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ABSTRACT

The tilt of Saturn’s spin axis to its orbit plane is 26N7, while that of Jupiter is only 3N1. We offer an explanation
for this puzzling difference owing to gravitational perturbations of Saturn by the planet Neptune. A similarity
between the precession period of Saturn’s spin axis and the 1:87 ; 106 yr precession period of Neptune’s slightly
inclined orbit plane implicates a resonant interaction between these planets as responsible for tilting Saturn from
an initially more upright state. We make a case that Saturn was captured into this resonance during the erosion of
the Kuiper belt , which decreased the rate of regression of Neptune’s orbit plane. Penetrating the resonance pumped
up Saturn’s obliquity to its current value. The spin axis may also be librating in the resonance with an amplitude
 k31�, and we discuss possible causes of this and the implied constraint on Saturn’s moment of inertia. Matching
the current pole position to the predicted outcome could place constraints on early solar system processes.

Key words: planets and satellites: individual (Neptune, Saturn) — solar system: formation —
solar system: general

1. INTRODUCTION

Jupiter and Saturn consist predominantly of hydrogen
and helium acquired from the primordial solar nebula during
the planet-building epoch. The formation of such gas giants
is believed to commence with the collisional accretion of a
several–Earth-mass core from solid ice-and-rock planetesi-
mals, followed by the accretion of the gaseous component once
the core reaches a critical size (e.g., Pollack et al. 1976;
Wuchterl et al. 2000 and references therein). Seemingly at odds
with this picture, however, are the very dissimilar obliquities,
�, of these planets to their orbit planes, namely, 26N7 for Saturn
versus only 3N1 for Jupiter.

The obliquities of the other planets in the solar system are
likely due to the stochastic nature of their accumulation from solid
planetesimals (Lissauer & Safronov 1991; Dones & Tremaine
1993; Chambers & Wetherill 1998; Agnor et al. 1999), and the
rock/ice cores of Jupiter and Saturn probably had nonzero
obliquities as well. However, their massive gas components de-
rived from the nebular diskwould have added angular momentum
nearly perpendicular to their orbit planes, overwhelming that of
the cores and ultimately resulting in small obliquities for both
planets. With 95 Earth masses and a 10.7 hour rotation period,
Saturn has considerable spin angular momentum, making it
problematic that an impact could have sufficiently changed its
pole direction after its formation. Why then is Saturn’s obliquity
so large?

We suggest the answer lies in solar system events following
the formation of the planets that caused an initially upright
Saturn to suffer a tilt. We are not the first to seek such a
mechanism. It has been proposed that the obliquities of the
outer planets may result from a ‘‘twist’’ of the total angular
momentum of the solar system during the collapse of the
molecular cloud core that led to its formation (Tremaine 1991).
It is possible to choose a timescale for this event that would
affect the planetary obliquities from Saturn on out but have

only a minor influence on Jupiter. Although this cannot be ruled
out , this paper presents what we believe is a more compelling
mechanism for generating Saturn’s obliquity, predicated on a
similarity between Saturn’s spin-axis precession period and the
regression period of Neptune’s orbit plane (Harris & Ward
1982), which seems too close to be a coincidence. We propose
that this period match and the obliquity of Saturn are cause and
effect through the operation of a secular spin-orbit resonance
between these bodies. This type of interaction is already known
to cause large-scale oscillations of the obliquity of Mars (Ward
1973, 1974, 1979; Laskar & Robutel 1993; Touma & Wisdom
1993). Here and in a companion paper (Hamilton &Ward 2004,
hereafter Paper II), we detail how this mechanism could also
account for the spin-axis orientation of Saturn, as well as pro-
vide a sensitive constraint on its moment of inertia.

2. PRECESSIONAL MOTIONS

2.1. Spin Axis

The equation of motion for a planet’s unit spin-axis vector, s,
is ds=dt ¼ � (s = n)(s < n), where n is the unit vector normal to
the planet’s orbit plane. The precessional constant depends on
the strength of the torque exerted on the planet and its spin
angular momentum. For Saturn , most of the solar torque is
exerted on its satellites instead of directly on the planet , Titan
(MTitan ¼ 1:34 ; 1026 g) being by far the dominant one (Ward
1975). Saturn’s oblate figure gravitationally locks the satellites
to its equator plane so that the system precesses as a unit
(Goldreich 1965). The precessional constant can be written

� ¼ 3

2

n2

!

J2 þ q

kþ l
ð1Þ

(Ward 1975; French et al. 1993), where ! is the spin frequency
of Saturn, n is its heliocentric mean motion , J2 ¼ 1:6297 ;
10�2 is the coefficient of the quadrupole moment of its gravity
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field, and k is the moment of inertia of Saturn normalized to
MSR

2 with MS and R being the mass and radius of the planet.
The quantity

q � 1

2

X
j

(mj=MS)(aj=R)
2 sin (�� iS)

sin �
ð2Þ

is the effective quadrupole coefficient of the satellite system
with q=J2 being the ratio of the solar torque on the satellites to
that directly exerted on the planet , and

l �
X
j

(mj=MS)(aj=R)
2(nj=!) ð3Þ

is the angular momentum of the satellite system normalized to
MSR

2!, where Mj , aj , and nj are the masses, orbital radii, and
mean motions of its satellites, with ij being the inclination of a
satellite orbit to the equator of Saturn.1 French et al. (1993) give
q ¼ 0:05164 and l ¼ 0:00278; Hubbard & Marley (1989) find
k ¼ 0:2199 from their interior models, but this value is uncer-
tain by as much as 10% (French et al. 1993; M. Marley 2003,
private communication). With these numbers, equation (1)
yields � ¼ 0B8306 yr�1 and � cos � ¼ 0B7427 yr�1. If the orbit
plane of Saturn were fixed in inertial space, its spin-axis pre-
cession would occur at constant obliquity � with a period P ¼
2�=(� cos �) ¼ 1:745 ; 106 yr.

Nicholson & French (1997) have analyzed 22 reported ring-
plane crossings spanning a period of 280 yr to estimate Saturn’s
pole precession frequency as 0B51 � 0B14 yr�1, but this is low,
largely because of a �700 yr modulation due to Titan’s 0N32
proper inclination (Nicholson et al. 1999). Using the nutation
model of Vienne & Duriez (1992), the current rate can be pre-
dicted to be 68% of the long-term value, implying � cos � ¼
0B75 � 0B21 yr�1.

2.2. Orbit Plane

All of the planetary orbits have small inclinations to the
invariable plane and undergo nonuniform regressions due to
their mutual gravitational perturbations. The inclination I and
ascending node � of a given planet are then found from a
superposition,

sin
I

2
sin� ¼

X
j

Ij

2
sin (gjt þ �j);

sin
I

2
cos� ¼

X
j

Ij

2
cos (gjt þ �j) ð4Þ

(e.g., Brouwer & van Woerkom 1950; Bretagnon 1974;
Applegate et al. 1986; Bretagnon & Francou 1992), compris-
ing many terms of amplitudes {Ij} and frequencies {gj}. Nev-
ertheless, most of them are of only minor importance, and the
largest-amplitude terms for Saturn’s orbit are listed in Table 1;
they represent contributions from three of the eight funda-
mental modes of a Laplace-Lagrange solution of the secular
evolution of the solar system as given by Bretagnon (1974).
The first of these is due to a strong 4:92 ; 104 yr mutual orbital
precession of Jupiter and Saturn; the next two are perturbations
to Saturn’s orbit plane due to the nodal regressions of Uranus
(4:33 ; 105 yr) and Neptune (1:87 ;106 yr), respectively.

The variations in inclination and precession rate of the orbit
cause a complicated time dependence for the orbit normal n(t)
in the equation of motion for s. This can lead to oscillations of
the planet’s obliquity as the spin axis attempts to precess about
the moving orbit normal. In a linearized solution (e.g., Ward
1974; eq. [5] below), conspicuous oscillations occur because
there is a near-match between the spin-axis precession rate
� cos � and �g18, but again, the relative closeness of these
frequencies for Saturn is due in part to its current obliquity. On
the other hand, there are very good reasons to believe that both
� and g18 were different in the past. For example, the spin-axis
precession rate would have varied during the early contraction
of Saturn as it cooled soon after formation (Pollack et al. 1976;
Bodenheimer & Pollack 1986), while the frequency g18 would
have been faster in the early solar system as a result of the
presence of a larger population of objects in the Kuiper belt
(Holman & Wisdom 1993; Duncan et al. 1995; Malhotra et al.
2000), whose gravitational influence would have increased
Neptune’s regression rate. Thus, if the similar values of � cos �
and�g18 are not coincidental, something must have maintained
this relationship during these changes. This paper applies the
theory of secular spin-orbit resonance to the Saturn-Neptune
interaction and demonstrates the ability of the resonance to
drive up Saturn’s obliquity from an initially near-zero value.
Our companion paper presents numerical experiments that fur-
ther support the efficacy of this mechanism.

3. SECULAR SPIN-ORBIT RESONANCE

3.1. Spin-Axis Trajectories

Since there are many terms in equation (4), neither the in-
clination nor the regression rate �̇ of the orbit is constant. In
the case of small angles, the equation of motion for the spin
axis can be linearized and solved analytically to give an ex-
pression for obliquity variations of the form

� � �̄�
X
j

gj Ij

� cos �̄þ gj
sin (� t cos �̄þ gj t þ� j) ð5Þ

(Ward 1974), where �̄ is a long-term average obliquity and the
�j are phase constants that depend on the observed planetary
orbits. In general, the various sinusoidal terms cause rapid
oscillations compared with any change in �̄. However, if
� cos �̄! �gJ for some j ¼ J , that term’s small denominator
will cause its amplitude to become very large while its fre-
quency becomes very slow. The combination of this J-term
plus �̄ can then be replaced by a slowly moving nonlinear
guiding center �gc(t) about which the other terms cause a high-
frequency circulation of the spin axis (Ward 1992). It turns out
that the high-frequency terms do not interfere much with the
motion of the guiding center even if � cos �gc passes through
�gJ , although in this case the linearized version of �gc(t) is no
longer valid. One can show both analytically (Ward et al. 1979)
and numerically (Ward 1992; Paper II ) that the motion of the

1 The Laplace plane at the distance of Iapetus is inclined by 14N8 to Saturn’s
equator, and Iapetus precesses about its normal in �3 ; 103 yr. Thus its average
i is 14N8 as well.

TABLE 1

Largest-Amplitude Terms for Saturn’s Orbit

j

gj
(arcsec yr�1)

Ij
(deg)

16.......................... �26.34 0.910

17.......................... �2.99 0.045

18.......................... �0.692 0.064
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guiding center is quite similar to the spin-axis motion in the case
of uniform orbital precession provided we set I ¼ Ij and
�̇ ¼ gJ . We turn to that case now.

Consider an orbital precession obtained by retaining only a
single term J in the precession equation (eq. [4]). In this case, n
maintains a constant inclination I ¼ IJ to the fixed normal to
the invariable plane k and precesses at a constant rate �̇ ¼
gJ ¼ g (Fig. 1). If a coordinate frame rotating with angular
frequency g is adopted, the orbit normal n will appear fixed.
The equation of motion for the unit spin vector of a planet now
takes the form

ds

dt
¼ � (s = n)(s < n)þ g (s< k): ð6Þ

This problem is well studied (e.g., Colombo 1966; Peale 1969,
1974; Ward et al. 1979; Henrard & Murigande 1987), and
an exact integral of the motion can be found, which is also
the relevant portion of the Hamiltonian of the system, H ¼
�(�=2)(n = s)2 � g (k = s) (e.g., Ward 1975). In the next section ,
we use H together with the elegant Cassini state theory as
developed by Colombo, Peale, and others.

3.2. Cassini States

Colombo (1966) showed that the unit spin axis s �
(x; y; z) ¼ (sin � cos �; sin � sin �; cos �) traces out a closed
curve on the unit sphere, x2 þ y2 þ z2 ¼ 1, given by its in-
tersection with a cylindrical parabola ,

½zþ (g=� ) cos I �2 ¼ �2(g=� ) sin I ( y� K ); ð7Þ

as shown in Figure 2. This describes a family of parabolae with
latus rectum p ¼ �(g=� ) sin I and axis z0 ¼ �(g=� ) cos I but
various vertices K. Depending on the choice of g=� and the
resulting location of the axis z0, there are either two or four
locations (called Cassini states and denoted by the vectors s1
through s4 in Fig. 2) where a parabola is tangent to the unit

sphere for some value of the vertex and the trajectory degen-
erates to a point. Here the spin axis s remains coplanar with n
and k and stationary in the rotating frame, which means that in
inertial space, these vectors coprecess at the same rate g, as
depicted in Figure 1. Two of the states (labeled 1 and 4) are on
the same side of k as n, while state 2 is on the opposite side
(Cassini state 3, which is retrograde, will not further concern us
here). If the convention introduced by Peale (1974) of mea-
suring �i clockwise from n is used , the state obliquities can be
found from the single relationship

(�=g) cos �i sin �i þ sin (�i � I ) ¼ 0; ð8Þ

obtained by setting �̇ and �̇ to zero in equation (6). This is
equivalent to a quartic equation, which could be solved ex-
plicitly for its four roots. Figure 3 shows a plot of the Cassini
state obliquities �1, �2, and �4 as functions of�=g, where a value
of I ¼ I18 has been adopted. It can be seen that for |�=g | less
than some critical value, states 1 and 4 do not exist. This value
can be determined by differentiating equation (8) and setting
d�=d(�=g) ¼ 1 at (�=g)crit to find the condition (�=g)crit
cos 2�þ cos (�� I ) ¼ 0. Combining with equation (8), one
can solve for the critical values of �1 ¼ �4 ¼ �crit and (�=g)crit ,
namely,

tan �crit ¼ �tan1=3I ; (�=g)crit ¼ �(sin2=3I þ cos2=3I )3=2:

ð9Þ

For I18 , �crit ¼ �5N92 and (�=g)crit ¼ �1:016.
Rearranging equation (8) into the form ½(�=g) cos �þ

cos I � tan � ¼ sin IT1, it is clear that the left-hand side can be
made small either by a small value of tan � for which cos � �
O(�1) or by making the square-bracketed term small. These
conditions yield the following approximate formulae:

� � tan�1 ð sin I

1 � �=gÞ; � � �cos�1 ð� g cos I

� Þ: ð10Þ

Fig. 1.—Coprecession of orbit normal n and Cassini state position of spin axis si about the normal k to the invariable plane.
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When j�=gj3 j�=gjcrit, the first expression approximates
states 1 and 3, corresponding to �� , respectively, while the
second gives states 2 and 4. When j�=gjTj�=gjcrit, the first
expression gives states 2 and 3, while the aforementioned
square-bracketed quantity cannot approach zero and the two
corresponding roots of the quartic equation are complex. In this
case, states 1 and 4 do not exist. States 1 through 3 are stable in
the sense that if the spin axis is slightly displaced from them, it
will tend to circulate the state; state 4 is unstable in this regard

and lies on a separatrix (Fig. 2b) that partitions the unit sphere
into three domains, each containing a stable state.

3.3. Spin-Axis Position

To evaluate whether Saturn could be in the resonance, its spin
axis must be located with respect to the j ¼18 reference frame
defined by a z-axis that lies along the pole of the term and an
x-axis along its ascending node on the invariable plane of the
solar system. The right ascension and declination of s with re-
spect to the equator and equinox at epoch J2000.0 are 40N595
and 83N538, respectively (Yoder 1995). Rotating about the ver-
nal equinox by Earth’s obliquity, 23N439 (Yoder 1995), gives s
with respect to the ecliptic and equinox as shown in Table 2.
The normal k to the invariable plane from Allen (1976) is listed
as well. Also included in the table are the x- and y-components
of each vector in each system. Since the inclination of the in-
variable plane is very small, to first-order accuracy the coor-
dinate system can be transformed to that plane by subtracting
the components of k from s. We now introduce the j ¼18 pole
from Applegate et al. (1986), who give2 fp; qg ¼ sin (I18=2) ;
fsin; cosg�18 ¼ N8 fsin; cosg �8, where N8 ¼ �10�3:25 and
�8 ¼ 203N518. Setting sin (I18=2) � (sin I18)=2, and recalling
that the longitude of the pole is 90

�
behind its ascending node

�18, we find the components of n listed in Table 2.We can trans-
form again to a system with n at the origin by subtracting its
components from the other vectors. This gives the vectors in an
intermediate system. A final counterclockwise rotation of the
coordinate system by 23N524 puts k in the y-axis. The spin axis
lies  ¼ 90

� � 59N12 ¼ 30N88 from k. Figure 4 shows polar
views of the j ¼ 18 system for �=g18 ¼ �1:16 along with
the separatrix and s ¼ (xs; ys; xs) ¼ (0:236; 0:394; 0:888). The
separatrix is more narrow than the example of Figure 2

Fig. 2.—(a) Spin-axis trajectories and Cassini states (shown by vectors
s1 through s4) traced on the unit sphere for a coordinate system rotating about
the normal to the invariable plane, k, with nodal regression frequency g. The
Cartesian coordinate system has its z-axis in the direction of the orbit normal n
and its x-axis along the line of the orbit’s ascending node, so that the vector k
lies in the y-z plane, inclined by angle I to n. The z-coordinate of the spin-axis
position is the cosine of the obliquity, z ¼ cos �. (b) Polar view of the same unit
sphere. The trajectory passing through state 4 is the separatrix, which partitions
the unit sphere into the three domains. The inclination employed this example
to more clearly illustrate the morphology of the trajectories is an order of
magnitude larger than the actual j ¼ 18 term used in Fig. 4.

Fig. 3.—Obliquities of Cassini states 1, 2, and 4 as a function of the fre-
quency ratio �=g. Spin-axis trajectories circulate about stable states 1 and 2;
state 4 is unstable and lies on a separatrix. States 1 and 4 merge and disappear at
the critical frequency ratio.

2 In the Applegate et al. (1986) notation, our j ¼ 18 is their j ¼ 8.
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because the inclination is an order of magnitude smaller. Since
the trajectory does not enclose n at the origin , such motion
produces the longitude libration that is diagnostic of reso-
nance trapping.

3.4. System Evvolution

If the frequency ratio �=g changes for some reason, the
Cassini states migrate along the unit sphere in accordance
equation (8) and Figure 3. If changes occur slowly enough, it
can be shown that the area enclosed by the spin-axis trajectory
about the local Cassini state remains nearly invariant (see, e.g.,
Peale 1974; Ward et al. 1979). ‘‘Slowly enough’’ means that
the state migration rate is much less than the rate of spin-axis
motion: the so-called adiabatic limit. In particular, if the spin
axis starts near state 2 with j�=gjT1, it will remain so as |�=g|

increases and the state migrates away from n (at � ¼ 0). As the
frequency ratio passes through the critical value, the obliquity
rises steeply and can become quite large; this is resonance
capture.

By contrast, with j�=gj31, state 1 is near n but rotates
away as |�=g| decreases, while state 4 rotates toward it. The
two states eventually merge at (�=g)crit; past this, state 2 is the
only prograde state. A spin axis initially close to state 1 will
track its motion until its merger with state 4. At this point it is
left stranded and must establish a new trajectory about state 2,
enclosing an area that may no longer be small. This sequence
is resonance passage in the noncapture direction and results
in a ‘‘kick’’ to the obliquity. Consequently, passage through
the resonance is not a reversible process, with the outcome
depending on direction. Employing elegant analytical expres-
sions derived by Henrard & Murigande (1987) for the areas
inside each of the domains, the above arguments are easily
quantified. The area inside the separatrix containing state 2 can
be written as

A2 ¼ 8�þ 4 tan�1T � 8z0 tan
�1(1=�); ð11Þ

where

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tan3�4=tan I � 1

q
; ð12Þ

which starts at � ¼ 0 for �4 ¼ �crit and diverges as �4 !
��=2. The remaining functions can be written

� � � sin2�4 cos �4
�2 cos2�4 þ 1

; T � 2� cos �4
�2 cos2�4 � 1

; ð13Þ

where the second-quadrant value of tan�1 T is to be used when
T < 0. The other two domain areas can now be written in terms
of equation (11),

A1¼ 2� (1� z0)� 1
2
A2; A3 ¼ 2� (1þ z0)� 1

2
A2: ð14Þ

Figure 6 below displays the domain areas as a function of
�=g ¼ sin I=sin �4� cos I=cos �4. Note that when � ¼ 0 we
have � ¼ 0, tan�1T ¼ �, and tan�1(1=�) ¼ �=2. Substituting
these values into equation (11) yields the critical value of
A2 ¼ Acrit ¼ 4� (1� zcrit) for which A1 vanishes, indicating the

TABLE 2

Coordinates of Saturn Spin Axis, j = 18 Pole, and Normal to Invariable Plane

Reference

Frame Vector

Colatitudea

(deg)

Longitude

(deg) x y

Ecliptic/equinox ..................... s 28.049 79.529 8.546 ; 10�2 4.624 ; 10�1

k 1.579 17.584 2.626 ; 10�2 8.322 ; 10�3

Invariable plane...................... k 0 . . . 0 0

s 27.253 82.572 5.920 ; 10�2 4.541 ; 10�1

n 0.0644 �66.476 4.488 ; 10�4 �1.031 ; 10�3

Intermediate............................ k 0.0644 113.524 �4.488 ; 10�4 1.031 ; 10�3

s 27.317 82.644 5.875 ; 10�2 4.551 ; 10�1

n 0 . . . 0 0

j = 18 system.......................... k 0.0644 90 0 1.124 ; 10�3

s 27.317 59.120 2.355 ; 10�1 3.939 ; 10�1

n 0 . . . 0 0

a For s, the colatitude is the obliquity; for k and n it is the inclination.

Fig. 4.—Illustration of the polar view of the unit sphere for the j ¼ 18
frame of reference for �=g18 ¼ �1:16. The amplitude of the j ¼ 18 term is
I18 ¼ 0N064. In addition to the Cassini states and separatrix, the current spin-
axis position of Saturn is indicated. The spin axis lies inside the separatrix and
circulates about state 2 on elongated trajectories that produce libration.
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merger of states 1 and 4. Finally, setting zcrit ¼ �(g=� )crit ;
cos I , the area surrounding state 2 at merger becomes

Acrit ¼ 4�½1� (1þ tan2=3I )�3=2�: ð15Þ

If state 2 were to then migrate near the orbit normal (i.e.,
j�=gjT1), the precession would become almost uniform,
with an obliquity given by

cos � ¼ 1� Acrit

2�
¼ 2

(1þ tan2=3I )3=2
�1: ð16Þ

Figure 5 shows this obliquity as a function of inclination am-
plitude. Again, these are adiabatic values corresponding to
arbitrarily slow passage. The obliquities for amplitudes in
Table 1 are indicated on the curve; for I18 ¼ 0N064, � ¼ 14N5.

4. TUNING MECHANISMS

If Saturn was captured into a secular spin-orbit resonance
with Neptune, how and when did this occur? For the present
frequency ratio, state 1 lies very close to the pole position of
the j ¼ 18 term (Fig. 4). It is only because of Saturn’s large
obliquity that the ratio of Neptune’s orbital precession rate to
Saturn’s pole precession rate could be near unity. To account
for this as a result of resonance capture, the case must be made
for either an increase in � or a decrease in |g18| to ‘‘tune’’ the
system through the critical frequency ratio in the proper di-
rection. Below we discuss possible adjustments in the early
solar system that could account for this, although they may not
be unique.

4.1. The Kuiper Belt

The regression of Neptune’s nodal line is caused by the
orbit-averaged gravity of the planets interior to it. If there were

planets exterior to Neptune, they would each contribute to g18
by an amount

�g � � nN

4 ð Mp

1 M�Þ ðaNapÞ
2

b
(1)
3=2(aN=ap); ð17Þ

where Mp and ap are the planet’s mass and semimajor axis,
aN ¼ 30:1 AU and nN ¼ 7B85 ;103 yr�1 are the semimajor axis
and mean motion of Neptune, M� is the solar mass, and the
quantity b

(1)
3=2(�) is a Laplace coefficient (see, e.g., Brouwer &

Clemence 1961). Pluto does this, but its mass is so small
(MP ¼ 2:2 ; 10�3 Earth masses, M	; aP ¼ 39:5 AU) that its
fractional contribution is only �g=g18 � 3 ; 10�5. However,
Pluto is generally regarded as a remnant of a larger Kuiper belt
population that was eroded away over time (see, e.g., Holman
& Wisdom 1993; Duncan et al. 1995). The contribution of a
primordial Kuiper belt of surface density 	 to Neptune’s pre-
cession can be estimated by replacing Mp with 2�	r dr in
equation (17) and integrating over the width of the belt.
Starting at Pluto’s distance, rK � 40 AU, and integrating to
�50 AU, where recent observations indicate an outer edge to
the belt (Allen et al. 2001; Trujillo & Brown 2001), yields a
fractional contribution of order �g=g18 � 10�2MK=(1 M	), or
about 1% for each Earth mass of material. The present massMK

of the Kuiper belt is on the order of a few times 10�1M	, but its
primordial mass, estimated by extrapolating the planetesimal
disk from Neptune into the region, could have been as high as a
few times 10 M	 (e.g., Stern & Colwell 1997; Farinella et al.
2000; Malhotra et al. 2000). This is sufficient to place Saturn to
the left of (�=g)crit in Figure 3, implying that it passed through
the resonance in the capture direction as the mass of the belt
diminished. We should also point out that a concomitant out-
ward migration of Neptune (see, e.g., Hahn & Malhotra 1999)
would result in a decreasing |g18| as well. Numerical experi-
ments of the erosion of the belt indicate a timescale in excess of
O(108) yr for the portion of the belt beyond �40 AU. The final
obliquity of Saturn would then simply be the limiting value it
acquired by the time the Kuiper belt’s mass was exhausted.

4.2. Spin-Axis Librations

If Saturn is currently trapped in the resonance, Figure 4
shows that it is librating about state 2. The inferred libration
amplitude  max is sensitive to where we put the separatrix or,
equivalently, to the exact value of �=g18. There is some un-
certainty in g18, but it is probably small; the planetary the-
ory constructed by Bretagnon (1974) including fourth-order
long-period terms with short-period term corrections gives
0B691 yr�1, while Applegate et al. (1986) Fourier-transform
the orbital elements of a 100 Myr numerical integration of the
outer five planets to find 0B692 yr�1. The greatest uncertainty
in � is through the moment of inertia of Saturn, but resonance
occupancy places a constraint on k.
The smallest area enclosed by a librating trajectory is found

by making the current spin-axis position the amplitude  max,
while the largest area is found by putting Saturn’s pole on the
separatrix itself, for z0 either greater or less than zs so that
 max ¼ �. The area inside the current trajectory can be found as
a function of �=g,

A ¼
Z
traj

sin � d� d� ¼
Z

dz d� ¼ 2

Z z2

z1

½�=2� �(z)�dz; ð18Þ

where sin �(z) ¼ ½K þ (z� z0)
2=2p�=(1� z2)1=2 and the inte-

gration limits are the values of z for which sin �(z) ¼ 1

Fig. 5.—Adiabatic values of the obliquity excited by an arbitrarily slow
resonance passage in the noncapture direction as a function of the inclination
amplitude I. The values corresponding to the j ¼ 16, 17, and 18 terms for
Saturn’s orbit are indicated.
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(Ward et al. 1979). Saturn’s current pole position constrains
allowable values for the vertex, K ¼ ys þ (zs � z0)

2=2p. The
minimum Kmin ¼ ys occurs when z0 ¼ zs and �=g18 ¼
�(cos I )=zs ¼ �1:126. The associated value of A ¼ 0:0194
sets a minimum precapture obliquity of �min ¼ 4N5. A curve of
A-values compatible with the current s is included in Figure 6.
The inferred range of uncertainty in the frequency ratio,
1:078 < j�=gj<1:182, can be related to Saturn’s moment of
inertia through equation (1), that is, 0:2233 < k < 0:2452
gives the range of values for which Saturn could be currently
trapped in the resonance. The minimum is �1% larger than
the Hubbard & Marley value but well within its uncertainty.

For I18 , Acrit ¼ 4� (1� zcrit) ¼ 0:2003; projecting this case
back to j�=gjTj�=gjcrit gives the maximum obliquity, � ¼
cos�1(2zcrit �1), for certain capture, which turns out to recover
equation (16), that is, � ¼ 14N5. From Figure 6, A ¼ Acrit for
�=g18 of �1.084 and �1.169. The corresponding inertia range
is 0:2257 < k < 0:2438. Capture is possible for larger �, but
at a decreasing probability given by

P ¼ jȦ2=Ȧ3j ¼ 2=(1� 4�ż0=Ȧ2): ð19Þ

The rate of change of A2 is found from Ȧ2 ¼ ż0 @A2=@z0 þ
ṗ @A2=@p, where the partial derivatives are given by Henrard
& Murigande (1987):

@A2=@z0 ¼ �8 tan�1(1=�); @A2=@p ¼ 8�=p: ð20Þ

Substitution into equation (19) yields

P ¼ 2

1þ 1
2
�½tan�1(1=�)� �=z0��1

; ð21Þ

which is to be evaluated at the moment of separatrix crossing.
If, when j�=gjTj�=gjcrit, the original obliquity is �0 > 14N5,

the area A0 ¼ 2� (1þ cos �0) of the unit sphere below the
trajectory is less than value of A3 when the separatrix first
appears, that is, the spin axis is in domain 3 outside of the
separatrix. As |�=g| increases, both A1 and A2 increase at the
expense of A3, as shown in Figure 6. The spin axis crosses
the separatrix when A0 ¼ A3, or A2 ¼ 4� (z0 � cos �0). Com-
bining with equation (11), this condition reads

z0 1þ 2

�
tan�1 1

�

� �
� 1

�
(2�þ tan�1T ) ¼ cos �0; ð22Þ

which can be used to determine the transition values of � and
�4. Using these in equation (21) yields the probability. Figure 7
shows the capture probabilities as a function of the precapture
obliquity.

5. DISCUSSION

What would be a likely origin of Saturn’s libration? One
clear possibility is a late impact. A fortuitous grazing impact
near Saturn’s pole at its escape velocity will shift the spin axis
by �� � (m=kMS )(GMS=!

2R3)1=2 � 7
�½m=(1 M	)�, where m is

the mass of the projectile; more probable impact parameters and
angles would require several Earth masses. On the other hand,
if the impact postdated resonance capture, the elongated nature
of the trajectories decreases the required obliquity change by a
factor (tan I=tan �0)

1=4 � 0:22 (see Paper II ). Indeed, if the
impactor shifts the axis more than the half-width of the sepa-
ratrix itself, ��s ¼ 2(tan I=tan �0)

1=2 ¼ 5N4, it would knock
Saturn out of the resonance. Another way to generate libration
is by a somewhat nonadiabatic passage through the j ¼ 18
resonance in the capture direction on a timescale comparable to
the libration time of �8 ; 107 yr. We note that this is not too
different from the erosion timescale of the Kuiper belt, and we
numerically assess this possibility in Paper II. Nonadiabaticity
may also be introduced if Neptune migrates in a stochastic
manner (Hahn &Malhotra 2000). This could cause diffusion of
the spin axis inside the separatrix. If the g18 splits into a cluster

Fig. 7.—Capture probabilities into domain 2 as a function of the precapture
obliquity.

Fig. 6.—Domain areas as a function of frequency ratio. The top line is the
sum of domains 1 and 2; the second curve is domain 2 only. The lowest curve
shows possible loci of area A enclosed by Saturn’s current spin-axis trajectory.
Intersections with A2 limit the frequency ratio for trapping; intersections with
Acrit (horizontal dotted line) limit the curve to precapture obliquities less than
14N5, for which capture is certain.
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of similar terms, this could introduce chaos in a manner similar
to that found for Mars (Touma & Wisdom 1993; Laskar &
Robutel 1993). However, current orbit theory does not yet
show much evidence for this.

An intriguing alternative is to evoke two passes through g18
starting with a nonadiabatic passage in the noncapture direction
during Saturn’s Kelvin-Helmholtz contraction. During con-
traction , the spin angular momentum of Saturn, L ¼ kMSR

2!,
remains constant, so that ! / R�2. Equation (1) then indicates
that � increases with the quantity J2R

2, while the rotationally
induced value of J2 is !

2R3=GMS (e.g., Kaula 1968). Conse-
quently, J2R

2 / !2R5 / R, and� ¼ �0(R=R0 þ q)=(1þ q) was
larger when Saturn was more distended, where �0 and R0 denote
the current precessional constant and planetary radius. Accord-
ingly, an increase of �R=R0k (1þ q)�g=�0 would more than
compensate for a primordial increase in g18, reinstating Saturn
to the right of the resonance in Figure 3. Contraction then drives
Saturn through the resonance in the noncapture direction with
a maximum induced obliquity of 14N5. If the passage is fast
enough to break the adiabatic invariant at some point, the in-
duced obliquity, � � g I 2�=ȧð Þ1=2, will be less than the adiabatic
value (see Appendix). Consequently, the minimum precapture
obliquity �min could be used to put a limit on how fast Saturn
could have contracted during its first resonance passage. The
minimum characteristic timescale, 
 � �=j�̇ j, for resonance
passage is


min �
2�

g18

�min

2�I18

� �2

� 2 ; 108 yr; ð23Þ

which in turn implies a minimum characteristic contraction
timescale 
R � R=Ṙ ¼ 
min=(1þ q=J2) � 5 ; 107 yr. This is
consistent with models of the contraction of the gas giant
planets using modified stellar evolution codes (e.g., Pollack
et al. 1976; Bodenheimer & Pollack 1986).

6. SUMMARY

Saturn’s spin-axis precession period is close to the preces-
sion period (1:87 ;106 yr) of Neptune’s orbit plane. We pro-
pose that these planets are locked into a secular spin-orbit
resonance, and that this is the origin of Saturn’s relatively large
obliquity (26N7) compared with that of Jupiter (3N1). We have
outlined a sequence of events that could account for the es-
tablishment of this resonant state. Initially forming with a small
obliquity, Saturn passed through the resonance in the capture
direction as the Kuiper belt was depleted, pumping up its
obliquity until it eventually acquired its current value. A Saturn
currently in resonance places a constraint on that planet’s nor-
malized moment of inertia k > kcrit ¼ 0:2233 and implies that
the spin axis is librating with an amplitude 
31�. This could
be a fossil remnant of a precapture obliquity generated in an

earlier resonance pass during the planet’s Kelvin-Helmholtz
contraction. Alternatively, the librations may have been caused
by nonadiabatic conditions during resonance passage (Paper II )
or excited by a late impact. Numerical experiments described
in our companion paper illustrate resonant capture in detail.
The critical precession frequency separating circulating from
librating spin-axis trajectories is �=g18 ¼ �1:18, � cos � ¼
0B730 yr�1, and perhaps further observational data will be able
to discriminate between them.
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NASA’s Planetary Geology and Geophysics Program. D. P. H.
acknowledges support from an NSF Career award and from the
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APPENDIX

NONADIABATIC OBLIQUITIES

The equation of motion (eq. [6]) in component form reads

ẋ ¼ (�zþ g cos I )y� g sin I z;

ẏ ¼ �(�zþ g cos I )x;

ż ¼ x sin I : ðA1Þ

Consider again a small-angle approximation: z � cos I � 1,
sin I � I , and introduce a new independent variable ’ �R t

o
(� þ g)dt, where we take t ¼ 0 to be the moment when � ¼

�g. The x- and y-equations can be combined to yield a second-
order equation d 2y=d’2 þ y ¼ g I=(� þ g) with solution

y ¼ g I �cos ’

Z
sin ’ dt þ sin ’

Z
cos ’ dt

� �
: ðA2Þ

We now expand � � �gþ �̇ t so that ’ � �̇ t 2=2 � t 02. Inte-
gration of equation (A2) then gives

y ¼ g I
ffiffiffiffiffiffiffiffiffi
�=�̇

p nh
C1(t

0)þ 1
2

i
sin t 02�

h
S1(t

0 )þ 1
2

i
cos t 02

o
ðA3Þ

(Ward et al. 1976), where C1(t
0) and S1(t

0) are Fresnel integrals
and we have required y ! 0 as t 0 ! �1. As t 0 ! þ1, C1

and S1 approach
1
2
, yielding an obliquity proportional to �̇�1/2,

namely,

�! g I
ffiffiffiffiffiffiffiffiffiffiffiffi
2�=�̇

p
: ðA4Þ
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