ( Tremaine et al., 2009 ); Iapetus, at 59 R S , has a mean orbital 

plane set by the local Laplace plane’s inclination to Saturn’s orbital 

plane of ¼11.5 °. 
The inclusion of radiation pressure (which is symmetric 

about the planet’s orbital plane, like solar tides) shifts the bal- 

ance between the planet’s oblateness and solar gravity. Because 

radiation-pressure-induced precession of retrograde orbits opposes 

solar gravity precession, this is equivalent to a weakened effective 

solar gravity. Thus, for retrograde orbits, the transition of the equi- 

librium plane from the planet’s orbital to equatorial planes occurs 

outside the classical Laplace radius given by Eq. (5) . Conversely, 

radiation pressure enhances the solar-gravity-induced preces- 

sion of prograde orbits, so the transition radius moves inward 

( Tamayo et al., 2013b ). Additionally, because radiation pressure is 
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particle-size dependent, the local Laplace planes for grains of 

different sizes will vary. 

Recently, Rosengren and Scheeres (2014) performed a rigorous 

analysis of Laplace plane equilibria modified by radiation pressure. 

In Section 4.3 we use their Eq. (32) to calculate the equilibrium 

Laplace plane orientation for a given particle orbit’s semimajor 

axis and particle radius. For initial orbital orientations outside the 

corresponding equilibrium plane, we assume uniform precession 

about the Laplace plane at constant inclination. 

4.2. Eccentricity evolution 

We now consider the evolution of the orbital eccentricity, as- 

suming a planar orbit around a planet with zero obliquity (we will 

compare our results to direct integrations with a tilted Saturn be- 

low). As opposed to the orbital inclination, the orbital eccentric- 

ity of small grains will undergo large-amplitude oscillations over a 

single Saturn year ( Burns et al., 1979 ). Moreover, such retrograde 

particle orbits that begin on near-circular orbits will reach their 

maximum eccentricities when their pericenter is aligned with Sat- 

urn’s shadow (where we make our observations). It is therefore 

important not to average over Saturn’s orbit about the Sun (period 

¼30 yrs) in this application (but we still average over the much 

faster particle orbit around Saturn, which has a period of » 1 year). 

Hamilton and Krivov (1996) have studied this problem for prograde 

orbits. We now take their prograde solutions and apply symmetry 

arguments to derive the equations of motion for retrograde orbits. 

In a frame centered on Saturn, the equations of motion for a 

prograde orbit can be written as 

1 

n �

d$ 

dt 
= A 

�  

1 ¡ e 2 [1 + 5 cos 2($ ¡ ¸� ) ] 

+ C 

p 

1 ¡ e 2 

e 
cos ($ ¡ ¸� ) + 

W 

( 
p 

1 ¡ e 2 ) 2 
, 

1 

n �

de 

dt 
= 5 Ae 

�  

1 ¡ e 2 sin 2($ ¡ ¸� ) 

+ C 
�  

1 ¡ e 2 sin ($ ¡ ¸� ) , (6) 

where e is the particle’s orbital eccentricity, ϖ is the longitude of 

the grain orbit’s pericenter, ¸� is the longitude of the Sun as it 

“orbits” around Saturn in the saturnocentric frame, n � is the Sun’s 

angular rate, and A, C and W are dimensionless constants capturing 

the strength of the sun’s tidal gravity, radiation pressure, and the 

planet’s oblateness, respectively: 

A ́
3 

4 

n �

n 
, C ´ 3 

2 

n 

n �
¾ , W ´ 3 

2 
J 2 

�
R p 

a 

�2 
n 

n �
, (7) 

where n is the particle’s mean motion, a is the particle orbit’s 

semimajor axis, and ¾ is the ratio of the radiation pressure force 

to the gravitational force of the planet on the body at a distance a 

(see Eq. (3) of Hamilton and Krivov, 1996 ). 

A retrograde orbit is prograde in a frame where time runs back- 

ward, so we can immediately write down the equations of motion 

from Eq. (6) in this flipped frame. To be explicit, we can write dt 

as dt ¡ to emphasize that it represents time in the flipped frame, 

and we can then obtain the equations of motion for a retrograde 

orbit in a frame where time runs forward by re-expressing the 

equations of motion in terms of the original variable t (through 

the simple relation dt ¡ = ¡dt). Note that in applications with 

non-zero inclination one must be careful to also write i ¡, $ 

¡, 

etc., when applying the prograde equations of motion and then 

re-express these in terms of i , ϖ, etc. This is because when flip- 

ping the time, i ! 180 ¡ i, the ascending node changes by 180 °, 
and $ = Ä + ! ! Ä ¡ !. 

Additionally, one might be tempted to write ¸� = n � t in 

Eq. (6) , and have it flip sign upon these transformations; however, 

in the flipped frame the Sun moves backwards at a rate ¡n � t, so 

one would write the equations in the flipped frame with terms 

involving, $ + n � t ¡, which would revert to $ ¡ n � t when re- 

expressed in the original frame. Physically, the relevant terms in 

the differential equations only depend on the instantaneous posi- 

tion of the Sun, ¸� , not the direction in which it is moving, which 

is why we chose to express the right-hand sides of Eq. (6) in terms 

of ¸� . 

The above steps yield retrograde equations of motion with 

the signs on the right-hand sides of Eq. (6) negated. Following 

Hamilton and Krivov (1996) , we now move to a frame where the 

x axis rotates with the Sun at a rate n � t so that the potential is 

stationary, as this will yield a conserved quantity. Note that this 

would not be strictly true for a planet on an eccentric orbit (as 

the Sun would no longer “move” at a constant rate), or if the 

obliquity were nonzero (as the oblateness potential would become 

time-dependent). Denoting the longitude of pericenter relative to 

the Sun’s position Á� = $ ¡ ¸� , and plugging in for d ϖ/ dt from 

Eq. (6) , we have the equations of motion for a retrograde orbit, 

1 

n �

dÁ�

dt 
= 

1 

n �

d$ 

dt 
¡ 1 = ¡A 

�  

1 ¡ e 2 [1 + 5 cos 2(Á� ) ] 

¡C 

p 

1 ¡ e 2 

e 
cos (Á� ) ¡ W 

( 
p 

1 ¡ e 2 ) 2 
¡ 1 , 

1 

n �

de 

dt 
= ¡5 Ae 

�  

1 ¡ e 2 sin 2(Á� ) ¡C 
�  

1 ¡ e 2 sin (Á� ) . (8) 

Following Hamilton and Krivov (1996) , we can write these 

equations of motion using 

1 

n �

de 

dt 
= ¡

p 

1 ¡ e 2 

e 

@H  

@ Á�
, 

1 

n �

dÁ�

dt 
= 

p 

1 ¡ e 2 

e 

@H  

@e 
(9) 

and a conserved “Hamiltonian”7 

H  = 

�  

1 ¡ e 2 ¡ 1 

2 
Ae 2 [1 + 5 cos (2 Á� )] ¡Ce cos Á� ¡ W 

3(1 ¡ e 2 ) 3 / 2 
;

(10) 

cf. Eq. (9) in Hamilton and Krivov (1996) . Trajectories in this one 

degree-of-freedom problem thus move on level curves of constant 

H . 

Fig. 9 compares these results to two direct integrations that 

include Saturn’s obliquity and its orbital eccentricity. The nu- 

merical integrations were performed with the well-established 

dust integrator ( Hamilton, 1993; Hamilton and Krüger, 2008; 

Jontof-Hutter and Hamilton, 2012a; 2012b ). In both test cases, 

the particles were launched such that their orbits’ pericenters 

coincided with the direction toward the Sun at t = 0 , and both 

simulations were run for 100 years (i.e., more than three Saturn 

orbits, and » 70 0 0 particle orbits (left panels) and » 40 0 particle 

orbits (right panels). The top panels show the evolution of e and 

Á� in polar plots, where the radial distance gives the eccentricity, 

and the angle from the positive x axis gives Á� . The top left panel 

shows a 2 µm grain on a retrograde orbit with a = 10 R S and initial 

eccentricity 0.3, in Saturn’s equatorial plane (which is effectively 

coincident with the local Laplace plane at this semimajor axis). 

Despite the large eccentricities (reaching values greater than 0.5), 

the agreement is excellent. The bottom left panel shows the corre- 

sponding evolution of the analytical H ( Eq. (10 )) in the numerical 

simulations, which we verify is conserved to well within 1%. 

The right panels are for a 20 µm particle in an orbit with a = 

50 R S , initial orbital eccentricity 0.156 (the value for Phoebe), and 

7 H is not strictly a Hamiltonian since the equations of motion are not canonical. 
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Fig. 9. Top panels compare our analytical level curves (blue, calculated with Eq. (10) , and thus assuming a zero-obliquity planet in a circular orbit) to direct integrations 

(red) with Saturn’s present eccentricity and obliquity. See text for the parameters of the two integrations. The bottom two panels show that the analytical H ( Eq. (10) ) is 

conserved to within 1% in the numerical simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

initial orbital inclination to Saturn’s orbital plane of 165 °, roughly 
half way between the orbital and equatorial planes. These values 

were chosen as representative of the grains we wish to simulate, 

at points where our neglect of the coupling between eccentricity 

and inclination could be problematic; Phoebe’s eccentricity (which 

grains that are launched at slow speeds should inherit) is currently 

0.156, and grains smaller than » 3 µm would be quickly eliminated 

by radiation pressure upon being liberated from Phoebe ( Tamayo 

et al., 2011; Verbiscer et al., 2009 ). Again, the agreement is excel- 

lent, so we conclude that our analytic model should provide valu- 

able insight into the orbits of most grains in the Phoebe ring size 

distribution. One should keep in mind, however, that the orbits of 

the smallest particles that survive immediate elimination by radi- 

ation pressure may exhibit important deviations from our results, 

particularly near and beyond the Laplace plane transition, where 

Saturn’s oblateness no longer dominates. 

4.3. Monte Carlo simulations 

With an approximate analytical model in hand, we can ef- 

ficiently generate a Monte Carlo simulation of the Phoebe ring 

where we randomly sample particle positions in their orbital evo- 

lution, and see how many particles lie in Saturn’s shadow at var- 

ious radial distances from the planet. But to compare these simu- 

lations with our observations, we must first connect our model to 

the photometry. 

For low-optical-depth clouds like the Phoebe ring, the I / F scat- 

tered by ring particles is related to the line-of-sight optical depth 

¿ , the phase function P ( ®), where ® is the phase angle, and the 

single-scattering albedo ϖ0 (at 0.635 µm, where our observing 

band is centered, Porco et al. 2004 ) through ( Burns et al., 2001 ) 

I 

F 
= 

1 

4 
¿$ 0 P (®) . (11) 

Writing d ¿ = n¾d l, where n is the number density of particles, ¾
is their geometrical cross-section, and dl is a differential length el- 

ement along the line of sight, we define 

m (r) ́
d( I / F ) 

dl 
= 

n (r) ¾$ 0 P (®) 

4 
, (12) 

The local quantity m ( r ) thus quantifies how much I / F is gained per 

differential pathlength through the Phoebe ring, and is the func- 

tion we wish to extract from the observations. Since we only make 

measurements along Saturn’s shadow, which subtends a small az- 

imuthal angle, we take m to only be a function of the distance 

from the planet, r . For a given model of m ( r ), one obtains the ex- 

pected change in I / F in one of our pixels by integrating m ( r ) along 

the path through the shadow. 

Since not only the cross-section, but also the number density 

(through the orbital dynamics discussed above) will be particle- 

size dependent, we generalize Eq. (12) to consider a range of parti- 

cle sizes, obtaining the differential contribution to m ( r ) from grains 

with radii between s and s + ds, 

dm (r, s ) = 

¼s 2 $ 0 P (®) n (r, s ) ds 

4 
, (13) 

where n ( r, s ), the differential number density for particles between 

size s and s + ds lying between r and r + dr from Saturn. Because 

the observation’s wavelength (0.635 µm) is much shorter than 

even the smallest long-lived dust grains (3 µm), we assumed above 

a geometric cross-section for the dust grains (this would not be 

true in observations of thermal emission at mid-infrared wave- 

lengths; cf. Hamilton et al. 2015 ). The total m ( r ) is then simply 

given by the integral of Eq. (13) over s . 

We now estimate n ( r, s ) using the results of our semi-analytical 

investigation of the grains’ orbital dynamics from Section 4 . For 

simplicity, we approximate the shadow of Saturn and its rings as 

a rectangular prism with cross-section dimensions of 2 R S £ 2 R S . 

By using radial bins of equal volume (spaced by 10 R S ), we ensure 

that the sought number density n ( r, s ) is equal to the number of 

particles we find in each bin to within a normalization constant 

(which must be fit to the data anyway). Since the dimensions of 

the Phoebe ring are much larger than those of the shadow, our 

simple choice for the shadow shape does not affect the result. We 

can therefore relate dm ( r, s ) to N ( r, s ), the number of particles in 

a Monte Carlo simulation lying in a radial bin centered at r , with 

sizes between s and s + ds . Writing differentials with 1 to empha- 

size the finite size of our bins, we have from Eq. (13) , 

1m (r, s ) / s 2 N(r, s )1s, (14) 
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where we have assumed that ϖ0 and P ( ®) are the same for all par- 

ticles (in our observations, the phase angle ® varies from ¼3.4 ° to 
¼1.7 ° when looking at sections of the Phoebe ring centered at 100 

R S and 200 R S , respectively). 

The strengths of the various relevant perturbations vary with 

the particle orbits’ semimajor axes, which decay according to 

a = a 0 e 
¡t/¿P¡R , (15) 

where a 0 is the original semimajor axis, and ¿P¡R is the Poynting–

Robertson decay timescale ( Burns et al., 1979 ). Assuming particles 

share Phoebe’s density of 1.6 g/cm 

3 , 

¿P¡R ¼
�

s 

7 µm 

�
Myr , (16) 

where s is the particle radius. According to Eq. (15) , approxi- 

mately ln(215/60) ¼1.28 Poynting–Robertson decay timescales are 

required for particles to approximately reach Iapetus’ semimajor 

axis ( a ¼ 60 R S ) from Phoebe ( a ¼ 215 R S ). Because the semima- 

jor axis evolution is the same for all particle sizes if one rescales 

time through t 0 = t/¿P¡R ( Eq. (15) ), we chose to consider semima- 

jor axes sampled at one hundred equally spaced t 0 intervals for all 
particle sizes: 

1t 0 = 

1t 

¿P¡R 

= 

ln (215 / 60) 

100 
, (17) 

where ¿P¡R scales linearly with s ( Eq. (16) ). 

At each of these hundred semimajor axes, we first evaluate the 

motion of the particle’s orbital angular momentum vector in a 

frame that uses the local Laplace plane as the reference plane (see 

Section 4.1 ). To a good approximation, the orbital angular momen- 

tum vector precesses around the Laplace plane pole at a constant 

angle given by the free inclination, which is an adiabatic invariant 

of the motion as the semimajor axis slowly decays ( Ward, 1981 ). 

At all semimajor axes, we therefore randomly and uniformly sam- 

ple the orbit’s longitude of ascending node on the Laplace plane 

ÄLap , and for the free inclination assign Phoebe’s current orbital 

inclination to Saturn’s orbital plane of 175.243 ° ( http://ssd.jpl.nasa. 
gov/?sat _ elem ), which very nearly corresponds to the local Laplace 

plane at Phoebe’s orbital radius. To transform to a common refer- 

ence frame for all semimajor axes (the frames coinciding with the 

local Laplace planes are tilted relative to one another as a varies), 

we calculated the inclination of the local Laplace plane to Saturn’s 

orbit normal at each a ( Rosengren and Scheeres, 2014 ), and applied 

the appropriate rotation matrices. 

With a, i and Ä (where orbital elements without subscripts are 

referenced to Saturn’s orbital plane) in hand, we proceed to se- 

lect the eccentricity e and argument of pericenter !. The appropri- 

ate level curve that the eccentricity vector follows ( Eq. (10) ) is set 

by the initial conditions. Since the escape velocity from Phoebe is 

small compared to its orbital velocity, and most ejecta is launched 

at velocities comparable to the escape speed (e.g., Farinella et al., 

1993 ), dust grains will essentially inherit Phoebe’s orbital elements 

at the time of impact. We therefore set the initial eccentricity to 

Phoebe’s current value (which changes little) and, for computa- 

tional ease, considered eight equally spaced initial values of Á�

( Section 4.2 ). 

As mentioned above, an orbit’s angular momentum vector pre- 

cesses with a constant free inclination about an equilibrium (the 

local Laplace plane’s pole). Analogously, (to a good approximation) 

each orbit’s pericenter precesses with a constant free eccentricity 

about another equilibrium (the forced eccentricity), i.e., in the po- 

lar plots in the top panels of Fig. 9 , different initial conditions 

would move on level curves that to first order are concentric cir- 

cles about the equilibrium forced eccentricity; the radius of the cir- 

cle is then the constant free eccentricity. As in the inclination case 

with the shifting Laplace plane, the forced eccentricity changes 

as orbits decay and the relative perturbation strengths vary, and 

similarly, the free eccentricity is an adiabatic invariant as long as 

the semimajor-axis decay rate is slow compared to the precession 

timescale (which is always the case here). 

For a given initial condition, we therefore first calculated the 

approximately conserved free eccentricity. Then, at each semima- 

jor axis, we calculated the appropriate forced eccentricity numeri- 

cally (by finding the point at which level curves collapsed to zero 

radius), and randomly sampled e and Á� from a uniform distribu- 

tion along the perimeter of the level curve. Then, we obtained ! 

using the relationships Á� ´ $ ¡ ¸� and $ = Ä ¡ !. Finally, we 

obtained the last orbital element by selecting the mean anomaly 

M from a uniform distribution. 

With this procedure, for each of eight equally-spaced values of 

the initial condition for Á� , and for each of the hundred semima- 

jor axis values, we obtained the orbital elements of particles, and 

calculated cartesian positions in a system where z points along Sat- 

urn’s orbit normal, x points from Saturn to the Sun (at the time 

of observation we are trying to model), and y completes a right- 

handed triad. In order to extract the number of particles along Sat- 

urn’s shadow, we selected the particles whose positions lay inside 

the model shadow’s rectangular prism, binned by their radial po- 

sition along ¡x in slices of length 10 R S from 0 ¡ 250 R S . 

The probability of a particle’s position falling inside the shadow 

decreases rapidly with distance from Saturn. In order to obtain re- 

liable statistics, we therefore sampled more particles in distant or- 

bits than in tight ones. In particular, we calculated the positions of 

12,500 particles for the innermost semimajor axis at a = 60 R S , and 

boosted the number of sampled particles at each semimajor axis 

by a factor of ( a /60 R S ) 
3 . For a fair comparison, when counting par- 

ticles in each radial bin, we divided the number of particles from 

each semimajor axis by the same factor of ( a /60 R S ) 
3 . 

Following this procedure, we obtained N ( r i , s j , a k ), i.e., the num- 

ber of particles with semimajor axis a k and size s j that fell in the 

bin with radial distance r i , for each of forty different particle sizes, 
8 

for each of the 100 sampled semimajor axes. The y -scale on our 

plots is set by the number of particles for which we choose to cal- 

culate positions. The normalization of our histograms is thus ar- 

bitrary, but we obtain an accurate scaling with distance for each 

particle size. 

The radial distribution of material as a function of particle size, 

N ( r i , s j ), is then simply given by summing the contributions from 

each of the semimajor axes; however, knowledge of the relative 

amounts of material at each semimajor axis requires a model for 

the injection of particles into the Saturn system (which the data 

can then support or reject). 

We consider here a steady-state model, where Phoebe is bom- 

barded by micrometeoroids at a constant rate, generating d ̇ N (s ) 

particles with radii between s and s + ds per second. 9 In our dis- 

cretized model, within a time 1t , Phoebe’s semimajor axis will 

receive N(a = 215 R S , s ) = d ̇ N (s ) £ 1t particles. After another 1t , 

these particles will have moved to the next semimajor axis in (re- 

call that our semimajor axis values were chosen to each be sep- 

arated by the same 1t ), and Phoebe’s semimajor axis will have 

received a fresh set of particles. After another 1t , the chain is 

pushed one link further, until a steady state is reached. Thus, each 

semimajor axis (i.e., not necessarily each radius) should have the 

same number of particles. We can then simply build the radial dis- 

tribution of particles of a given size N ( r i , s j ) by taking the Monte 

Carlo simulations for grains of radius s j , and for each radial bin 

8 sampled every micron from 5 to 20 µm, and at 22, 24, 26, 28, 30, 35, 40, 45, 

50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000 and 

10,0 0 0 µm. 
9 we note that the implied mass loss rates, even if continued for the age of the 

Solar System, are too small to significantly erode Phoebe. 
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Fig. 10. Number of shadowed particles in the Monte Carlo simulation as a func- 

tion of orbital radius, for different grain sizes. This case does not consider Iape- 

tus sweeping up material (at the vertical red line)—the inner edge around 65 R S 
is instead due to the Laplace plane shifting and material tilting off Saturn’s orbital 

plane, so that the planet’s shadow does not pierce it. As described in the text, par- 

ticle numbers have been normalized to make up for the fact that we simulated 

more particles at large distances from Saturn (in order to have a similar chance of 

finding them in the shadow as grains on tighter orbits). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

adding up equal contributions of particles from each of the hun- 

dred sampled semimajor axes, 

N(r i , s j ) / 

�  

k 

N(r i , s j , a k ) . (18) 

Plugging this result into Eq. (14) , we have 

1m (r i , s j ) / 

�  

k 

N(r i , s j , a k ) s 
2 
j 1s j . (19) 

4.4. Simulation results 

Fig. 10 shows, for different particle sizes, the profile of the 

number of shadowed particles in the Monte Carlo simulation as a 

function of radius, N ( r, s ) ( Eq. (14) ). As one would expect, smaller 

particles (see the 5 and 8 µm distributions) reach farther inward, 

owing to their higher orbital eccentricities induced by radiation 

pressure. By contrast, and of key importance to our later results, 

large particles ( s 20 µm) are relatively unaffected by radiation 

pressure and converge to a common radial profile. 

We note that this case does not consider Iapetus sweeping up 

material. The inner edge around 65 R S for large particles is instead 

due to our observation’s geometry. At this distance, material tilts 

off Saturn’s orbital plane, so that the shadow no longer passes 

through the Phoebe ring. 

Intermediate particles (see the 12 and 15 µm distributions) 

have peculiar distributions sculpted by complicated dynamics. As 

shown by Rosengren and Scheeres (2014) , the Laplace surface for 

particles with these intermediate area-to-mass ratios “breaks” near 

the Laplace radius ( Eq. (5) ), and their orbits are forced to suddenly 

precess about a more distant equilibrium with a large free inclina- 

tion. At such bifurcations, the distributions get substantially puffed 

up vertically, lowering the number density in the shadow. This can 

create local maxima in the distributions of these intermediate-size 

grains. 

The remaining question is whether Iapetus could cut off the 

ring at larger radii than 65 R S . As a limiting case, we imagine that 

Fig. 11. Number of shadowed particles in the Monte Carlo simulation as a function 

of orbital radius, for different grain sizes. Any orbits that have pericenters interior 

to Iapetus’ semimajor axis are removed from their respective bins. 

Iapetus sweeps up all the material on orbits with pericenters in- 

side Iapetus’ semimajor axis (59 R S ). This is a good assumption for 

all but the smallest grains, s r 10 µm ( Tamayo et al., 2011 ). The 

result is shown in Fig. 11 . 

We see that Iapetus only qualitatively affects the radial dis- 

tributions of small particles ( r 20 µm). Starting at approximately 

75 R S , the orbits of larger grains are tilted off the orbital plane 

that is pierced by Saturn’s shadow, so they disappear from our 

observations before we can observe Iapetus sweeping them up. By 

contrast, the more complicated dynamics of small grains ( r 20 µm) 

causes some material to remain in the shadow closer to Saturn, 

making it possible for our observational setup to see the effect 

of Iapetus intercepting these diminutive particles. Additionally, 

small grains develop large orbital eccentricities through radiation 

pressure, and are therefore able to reach Iapetus at pericenter 

from larger Saturnocentric distances. Of course, in reality, Iapetus 

will sweep up material of all sizes; in fact, larger particles are 

more likely to be intercepted since they decay inward more slowly 

through Poynting–Robertson drag ( Tamayo et al., 2011 ). We now 

compare these distributions to the observations. 

5. Comparing theoretical models to the data 

To connect our theoretical radial distributions for various parti- 

cle sizes ( Figs. 10 and 11 ) with the observed photometry, one must 

combine the 1m ( r i , s j ) into a single m ( r i ) ( Eq. (19) ). In addition 

to any intrinsic particle size distribution, because smaller particles 

evolve inward faster than large grains ( Eq. (17) ), we must consider 

that a given semimajor axis will receive more small grains than 

large ones in a given time interval. To this end, we take the input 

rate of particles per unit time at Phoebe’s semimajor axis (which is 

the same for all our a values in a steady state) to follow a power- 

law distribution with index ¡q, 

˙ N (s j , a k ) / s ¡q 
j 

1s j . (20) 

Then, since each of our hundred sampled semimajor axes are sep- 

arated by the same (size-dependent) 1t ( Eq. (17) ), we can obtain 

the number of particles of size s j of semimajor axis a k N ( s j , a k ) in 

our discretized model through 

N(s j , a k ) / 1t £ s ¡q 
j 

1s j / s ¡(q ¡1) 
j 

1s j , (21) 

where the additional factor of s comes from the factor of ¿P¡R 

( Eq. (15) ) in 1t from Eq. (17) . Therefore, in combining particle sizes 
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Fig. 12. Predicted I / F per R S as a function of radial distance from Saturn. The red 

line shows the predicted radial profile without accounting for Iapetus sweeping 

up material. The blue line removes any material whose orbit crosses Iapetus (at 

59 R S ). In gray and cyan are the observed distributions plotted in the right panel 

of Fig. 6 . The predicted profiles have been normalized to agree with the observa- 

tions at 140 R S . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

(assuming a steady state), one should weight the contribution from 

each grain radius by a factor w j = s 
¡(q ¡1) 
j 

1s j . Since w j is indepen- 

dent of a , we can obtain m ( r i ) directly from Eq. (19) , 

m (r i ) / 

s max �  

j= s min 

1m (r i , s j ) w j / 

s max �  

j= s min 

�  

k 

N(r i , s j , a k ) s 
3 ¡q 1s j . (22) 

In summary, Eq. (22) relates the number of particles in each bin 

of our Monte Carlo simulations to the m ( r i ) that we use to con- 

vert our modeled pathlengths through each radial slice of the 

shadow into the expected brightness deficit in a particular pixel 

(see Fig. 2 ). 

Fig. 12 shows our theoretical radial profiles for typical size dis- 

tributions of Solar System rings (power law indices · 4). In partic- 

ular, we fill the space between the curves for a distribution with 

q = 1 and q = 4 , using a minimum and maximum particle size of 

5 µm and 1 cm, respectively. The agreement for power laws · 4 is 

due to the factor of s 3 ¡q in Eq. (22) , which highlights large particles 

that all have similar dynamics (only for indices steeper than q = 4 

would small particles with different dynamical behaviors begin to 

dominate). 

Additionally, we see that, for these size distributions, our mod- 

els are insensitive to Iapetus sweeping up material. This is because 

for q · 4, the dominant large grains are too large to be significantly 

affected by radiation pressure, and therefore do not have sufficient 

orbital eccentricity to reach Iapetus (at 59 R S ) from the larger dis- 

tances spanned by our observations. 

While our observations do not reach inward to the distance 

from Saturn where large particles are removed from the shadow 

( ¼75 R S , see Fig. 10 ), our observed radial profiles (gray and cyan) 

seem to plateau and possibly dip starting at 100 R S . 

5.1. Phoebe ring grains are small 

Taking a step back, we first note that the blue and red curves 

in Fig. 12 simply follow the radial distribution to which dust grains 

of increasing size converge as radiation pressure plays a decreas- 

ingly important role (compare with the 20, 100 and 10 0 0 µm 

curves in Fig. 10 , in the range beyond 80 R S from Saturn). In this 

regime of large grains, radiation pressure represents a small pertur- 

bation. This renders the approximations in our semi-analytic model 

( Section 4 ) excellent, which should yield accurate predicted radial 

profiles. The fact that the observed radial profile instead plateaus 

at » 100 R S therefore implies that particles s 20 µm cannot domi- 

nate the scattered light flux from the Phoebe ring. 10 

It is less clear why small grains dominate the scattered light 

flux. If we assume as above that Phoebe ring grains are produced 

in a steady state, this suggests a steep power law size distribu- 

tion with index q > 4, which would be unusual among rings in 

the Solar System ( Burns et al., 2001 ). However, the Phoebe ring 

has a substantially lower normal optical depth than known plan- 

etary rings. This implies that dust grains should not collide with 

one another, even over the » Myr timescales required for material 

to decay inward through Poynting–Robertson drag. The steep in- 

ferred particle size distributions could therefore reflect the initial 

size distribution of ejecta. One way to observationally test whether 

the Phoebe ring indeed has such an unusually steep size distribu- 

tion would be to measure its brightness in different optical filters; 

such a ring should appear blue. 

Alternatively, release of all the Phoebe ring material in a sin- 

gle large collision would likely admit shallower size distributions 

(see the preceding section), though one would have to additionally 

model and fit for the time of the event. Another possibility is that 

other processes could be preferentially destroying large grains. The 

P-R decay timescales are much longer (at least 1 Myr, see Eq. (16) ) 

than the lifetimes of dust particles in typical planetary rings deep 

in the host’s magnetosphere ( Burns et al., 2001 ), so one might ex- 

pect different effects to dominate in this unusual regime. In partic- 

ular, micrometeoroids should preferentially break up larger grains 

( Burns et al., 2001 ). Finally, the solar wind could be affecting grains 

as they evolve inward outside Saturn’s magnetosphere. 

The above conclusions suggest one should fit the Phoebe ring’s 

radial profile with small grains/steep power laws. The problem is 

that our approximations from Section 4 are much poorer for these 

diminutive grains. Not only do these particles acquire substantial 

orbital eccentricities, the Laplace equilibria for intermediate par- 

ticles ¼ 10 ¡ 15 µm become unstable as they evolve inward, leav- 

ing orbits with large free inclinations to their newfound centers 

( Rosengren and Scheeres, 2014 ). 

This presents another promising extension of this work, since 

we see hints in our models that such phenomena could explain 

the observed “plateau.” For example, as shown in Fig. 13 , a ring 

composed entirely of 13 and 14 µm grains gives a reasonable qual- 

itative match to the data. One can also see that Iapetus strongly 

sculpts the distribution inside ¼100 R S . Given the remarkably rich 

dynamics, one would have to carry out a suite of numerical in- 

tegrations to accurately compare this model to the observations. 

Additionally, to separate these complicated dynamical effects from 

Iapetus sweeping up material, one would likely have to accurately 

model collisions with the satellite. We defer this numerical effort 

to future work, but note the importance of pushing observations 

inward to » 75 R S . 

5.2. Contributions to the Phoebe ring from other irregular satellites 

As can also be seen in Fig. 12 , our theoretical models predict 

less scattered light at Phoebe’s apocenter and beyond ( > 250 R S ) 

than shown by the data. The physical reason is that for retrograde 

orbits, radiation pressure induces a forced eccentricity ( Section 4.2 ) 

that is directed away from the Sun along Á� = ¼ (see Fig. 9 ). This 

means that when particle orbits reach the maximum eccentric- 

ity in their secular cycle, their pericenters point away from the 

Sun, i.e. along the shadow axis. Our observations therefore always 

10 Hamilton et al. (2015) recently reached a similar conclusion from infrared ob- 

servations with WISE. 
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Fig. 13. Number of shadowed particles in the Monte Carlo simulation, assuming an 

equal number of 13 and 14 µm grains, and a constant I / F offset of 8 £ 10 ¡12 from 

other irregular satellites. 

sample the most eccentric particles at pericenter—this skews the 

radial distributions toward smaller distances from Saturn, leaving 

little material beyond Phoebe’s apocenter. 11 

As Hamilton et al. (2015) also argue from infrared WISE data, 

this suggests that other irregular satellites also contribute to the 

“Phoebe” ring. The more distant irregular satellites Ymir, Suttungr, 

Thrymr and Greip are promising candidates, given their similar or- 

bital inclinations to Phoebe (since this determines the derived ver- 

tical disk thickness). There are likely also additional bodies too 

small to detect with current technology. The contributions from 

other irregular satellites merit further study, since our empirical 

model fit a single power law at large distances. 

6. Conclusion 

By measuring the deficit in scattered light from Phoebe ring 

grains in Saturn’s shadow, we were able to reconstruct a radial 

profile of material in this vast debris disk ( Fig. 6 ). We also obtained 

an integrated I / F at 0.635 µm along Saturn’s shadow from 80–250 

R S of 2 . 7 
+0 . 9 
¡0 . 3 

£ 10 ¡9 . To date, only this technique has yielded mea- 

surements of the Phoebe ring at optical wavelengths. Additionally, 

the method’s inherent attenuation of scattered light from Saturn 

makes it possible to probe material closer to Saturn than has been 

feasible with infrared observatories in orbit around Earth. 

Combining such a measurement of scattered light at optical 

wavelengths with ones of thermal emission at infrared wave- 

lengths, like those of Verbiscer et al. (2009) and Hamilton et al. 

(2015) , allow one to estimate the particle albedos. This was done 

by THB14, who found grain albedos consistent with dark ejecta 

from Phoebe. However, while the data presented in this paper are 

substantially better than those analyzed by THB14, there remain 

large uncertainties in the particles’ infrared emissivities and phase 

functions (though see Hedman and Stark 2015 for recent progress). 

We therefore defer an improved analysis until more observations 

at undertaken at new wavelengths. 

We find that the scattered light signal rises as one moves in- 

ward from Phoebe to Saturn (as expected), but then “plateaus”

11 Were Phoebe ring grains to instead orbit in a prograde direction, the behavior 

would be opposite and particles would fill the shadow to much larger distances 

( Hamilton, 1996 ). 

at ¼100 R S ( Fig. 13 ). We developed a semi-analytic treatment for 

the size-dependent dust dynamics of Phoebe ring grains, and used 

this to generate a Monte Carlo model of the material in Phoebe 

ring’s shadow. Our models, which should be accurate for grains 

s 20 µm in size, deviate from the ring’s observed radial profile in- 

side ¼100 R S . We conclude that the Phoebe ring’s scattered light 

signal must be dominated by small dust grains ( r 20 µm). Assum- 

ing the Phoebe ring is generated through a steady-state process of 

micrometeoroid bombardment, this implies that a particle size dis- 

tribution with an index > 4, which is unusually steep among Solar 

System rings. This agrees with a recent analysis of the ring’s in- 

frared thermal emission with WISE ( Hamilton et al., 2015 ). Again 

in agreement with Hamilton et al. (2015) , we find that additional 

irregular satellites beyond Phoebe must contribute material to the 

“Phoebe ring,” in order to explain the observed fluxes at and be- 

yond Phoebe’s apocenter. 

The lack of large particles in the Phoebe ring may have im- 

portant implications. Because the optical depth is so low, parti- 

cles smaller than » 100 µm should not suffer mutual collisions 

( Tamayo et al., 2011 ). The steep size distribution may therefore 

trace the original size distribution of ejecta from micrometeoroid 

bombardment. Alternatively, the small particles may suggest that 

another process, perhaps micrometeorite bombardment, preferen- 

tially breaks apart large grains as they more slowly decay inward 

over several Myr. 

It is unclear whether the “plateau” feature we observe is due to 

Iapetus sweeping up material, the complicated dynamics of small 

dust grains, or both. The approximations in our analytical model 

break down for these diminutive particles, so an in-depth numeri- 

cal study will be required to accurately untangle these effects. Nev- 

ertheless, it is theoretically expected that Iapetus should efficiently 

sweep up particles s 10 µm ( Tamayo et al., 2011 ), so it will be a 

valuable task to push future data analysis and modeling effort s to 

observationally test how well Iapetus carves out the inner edge to 

the Phoebe ring. 
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Appendix A. Testing the pipeline 

We have tested our procedures by running synthetic images 

through our pipeline. Using our modeled pathlengths for the outer 

pointing in Rev 197, and assuming the broken power-law model 

for the Phoebe ring of Section 3.2 , we constructed images with the 

expected dimming for shadowed pixels. Superimposing Gaussian 

noise with mean I / F 5 £ 10 ¡8 , and standard deviation 10 ¡8 (the 

values we found in the same data set after filtering bad pixels), 

we ran these fake images through the pipeline to try and retrieve 

the input radial model. 

In particular, we generated synthetic images from a model with 

n Inner = 0 , n Outer = ¡2 , and R k = 130 R S ( Eq. (3) ). We then calcu- 

lated reduced Â2 values using our pipeline for a grid of power law 

indices centered on the input values (with the break fixed at 130 

R S ). The result is shown in Fig. A.14 . 

Several features stand out in this plot. Perhaps most striking is 

that the input model does not yield the lowest Â2 . Additionally, 
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Fig. A1. Distribution of reduced Â2 values for a grid of models, applied to a syn- 

thetic dataset overlaid with Gaussian noise that was generated using the model pa- 

rameters at the center of the grid. See text for discussion. 

the Â2 is systematically below unity for the best models, and does 

not vary smoothly across the grid. We address these points in re- 

verse order. 

The reduced Â2 does not vary smoothly primarily because of 

our selection of the best-fit normalization. In reality, this slice for 

a break location at 130 R S is three-dimensional (specifying the nor- 

malization and two power-law indices). If one pictures Fig. A.14 as 

extending into the page along the normalization direction, the 

plotted colors correspond to the minimum chi squared value from 

the “column” of normalizations “below” each grid point. Because in 

general the minimum Â2 values lie at different “depths,” the vari- 

ation is not smooth across the grid. A similar effect can be seen in 

Fig. 9 of Nicholson et al. (2014) . 

We attribute the systematically low reduced Â2 values to an 

overestimation of our number of degrees of freedom, which can 

often be a problem for non-linear models (e.g., Andrae et al., 2010 ). 

Due to the large number of pixels in each of our datasets ( »10 7 ), 

we choose to do a simple and thus necessarily rough statistical 

analysis. We generated 300 fake images using the same broken 

power-law model given above, each with a different Gaussian noise 

realization (with parameters as above). We then ran each synthetic 

data set through our pipeline, fitting to the same input model used 

to generate the fake images. To additionally test our procedure’s 

ability to extract the correct normalization, we initially guess a 

normalization that is two times too large. 

Our procedure systematically retrieves the correct normaliza- 

tion to within 0.06% (mean), with a standard deviation of 0.3%. 

A naïve counting of the number of bins entering our Â2 evalua- 

tion suggests 259 degrees of freedom. We find that a histogram 

of our Â2 values is instead best fit by a Â2 distribution with 209 

degres of freedom. A Komolgorov-Smirnov test gives a p Value of 

0.43 that our histogram is drawn from such a Â2 distribution (with 

¼80% the number of degrees of freedom one would naïvely esti- 

mate). While we might thus adjust the degrees of freedom in our 

analysis by 80% to evaluate the probabilities entering our marginal- 

izations, we nevertheless choose to normalize all reduced Â2 val- 

ues to the minimum value. We find that if we raise the reduced 

Â2 values by 20%, our marginalized estimates are extremely sensi- 

tive to the few parameter combinations lying at the bottom of the 

deepest valleys of Â2 space. Normalizing to the minimum value 

more equitably samples the best fits to the data and seems like a 

more balanced representation of the models, given that our under- 

lying statistical analysis is approximate. We partially compensate 

for this by making conservative estimates of the errors on the pa- 

rameters we extract, bracketing the wide range in parameter space 

that yields reasonable fits. 

Finally, we consider that the input model does not yield the 

lowest Â2 . This reflects the fact that in order to obtain enough 

signal, our geometry is such that we look nearly radially out- 

ward down the axis of the shadow. This fundamentally limits the 

amount of radial information that we can extract from our data. 

Thus, the models along the band of low Â2 values are all good 

models that approximately conserve the integrated amount of ma- 

terial in a column along the line of sight. Superposed on this band 

of good models is the statistical variation one would expect for a 

Â2 distribution, which, as argued above, is jumpy because we are 

probing to different “depths” along the normalization direction in 

parameter space. It is thus not surprising that one of the equally 

good models near the input model would statistically have a lower 

Â2 . If we try the same analysis with a different noise realization, 

we find the same band of low Â2 values, with the same dispersion, 

but a different grid point along the band becomes the “best fit.”

As a final consideration, we investigate whether the low Â2 val- 

ues might imply we are overfitting the data. To test this, we per- 

form our normal procedure, but only on the even images, obtain- 

ing a best-fit model (including a value for the normalization). We 

then calculate a reduced Â2 value for that model (this time with 

the normalization fixed), using the odd images. If we were fitting 

noise in the even images, the Â2 would suffer in the odd images, 

but we find that the reduced Â2 values are statistically indistin- 

guishable between the even and odd images, and both look like 

Fig. A.14 . 
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