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Abstract

We investigate the orbital history of the small neptunian satellites discovered by Voyager 2. Over the age of the Solar System, tidal forces have
caused the satellites to migrate radially, bringing them through mean-motion resonances with one another. In this paper, we extend our study of
the largest satellites Proteus and Larissa [Zhang, K., Hamilton, D.P., 2007. Icarus 188, 386–399] by adding in mid-sized Galatea and Despina.
We test the hypothesis that these moons all formed with zero inclinations, and that orbital resonances excited their tilts during tidal migration.
We find that the current orbital inclinations of Proteus, Galatea, and Despina are consistent with resonant excitation if they have a common density
0.4 < ρ̄ < 0.8 g/cm3. Larissa’s inclination, however, is too large to have been caused by resonant kicks between these four satellites; we suggest
that a prior resonant capture event involving either Naiad or Thalassa is responsible. Our solution requires at least three past resonances with
Proteus, which helps constrain the tidal migration timescale and thus Neptune’s tidal quality factor: 9000 < QN < 36,000. We also improve our
determination of Qs for Proteus and Larissa, finding 36 < QP < 700 and 18 < QL < 200. Finally, we derive a more general resonant capture
condition, and work out a resonant overlap criterion relevant to satellite orbital evolution around an oblate primary.
Published by Elsevier Inc.
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1. Introduction

Voyager 2 discovered six small satellites (Table 1) around
Neptune in 1989 (Smith et al., 1989). These satellites likely
formed after the capture of the planet’s largest moon, Triton
(McKinnon, 1984; Goldreich et al., 1989; Agnor and Hamilton,
2006). Triton’s capture and subsequent orbital migration and
circularization (McCord, 1966) destroyed the original moon
system and formed a debris disk, which was both scattered
away and swept up by the giant moon (Ćuk and Gladman,
2005). Only debris close to Neptune survived this catastrophe,
and resonant encounters with Triton kept a new generation of
satellites from forming in this inner disk until Triton finished
evolving to its current circular orbit (Hamilton et al., 2005).
The post-captured orbital circularization occurred initially on a
timescale of a hundred thousand years due to physical interac-
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tions with the debris disk (Ćuk and Gladman, 2005), and then
on a longer timescale of a hundred million years due to tides
(Goldreich and Soter, 1966). Thus all six of Neptune’s inner
moonlets most likely formed after Triton attained its current
circular, retrograde, and highly-inclined orbit.

Today, Triton’s large orbital tilt induces a strong forced
component in the inclination of each satellite’s orbit. These
forced inclinations define the location of the warped Lapla-
cian plane, about whose normal satellites’ orbital planes pre-
cess (Zhang and Hamilton, 2007). Measured from their local
Laplace planes, the current free orbital inclinations (ifr) of the
small satellites are only a few hundredths to tenths of a degree,
with one exception (4.75◦ for tiny Naiad). It is the contention
of this paper, and a result of our previous study in Zhang and
Hamilton (2007), that these free tilts, despite being very small,
arose from resonant excitations during orbital evolution. Phys-
ically, the debris disk from which the satellites formed should
have damped rapidly into a very thin layer lying in the warped
Laplacian plane. Satellites formed from this slim disk should
initially have free inclinations ifr � 0.001◦, perhaps similar to
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Table 1
Inner neptunian satellites and Triton

Name R̄ (km) a (km) e (×10−3) iLap (◦) ifr (◦)

Naiad 33±3 48,227 0.4 ± 0.3 0.5118 4.75 ± 0.03
Thalassa 41±3 50,075 0.2 ± 0.2 0.5130 0.21 ± 0.02
Despina 75±3 52,526 0.2 ± 0.2 0.5149 0.06 ± 0.01
Galatea 88±4 61,953 0.04±0.09 0.5262 0.06 ± 0.01
Larissa 97±3 73,548 1.39±0.08 0.5545 0.205±0.009
Proteus 210±7 117,647 0.53±0.09 1.0546 0.026±0.007
Triton 1353 354,759 0.0157 – 156.83a

Radii of the small satellites (R̄) are from Karkoschka (2003); moonlet orbital
elements (semi-major axis a, eccentricity e, inclination of local Laplacian plane
iLap, and free inclination ifr) are from Jacobson and Owen (2004); Triton pa-
rameters are from Jacobson et al. (1991).

a Inclination of Triton is relative to the invariable plane.

the current thickness of Saturn’s ring (i ∼ 0.0001◦). Collisions
amongst ring particles damp orbital energy while preserving an-
gular momentum, leading inexorably to tiny tilts. Unless large
moons have unrealistic scattering histories in the late stages of
satellite accretion, the newly-formed satellites inherit the near-
zero tilt of the parent disk. A reasonable explanation for the
current non-zero inclinations of the satellites thus requires an
examination of their orbital evolution history.

Planetary tides cause orbital evolution of the small neptunian
satellites and have brought them into and out of resonant con-
figurations. In our previous paper (Zhang and Hamilton, 2007),
we examined the recent strong 2:1 mean-motion resonance pas-
sage between Proteus and Larissa (abbreviated PL 2:1) which
occurred only a few hundred million years ago. During the res-
onance, Larissa completes two orbits for every one that Proteus
does and rapid orbital evolution can occur. We carried out ex-
tensive numerical simulations for this resonance passage, and
identified a new type of three-body resonance between the satel-
lite pair and Triton. In order to study these resonances analyt-
ically, we generalized the definition of orbital elements in the
inner neptunian system to incorporate the secular effects of Tri-
ton: free inclinations are measured relative to a satellite’s local
Laplace plane (ifr), and longitudes are all “bent” angles mea-
sured partially in this plane (Ω̃ and �̃ , see Fig. 5 of Zhang and
Hamilton, 2007).

Mean-motion resonances are characterized by a resonant ar-
gument or resonant angle φ. When two or more satellites are
exactly in resonance, φ̇ = 0. In the inner neptunian system, the
strongest resonant arguments have the form

φ = (p + q)λ2 − pλ1 + j1�̃1 + j2�̃2 + j3Ω̃1

(1)+ j4Ω̃2 + jT ΩT .

This is the standard argument for a two-body resonance aug-
mented by an extra term jT ΩT to include Triton’s effect (Zhang
and Hamilton, 2007). Here λ1 and λ2 are the orbital mean longi-
tudes of the inner and outer small satellites, respectively, which
vary rapidly in time. The node and pericenter angles (Ω̃1, Ω̃2
and �̃1, �̃2) are longitudes defined by Zhang and Hamilton
(2007); these only change slowly and ΩT , the longitude of the
ascending node of Triton, varies even more slowly. The numer-
ical coefficients in front of the longitudes (p > 0, q > 0, and
ji ) are all integers and are subject to additional constraints dis-
cussed by Hamilton (1994).

Three-body resonances are usually weaker than their two-
body counterparts because their resonant strengths contain an
extra small term proportional to the mass ratio of the third body
and the primary. In the Neptune–Triton system, however, three-
body inclination resonances are stronger than their two-body
counterparts due to Triton’s large tilt. With the help of the three-
body resonant kicks, typical inclination excitations of Proteus
and Larissa are smaller than, but roughly the same magnitude
as, the satellites’ current free inclinations (Zhang and Hamilton,
2007). In particular, if the two satellites had a large common
mean density ρ̄ > 1.5 g/cm3, Proteus could acquire its current
tilt through the PL 2:1 resonance passage alone. The inclination
of Larissa, on the other hand, could be excited to only about
half its current value. We concluded that additional resonance
passages were necessary.

An additional density constraint arises from the current non-
zero eccentricities of the satellites (Table 1). Without a recent
excitation, these eccentricities should have damped to zero due
to satellite tides acting over billions of years (Burns, 1977).
The recent PL 2:1 resonance, however, excited eccentricities
to larger than today’s values if the satellite masses are large
enough, leading to the constraint ρ̄ > 0.05 g/cm3.

In the present paper, we investigate earlier resonance pas-
sages among the four largest inner neptunian moons: Proteus,
Larissa, Galatea, and Despina, with the goals of (i) solving the
mystery of Larissa’s inclination excess, (ii) finding a consis-
tent excitation scenario for the orbital tilts of all four satellites,
and (iii) constraining satellite densities and Neptune’s tidal Q.
For now, we ignore the innermost Naiad and Thalassa whose
masses are ∼10 times smaller than those of the other moons
(Table 1). In next section, we study the tidal migration history
of the four satellites and enumerate the possible resonance pas-
sages among them. We then detail our numerical simulations
of the most important resonances and their immediate impli-
cations. Finally, we combine the results of multiple resonance
passages to place much stronger constraints on satellite densi-
ties, as well as QN , QP , and QL, than we could using Proteus
and Larissa alone (Zhang and Hamilton, 2007).

2. Resonant history of the neptunian system

The long-term evolution of satellite orbits is determined by
tidal dissipation within the parent planet (Burns, 1977). A small
satellite raises tides on Neptune (planetary tides), which then
act back on the satellite gravitationally and causes it to migrate
radially at a rate

(2)
ȧ

a
= ±3k2N

QN

(
RN

a

)5

μn

(Murray and Dermott, 1999, Section 4.9). Here a, and n are the
semi-major axis and mean motion of the satellite, respectively,
and μ is the satellite–planet mass ratio. The Love number k2N

measures the internal rigidity of Neptune, and QN is its tidal
dissipation factor which parameterizes the energy loss due to
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Fig. 1. Semi-major axes of the small inner neptunian satellites in planet radii.
The two arrows indicate the direction of tidal migration.

tides. Both k2N and QN are poorly constrained observation-
ally. The former, however, is less dependent on the planet’s
internal structure, so in this paper, we adopt the theoretically-
determined k2N = 0.41 (Burša, 1992) and constrain QN . The
sign of the right-hand side of Eq. (2) depends on which side
of synchronous orbit, the location where a satellite orbits at the
same angular rate as Neptune rotates, the satellite is located.
If a prograde satellite is outside synchronous orbit, it orbits
slower than Neptune rotates and tides push it outwards (ȧ > 0);
otherwise, tides pull it inward towards Neptune (ȧ < 0). The
synchronous orbit lies at 3.31RN , between the orbits of Proteus
and Larissa (Fig. 1). Hence, Proteus migrates away from Nep-
tune, while all other satellites spiral inwards, which is likely
the origin of the large gap between the orbits of Proteus and
Larissa. A satellite’s migration rate is proportional to its mass,
and has a steep inverse dependence on its orbital semi-major
axis (Eq. (2)). Since Larissa, Galatea, and Despina have com-
parable masses (within a factor of 2), the innermost of these
migrates most rapidly, and hence their orbits all diverge from
one another. Diverging orbits usually lead to resonant kicks dur-
ing which satellite orbital elements change sharply (Hamilton
and Burns, 1993; Zhang and Hamilton, 2007). Due to the much
smaller masses of the innermost Naiad and Thalassa, their or-
bits evolve more slowly and are approached by those of the
next three satellites. Converging orbits typically lead to reso-
nant trapping, as has been suggested as the explanation for the
large inclination of Naiad by Banfield and Murray (1992).

Not only do satellites raise tides on Neptune (planetary
tides), but the planet raises tides on satellites as well (satel-
lite tides). Satellite tides circularize orbits of the neptunian
satellites on timescales of several hundred million years. Im-
portantly, neither planetary nor satellite tides affect satellite
orbital inclinations significantly (Burns, 1977). The rotation
of the planet can cause its tidal bulge to shift slightly out
of the satellite’s orbital plane, but the resulting force compo-
nents perpendicular to the orbital plane are weak, and can only
cause very slow inclination evolution. In principal, non-zero
satellite obliquities (so-called Cassini states; Colombo, 1966;
Hamilton and Ward, 2004; Ward and Hamilton, 2004) might
allow satellite tides to damp inclinations. But the current ob-
served satellite inclinations, measured in radians, are about 10
times larger than eccentricities (Table 1), thus the inclination
damping rate must be substantially smaller than the eccentricity
damping rate. Tides have most likely changed the inclinations
of the inner neptunian satellites by less than a tenth of their cur-
rent values in the past 4 billion years.
As satellites migrate, changes of their mean motions bring
them into and out of resonances (Greenberg, 1973), which
kick up their orbital eccentricities and inclinations. Resonance-
excited eccentricities damp away quickly due to satellite tides
(Goldreich, 1963), but without an effective damping mecha-
nism, any inclination acquired is retained essentially perma-
nently.

Over the history of the Solar System, the inner neptunian
satellites have migrated on the order of RN (Fig. 1), which is
slow enough that most of the first- and second-order mean-
motion resonances are traversed in the adiabatic limit. Mag-
nitudes of resonant kicks on satellite inclinations are then pre-
dictable both analytically (Peale, 1976) and numerically (Zhang
and Hamilton, 2007). Higher-order resonances are often not
transversed adiabatically, but we have found that their kicks are
typically smaller by about an order of magnitude, and thus add
negligibly to the total inclination growth of the moons.

Because satellite mean motions are much larger than orbital
precession rates, resonances cluster in discrete narrow zones
near where the ratio of satellite orbital periods is a rational
number ((p + q)/p, see Zhang and Hamilton, 2007). We in-
tegrate Eq. (2) for each satellite and locate all the first- and
second-order resonant zones (q = 1 and q = 2 in Eq. (1)),
as shown in Fig. 2. We stop the integration when Larissa is
fairly close to the synchronous orbit and the unphysical dis-
continuity in ȧ/a (Eq. (2)) becomes problematic. Because of
this over-simplification for satellites near synchronous orbit, the
left-hand side of the plot is less accurate than the right, espe-
cially for Larissa. As the time axis indicates, the integration is
much longer than the age of the Solar System, but the evolution-
ary timescale depends on Neptune’s Q and the satellite masses,
all of which are poorly constrained. Here we have used QN =
20,000 and a common satellite mean density ρ̄ = 0.6 g/cm3.
For these assumptions, Proteus was 0.28RN closer to Neptune
4 billion years ago than it is today and Larissa, Galatea, and De-
spina have each migrated towards the planet by 0.24, 0.39, and
0.49RN , respectively. A larger QN or a lower satellite density
would result in a slower evolution, as described in Fig. 2’s cap-
tion. Thus the origin of the system could occur anywhere along
the horizontal axis of Fig. 2, depending on the actual values of
QN and ρ̄.

With our assumptions of QN = 20,000 and ρ̄ = 0.6 g/cm3,
the satellites go through approximately 16 resonant zones
involving first- and second-order mean-motion resonances
(Fig. 2) since the system formed ∼4 billion years ago (Hamilton
et al., 2005). For different QN and ρ̄, a different number of past
resonances would have occurred. Our strategy here is to work
backwards in time from the present to find out which of these
resonances actually occurred and determine what their effects
were. We focus on orbital inclinations which are relatively un-
affected by tides and hence accumulate over time, leaving an
orbital “fossil record” still visible today.

3. Resonances with Proteus

In Zhang and Hamilton (2007), we found that the mag-
nitudes of resonant kicks on orbital inclinations depended
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Fig. 2. Possible past first- and second-order mean-motion resonances between satellite pairs Proteus (P), Larissa (L), Galatea (G), and Despina (D). We integrate
Eq. (2) backward in time until Larissa is fairly close to the synchronous orbit (SO), assuming QN = 20,000 and a uniform satellite mean density of ρ̄ = 0.6 g/cm3.
Black solid curves show the migration tracks of the four satellites, and the dashed horizontal line denotes the synchronous orbit. The vertical lines represent strong
resonant zones for different pairs of satellites. The time scale along the bottom axis depends on both QN and ρ̄. For different values of these parameters, simply

multiply all times by the factor QN /20,000
ρ̄/(0.6 g/cm3)

.

strongly on the mass of the perturber. Since Proteus is by far
the largest satellite near Neptune, resonances between it and the
other satellites are much stronger than those among the three
smaller satellites. As a first approximation, therefore, we ex-
amine only the Proteus resonances, neglect the weaker ones,
and see if we can form a consistent story from this subset of
Fig. 2. We will return to consider resonances between Larissa,
Galatea, and Despina in Section 4.2. In addition to the very re-
cent 2:1 resonant zone between Proteus and Larissa, Proteus
might have gone through seven other resonant zones that we
list backwards from the present: PD 3:1, PG 2:1, PL 5:3, PL
3:2, PD 2:1, PG 5:3, and PL 7:5. In this section, we detail
these resonance passages, determine the inclination excitation
provided by each resonance, and analyze new features found in
our simulations.

The most straight-forward numerical study would simply
integrate the whole 4 billion years history of the neptunian
system directly. This is, however, impractical due to current
computational limits. Since the most important orbital evolu-
tion occurs during resonance passages which occupy only a
relatively short period of time (<20 Myrs), we use the HN-
Drag package to integrate just the passage of each resonant zone
directly. We then solve the tidal migration equations for the in-
tervening times. Each simulation includes Neptune, Triton, and
the two relevant satellites. In practice, we start with zero free
eccentricity and free inclination for both orbits prior to each
resonance passage, and correct for the effects of inclinations
from earlier resonance passages using the technique discussed
in Section 4.
3.1. The most recent PL 2:1 resonance

This most recent resonant zone is located merely several
hundred kilometers away from the current orbits of Proteus
and Larissa. Based on our simple tidal model, the resonance
occurred only a few hundred million years ago. We studied
this resonance passage in great detail in Zhang and Hamil-
ton (2007), and found that not only did it excite the moons’
orbital tilts, but it also can explain the larger than average ec-
centricities of their orbits—the excitation is too recent for the
eccentricities to have fully damped away. Fig. 3 is similar to
Fig. 2 of Zhang and Hamilton (2007), but with different as-
sumed ρ̄ and QN . The plot shows the eccentricities and free
inclinations of Proteus and Larissa when they pass through the
resonant zone. Three-body resonances dominate the inclination
evolution; the investigations presented below show that these
special resonances are common in the Neptune–Triton system.

3.2. The second-order resonance PD 3:1

The previous resonant zone Proteus traversed consists of
the 3:1 resonances with Despina (cf. Fig. 2). The 3:1 resonant
zone is simpler than the 2:1 one as it contains only second-
order, fourth-order, and other even-order resonances. Compared
to the PL 2:1 zone (Fig. 3), which has first-order eccentric-
ity resonances, there are no strong eccentricity kicks, and the
lack of third-order resonances makes the inclination evolution
much simpler and cleaner as well (Fig. 4). The two second-
order three-body resonant kicks, RiP iT and RiLiT , dominate the
inclination growth. Two of the three traditional second-order
two-body resonances can be easily identified, and fourth- and
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Fig. 3. The eccentricities and free inclinations of Proteus and Larissa as they di-
verge through the PL 2:1 resonances. The system consists of Neptune, Triton,
and the two small satellites, started with zero free eccentricities and free inclina-
tions. The proximity of the strong first-order ReL resonance forces eL ≈ 0.001
at t = 0; starting close to resonance with this value is equivalent to starting with
eL = 0 at a greater distance from the resonance as actually occurs in the system.
The density of the satellites is ρ̄ = 0.6 g/cm3; aL is fixed at 2.93RN , while Pro-
teus migrates outward from 4.651RN to 4.654RN , equivalent to QN = 20,000.
The strongest first-, second-, and third-order resonances are identified using the
notation of Zhang and Hamilton (2007) (e.g., RiP iL

is a second-order reso-
nance involving the inclinations of Proteus and Larissa). Second-order (RiP iT

,
and RiLiT

) and third-order (ReLiP iT
and R∗) three-body resonances dominate

the inclination growth; these resonances are discussed in detail in Zhang and
Hamilton (2007). Unlabeled-kicks are due to weaker higher-order resonances.

higher-order kicks are too weak to have noticeable effects. The
overall PD 3:1 inclination kick on Despina is a little smaller
than the overall PL 2:1 kick on Larissa, and the Proteus kick
through the PD 3:1 is weaker by a factor of 3 due both to the
smaller mass of Despina (mD ≈ 0.5mL) and to the lack of con-
tributions from odd-order resonances. In Zhang and Hamilton
(2007), we pointed out that strong third-order three-body res-
onances contributed significantly to the growth of ifr

P (ReLiP iT

and R∗ in Fig. 3). These resonances do not exist in the PL 3:1
and other second-order resonant zones, including the PL 5:3,
PG 5:3 and PL 7:5 from Fig. 2.

3.3. The PG 2:1 and diverging capture

The 2:1 resonant zone between Proteus and Galatea is lo-
cated between PD 3:1 and PL 5:3. This resonance is similar to
the first-order PL 2:1 discussed above, with differences arising
only from the smaller mass ratio of the two satellites and their
different distances from Neptune. The two first-order eccentric-
ity resonances (ReG

and ReP
) kick the orbital eccentricities of

the two satellites strongly, as can be seen in Fig. 5. The inclina-
tion kicks due to three-body resonances (RiP iT , RiGiT , ReGiP iT ,
and R∗) are similar in magnitude to those due to the PL 2:1
resonances discussed in Section 3.1. In a small fraction of our
simulations, such as the one shown in Fig. 5, however, we see a
new effect that is surprising at first glance: resonance capture.
Fig. 4. Proteus and Despina diverge through the PD 3:1 resonant zone. The
mean satellite density is ρ̄ = 0.8 g/cm3, and QN = 33,000. Both satellites are
initially on circular orbits in their local Laplace planes. Two of the three usual
second-order resonances are identified (RiP iD

and R
i2
D

), as well as the two

three-body resonances, RiP iT
and RiDiT

. Note that although the effects of the
third second-order resonance (R

i2
P

) are too weak to be visible, we indicate its

approximate location.

In addition to resonant kicks, when satellite orbits are sub-
ject to sudden and sharp changes, two satellites may also be
captured into a mean-motion resonance during tidal migration
(Greenberg, 1977). When this occurs, the mean motions and
orbital precession rates of the two satellites vary in such a way
that the associated resonant angle librates around a stationary
point rather than cycling through a full 360◦. The affected ec-
centricity or inclination grows until nearby resonances or other
perturbations break the system out of resonance. What is sur-
prising here is that previous studies have shown that resonant
captures during tidal migration occur when the orbits of two
satellites approach each other (e.g., Hamilton, 1994), while our
satellites are diverging. Earlier papers, however, all focus on
strong first- and second-order resonances. For some higher-
order resonances, temporary capture is possible for diverging
orbits. We have found several such resonant trappings in our
simulations when the two orbits diverge slowly enough. Never-
theless, trappings are still very rare even at slow migration rates,
probably because of the inherent weakness of higher-order res-
onances. We have run 10 simulations through the PG 2:1 zone
with 25,000 < QN

ρ̄/(g/cm3)
< 35,000 for different satellite densi-

ties ranging between 0.4 and 1.5 g/cm3, but there is only one
capture event at ρ̄ = 0.8 g/cm3, shown in Fig. 5. In this simu-
lation, after the system has gone through the two first-order ec-
centricity resonances (ReG

and ReP
), the two third-order three-

body resonances (ReGiP iT and R∗), and the first second-order
three-body resonance (RiP iT ), the two orbits are captured into a
three-body resonance ReP i2

T
, second-order in the small quanti-

ties eP and μT , with a critical argument

(3)φeP i2
T

= 2λP − λG + �̃P − 2ΩT .

3.3.1. Resonant trapping condition
We now derive the condition in which resonant trapping into

ReP i2
T

is possible. We assume that away from resonance, tides

force Proteus and Galatea to migrate at rates ȧd
P and ȧd

G, re-
spectively, and that Triton’s orbit is fixed in space. Following
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Fig. 5. The PG 2:1 passage with an isolated eccentricity-type resonance cap-
ture; we show eccentricities, free inclinations and the two relevant resonant
argument. As in Fig. 3. the initial eG �= 0 is forced by the strong nearby ReG

resonance. After trapping into the R
eP i2

T
resonance at t ≈ 1.2 × 107 yrs, Pro-

teus is captured into the second-order resonance (R
i2
P

) at t ≈ 1.6 × 107 yrs

which affects its inclination. The second capture is enabled by extremely slow

changes to ˙̃�P and ˙̃
ΩP induced by the first resonance. In this simulation,

ρ̄ = 0.8 g/cm3 and QN = 22,000.

Hamilton (1994), we derive the rates of change of aP , aG, eP ,
and iT due to resonant and tidal perturbations to the lowest or-
der in e and i:

(4)ȧP = ȧd
P − 4μGμT βeP i2

T

nP aP

sinφeP i2
T
,

(5)ȧG = ȧd
G + 2μP μT βeP i2

T

nGaG

sinφeP i2
T
,

(6)ėP = μGμT βi2
T

nP a2
P

sinφeP i2
T
,

(7)i̇T = −2μGμP βeP iT

nT a2
T

sinφeP i2
T
.

Here β < 0 is the resonant strength of ReP i2
T

. In general, β is
negative for odd q in the resonant argument equation (1) and
positive for even ones. It has the same units as n2a2 and its
value depends only on satellite semi-major axes. When the two
orbits are in any of the 2:1 resonances, their semi-major axes
must follow

(8)
aP

aG

= ȧP

ȧG

≈ 22/3.
With Eqs. (4) and (5), and Eq. (8), we can solve for sinφeP i2
T

at
resonant equilibrium:

(9)sinφeP i2
T

= nP a2
P

2μGμT βeP i2
T

ȧd
P /aP − ȧd

G/aG

2 + 3
√

2μP /μG

.

For ȧd
P /aP = ȧd

G/aG, the two equilibrium points are at φeP i2
T

=
0 and φeP i2

T
= 180◦; they are shifted slightly when dissipation

is present and the two orbits migrate at different relative rates.
Substituting Eq. (9) into Eq. (6), we obtain

2eP ėP = ȧd
P /aP − ȧd

G/aG

2 + 3
√

2μP /μG

,

which has the solution

(10)eP =
[
e2
P 0 + ȧd

P /aP − ȧd
G/aG

2 + 3
√

2μP /μG

t

]1/2

,

where t is the time elapsed since entering the resonance and eP 0
is the initial eccentricity of Proteus. If resonant trapping occurs
for a low eccentricity, eP must increase with time and Eq. (10)
thus requires

ȧd
P

aP

− ȧd
G

aG

> 0,

or that the two orbits diverge from each other. Note that this is
opposite the usual requirement that the orbits converge for trap-
ping to be possible, yet consistent with the behavior of Fig. 5.
This interesting result—trapping for diverging orbits—is a di-
rect consequence of the sign of the �̃ term in the resonant angle
(Eq. (3)), as we shall see below.

The resonance ReP i2
T

affects not only the eccentricity of Pro-
teus, but also the inclination of Triton. We can solve for the
evolution of iT with Eqs. (7) and (9):

(11)iT =
[
i2
T 0 − 2μP

μT

√
aP

aT

(
ȧd
P /aP − ȧd

G/aG

2 + 3
√

2μP /μG

)]1/2

,

where the second term on the right-hand side is negative for
trapping. Thus, if resonant trapping occurs, eP increases with
time while iT decreases. In typical cases when the satellites
have comparable masses, the trapping would cease when iT
drops to zero. Because of Triton’s huge mass, however, the
change of iT is negligible compared to that of eP :

�iT /iT

�eP /eP

∼ −2μP

μT

√
aP

aT

≈ −0.002.

Hence, Triton’s inclination decreases ∼500 times more slowly
than Proteus’ eccentricity increases and the resonance trapping
can be stable for a long time.

The resonant trapping condition can be easily generalized
for an arbitrary resonance with an argument defined by Eq. (1).
Following similar procedures, we find that, in order for any rel-
evant eccentricity or inclination to increase, the integer in front
of the corresponding node or pericenter angle in Eq. (1), ji ,
must obey

(12)ji

(
ȧd

2 − ȧd
1
)

> 0.

a2 a1
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For standard first-order (q = 1) and second-order (q = 2)
two-body resonances, ji must be negative, and thus we re-
cover the standard result: resonant trapping is possible only if
ȧd

2 /a2 − ȧd
1 /a1 < 0, i.e., for converging orbits. But for reso-

nances with three or more node and pericenter angles involved,
like ReP i2

T
shown in Eq. (3), some of the ji can be positive,

which makes capture into these resonances possible only for
diverging orbits, as we have seen in Fig. 5. Thus it is a general
result that, for any isolated mean-motion resonance, capture for
converging orbits requires a negative node or pericenter coeffi-
cient, while for capture from diverging orbits a positive coeffi-
cient is needed.

3.3.2. Evolution in ReP i2
T

We now look at the resonant angle during the resonant trap-
ping (the fifth panel of Fig. 5). Assuming moderate eccentric-
ities so that the pericenter term in Eq. (3) is negligible, φeP i2

T

satisfies

φ̈eP i2
T

= 2ṅP − ṅG,

which can be easily transformed into a harmonic equation using
Eqs. (4) and (5):

(13)φ̈eP i2
T

+ ω2
0 sinφeP i2

T
+ (

ṅd
G − 2ṅd

P

) = 0,

where ṅd
P = −(3/2)nP ȧd

P /aP and ṅd
G = −(3/2)nGȧd

G/aG are
the tidal drag rates of the two orbits expressed in terms of mean
motions. Equation (13) is a standard harmonic oscillator with
small-angle libration frequency ω0 given by

ω2
0 = −6μT βeP i2

T

a2
P

(
2μG + 3

√
2μP

)
.

As shown in Fig. 5, φeP i2
T

begins to librate around a stable
equilibrium point at 0◦ as the orbits are first trapped into the
ReP i2

T
resonance. In fact, the divergence forced by tidal dissi-

pation causes the equilibrium point to shift to a small negative
value determined by Eq. (9). Averaging over a libration, Eqs. (4)
and (5) simplify to

ȧP = ȧd
P − δP ,

ȧG = ȧd
G + δG,

where δP and δG are small positive quantities. These terms re-
sist the tidal divergence and allow the approximate resonance
condition (Eq. (8)) to be maintained.

For slow changes of ω0, the system has an adiabatic invariant
(Landau and Lifshitz, 1976, Section 49)

ω0Φ
2 = constant,

where Φ (assumed small) is the libration width, or the ampli-
tude of the oscillating resonant angle φeP i2

T
. As eP increases

slowly, ω0 grows and Φ decreases as shown in Fig. 5 from
1.2 × 107 years until 1.6 × 107 years when a second resonance
is activated.
3.3.3. Trapping into Ri2
P

Shortly after capture into ReP i2
T

, the two satellites are
trapped into the traditional two-body resonance Ri2

P
(Fig. 5),

with a resonant argument

φi2
P

= 4λP − 2λG − 2Ω̃P .

The interplay between the two active resonances is quite in-
teresting. With both resonances active, the orbits still appear to
diverge, as can be seen from Eq. (10) and the fact that eP con-
tinues to rise in Fig. 5. But, coincident with the second capture,
there is an abrupt change in the behavior of φeP i2

T
(fifth panel

of Fig. 5) whose libration changes from decreasing with time
(as expected for an isolated resonance) to increasing with time.
This state of affairs continues until t = 2.6×107 years at which
point the second resonance ceases to be active (note the flatten-
ing of the iP curve) and the libration amplitude of φeP i2

T
begins

decreasing again.
The sharp-eyed reader might have noticed a very subtle

change in the density of points for the φi2
P

history (sixth panel

of Fig. 5)—an oval-shaped feature between t = 1.6 × 107 and
2.6 × 107 years that indicates that the Ri2

P
resonance is active.

The oval feature has dark edges (turning points—note the simi-
lar dark edges in the fifth panel) and a lighter center because the
system spends more time near φi2

P
= 0 than near φi2

P
= 180◦.

The Ri2
P

resonance is prevented from cleanly librating about
φi2

P
= 0 by the more powerful ReP i2

T
resonance, but the asym-

metry in the density of points that it produces is enough to
cause the systematic rise in Proteus’ free inclination (Fig. 5,
fourth panel). The libration of the resonant angle φi2

P
initially

decreases (from 1.6 × 107 yr < t < 2.2 × 107 yr) and then in-
creases again (from 2.2 × 107 yr < t < 2.6 × 107 yr) until the
orbits finally exit the Ri2

P
resonance.

The Ri2
P

resonance usually requires converging orbits to trap
into the stable equilibrium point φi2

P
≈ 180◦ (Murray and Der-

mott, 1999). With the diverging orbits of Fig. 5, however, we see
trapping favoring the φi2

P
≈ 0◦ equilibrium point. Evidently the

drag force and the strong earlier resonance combine to make the
φi2

P
≈ 0◦ equilibrium point stable when it is normally unstable

(Murray and Dermott, 1999); this unusual circumstance allows
iP to grow in a second-order resonance despite the diverging
orbits.

We can qualitatively account for the effects of one resonance
on another by extending Eq. (13) and the equivalent expression
for φ̈i2

P
to include both perturbations:

(14)φ̈eP i2
T

= −ω2
0 sinφeP i2

T
− ω2

1 sinφi2
P

− (
ṅd

G − 2ṅd
P

)
,

(15)
φ̈i2

P

2
= −ω2

1 sinφi2
P

− ω2
0 sinφeP i2

T
− (

ṅd
G − 2ṅd

P

)
,

with

ω2
1 = 12β ′(ifr

P )2

a2
P

(
2μG + 3

√
2μP

)
.
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Here β ′, similar to β , is the resonant strength of Ri2
P

. Since q =
2 for the Ri2

P
resonance, β ′ > 0. The libration of both φeP i2

T
and

φi2
P

are now modulated by new oscillations, and the presence of
these new terms breaks both adiabatic invariants.

Equations (14) and (15) admit both oscillating and circulat-
ing solutions—ultimately the system is driven to the circulating
solution. Which resonance is exited first depends on the relative
resonant strengths and on the conditions when the second reso-
nance is first encountered. In this example, the Ri2

P
resonance is

destroyed first, which allows the unperturbed ReP i2
T

resonance
to resume decreasing its libration amplitude in accordance with
the adiabatic invariant.

The possibility of resonant capture complicates our study of
the inclination history of the small satellites because of the diffi-
culty in predicting inclination growths. While the two orbits are
trapped into Ri2

P
, the free inclination of Proteus keeps grow-

ing. It is not obvious when the resonance will be broken, and
hence it is difficult to estimate ifr

P after traversal of the resonant
zone. We find four cases amongst ∼200 simulations for differ-
ent resonant zones, and the inclinations are affected only in one
of these four cases. Since the capture probability is low, the lim-
itation may not be serious. The actual capture probability might
be higher than 2%, however, because our modeled QN

ρ̄/(g/cm3)

ranges from 1000 to 30,000. A smaller QN leads to artificially
rapid orbital evolution which precludes some of the weak trap-
ping events.

3.4. The chaotic PL 3:2

As we follow Proteus and Larissa backward in time to the
PL 3:2 resonant zone, the satellites are closer and the typical
spacing between resonances is also smaller. When two strong
resonances are very close together, their effective widths can
overlap, causing the system to display chaotic behavior (see dis-
cussion in Zhang and Hamilton, 2007). During the PL 3:2 reso-
nance passage (Fig. 6), the semi-major axis of Larissa drops so
much during the ReL

resonance that ReP
becomes important be-

fore the system escapes completely from the first resonance, re-
sulting in temporary trapping into both resonances and chaotic
changes to the orbits. While in the two first-order eccentricity-
type resonances, random kicks to the semi-major axes bring a
series of higher-order inclination-type resonances into and out
of play, including the strong ReLiP iT discussed in Zhang and
Hamilton (2007). Chaotic kicks by these resonances, some of
which are crossed multiple times, force the free inclinations of
the two satellites to wander randomly. The width of the chaotic
region depends on the resonant strengths, and hence the masses
of the satellites. The tidal migration rate also plays a non-trivial
role. Stronger resonances result in wider chaotic regions, and
in turn, larger inclination growth. This imposes an immediate
problem in estimating the inclination growth through the tra-
verse of the PL 3:2 resonant zone.

3.4.1. Eccentricity resonances overlapping criterion
It is important to be able to estimate when resonant over-

lapping occurs. Wisdom (1980) derived such a criterion for
Fig. 6. The PL 3:2 passage. The inclinations of the satellites follow a random
walk behavior due to the chaotic overlap of the first-order eccentricity reso-
nances. This interaction forces multiple crossings of weaker resonances that
affect inclinations. Subsequent to escaping from the chaotic region, additional
resonances are traversed. Several second-order resonances are indicated, while
other strong ones are located in the chaotic zone and are not easily identified.
The density of the satellites is ρ̄ = 0.6 g/cm3 and QN = 20,000.

two first-order eccentricity resonances in two adjacent resonant
zones, taking one satellite to be a test particle. For the nep-
tunian satellites, resonant zones are well-separated for small p

in Eq. (1). In the case of Proteus and Larissa, overlap of res-
onant zones requires p � 50, i.e., beyond the PL 51:50 zone,
which only occurs when the satellites are extremely close to-
gether. For the vast majority of their evolution history, the two
moons were separated enough that this type of overlap does not
occur. Within a single resonant zone, however, resonant overlap
is much more common as we have seen in Fig. 6. Here we deter-
mine the criterion under which the two first-order eccentricity
resonances of a single resonant zone overlap; similar analyses
are also possible for second-order eccentricity and inclination
resonances. This type of overlap is particularly important when
the two satellites have comparable masses.

The overlap condition is determined by comparing the reso-
nance widths and the spacing between the two resonant centers.
Murray and Dermott (1999) calculated the half-widths for the
two first-order p + 1:p resonances in terms of the variation of
the orbital semi-major axis of either Proteus or Larissa, which
read

(16)

∣∣∣∣ (�a)1/2

a

∣∣∣∣
eL

= 4

[
−αfd(α)μP

3
eres
L

]1/2

and

(17)

∣∣∣∣ (�a)1/2

a

∣∣∣∣
eP

= 4

[
−α3fd(α)μL

3
eres
P

]1/2

for ReL
and ReP

, respectively. Here α = aL/aP = [p/(p +
1)]2/3 is the semi-major axis ratio; fd(α) is the coefficient for
the first-order direct term in the expansion of the disturbing
function; it is negative and its magnitude increases with α. The
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values of fd(α) for small p can be found in Table 8.5 of Murray
and Dermott (1999), and we find that αfd(α) ≈ −0.8p gives
an excellent fit. The eccentricities of Larissa and Proteus when
they are exactly in resonance are denoted by eres

L and eres
P , re-

spectively. When resonant kicks occur, however, eres
L and eres

P

are not well defined since both eccentricities jump during the
resonance. For example, in the PL 2:1 zone (Fig. 3), eL ≈ 0.003
right before the ReL

encounter, while eL ≈ 0.011 right after-
ward. Here we use the values right after the resonant crossings,
given by Murray and Dermott (1999):

eres
L = 2

[
−αfd(α)μP

3p2

]1/3

,

eres
P = 2

[
−α3fd(α)μL

3p2

]1/3

.

Note that this might over-estimate the resonant widths and bring
in an error of about 50%. Using these eccentricities and the ap-
proximation fd(α) = −0.8p, we find

(18)

∣∣∣∣ (�a)1/2

a

∣∣∣∣
eL

= 2.34 3
√

μ2
P p,

(19)

∣∣∣∣ (�a)1/2

a

∣∣∣∣
eP

= 2.34 3
√

μ2
Lα4p.

These approximations show that resonances are stronger and
wider for more closely spaced and more massive satellites.

Recall that (�a)1/2/a can be the orbital size variation of ei-
ther Proteus or Larissa in Eqs. (16)–(19) when the semi-major
axis of the other planet is fixed. Assuming that aL is fixed,
we now calculate the separation between the two resonances
in terms of aP to compare with the resonance widths. Values of
aP for ReL

and ReP
in the same p + 1:p resonant zone can be

obtained by setting the derivatives of the appropriate resonant
arguments to zero:

φ̇eL
= (p + 1)nP − pnL − ˙̃�L = 0,

φ̇eP
= (p + 1)nP − pnL − ˙̃�P = 0.

The difference in aP gives the spacing between the two reso-
nances:

(20)
δaP

aP

= 2

3

1

p + 1

( ˙̃�L − ˙̃�P

nP

)
= J2

(
RN

aP

)2 1 − α7/2

pα2
,

where we have assumed that the precession rates are dominated
by planetary oblateness (Danby, 1988) and J2 is the oblateness
coefficient. The two eccentricity resonances are closer to each
other for larger p, when the two orbits are closer to each other,
and for slower orbital precession rates, when the satellites are
further away from Neptune. Resonant separations are larger for
satellites of Jupiter and Saturn than for those of Uranus and
Neptune due to the differences in J2 values. For J2 ≈ 0, as for
the Sun, precession rates are dominated by secular effects and
resonance overlap is more common.

Resonance overlap occurs when the sum of the two half-
widths (Eqs. (18)–(19)) exceeds the separation (Eq. (20)):

(21)2.34pα2
(

3
√

μ2
P p + 3

√
μ2

Lα4p
)

� J2

(
RN

)2(
1 − α7/2).
aP
Table 2
Critical resonances for first-order eccentricity resonance overlap

Satellite pair Critical p Critical resonance

PL 2 3:2
PG 2 3:2
PD 2 3:2
LG 5 6:5
LD 5 6:5
GD 6 7:6

Now we neglect the contribution from the ReP
resonance in

Eq. (21), which causes only an error of about 20% since μP ≈
10μL, and solve for large p:

(22)p �
[

J 3
2

μ2
P

(
RN

aP

)6]1/7

.

Although for most satellites the critical p is small, the assump-
tion of large p only adds an error of about 50% even for p = 1.
As with Wisdom (1980)’s overlap expression p � 0.51μ−2/7,
Eq. (22) also depends on μ−2/7. Assuming ρ̄ = 0.6 g/cm3, res-
onance overlap occurs when p � 1.9 for Proteus and Larissa
(the exact solution of Eq. (21) gives p � 2.3), which roughly
agrees with our simulations: the PL 3:2 (p = 2) has resonance
overlap, while the PL 2:1 (p = 1) does not.

We calculate the critical resonance where overlap first occurs
for the four neptunian satellites in Table 2. Since the resonance
widths are dominated by the larger mass, the three Proteus pairs
have the same critical resonance. The two Larissa pairs also
have the same critical resonance, but this time due to the similar
sizes of Galatea and Despina.

This “collision” between eccentricity resonances and the re-
sulting chaotic zone exists for all first-order resonances when
the overlap criterion is met. During the PL 3:2 passage shown
in Fig. 6, for example, if the density of the satellites is less than
0.6 g/cm3 and QN < 20,000, the system shows only very weak
chaos; since the resonances barely overlap, significant growth
of inclinations does not take place. If the satellites are more
massive, or if they diverge more slowly, however, the random
walk of the orbital elements can continue for a long time, the
orbits become highly excited, and so the chaotic nature of this
resonant zone wipes out all information from earlier times.

4. Discussion

4.1. Satellite densities

The magnitude of each resonant kick depends on the masses
of the satellites, on their initial inclinations and eccentricities,
and more weakly, on the tidal drag rate. As long as the two
satellites diverge from each other so slowly that the major res-
onances are traversed in the adiabatic limit, however, the in-
clination growth is nearly independent of the migration rate.
Since the four small satellites have probably migrated by less
than a Neptune radius during their lifetime, our simulations
show that most first- and second-order resonances are traversed
adiabatically. Effects of higher-order resonances are usually in-



276 K. Zhang, D.P. Hamilton / Icarus 193 (2008) 267–282
Table 3
Inclination kicks through different resonance passages (in degrees)

Resonance Satellite Density (g/cm3)

1.5 1.2 1.0 0.8 0.6 0.4

PL 2:1 Proteus 0.026 0.022 0.018 0.017 0.014 0.012
Larissa 0.1 0.095 0.090 0.085 0.070 0.057

PD 3:1 Proteus 0.0076 0.0065 0.0060 0.0058 0.0050 0.0040
Despina 0.090 0.082 0.076 0.070 0.050 0.052

PG 2:1 Proteus 0.016 0.015 0.015 0.013 0.011 0.008
Galatea 0.100 0.095 0.085 0.085 0.063 0.042

PL 5:3 Proteus 0.013 0.013 0.012 0.011 0.0095 0.0080
Larissa 0.08 0.075 0.068 0.062 0.056 0.048

Pre-resonance free inclinations and eccentricities are set to zero in all of these simulations.
significant at these migration rates, but can occasionally lead to
resonant trapping as discussed above.

In principle, with a system of resonances traversed in the
adiabatic limit, we can derive the resonant kick magnitudes ana-
lytically to determine how the kicks depend on satellite masses,
as is done for two-body resonances by Yoder (1973), Hamilton
(1994), and Murray and Dermott (1999, Section 8). However,
for the neptunian satellites, this derivation requires a Taylor ex-
pansion of the three-body disturbing function, which is beyond
the scope of this work. Here we follow Zhang and Hamilton
(2007) and take a numerical approach. We have done simula-
tions for the individual resonant zones discussed in Section 3
with mean satellite density ranging between 0.4 and 1.5 g/cm3,
and satellite free inclinations and eccentricities initially set to
zero. In Table 3 we summarize the overall inclination kicks
on all satellite through the most recent four resonant zones. In
Zhang and Hamilton (2007), we found that the overall inclina-
tion growth through the PL 2:1 resonant zone was increased for
larger satellite masses and densities. As might be expected, the
same dependence holds true for other resonant zones as well,
as shown in Table 3. Thus, we are able to derive the satellite
masses by matching the total amount of inclination growth that
a satellite obtains through multiple resonant passages to its cur-
rent observed tilt. Two issues need to be resolved before we can
compute the masses: (i) correcting for the effect of non-zero
inclinations prior to resonant crossings, and (ii) determining
which resonances have actually occurred.

For issue (i), we ran sets of simulations to measure the ef-
fects of the initial free inclinations on the magnitudes of kicks
for the five strongest three-body resonances in the PL 5:3 and
PL 2:1 resonant zones. We find that the initial free inclination
of Proteus does not significantly affect the kicks on Larissa,
and vice versa, confirming that the resonant kicks are mostly
forced by Triton rather than the closer moon. Since the reso-
nant strength is proportional to satellite inclinations, we might
expect that larger initial tilts would result in stronger kicks.
Surprisingly, however, the kick magnitude decreases extremely
rapidly with increasing initial inclination of the affected satel-
lite, as shown in Fig. 7. The simulation data from all individual
three-body resonances is remarkably well fit by

(23)�i = �i0√
1 + 2 i0

�i0

,

Fig. 7. Magnitudes of the three-body resonant kicks versus the satellites’ initial
free inclinations for five resonances. The top two panels show the RiLiT

kicks
on Larissa during PL 5:3 and PL 2:1 passages. The bottom three panels show
the RiP iT

and ReLiP iT
kicks on Proteus during the same passages. Triangle:

kick magnitudes from different numerical simulations with various initial free
inclinations; solid line: curves fit to Eq. (23).

where i0 is the initial inclination, �i is the kick magnitude, and
�i0 is the kick magnitude at i0 = 0◦. We determine �i0 through
the fitting process, finding excellent agreement with numerical
simulations as seen in Fig. 7. If we treat the vertical oscillations
as a simple harmonic oscillator, then �i represents an ampli-
tude change and the energy in the oscillation is proportional
to i2. The energy pumped into the system by each resonance is
then

�E ∝ (i0 + �i)2 − i2
0 =

[
1 + 2i0/�i

1 + 2i0/�i0

]
�i2

0 .

The term in brackets is an increasing function of i0 since �i0 >

�i for all i0. Thus, although the amplitude of the inclination
kick decreases for increasing initial inclination i0, the energy
input actually increases.
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Since kicks from these three-body resonances dominate the
inclination growth and all obey the same equation, the over-
all change in inclination attained from passage through a full
resonant zone follows approximately the same rule. A rough
calculation leads to an error estimate of less than 10%. Equa-
tion (23) shows that the contribution to inclination growth by a
resonant zone passage is more significant if the resonances oc-
cur earlier in time when the satellites’ free inclinations are still
small. For example, the PL 2:1 passage can kick Larissa’s in-
clination up to 0.085◦ (ρ̄ = 0.8 g/cm3) if it is the only resonant
zone the satellite has gone through, but if the satellite already
has a 0.1◦ free tilt excited by earlier resonances, then the kick
is only 0.046◦ according to Eq. (23).

Issue (ii) arises because we do not know the tidal evolu-
tion timescale. Fortunately, however, the current free inclina-
tions of Proteus, Larissa, Galatea, and Despina provide strong
constraints on the number of past resonant encounters. The ob-
served free tilts of Galatea and Despina are both about 0.06◦,
Larissa’s free inclination, at ∼0.2◦, is three times as large, and
Proteus has a smaller inclination of 0.026◦ (Table 1). Since
the first three satellites have similar masses (within a factor
of 2), we expect Galatea and Despina each to pass one strong
resonant zone with Proteus (Fig. 2), and Larissa probably has
passed more than one. Proteus is ∼10 times more massive than
the other satellites, making it simultaneously the strongest per-
turber in the system and the hardest to perturb. For this rea-
son, its free inclination is significant although it is the smallest
among the four.

We now combine the results from Table 3, scaled by Eq. (23)
as appropriate, and plot the final free inclinations acquired by
the satellites for several possible past histories in Fig. 8. The
curves for each satellite are represented by step functions with
steps occurring at resonant zones that involve that satellite. It is
important to realize that these curves are not evolution tracks,
but are rather final status plots: inclinations at any given point
in the past represent the predicted orbital tilts of the satellites
today assuming that the system formed at that past time. We
only calculate kicks for the most recent four Proteus resonances
since the chaotic behavior of PL 3:2 prevents any useful esti-
mates of prior inclination growth. The curves for Galatea and
Despina are very simple (with only one step) because they can
each be involved in at most one major resonant zone passage.
Larissa may go through two major zones, and there are four
possible ones for Proteus.

If PL 2:1 is the only resonant zone that the system has
gone through, then Fig. 8 shows that, with a mean density of
1.5 g/cm3, ifr

P can be kicked up to near its current value, but
Larissa can only obtain about half of today’s orbital tilt. This
agrees with our conclusion from Zhang and Hamilton (2007).
If the system starts from an earlier configuration to include both
the PD 3:1 and the PG 2:1 resonant zones, the inclinations of
both Galatea and Despina can be pushed high enough with a
density satisfying 0.4 < ρ̄ < 0.8 g/cm3. For ifr

P to reach 0.026◦
in this case, however, a density of 0.6 < ρ̄ < 1.0 g/cm3 is re-
quired. With an earlier formation time so that all four Proteus
resonances are traversed, however, the density required by Pro-
teus’s free inclination also drops to 0.4 < ρ̄ < 0.8 g/cm3 due to
the extra kick from Larissa.

Densities as low as 0.4 < ρ̄ < 0.8 g/cm3 imply large porosi-
ties, but similar values are measured for both saturnian and
jovian satellites. Nicholson et al. (1992) determined the den-
sities of Saturn’s co-orbital satellites, Janus and Epimetheus,
at ρ̄ ≈ 0.6 g/cm3. More recently, Renner et al. (2005) mea-
sured the densities of Prometheus (0.4 g/cm3) and Pandora
(0.49 g/cm3); Porco et al. (2005) also estimated the densities
of Atlas and Pan to be ∼0.5 g/cm3. All these saturnian satel-
lites are made of nearly-pure porous water ice. The density of
the jovian satellite Amalthea (ρ̄ = 0.9 g/cm3, Anderson et al.,
2005) is a little bit higher, but the satellite is made of a mixture
of water ice and rock, and high porosity is also expected. Thus
our density determination is physically plausible.

4.2. Larissa’s story

Three or four Proteus past resonance passages provide a
consistent solution for the free tilts of Proteus, Galatea, and
Despina with 0.4 < ρ̄ < 0.8 g/cm3, a density range that is phys-
ically plausible. But the current inclination of Larissa cannot be
matched with the assumptions of equal satellite densities in any
of the scenarios considered so far. Even if all four Proteus res-
onance zones were traversed, Larissa could attain just over one
half its current inclination for this density range. In fact, ifr

L can
only be excited to ∼0.14◦ even if the mean density is as high as
1.5 g/cm3. What happened to Larissa?

The first potential solution to explaining Larissa’s large tilt
is to allow satellites to have different densities. But this leads
immediately to the same problem that we faced in Zhang and
Hamilton (2007): in order for ifr

L to be kicked more, we need
a more massive Proteus, or a less massive Larissa. The mass
of Proteus cannot be increased much since this would result
in larger inclinations for Galatea and Despina than currently
observed (Fig. 8). Reducing Larissa’s mass helps a little, but the
dependence of the PL kick strengths on Larissa’s mass is very
weak since Proteus is the dominate mass. Our simulations show
that the cumulative inclination kick on Larissa only increases
from 0.1◦ to ∼0.13◦ if we drop ρL from 0.6 to 0.05 g/cm3

while keeping ρP at 0.6 g/cm3. Even this unrealistically-low
satellite density does not solve the problem.

A second possible solution is to allow Larissa to pass
through more resonances. The next Proteus–Larissa resonant
zone is the chaotic PL 3:2. For this zone, our simulations indi-
cate that chaotic behavior becomes significant only for density
ρ̄ > 0.8 g/cm3, in which case Proteus usually gets an over-
all kick >0.025◦ through the random walk process. Adding
kicks from later resonances, this results in too large a tilt. How-
ever, for density ρ̄ � 0.6 g/cm3, the chaotic behavior is weak
and the orbital inclination growths are reasonable. In our ex-
ample shown in Fig. 6 (ρ̄ = 0.6 g/cm3), the kicks on Proteus
and Larissa are 0.009◦ and 0.06◦, respectively, which bring the
overall inclination growths of the two satellites through the 5
resonance passages to ifr

P = 0.029◦ and ifr
L = 0.128◦, where we

have used Eq. (23) to model the later kicks. If ρ̄ = 0.4 g/cm3,
the PL 3:2 kicks on the two satellites are 0.008◦ and 0.05◦,
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Fig. 8. The cumulative free inclinations of Proteus (ifr
P

), Larissa (ifr
L

), Galatea (ifr
G

), and Despina (ifr
D

). The curves show the final free inclinations that the satel-
lites acquire versus their formation time represented in terms of resonant zone passages (cf. Fig. 2). Resonances to the left of the formation time have actually
occurred, while those to the right have not. We assume all satellites have the same bulk densities; solid curves represents different densities: from top to bottom:
ρ̄ = 1.5,1.2,1.0,0.8,0.6,0.4 g/cm3. The single exception to this is the Despina 0.4 curve which is actually above the 0.6 curve due to stochastic variations. The
dashed horizontal lines represent the current free inclinations of the satellites.
which can only promote the inclination growth of Larissa to a
total of ifr

L = 0.107◦. Although the actual inclination kicks may
vary, our simulations show that for a specific density, they all
fall in the same range. Hence, Larissa’s orbit cannot be effec-
tively tilted even if this troublesome resonant zone is included.
Perhaps there is a rare outcome of the chaotic interactions in
which Larissa’s inclination is highly excited, but we have seen
no evidence that this is the case. Including earlier resonances is
problematic: the preceding one, PD 2:1, excites the inclination
of Despina, forcing Proteus’ density to ρ̄ < 0.4 g/cm2 to keep
that satellite’s inclination low and making it less likely to pro-
duce similar tilts for Despina and Galatea. The earlier PG 5:3
would then be required. The trend here is clear—additional PD
and PG resonances force Proteus’ density down, making addi-
tional PL resonances less effective. Tweaking the tidal model
might change the order of some resonances (e.g., the PL 3:2
and PD 2:1), but our basic conclusion is unaltered. There is no
set of Proteus resonances that can simultaneously make the in-
clination of Larissa large while keeping those of Galatea and
Despina low.

A third possibility includes invoking the weaker, but more
numerous, resonances among the three smaller satellites
(Fig. 2), which we have neglected until now. Could the inclu-
sion of these resonances solve the problem of Larissa’s inclina-
tion excess? Since the masses of Larissa, Galatea, and Despina
are 10 times smaller than Proteus’, these resonances are very
weak even though the satellites are closer to one another than
to Proteus. Our simulations show that typically inclinations of
both satellites obtain a ∼0.01◦ overall growth through a single
zone passage, assuming zero initial free inclinations. The cu-
mulative effect of these kicks could potentially be large given
that there are so many of them. However, due to the strong
dependence of the kick magnitude on the initial free inclina-
tions, these weak kicks, albeit numerous, do not add much to
the satellite’s free tilts, especially for the ones occurring af-
ter any of the more powerful Proteus resonances. Furthermore,
Fig. 2 shows that Larissa, Galatea, and Despina all have tra-
versed a similar number of these weak resonant zones—in fact,
Galatea receives more kicks than the other two because of its
central location. Thus it is nearly impossible to increase Laris-
sa’s inclination significantly while keeping those of the other
two moons small. Inclusion of these resonances, however, does
systematically drive our solution for ρ̄ towards slightly lower
values.

A fourth possible cause of Larissa’s inclination excess is
that the satellite might actually have been captured into a reso-
nance. We have seen an unusual inclination capture following
a three-body eccentricity capture with the result that both Pro-
teus’ eccentricity and inclination are forced to increase (Fig. 5).
Although the chance is low, it is possible that Larissa was once
captured into a similar resonance (Ri2

L
) with either Galatea or

Despina. Fig. 2 shows that there are several possibilities, with
earlier resonances more likely to capture Larissa than later ones
because its inclination was smaller in the past. Expanding our
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search to include the tiny inner moons, Naiad and Thalassa,
we note that captures are more likely since Larissa’s orbit is
approaching the inner two orbits and trapping into strong low-
order inclination resonances is possible. Naiad’s extremely high
free inclination also points to a previous capture (Banfield and
Murray, 1992), and Larissa would be a natural candidate. As-
suming that Larissa’s semi-major axis migrated from the syn-
chronous orbit to its current orbit, Larissa’s interior 2:1 reso-
nance would move from 2.08RN to 1.83RN , which brackets the
current orbit of Naiad at 1.91RN . Although Naiad was some-
what further away from Neptune in the past, there is a good
chance that the 2:1 Larissa–Naiad resonance did actually oc-
cur. Similarly, Larissa’s 2:1 or 5:3 internal resonances may have
swept across Thalassa’s orbit, implying possible strong interac-
tions with that satellite. The odds of capture into a resonance
involving Larissa’s inclination is a strong decreasing function
of its initial tilt, and it is hardly possible if Larissa’s orbit is
inclined by more than some critical value (Borderies and Gol-
dreich, 1984). Hence, the capture probably occurred earlier on.
Two main possibilities exist: (i) capture occurred prior to the PL
5:3, with two subsequent Larissa kicks from the PL 5:3 and PL
2:1, and (ii) the PL 5:3 never occurred and there was only one
Larissa kick (PL 2:1) after the capture. For the density range
0.4 < ρ̄ < 0.8 g/cm3, scenario (i) requires Larissa to have a
free inclination of 0.14◦ after escaping from the hypothetical
resonant capture, while in scenario (ii), the satellite needs to
have a 0.16◦ free tilt after escape. Although requiring an ad-
ditional resonant capture, we think that this is the most likely
scenario and will pursue the details in a future publication.

4.3. Tidal evolution timescale and QN

The four satellites have most likely passed though three or
four strong Proteus resonant zones: definitely the PL 2:1, the
PD 3:1, and the PG 2:1, and possibly the PL 5:3 before those.
If the system formed with a configuration between PL 3:2 and
PG 2:1 in Fig. 2, this provides a natural explanation for the
inclinations of at least three of the four satellites. We enlarge
this region of the plot in Fig. 9. Due to the observational error
in satellite size measurements (Table 1), which leads to mass
uncertainties, the evolution tracks of Proteus and Larissa fall
somewhere within the lightly-shaded area in Fig. 9, resulting in
uncertainties in the locations of PL 3:2 (4.99 < t < 6.06 Gyr)
and PG 2:1 (2.92 < t < 3.72 Gyr), as indicated by the darkly-
shaded area. As discussed before, the evolution timescale is af-
fected by QN and ρ̄. Thus, we estimate that the system formed
at(

QN/20,000

ρ̄/(0.6 g/cm3)
× 2.92 Gyrs

)
< t

(24)<

(
QN/20,000

ρ̄/(0.6 g/cm3)
× 6.06 Gyrs

)
.

Triton was most likely captured at a very early stage of Solar
System history (∼4.5 Gyr ago), when there were still plenty of
planetesimals for Neptune to interact with. The circularization
of Triton takes merely a few 100 Myr, thus we assume that the
inner satellites date back to ∼4 billion years. Substituting t ≈
Fig. 9. Possible initial configurations of the system. The plot shows a magni-
fied region of Fig. 2. The evolution tracks of Proteus, Larissa, and Galatea lie
anywhere in the respective lightly-shaded areas. The darkly-shaded areas show
the possible locations of PL 3:2 and PG 2:1 resonant zones. The boundaries of
these areas are determined by the observational uncertainties of satellite sizes.
The system started with an initial configuration between the earliest possible PL
3:2 and the latest possible PG 2:1. As with Fig. 2, times need to be multiplied

by the factor QN /20,000
ρ̄/(0.6 g/cm3)

.

4 Gyrs and 0.4 < ρ̄ < 0.8 g/cm3 into Eq. (24), we estimate

9000 < QN < 36,000.

Part of this uncertainty comes from satellite size and density un-
certainties, while the rest comes from not knowing whether the
system formed closer to PL 3:2 or PG 2:1. Although 4 Gyrs is a
feasible age for the small satellites, they may have been subse-
quently destroyed by cometary bombardment as suggested by
Smith et al. (1989). This effectively resets the clock to the time
of destruction and lowers both bounds on QN . Nevertheless,
we believe that this late and complete destruction of the in-
ner neptunian satellites is not a very likely possibility. Another
uncertain factor that affects the QN determination is k2N . The
Love numbers of giant planets are computed by several authors
with different models. We have adopted k2N = 0.41 from Burša
(1992), while an earlier estimation by Gavrilov and Zharkov
(1977) gives a much smaller value (k2N = 0.13). Since the tidal
constraints are actually on QN/k2N (Eq. (2)), the smaller Love
number would lead to a drop in both the upper and lower bounds
of QN by a factor of 3.

Banfield and Murray (1992) estimated QN with similar
method but different dynamical constraints. They took k2N =
0.39 based on a model by Dermott et al. (1988), assumed satel-
lite densities to be ∼1.2 g/cm3, and obtained a lower limit
QN > 12,000 by requiring Proteus to form outside of the syn-
chronous orbit and an upper limit QN < 330,000 from the
Naiad capture event. As our determined satellite density of
0.4–0.8 g/cm3 is half that assumed by Banfield and Murray
(1992), we scale their QN estimates to 4000 < QN < 220,000
so that they can be directly compared to our estimates. Instead
of assuming that Proteus migrated from the synchronous or-
bit (3.31RN ), we have shown that the satellite could not have
formed closer than 4.20RN in order to avoid the PL 3:2 res-
onance. This explains the factor of 2 difference between our
lower bound of QN > 9000 and that of Banfield and Murray
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Table 4
Q of giant planets

Planet Author Q k2 Q/k2

Jupiter GS66 �100,000 1.5 �66,000
YP81 (0.6–20) × 105 0.379 (GZ77) 1.6 × 105–5 × 106

Saturn GS66 �60,000 1.5 �40,000
P80 �16,000 0.341 (GZ77) �45,000

Uranus GS66 �72,000 1.5 �48,000
TW89 11,000–39,000 0.104 (GZ77) 105,000–375,000

Neptune BM92 4000–220,000a 0.39 (D88) 10,000–560,000a

This work 9000–36,000 0.41 (B92) 22,000–90,000

GS66: Goldreich and Soter (1966); GZ77: Gavrilov and Zharkov (1977); P80:
Peale et al. (1980); YP81: Yoder and Peale (1981); D88: Dermott et al. (1988);
TW89: Tittemore and Wisdom (1989); BM92: Banfield and Murray (1992);
B92: Burša (1992).

a Values have been scaled with our determined satellite densities. The orig-
inal limits given in Banfield and Murray (1992) are 12,000 < QN < 330,000,
assuming ρ̄ = 1.2 g/cm3. The spread in their upper and lower limits would
increase by a factor of 2 if satellite density uncertainties were included.

(1992). Our biggest improvement, a factor of 6 times reduction
in the upper limit of QN , arises from the constraint that Proteus
traversed at least 3 resonances.

Several authors have previously estimated Q for other gi-
ant planets based on similar dynamical constraints; we collect
these results in Table 4 and compare them to our own. It is
best to compare the values of Q/k2 in the final column be-
cause this is the quantity directly constrained by all dynamical
studies. Goldreich and Soter (1966) were the first to systemat-
ically investigate the planetary Q’s in the Solar System. Based
on the known satellites at that time, they estimated lower lim-
its of Q for Jupiter (QJ � 100,000), Saturn (QS � 60,000),
and Uranus (QU � 72,000). They ignored the internal struc-
ture of the planets and assumed a uniform k2 = 1.5. They also
assumed that these satellites could initially migrate from the
surface of the planet. The existence of synchronous orbits, how-
ever, reduces the amount of tidal migration and lifts these lower
limits by a factor of 2–3. Yoder and Peale (1981) addressed
this and obtained an improved lower bound for Jupiter’s Q:
QJ � 64,000, using k2J = 0.379 computed by Gavrilov and
Zharkov (1977). Yoder and Peale (1981) also estimated the
upper limit of QJ based on tidal heating required by Io, and
obtained QJ � 2 × 106. Peale et al. (1980) corrected Saturn’s
Q with more reliable k2S from Gavrilov and Zharkov (1977),
and estimated the lower bound to be QS � 16,000. The lower
bounds of both QJ /k2J and QS/k2S are larger than what we
find for Neptune. Recall that Q is an empirical measurement
of the energy dissipation properties of planets that is not well
understood physically.

For Uranus, the closest sibling of Neptune, Tittemore and
Wisdom (1989) placed QU between 11,000 and 39,000 based
on the resonant history of the uranian satellites. However, their
QU/k2U value is about 4 times larger than our QN/k2N . One
might expect these two similar-sized planets to have similar Q

and k2. One possible explanation for the difference in Q/k2 is
different internal structures of the planets—Neptune is denser
and radiates more of its internal heat.
4.4. QP and QL

The current eccentricities of Proteus and Larissa have signif-
icant non-zero values (Table 1), which we interpreted in Zhang
and Hamilton (2007) as a signature of the recent PL 2:1 reso-
nance passage. Since satellite eccentricities damp away rapidly
due to satellite tides with a time scale that depends on QS ,
while the timescale of satellite migrations due to planetary tides
depends on QN , we can calculate the ratio QS/QN for Pro-
teus and Larissa based on their tidal migration and eccentric-
ity changes after the PL 2:1 resonant encounter. In Zhang and
Hamilton (2007), we derived

(25)
QS

QN

= 7.5 × 10−3 ×
(

Rs

km

)(
g/cm3

ρ̄

)∣∣∣∣ ln(af /ai)

ln(ef /ei)

∣∣∣∣.
Here Rs is the satellite radius in kilometers and ai , af and ei ,
ef are the initial and final semi-major axes and eccentricities,
respectively. We found that both QP and QL had a lower limit
of 10 based on the density constraint from PL 2:1 passage. As
a result of our current work with much better constraints for
satellite density and QN , we can improve our estimates of QP

and QL.
With density between 0.4 and 0.8 g/cm3, Proteus and

Larissa can attain eccentricities of 0.0011–0.0014 and 0.008–
0.01 during the PL 2:1 passage, respectively. Since the location
of PL 2:1 is only affected by the mass ratio of the two satel-
lites which determine their relative migration rate, we use the
same migration distances as in Zhang and Hamilton (2007):
0.010–0.013RN outward for Proteus and 0.014–0.016RN in-
ward for Larissa. Substituting these measurements into Eq. (25),
we find

0.004 <
QP

QN

< 0.02, 0.002 <
QL

QN

< 0.006.

For 9000 < QN < 36,000, this implies

36 < QP < 700, 18 < QL < 200.

This is an interesting result since the tidal Q of satellites
is more poorly known than planetary Q’s—very few dynam-
ical events can provide useful constraints. The only satellite
with a well-determined Q is our own Moon, with QM = 27
(Yoder and Ahrens, 1995). This is within the range of our es-
timates for Proteus and Larissa, but the size of the Moon is
much larger than the two neptunian satellites. For other satel-
lites of the giant planets, Goldreich and Soter (1966) estimated
that QS < 500 based on a rough assumption of satellite rigid-
ity. Yoder and Peale (1981) estimated Europa’s Q with an ec-
centricity damping method similar to what we have used, and
obtained QE � 2 × 10−4QJ ≈ 20. They were also able to esti-
mate Io’s Q through an analysis of tidal heating of the melting
moon: QI ≈ 0.001QJ ≈ 100. These values fall into the same
general range as our estimates for Proteus and Larissa.

5. Conclusion

In this continued investigation of the resonant history of
the inner neptunian satellites, we have examined the possible
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mean-motion resonances between Proteus, Triton, and each of
Larissa, Galatea, and Despina. The current free inclinations of
these satellites are consistent with the magnitudes of the reso-
nant kicks. Three past Proteus resonance passages, the PL 2:1,
PD 3:1, PG 2:1, and possibly a fourth PL 5:3, can explain how
the orbital tilts of Proteus, Galatea, and Despina were excited
to their current valuers from i < 0.001◦. The required satellite
densities in this scenario are 0.4 < ρ̄ < 0.8 g/cm3, and are in
line with low densities measured for the small saturnian and
jovian satellites. These resonances, however, are too weak to
excite Larissa’s inclination from near zero to its current value,
and an additional process is required. An earlier resonant trap-
ping event is the most promising candidate, with Naiad or Tha-
lassa resonances especially favored.

The requirement of the three or four Proteus resonance en-
counters, but none of the earlier ones (cf. Fig. 2), strongly con-
strains satellite semi-major axes at formation. Proteus’ initial
semi-major axis is restricted to 4.2–4.5RN , which implies that
the debris disk out of which these small satellites formed was
about the same size. This provides a lower limit on the pericen-
ter distance of Triton’s post-captured orbit, restricting how deep
inside the Neptune system Triton could have penetrated during
its tidal circularization.

With our new limits on satellite densities, we find 9000 <

QN < 36,000, where we have assumed that the satellites
formed 4 billion years ago. Our refined determination of ρ̄ and
QN enable us to derive better constraints on the satellite Q’s;
we find that QP is between 36 and 700, and QL between 18
and 200.
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