THE ASTROPHYSICAL JOURNAL, 828:77 (13pp), 2016 September 10

© 2016. The American Astronomical Society. All rights reserved.

THE ROLE OF THE KOZAI-LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS
IN GALACTIC CENTERS

JoHN H. VANLANDINGHAM, M. COLEMAN MILLER, DoUGLAS P. HAMILTON, AND DEREK C. RICHARDSON
Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
Received 2016 April 14; revised 2016 July 1; accepted 2016 July 1; published 2016 September 6

ABSTRACT

In order to understand the rate of merger of stellar mass black hole binaries (BHBs) by gravitational wave (GW)
emission it is important to determine the major pathways to merger. We use numerical simulations to explore the
evolution of BHBs inside the radius of influence of supermassive black holes (SMBHs) in galactic centers. In this
region, the evolution of binaries is dominated by perturbations from the central SMBH. In particular, as first
pointed out by Antonini and Perets, the Kozai-Lidov mechanism trades relative inclination of the BHB to the
SMBH for eccentricity of the BHB, and for some orientations can bring the BHB to an eccentricity near unity. At
very high eccentricities, GW emission from the BHB can become efficient, causing the members of the BHB to
coalesce. We use a novel combination of two N-body codes to follow this evolution. We are required to simulate
small systems to follow the behavior accurately. We have completed 400 simulations that range from ~300 stars
around a 10> M, black hole to ~4500 stars around a 10* M, black hole. These simulations are the first to follow
the internal orbit of a binary near an SMBH while also following the changes to its external orbit self-consistently.
We find that this mechanism could produce mergers at a maximum rate per volume of ~100Gpc > yr' or
considerably less if the inclination oscillations of the binary remain constant as the BHB inclination to the SMBH
changes, or if the binary black hole fraction is small.
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1. INTRODUCTION

The recent detections of gravitational waves (GWs) from the
merger of black hole binaries (BHBs) by Advanced LIGO
(Abbott et al. 2016a; Abbott et al. 2016c) has begun a new
phase of investigation in GW astronomy. Instead of asking
whether detectors such as Advanced LIGO (Aasi et al. 2015)
and Advanced Virgo (Acernese et al. 2015) will detect GWs, or
whether BHBs exist, we turn to determining how common
mergers of BHBs are and what pathways to merger they follow.
Currently, predictions for the merger rate of BHBs are very
uncertain. Until these detections, there had been no observa-
tions of merging black holes to inform the predictions. Instead,
various population synthesis models (Voss & Tauris 2003;
Kalogera et al. 2007; Postnov & Yungelson 2014; Belczynski
et al. 2015) have been used to predict the merger rate. The
predicted rates per volume range from 0.1-300 Gpc > yr—'
(Abadie et al. 2010). The recent GW detections have
constrained this rate to 9-240 Gpc > yr~!, which eliminates
only the lowest values (Abbott et al. 2016b).

Population synthesis models typically rely on stellar
evolution codes to predict the number and distribution of
BHBs. Dynamical interactions with other stars or black holes
may increase the predicted merger rates. These interactions
have recently begun to be studied, particularly in dense stellar
environments such as globular clusters and galactic centers
(Portegies Zwart & McMillan 2000; Miller & Hamilton 2002;
O’Leary et al. 2006; Sadowski et al. 2008; Miller &
Lauburg 2009; Antonini & Perets 2012; Morscher
et al. 2015; Rodriguez et al. 2015, 2016a). The environment
of the nuclear region of galaxies is of particular interest as
secular processes due to the presence of the central super-
massive black hole (SMBH) can become important.

In galactic nuclei, within the region where the SMBH
dominates the gravitational potential (the radius of influence), a
BHB would effectively form a hierarchical triple system with
the SMBH, where the BHB would to first order be simply
orbiting the SMBH. Under these conditions, as long as the
BHB has a high relative inclination to its orbit around the
SMBH, it will evolve over many orbits trading eccentricity for
inclination in a periodic fashion (Antonini et al. 2010; Antonini
& Perets 2012). This mechanism was first explored by Kozai
(1962) and Lidov (1962) with a focus on solar system objects,
and is referred to as the Kozai-Lidov (KL) mechanism. The KL
mechanism has since been further developed to higher order
and less restricted cases (e.g., Lidov & Ziglin 1976; Innanen
et al. 1997; Ford et al. 2000; Blaes et al. 2002; Miller &
Hamilton 2002; Lithwick & Naoz 2011).

The KL mechanism, when applied to BHBs in galactic
nuclei, can lead to binaries with very high eccentricities, and
therefore to a merger timescale that is very short compared to a
circular binary. As an example, consider a system consisting of
two 10 M, black holes orbiting an SMBH. From Peters (1964),
if the binary has a separation of 1 au it would take 10'* years to
merge due to GW emission for a circular binary, but only four
thousand years to merge for a binary with e = 0.9995.
Reaching this extreme eccentricity is possible due to the KL
mechanism if the initial mutual inclination between the BHB
and SMBH is approximately 88°-92° (Kozai 1962).

Determining the rate of BHB mergers due to the KL
mechanism in a galactic nucleus is complicated by the various
other processes affecting the orbit of the BHB in such a dense
stellar environment. These include such effects as two-body
relaxation (Spitzer 1987), scalar and vector resonant relaxation
(VRR; Rauch & Tremaine 1996; Hopman & Alexander 2006a;
Kocsis & Tremaine 2015), mass segregation (Bahcall &
Wolf 1977; Hopman & Alexander 2006b; Antonini 2014),
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binary evaporation (Binney & Tremaine 1987), general
relativistic precession, and close approaches (Heggie 1977).
Several of these processes would tend to suppress KL cycles,
whereas others offer the tantalizing possibility of increasing the
chance that a BHB will end up in a favorable orientation.

To date, studies of binaries undergoing KL oscillations in
galactic centers (e.g., Antonini et al. 2010; Antonini &
Perets 2012; Prodan et al. 2015; Stephan et al. 2016) have
assumed that the mutual inclination of the binary and SMBH is
fixed at some initial value. However, as the binary orbits the
SMBH, the inclination of the center of mass (COM) of the
binary relative to the SMBH will be altered due to the
asymmetric potential of stars the binary orbits within, as well as
by close approaches to the binary. If this change in the
inclination of the COM orbit of the binary can lead to even
minor changes in the total inclination between the binary and
SMBH, this will result in many more binaries reaching the
critical inclination that allows them to merge in a relatively
short time.

In order to follow all of these processes, we turn to
simulations of galactic nuclei using numerical N-body gravity
codes. Many advances have been made in N-body simulations
of dense stellar systems. Highly parallelized codes (Stadel 2001;
Nitadori & Aarseth 2012) and extremely fast codes using GPUs
(Portegies Zwart et al. 2007; Gaburov et al. 2009; Wang
et al. 2015) allow for simulations with great precision and large
numbers of particles (Hurley & Shara 2012; Sippel &
Hurley 2013; Heggie 2014). However, difficulties remain,
particularly with highly eccentric orbits near very massive
objects. These situations require very high precision because of
the extreme mass ratios involved, as well as the very large
forces, which require very small time steps to integrate
correctly. Simulations of this kind are possible but have often
been limited to small numbers of particles (Mikkola &
Merritt 2008; Merritt et al. 2011). This difficult situation is
precisely the regime that we would like to explore. The
additional requirement of following the internal orbit of a close
binary in this regime leads us to use novel methods of
simulation and restrict ourselves to systems that have SMBHs
that are a few orders of magnitude smaller than is realistic.

Here we describe full N-body simulations of BHB mergers
in dense stellar regions around a massive black hole. Our
simulations assume that the changes in the mutual inclination
between the BHB and SMBH follow the inclination of the
COM orbit of the BHB. Recent work by Hamers et al. (2015)
as well as our own tests suggest that under certain
circumstances this should not be the case. Our results should
therefore be considered an upper limit of the case in which
mutual inclination changes are damped or eliminated. Our
simulations are evidence of the potential importance of the
contribution to the BHB merger signal for Advanced LIGO by
binaries that merge due to the KL mechanism. Additionally, as
we discuss in Section 5, these simulations provide intriguing
insight into observations of the possible overabundance of low
mass X-ray binaries very close to the galactic center (Muno
et al. 2005; Perez et al. 2015; Prodan et al. 2015).

In Section 2, we set up our problem in more detail, including
relevant timescales for our simulations. Section 3 discusses the
problems associated with simulating dense, highly eccentric
groups of stars on these timescales. We also describe the
simulation method we use to solve those problems. In Section 4,
we present our results, along with a discussion of the implied
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detection rate of mergers. Finally, in Section 5, we address
various physical processes that may increase or decrease the
binary merger rate and that may be incompletely simulated, and
we present our conclusions in Section 6.

2. TIMESCALES

Our focus in this paper is on stellar mass BHBs in galactic
centers, inside the radius of influence of the SMBH. In this
section, we examine the various processes that may affect this
binary, with a particular view toward the eventual merger of
these binaries and the resulting GW emission.

The GW merger timescale for very eccentric binaries is
given by Peters (1964) as

3 cSal
TGW ~ —[ 0
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~12 x 10" year( My ) (ﬂ) (1 — V2. (1)
20M 1au

Here ay is the semimajor axis of the binary, ey is the
eccentricity, My is the binary mass, and m; and m, are the
components. The second line assumes an equal mass binary. A
circular binary consisting of two 10 M., black holes with a
semimajor axis of 1 au would require much more than the age
of the universe to merge by GW emission alone. However,
there is a strong dependence on the eccentricity. A binary with
the same semimajor axis and component masses but with an
eccentricity of 0.9995 would merge in a mere 3800 years. It is
therefore clear that a process that can significantly increase the
eccentricity of binary systems could dramatically increase the
rate of mergers.

One important process that can bring binaries to extremely
high eccentricities is the KL mechanism. The KL mechanism is
an application of the three-body problem to the special case of
a hierarchical triple system. In a hierarchical triple system, an
inner binary with a small semimajor axis is orbited by a third
body at a much larger semimajor axis. More directly instructive
for our purposes, a hierarchical triple system is one in which
the outer object dominates the angular momentum of the
system. This is exactly the situation for a BHB near an SMBH.
The components of the BHB, m; and m,, form the inner binary,
which from its frame of reference is orbited at a large distance
by the SMBH, m; (see Figure 1 for coordinate system). In the
rest of this paper, we will treat the SMBH as stationary with the
BHB orbiting it, which is equivalent to this formalization but a
more natural frame of reference.

This particular case of the hierarchical three-body problem
can be solved analytically by expanding the Hamiltonian in a
power series in a;/a,, where a; is the semimajor axis of the
inner binary or interior orbit, and a;, is the semimajor axis of the
outer binary, which we call the superorbit. The main result of
these analyses is that 7., the mutual inclination of the inner and
outer binary, will oscillate over many orbits of the inner binary
along with e, the eccentricity of the inner binary. That is, a
system with large i,,, and small e; will evolve to a system with
small i, and large e;.

The first analyses of this mechanism (Kozai 1962; Lidov
1962) considered the effect of the perturbation of the orbit of a
highly inclined asteroid or artificial satellite by the gravity of
Jupiter or the Moon. These analyses solve the equations of
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Figure 1. Coordinate system for the general Kozai problem. In our case, m;
and m, are the components of the BHB while m; is the SMBH. The mutual
inclination is i, a; is the interior semimajor axis, and a, is the superorbit
semimajor axis, adapted from Naoz et al. (2013).

motion to quadrupole order and assume a circular outer orbit
(e = 0) that dominates the angular momentum of the three-
body system (i.e., m, = 0). In this regime, a simple relation
can be found between the maximum eccentricity of the inner
binary (e;max) and the initial mutual inclination (i),
provided that 39° 0 iy 0O 141°. This is given by
(Kozai 1962)

5 1/2
€1,max ~ (1 - ECOSZ itol,O) . (2)

A system with initial mutual inclination of 90° would allow the
inner binary to reach an eccentricity of unity. In this limit, these
oscillations can be simply understood as the conservation of the
component of the angular momentum of the inner orbit along
the direction of the total angular momentum of the system.

Later analyses of this effect remove the restrictions of a
circular outer binary and test mass particle (Lidov &
Ziglin 1976), take the approximation to octupole order (Ford
et al. 2000; Blaes et al. 2002), and add general relativistic
effects (Blaes et al. 2002; Miller & Hamilton 2002). All of
these analyses find the same general result, that at high enough
initial inclinations, the eccentricity and inclination of the inner
orbit will oscillate. The exact details of the maximum
eccentricity and the initial inclination needed may vary, and
at the octupole level the inclination can even change sign (e.g.,
Innanen et al. 1997; Lithwick & Naoz 2011). We take care of
all of these details automatically by doing direct three-body
numerical integrations.

In order for the KL mechanism to become important for a
BHB, several conditions must be met. First, the BHB must be
in a hierarchical triple system with some other object. Second,
the BHB must reach a critical inclination such that KL
oscillations are strong enough to reach high eccentricity. Third,
the BHB must remain in the correct orientation long enough
that the KL oscillations can allow the BHB to merge before
other processes suppress them. The first condition is met by
considering BHBs that orbit within the radius of influence of an
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SMBH. The radius of influence R;,q is defined as the radius at
which the velocity dispersion of the bulge of the galaxy O is
equal to the speed expected of a Keplerian orbit around the
SMBH,

Rinn =

1/2
GMsvBH | C(MSMBH] / 3)

s? 10°M,

Here, the second equality is found by using the M—0 relation,
which is an empirical relation between the mass Mgypy of an
SMBH and the velocity dispersion O of the galaxy bulge. This
relation has been estimated to be Mgypy o< $2, with a ~ 4-5
(e.g., Ferrarese & Merritt 2000; Tremaine et al. 2002; Giiltekin
et al. 2009). Here we simply use & = 4. Alternatively, Ri,n can
be defined as the radius inside of which the mass in stars is
equal to the mass of the SMBH. Empirical relations using this
definition have been found (Merritt et al. 2009; Stone &
Metzger 2016) and find a similar relation, though with a
slightly different slope. The binaries under consideration here
are well inside Rj,f.

The conditions that the BHB reach a critical orientation and
also remain in that orientation long enough for merger are
much more difficult to predict. Antonini & Perets (2012)
examine many of the timescales relevant for this analysis. In
Table 1, we provide the most relevant of these timescales,
adapted for our particular circumstances. In their paper,
Antonini & Perets conduct an analysis of the appropriate
timescales as well as a series of three-body numerical
integrations of BHBs near an SMBH and conclude that the
KL mechanism is likely to increase the number of BH-BH
mergers in galactic nuclei.

2.1. Mutual Inclination

The single most important factor for whether a BHB will
merge while in the high eccentricity phase of a KL oscillation is
its mutual inclination with the SMBH, iyy. If iy is close enough
to 90°, the BHB will reach a high enough eccentricity that it
can merge during a single KL oscillation (See Equations (1)
and (2)). It is therefore critical to know the evolution of i;,; and
any processes that might affect it. Research done prior to this
on the importance of the KL mechanism to binaries has
sometimes mentioned the possibility that iy, may not be fixed
(e.g., Perets & Naoz 2009; Antonini & Perets 2012; Antonini
et al. 2016; Stephan et al. 2016), but simulations including this
effect have not been completed. If indeed there are processes
that could change iy, this would expand the number of binaries
that could reach critical inclination dramatically, possibly
allowing many more BHBs to merge.

Any process that changes the orbital plane of the BHB
around the SMBH has the potential to alter 7. This includes
VRR (see Table 1) as well as precession due to the overall
aspherical mass distribution of the galactic nucleus and kicks
due to close approaches of stars. However, a recent paper by
Hamers et al. (2015) casts doubt on the efficacy of these
processes ability to alter i, Hamers et al. (2015) examine a
series of four-body systems that consist of a hierarchical triple
system orbited at large distance by a fourth body. This fourth
body, initially at high inclination relative to the inner triple
system, is in effect causing a second KL oscillation on a
different timescale from the inner triple. They find that as long
as the timescale of the KL oscillations from the fourth body is
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Table 1
Additional Important Timescales
Timescale Note
1 172 32 3
T = 14 x 100 year| Zsusn | - f Mo (i) Q| (1 = eppr !
10°M, 20M, 1 au 0.1 pc
-1 1/2 b
Ter = 4.4 x 107 year Mswu | _M, 92
10°M,, )\ 20M,, 0.1 pc
1/2 ~1 3/2
c
Trr = 2.3 x 107 year Mswsn My 42
109M, 20M, 0.1 pc
d

1/4 -1
Torg = 4.6 x 104 year| Msven My 4
10°M, 20M, 0.1 pc

—3/2 52
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Tor = 6.0 x 10* year| —2> (—‘) 1 — ¢t
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Note.

 Kozai-Lidov timescale (Innanen et al. 1997). The timescale over which Kozai-Lidov oscillations occur. Here a; = 0.1R;yq is the superorbit semimajor axis, e, is the

superorbit eccentricity, and a; is the interior orbit semimajor axis.

b Energy Relaxation timescale (Spitzer 1987). The timescale over which objects can significantly alter their orbital energy. This is the same process as dynamical
friction. We use a Keplerian velocity dispersion since our region of interest is inside Ri,n. The M—0 relation and a number density of stars n o< r~2 witha = 2 sets the
number of stars within the volume. We choose a primarily to speed up the simulations, though a value of @ ~ 2 is physically motivated (e.g., Genzel et al. 2003). The

average stellar mass is set to 1 Mo,

¢ Resonant Relaxation timescale (Rauch & Tremaine 1996). The timescale over which objects can significantly alter their angular momentum.

4 Vector Resonant Relaxation (VRR) timescale (Hopman & Alexander 2006a). VRR is due to the averaged mass distribution over many orbits of an individual star,
which exerts a torque that can alter the plane of the BHB orbit without affecting its energy or the magnitude of its angular momentum. Here once again the M—0O
relation and stellar number density are used to set the number of stars in the volume.

¢ General Relativistic Precession timescale. If this precession is too fast, it can suppress the KL cycles. Previous work (Hollywood & Melia 1997; Blaes et al. 2002)
has found the precise condition at which this happens. In our simulations this condition is rarely met.

long compared to the inner KL timescale, the mutual
inclination of the inner triple is essentially unaffected by the
fourth object.

In analogy with the system as described in Figure 1, this
fourth object would be akin to a process that would alter the
inclination of the superorbit of the BHB. According to this
result, as long as the timescale of this process is slow compared
to Tkr, it Would remain fixed. In the opposite case, when the
inclination altering process under consideration is fast relative
to Txr, it should closely follow the inclination of the
superorbit.

In order to test this result in a situation more closely
resembling our own scenario, we performed a small set of
three-body integrations. We use the N-body code HNBODY,
which is described in more detail in Section 3. All of these
simulations consist of a central object m; with mass 1 Mg
orbited at a distance of 1 au by an object m, with mass 10~° M,
and at a distance of 10 au by an object m3 with mass 107> M,
Tx,, for this system is approximately 10°years and the
simulations were run for 3 x 10° years. We apply a force on
m; that causes the inclination of its orbit around m, relative to a
reference plane to increase exponentially over the first
10° years. The form of the applied force requires that in order
for it to smoothly alter the inclination of m3, m5; must be in orbit
around a dominant central mass and disturbances due to other
bodies must be kept to a minimum. We therefore chose a
configuration that, while different from that used in our larger
simulations, is still a hierarchical triple that can inform our
understanding.

Figure 2 shows the results of these simple three-body
simulations. We performed three sets of simulations. The first
set (red stars) includes simulations where the initial mutual
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Figure 2. Change in the mutual inclination of an inner and outer binary in a
hierarchical triple as a function of the initial inclination of the outermost object,
which increases its inclination by a factor of e & 2.718 over one KL cycle. The
initial mutual inclination, i, is 55° for red stars, 70° for blue circles, and 85°
for green triangles. Error bars represent the variability of the inclinations. All
values of Ai,, within 0?5 of 0° are consistent with no change. Although Ay
is much smaller than the change in the inclination of the outermost object, it is
not negligible, especially for large initial 7.

inclination, iy, between the orbit of m, around m; and m;
around m, is 55°. The second set (blue circles) has i, = 70°,
while the third set (green triangles) has i, = 85°. The initial
inclination of the outer object, ms, ranges from 0°1-25°6,
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which means that, over the first 10° years, the outer inclination
changes by ~0?3-70°. This range corresponds to the minimum
to maximum observed change in inclination within one KL
oscillation for all of our full N-body simulations. The values of
Ay are uncertain to within about 0°5 due to the variability
over time. All values of Aiy, within 0°5 of 0° are consistent
with no change.

The simulations in Figure 2 clearly show that i, does not
follow the inclination of the outer object. However, while the
change in iy, is severely damped, it is not zero. Systems with
initial i,y = 85° could even reach 90°. These preliminary
results suggest that iy, is not completely fixed, even with a
somewhat slowly changing superorbit inclination. In the case
of VRR or precession due to an aspherical mass distribution we
would expect a smooth, relatively slow change in the superorbit
inclination that might follow these results. However, kicks due
to close approaches of stars would happen on a much faster
timescale and might be more effective in changing the mutual
inclination. In the following sections, we describe N-body
simulations that allow us to self-consistently follow all of the
important processes discussed in this section except for this
damped mutual inclination change. Our results should therefore
be considered an upper limit to the importance of inclination
variance on the likelihood of KL oscillations leading to merger.

3. NUMERICAL SIMULATIONS

Direct N-body simulations have long been used to simulate
star clusters because they are very accurate and require very
few assumptions. Over time, improving software and hardware
has permitted simulations of ever greater numbers of particles.
Although cosmological simulations have surpassed a billion
particles, stellar simulations have progressed more slowly. In
the last few years, the use of parallelized codes and codes that
use GPU processors have allowed the direct simulation of star
clusters with several hundred thousands of stars (e.g., Sippel &
Hurley 2013; Heggie 2014) and even up to 1 million stars
(Wang et al. 2015; Rodriguez et al. 2016b). The discrepancy is
due to the much larger number of dynamical times that are
necessary to simulate these dense stellar systems. These are
remarkable achievements, allowing us to model real star
clusters accurately, although only for a few clusters so far
(Zonoozi et al. 2011, 2014; Heggie 2014).

Another type of system that could benefit greatly from N-
body simulations, and the one of interest here, is galactic
centers. Here, however, direct N-body simulations have been
limited to several tens of stars (e.g., Mikkola & Merritt 2008;
Merritt et al. 2011; Brem et al. 2014). The reason for this
discrepancy is the SMBH at the center of the cluster. Stars
approaching close to the SMBH experience extreme forces and
therefore require extremely high accuracy to integrate. This
results in very time-consuming simulations. One alternative to
using a small number of stars is to use a relatively small SMBH
mass or relatively large particle mass (e.g., Antonini &
Merritt 2012; Vasiliev et al. 2014). The underlying problem
is the extremely small time steps required for integrating close
approaches of particles of very disparate masses.

3.1. Methodology

Our goal is to follow the orbit of a BHB under the influence
of the perturbations from an SMBH as well as the effects of the
stars in a galactic center. We therefore must follow not only
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close approaches of stars to the SMBH but also the internal
orbit of the BHB. In order to achieve this, we have developed a
hybrid approach. We use the N-body code NBODY6 (Nitadori &
Aarseth 2012) to follow the orbit of the COM of the BHB as
well as the orbits of all the stars and the SMBH. We use
another N-body code HNBODY (Rauch & Hamilton 1999) to
follow the three-body motion of the individual members of the
binary under the influence of the SMBH. The procedure is as
follows.

1. Generate a set of initial conditions for the stars, the
SMBH, and a single COM BHB particle.

2. Integrate the stars and COM BHB particle forward until
the BHB is close enough to the SMBH to be tidally
separated using NBODY6 for each set of initial conditions.

3. Compile the position and velocity of the COM BHB
particle for the duration of each simulation.

4. Generate a set of initial conditions for the initial orbit of
the individual members of the BHB.

5. Integrate just the three-body interaction of the BHB and
SMBH using HNBODY for the duration of one output step
from NBODY®6.

6. Reposition the COM position and velocity of the BHB
calculated by HNBODY to the position and velocity of the
next output step from NBODY6.

7. Continue integrating using HNBODY and repositioning at
each output step until the end of the NBODY6 run is
reached or the BHB merges.

Splitting our simulations into these separate parts allows us
to follow the internal orbit of the BHB without slowing the
simulation of all of the other stars. Without this novel approach,
these simulations would not currently be possible. However,
this also means that the changes in the COM orbit are
implemented as instantaneous changes every NBODY6 output
step rather than as smooth progressions. This is a good
approximation for most effects because the NBODY6 output
step is very short compared to the superorbit period.
Unfortunately, this also means that we do not correctly follow
the mutual inclination evolution as described in Section 2.1.
Instead, we effectively treat the mutual inclination as exactly
following the changes in the superorbit inclination. The mutual
inclination therefore varies more drastically than is realistic.

Our approach also requires that the internal orbit of the BHB
not be meaningfully affected by the influence of the other stars.
One way in which a binary may be affected is by binary
ionization. If a binary is soft (Heggie 1977), i.e., the magnitude
of the internal binding energy of a binary is less than the typical
kinetic energy of a star that comes close to the binary, then over
many encounters the binary will tend to separate. Additionally,
a very close encounter of a star within the actual orbit of the
binary may randomize the binary orbit parameters. We
therefore checked all of our binaries to see how common this
was in our simulations. We found that our binaries averaged
less than one close encounter per relaxation time. Because our
binaries are hard and close encounters are rare, we feel the
influence of individual stars on the internal elements of the
BHBs is adequately modeled.

3.2. Codes

NBODY6 is a direct N-body integration code that uses fourth-
order Hermite integration with hierarchical time stepping and
several regularization schemes. For more information see
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Nitadori & Aarseth (2012). We use NBODY6 to follow the
COM orbit of our BHBs in the potential of the SMBH and
stars. Using NBODY6 to simulate a galactic center requires
following orbits very close to a mass much larger than the rest
of the particles, a task for which the code was not designed. We
use Kustaanheimo & Stiefel (KS) regularization to help
integrate close encounters with the SMBH. Still, it was
necessary to keep the size of our simulations modest, as well
as make a few adjustments to the code.

Because of the extreme mass ratio between stars and the
SMBH in our simulations, it was possible for the time step of
stars passing close to the SMBH to reach a value smaller than
the precision of double precision floating points in NBODY6.
We therefore adjusted the code to force the time step to always
be larger than this value. This adjustment only affects the small
number of stars that approach extremely close to the SMBH.
Because these stars use time steps that are larger than would
naturally be chosen by NBODY6, we analyzed them to
determine whether they were being integrated precisely enough
for our purposes. One possible result of imprecise integrations
of close approaches is stars that spuriously attain positive
energy with respect to the entire system. Stars that have small
energy errors on close approaches but that still are representa-
tive of a typical star in a galactic center are acceptable for our
purposes. Stars that are completely ejected from our system
erroneously are unacceptable, because they alter the stellar
distribution significantly. However, it is possible for stars to be
ejected from our system for natural reasons, including having a
close approach with another star while close to the SMBH. The
analysis of several hundred stars that were ejected from our
simulations found that all of them had a close approach with
another star, which accounted for the ejection. Additionally, the
total energy conservation in our simulations remained within
several percent, which is sufficient for our purposes.

HNBODY (Rauch & Hamilton 1999)" is a symplectic N-body
integrator designed specifically for cases in which there is a
central massive object that dominates the orbits of all others.
However, it also includes adaptive time step integrators, and we
chose to use a fourth-order Runge-Kutta integrator to better
follow extremely high eccentricity orbits. It includes a module
that adds post-Newtonian corrections to the Newtonian force
calculations of up to an order of 1PN. This order of correction
accounts for general relativistic precession, but does not
include gravitational radiation. However, there is a module in
HNBODY called HNDRAG that can also include drag forces. One
of the included options is GRDRAG (Giiltekin et al. 20006),
which models gravitational radiation using the equations of
Itoh et al. (2001) as a drag force on the orbit. We use HNBODY
with the GRDRAG module to follow the three-body interaction
of the BHBs with the SMBH.

3.3. Initial Conditions

Our initial conditions are constrained by the necessity that
we be able to simulate these conditions in a reasonable amount
of time and with acceptable accuracy. We are therefore limited
in the size and complexity of the systems we can simulate. In
order to explore the parameter space available to us we have
opted to simulate four successively larger systems in an effort
to deduce possible trends and make predictions for more

' See http://www.hnbody.org.
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Table 2
Simulation Parameters
Simulation 1k 2.5k 5k 10k
Mass of SMBH (M,) 10° 2.5 x 103 5% 10° 10*
Number of Stars 307 680 2000 4400
dinie for BHB (au) 500 700 1500 2500
dumay for Stars (au) 2000 3000 6000 9000
Simulation Time 4x10*  6x10* 112 x 105 3.5 x 10°

(years)

Note. Basic parameters that change for each simulation size. The initial
semimajor axis of the BHB (i) is set so that the relaxation time and Kozai—
Lidov time are equal. The maximum semimajor axis for stars (dmax) is set to be
~4 X dipi. The number of stars is set using dm,x and the number density of
stars. The simulation time is set to two relaxation times for the BHB.

realistic conditions. The parameters that vary between these
simulations are listed in Table 2.

The masses of the SMBHs in our simulations range from 10°
M, to 10" M,. We are constrained not by the number of
particles in our simulations, but by the mass ratio between stars
and the SMBH. The BHB is placed around this SMBH at a
semimajor axis diy; such that the KL timescale is equal to the
relaxation timescale for the BHB. A BHB further from the
SMBH than this will not have time to undergo KL oscillations.
Placing the BHB further in is unnecessary as it will migrate
inwards due to dynamical friction because the BHB is more
massive than the surrounding stars. The maximum semimajor
axis for stars is then chosen to be ~4 X dj,; so that the BHB is
deeply imbedded in a distribution of stars. The number of stars
is set using the mass interior to the radius of influence along
with the number density of stars. Finally, the simulations were
run initially for two relaxation times for the BHB particles. We
then extended any simulations in which the BHB did not either
merge or become tidally separated by the SMBH for the length
of time necessary for this to happen.

There are several parameters that remain constant between
our simulations. These values were chosen to be representative
of typical values, though again, very little is known about
BHBs. The masses of star particles are set uniformly to 1 M.
The number density of stars is a single power law n oc r~2 with
a = 2 (See Table 1). The BHB particles are each 20 M
consisting of two 10 M, black holes set at a semimajor axis
of 1au.

Each set of initial conditions is created following the
parameters laid out in Table 2. For example, the semimajor
axes of the stars are drawn randomly from the number-density
law n o< 2 with a maximum at d,,x. The eccentricities for all
objects are randomly drawn from a thermal distribution such
that the probability of choosing a star with orbital eccentricity
between ¢ and e + de is dP (¢) = 2ede. The true anomalies are
drawn randomly from a properly time-weighted distribution,
giving more weight to the positions at which the star or BHB
remains the longest. Finally, all other angles including
inclination are drawn from an isotropic distribution. The initial
interior orbital elements of the BHBs are drawn from the same
distributions as the parameters of their COM orbits with the
exception of their semimajor axes. For simplicity, these are
fixed at 1 au. A thermal distribution for stars is expected for
nearly Keplerian orbits (Binney & Tremaine 1987), while a
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Figure 3. Example output of the COM orbit of the BHB from simulation 5k_3 around a 5 x 10°M, SMBH converted into Keplerian orbital elements. The superorbit
semimajor axis (a,), eccentricity (e,), and pericenter (g;) are plotted along with the inclination of the COM to a reference plane. The effects of the stellar potential on
the orbit of the BHB are clearly visible. The eccentricity and inclination wander significantly over the simulation. The semimajor axis shrinks from 1500 to 200 au due

to mass segregation.

thermal distribution for binary orbits is motivated by studies of
Galactic field binary systems (e.g., Kroupa & Burkert 2001). If
these BHBs are mostly formed from evolved post common
envelope systems, the eccentricities should be closer to circular.

4. RESULTS

For each of the four simulation sizes, we produced 10 sets of
initial conditions. These initial conditions are integrated
forward through at least two relaxation times for the BHB
particle. These integrations produce a track for the COM BHB
particle. For each of these 40 COM BHB tracks, we then
produced 10 sets of initial conditions for the orbit of the
individual members of the binary. We then integrated these
forward, along with the SMBH, while forcing the binary to
follow the COM track. The result is 100 iterations of BHB
orbits for each simulation size, for a total of 400 different
simulations. We will refer to the simulations by three numbers:
the mass of the SMBH, the COM track number, and the
iteration number. Thus, for example, simulation 5k_3 would be
one based around a 5 x 10> M, SMBH, and it would be the
third of 10 COM evolutionary tracks. Simulation 5k_3_4
would be the fourth of 10 iterations of the interior BHB orbit of
the COM evolutionary track from simulation 5k_3. These
results are then analyzed to determine which binaries have

undergone KL oscillations and which have merged due to GW
emission.

Figure 3 shows the results of simulation 5k_3, a tyPical
evolution of the COM orbit of a BHB around a 5 x 10° M,
SMBH. The position and velocity are converted to Keplerian
elements. The orbit is not quite Keplerian, but because the
SMBH dominates the potential, Keplerian elements describe
the orbit reasonably well. The BHB starts at a semimajor axis
of 1500 au and an eccentricity of 0.4. Over the course of
112,000 years it exchanges energy and angular momentum
with the surrounding stars. The eccentricity and inclination
wander significantly. Due to dynamical friction the BHB sinks
toward the SMBH, as its mass is much larger than the
surrounding stars. By the end of the simulation, the semimajor
axis is around 200 au. The mass segregation effect is very
pronounced in our simulations in general. Using a more
realistic initial mass function (IMF) for the stars in our
simulations, including more massive stars and black holes with
more massive objects concentrated toward the center, could
slow down this effect. For example, Antonini (2014) showed
that in their simulations black holes in the galactic center
segregate at a rate similar to the energy relaxation timescale of
the dominant stellar population.

Figure 4 shows the results of simulation Sk_3_2, an example
of the evolution of the internal orbital elements of a BHB.
Many of the important features of our simulations can be seen
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Figure 4. Example of the evolution of the internal orbital elements of a BHB from simulation 5k_3_2. The interior semimajor axis (a;), eccentricity (e;), and
pericenter (g;) are plotted along with the total inclination (i,,). The eccentricity is plotted as 1 — e,z to better show the different peaks as well as to relate to Tow and
Tkr. The dashed lines in the plot of i, show the range of inclinations that lead to KL oscillations in the quadrupole limit, with the critical angle at 90°. KL oscillations
are readily apparent in the eccentricity and total inclination. The BHB merges at the end of this simulation as GW emission becomes efficient when the eccentricity
reaches a large enough value.
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Figure 5. Example of the evolution of the internal elements of a BHB from simulation 10k_4_9. The dashed line in the plot of a; is the line at which a binary becomes
ionized. This BHB is tidally separated before it can merge due to the KL mechanism. At around 1.6 x 10° years the semimajor axis becomes negative and the
eccentricity larger than unity indicating ionization.
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Figure 6. BHB mergers plotted as a function of the superorbit semimajor axis (a,) and time at which they merged. Blue circles are mergers from 1k simulations, green
triangles from 2.5k simulations, purple squares from 5k simulations, and red stars from 10k simulations. These are plotted on top of the tracks of the evolution of a,
over time. Many of the mergers occur relatively close to the SMBH. There is, in general, an absence of mergers at early times.

in this example. The total inclination between the interior orbit
of the BHB and the exterior orbit around the SMBH grows
from about 65° to just over 90° and shows both the random
walk due to the effects of the stellar potential as well as the
oscillations due to the KL. mechanism. The overall change in
it maps directly to the inclination of the COM orbit of the
BHB. This would likely be damped due to the effects described
in Section 2.1. The eccentricity mirrors the KL oscillations of
the total inclination. The closer the total inclination approaches
90° the more extreme the eccentricity and inclination
oscillations become. A little more than 8 x 10* years through
the simulation, the eccentricity reaches a value of 0.99985 and
GW emission causes the BHB to inspiral in less than 100 years.
Because most of the orbital energy of the BHB is lost near the
pericenter passage, the GW emission acts as an impulsive
force, driving the BHB to lower eccentricity as it spirals
inward. This example also shows the rate of the KL oscillations
increasing as the BHB moves closer to the SMBH over time.

Figure 5 shows an example of the evolution of the orbital
elements of a BHB orbiting a 10* M., SMBH that is tidally
separated before it can merge due to the KL mechanism. The
evolution is much the same as that in Figure 4, however in this
case the BHB never reaches the correct orientation for the KL
oscillations to bring it to high enough eccentricity for GW
emission to become efficient. Instead, before this can happen,
the BHB approaches within 10 au of the SMBH, causing the
BHB to be separated apart by extreme tidal forces. Inspiral and
tidal separation are the two possible outcomes of our
simulations. Most simulated BHBs reach one of these
outcomes within two relaxation times. Regardless, we follow
all BHBs until they meet their final fate.

All of our simulations show BHBs undergoing KL cycles
during their evolution. However, not all of our simulations end
in merger. Figure 6 shows the semimajor axis and time at
which each BHB merged superimposed on the evolution of the
superorbit semimajor axis over time. Many of the mergers
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Figure 7. Histogram of the frequency of BHB merger at various distances from
the SMBH relative to Rj,p. The most common merger distance is ~0.01R;yg.

occur when the BHB is relatively close to the SMBH. There is,
in general, an absence of mergers at early times and a large
semimajor axis. There may also be fewer mergers at very late
times and a small semimajor axis (See Figure 7).

The absence of mergers at early times may be due to our
initial conditions. If there is a full loss cone (Holley-
Bockelmann & Sigurdsson 2006; Merritt 2015) around the
SMBH, BHBs from outside our simulation region would enter
this region while already undergoing KL oscillations and
possibly add to the number of mergers in the outer region. This
outcome depends heavily on the details of the mass segregation
process (e.g., Hopman & Alexander 2006b; Alexander &
Hopman 2009; Antonini 2014). Additionally, BHBs at early
times can sometimes be far enough from the central SMBH that
Tsr is sufficiently shorter than 7gx; to suppress the KL
oscillations altogether. General relativistic precession therefore
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Figure 8. Fraction of simulations of each of the four classes that have merged over time. The time is scaled to the relaxation time for each simulation class (See
Table 2). The simulation classes are marked on the plot. A significant fraction of the simulations of all classes merge over several relaxation times.

acts as an outer boundary to the region in which KL cycles are
important. Less massive and more widely separated binaries
would be less susceptible to this suppression (See Table 1).

The possible absence of mergers at late times is most likely
due to the number of BHBs that are tidally separated.
Relatively fast mass segregation brings our BHBs close enough
to be separated before they have time to merge. With a slower
mass segregation rate BHBs would linger longer and the
number of mergers would likely increase. In the Milky Way,
the stars closest to Sgr A* (within ~0.04 pc), known as the “S-
cluster,” have masses that range from 5-15 M. (Ghez
et al. 2003; Eisenhauer et al. 2005). If we use an average
mass of 10 M, the average star would be 10 times more
massive than the stars used in our simulations, leading to a
mass segregation rate up to 10 times slower at the center of our
simulations.

Figure 8 shows the fraction of BHBs that merge over time
for each of the four classes of simulations. For each of the
simulation sizes, a significant fraction of the BHBs merge. For
10°M, SMBHs, 10% of the BHBs merge, in the 2.5k
simulations 12% merge, in the 5k simulations 32% merge,
and in the 10k simulations 27% merge. The merger rate appears
to be fairly steady. As stated previously, it is possible that the
rate may be slightly lower near the beginning and end of the
simulations than in the middle. The merger rate is clearly lower
for the 1k and 2.5k simulations, while it may be slightly higher
for the 5k simulations than for the 10k simulations.

There could be several reasons for the merger rate to be
lower in the smaller simulations. One in particular can be seen
from the different dependencies of several of the timescales
(Table 1). For a smaller SMBH, Tk, gets longer, while Tzg gets
shorter. This allows fewer KL oscillations per relaxation time,
meaning fewer chances to reach high eccentricity. The similar
merger rates for the 5k and 10k simulations suggests that these
simulations may be high enough resolution to capture the main
elements important to mergers from this channel.

10

The change in iy, in all of our simulations is likely larger
than is realistic, as discussed in Section 2.1. Our conclusions as
to the number of BHBs that would reach the critical inclination
required to merge should therefore be considered an upper
limit. However, the general behavior of these BHBs in this
dense stellar potential is still instructive. The evolution of the
COM orbits of the BHBs are still followed correctly, and this
allows an investigation of the interplay of all of the various
timescales relevant to this scenario in a simulation for the
first time.

4.1. Detection Rate

Using our results to find an accurate detection rate per
volume from this channel is not possible at this time. The
fraction of BHBs that merge in our simulations is likely an
upper limit as previously discussed. Additionally, the systems
we were able to simulate are much smaller than realistic
systems, and we do not yet have enough data to say with
confidence that we see a strong trend with increasing MsygH.
However, it is still instructive to look at how our results might
translate to a larger system. The following is therefore a simple
upper limit estimate meant to guide understanding of the
possible importance of this channel in BHB merger rates.

The maximum rate of mergers in our simulations is about
15% per relaxation time for the 5k simulations. The scaled
relaxation time for a Milky Way type galaxy with an SMBH of
mass ~4 x 10° M, can be found by equating Tx; and Tig from
Table 1 as we have to set the initial conditions in our
simulations. This relaxation time is ~6 x 108 years at about
1.2 pc. Out to this distance, which is well inside R;,n, we could
expect to see a total mass of stars of ~2 x 10° M, (Oh
et al. 2009). For an average stellar mass of 1 M, that would be
~2 x 10° stars. We then need to know the fraction of those
stars expected to be black holes, fg, as well as the fraction of
those black holes expected to be in binaries, f;,. Estimates of
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Jeu are very uncertain and range from 0.001 (Hopman &
Alexander 2006a; Antonini 2014) to 0.016 (Miralda-Escudé &
Gould 2000). The former estimate is based on population
synthesis models, while the latter takes into account a strong
mass segregation effect, increasing the number of black holes
toward the center of the galaxy. Estimates of f;;, are also highly
uncertain, but one estimate from Belczynski et al. (2004) found
that the binary fraction should be ~20%, also from population
synthesis models. From these values we estimate the total
merger rate per Milky Way Equivalent Galaxy (MWEG):

A]Vmerge o fmerge ]vStarSﬁBHfbin

At Merger Time
015 x 2 x 10°x0.016 x 0.2
6 x 108 years
~ 2 per Myr. 4)
Here ferpe is the fraction of BHBs that merged, Ny is the

number of stars expected within the volume and the merger
time is the relaxation time.

This estimation results in a rate R ~ 2 per Myr per MWEG.
In order to convert this rate into a detection rate per volume, we
use an extrapolated density of MWEG’s of 0.0116 Mpc >
(Kopparapu et al. 2008). This gives us a detection rate of
N~ 100 Gpc > yr~'. This rate lands in the middle of the range
of expected values of the total rate of stellar mass black hole
mergers discussed in Section 1. This is a very rough upper limit
estimate, as we have used optimistic values for the merger
fraction and the black hole fraction. This rate also depends on a
steady supply of new black holes entering the galactic center,
which is uncertain. Finally, it should be taken into account that
this is but one route to merger, which should be considered in
addition to all others.

4.2. Eccentric Mergers

One potentially interesting consequence of a BHB merger
due to strong KL oscillations is the possibility of a merger that
enters the LIGO frequency range while still being somewhat
eccentric. Such mergers would likely have significantly
different waveforms and therefore require different templates
and search algorithms to find (e.g., East et al. 2013; Huerta &
Brown 2013). There have therefore been various attempts to
determine how common these eccentric mergers might be. The
frequency typically considered is 10 Hz because this is near the
lowest frequency that current ground-based detectors can
achieve. Mergers are commonly considered “eccentric” in this
scenario when they reach this frequency with an eccentricity
00.1. In scenarios involving field binaries (e.g., Sadowski
et al. 2008; de Mink & Belczynski 2015), mergers will be very
close to circular by the time they reach the LIGO frequency
range. Mergers involving few-body encounters are more
complex. Studies find that these should typically result in
circular mergers (e.g., Giiltekin et al. 2006; Ziosi et al. 2014),
though some fraction could still retain significant eccentricity
(Samsing et al. 2014). Dynamic scenarios involving two-body
capture (O’Leary et al. 2009; however, note from Tsang 2013
that the rate of such captures is extremely low) or resulting in
hierarchical triple systems that undergo KL oscillations (Miller
& Hamilton 2002; Wen 2003; Antonini & Perets 2012;
Samsing et al. 2014; Antonini et al. 2016) are commonly found
to have non-negligible chances of eccentric merger. Estimates
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of up to ~30% of mergers being eccentric have been predicted
(Wen 2003).

In order to determine whether any of our simulations would
result in an eccentric merger, we use a simple prescription. We
evaluate the eccentricity at 10 Hz. In order for our BHBs to
orbit on that timescale they need to reach a semimajor axis of
~107%au. Because the energy loss in these initially highly
eccentric systems is nearly impulsive, reaching that semimajor
axis while still remaining eccentric requires reaching an even
smaller pericenter as the merger begins. Of the 81 mergers
across all 400 of our simulations, only one reaches a pericenter
closer than 10~ au: simulation 5k_1_9 reaches a pericenter of
4.5x10~7 au, which results in an e = 0.58 at 10 Hz. From this
relatively small sample, we conclude that eccentric mergers due
to KL oscillations observable by LIGO are indeed possible,
though likely to be rare.

5. OTHER CONSIDERATIONS

The merger of BHBs due to KL oscillations in galactic
centers is a complex process subject to many uncertainties. Our
work here is a step forward in understanding the most
important processes responsible for this outcome. However,
there are still several opportunities for improving upon this
work. Here we examine those processes that may positively or
negatively impact the merger rate of BHBs and which may be
incompletely simulated in our work.

One of the most important effects that we did not follow
accurately in our simulations is the damping of the change in
mutual inclination of the BHBs to the SMBH due to the shorter
timescale of the KL oscillations relative to the timescale of the
change in inclination of the superorbit of the BHBs. We
discussed this effect in Section 2.1 and made some progress
toward understanding how important this damping might be.
However, there is still a great deal of work to be done.
Primarily, it will be important to know how much of the
inclination change is due to slow, smooth processes such as
VRR compared to fast processes such as kicks from close
approaches. If kicks from close approaches are an important
source of inclination change, it may still be possible to get a
moderate change in the mutual inclination. Even if this is not
the case, there is likely to be some range of initial inclinations
that can reach the critical inclination for merger. Determining
this range will add to our understanding of the fraction of
BHBs that are able to undergo merger due to KL oscillations
significantly. A range of even a few degrees would increase the
fraction of mergers significantly from a static inclination
scenario. We will undertake a more thorough investigation of
these issues in a later paper.

Another set of important possible issues arises due to the
relatively small number of particles and low mass of the
SMBHs in our simulations compared to MWEG nuclei. One
such issue relates to the varying dependencies on Mgypy of
important timescales (See Table 1). Most clearly, Tk, decreases
with Mgypy Wwhile Tgg and Tygrgr increase with Mgypy. We
therefore expect that BHBs around a more massive SMBH
would experience more KL oscillations at a particular distance
and inclination. This would tend to increase the likelihood of
merger in larger systems. This particular effect may be the
reason for the varying merger rates in our lk and 2.5k
simulations compared to our 5k and 10k simulations.

A similar issue, but with possibly a negative effect on the
merger rate, is the relative importance of binary ionization in a
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larger system. In our simulations the BHBs are hard at almost
all distances from the SMBH. In the 10k simulations, a typical
star would have greater kinetic energy than the internal binding
energy of our BHBs only within 100au of the SMBH.
However, this distance increases in proportion to Msygy inside
Rinpn while Ryq only increases as the square root of Mgygy (See
Equation (3)). Therefore, we would expect a larger proportion
of BHBs to be soft in larger systems, increasing the importance
of this mechanism.

The relatively small numbers of stars in our simulations
leaves open the possibility of stochastic processes playing a
part in our results. Merritt & Milosavljevi¢ (2005) describe
various scenarios where small particle numbers do not
adequately follow physical processes such as loss cone refilling
and binary hardening. Large particle number experiments may
be necessary in order to confirm the behavior seen in our
simulations.

The separation of our simulations into two parts is also a
simplification worthy of scrutiny. Because of this simplifica-
tion, close approaches of stars to a BHB have no effect on the
internal properties of the BHB. If these close approaches were
to be taken into account properly, the effect would on average
be to harden BHBs that are hard, soften BHBs that are soft
(Heggie 1977), or to have a strong three-body interaction
possibly scramble the internal properties of the BHB if the
interaction is extremely close. Because our BHBs are almost
always hard, we are likely missing a net hardening effect,
which could increase the merger rate slightly. A series of close
approaches could also add an additional source of mutual
inclination variation, which would not be affected by the
damping discussed in Section 2.1. We found very close
approaches to be quite rare (See Section 3.1), but it is possible
that they could still have played a role.

One additional effect that is due to the splitting of our
simulations is that each BHB is repositioned slightly at the end
of each NBODY®6 output step. This results in small jumps in the
orientation of the BHB instead of a smooth transition. The
orientation changes are quite small and happen approximately
every 10 simulated years. This effect is unavoidable using this
simulation method. Because it happens on a timescale much
shorter than Tk the repositioning should not be a large effect.

Our simulations also made a few simplifying assumptions
about conditions in a galactic center that could have an effect
on the merger rate. We used a simple IMF consisting entirely of
1 M, stars, a single power-law number density for stars with
a = 2, an equal mass BHB, and a set BHB separation of 1 au.
Using a more realistic IMF that includes massive compact
objects as in Hopman & Alexander (2006b) or Antonini (2014)
could slow mass segregation. A shallower number density law
for objects in the galactic center as observed in, for example,
Bartko et al. (2010) would increase Tzg though the actual
density distribution in the galactic center is still debated and
quite complex (e.g., Alexander 2005; Merritt 2010).

Recent population synthesis models find BHBs to, on
average, have components of fairly equal masses (Belczynski
et al. 2015). Unequal mass BHBs introduce octupole order
terms into the KL mechanism, which could slightly alter
merger times (e.g., Lithwick & Naoz 2011). The distribution of
semimajor axes of BHBs is very uncertain, though Belczynski
et al. (2002) found an average of around 10 R, and a study of
solar neighborhood binaries found a log-normal distribution of
periods (Duquennoy & Mayor 1991). Our choice of an initial
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separation of 1au is, if anything, a conservative estimate.
Choosing a smaller initial separation would reduce the GW
merger time considerably. However, this could also reduce the
effect of encounters on inclination changes, thus leading to a
smaller number of mergers.

One of the most uncertain variables when determining the
merger rate of BHBs is the number of BHBs expected to be in
the galactic center, as well as how quickly they are repopulated.
We do not directly simulate this, instead taking an optimistic
value from the literature. Processes that can replenish the BHB
population in the galactic center include diffusional processes
(e.g., Miralda-Escudé & Gould 2000; Hopman 2009), disrup-
tion of triple systems (e.g., Perets 2009), in situ star formation
(e.g., Alexander et al. 2008), and three- or four-body
interactions (e.g., Miller & Hamilton 2002).

Several recent observational studies have found a surprising
overabundance of low mass X-ray binaries (Muno et al. 2005)
and excess in hard-X-ray emission (Perez et al. 2015) in the
galactic center. Both of these studies conclude that this
overabundance challenges our understanding of binary forma-
tion and evolution in the galactic center. One possible
explanation for this overabundance of accreting massive
objects is an excess of highly eccentric binaries that leads to
mass transfer. It is therefore possible that a process similar to
that discussed in this work is responsible for these observations
(Prodan et al. 2015). The KL mechanism could just as easily
bring a binary consisting of a main-sequence star and compact
object to high eccentricity as a BHB. Though there are
differences, including stellar evolution and tidal friction that are
present in these systems, the KL mechanism remains a
promising avenue to explore as an explanation for the
overabundance of X-ray binaries in the galactic center.

6. CONCLUSIONS

In this work, we examined the effect of the KL mechanism
on the merger of BHBs in galactic centers. We used direct V-
body simulations in order to capture the important processes
that play a role in this scenario. Using a unique combination of
two N-body codes we were able to simulate close approaches
of stars to the SMBH as well as the internal orbit of the BHB.
We have shown that the KL mechanism plays an important role
in the evolution of the orbits of BHBs in galactic centers.
Additionally, we found that the merger rate of BHBs is
enhanced compared to field binaries by the influence of the
SMBH. This rate may be overestimating the effect of
inclination changes of the superorbit on the mutual inclination
of the BHBs. We have also shown that eccentric mergers in the
LIGO frequency band are possible but not common in our
simulations. Finally, we discussed possible improvements on
this work and suggested that the KL mechanism may be
important in explaining the overabundance of low mass X-ray
binaries in the galactic center.
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