Formation of Phobos and Deimos by a Giant Collision

Erin Grand

Capture Theory

- Composition closely matches carbonaceous chondrites ⁽¹⁾
- Low densities with Phobos at 1.860 ± 0.060 g/cm³ and Deimos at 1.650 ± 0.3 g/cm³ (1)
- Unlikely scenario due to:
 - Mostly circular orbits of Martian moons
 - Orbit plane close to Mars's equatorial plane

Giant Collision Theory

- First proposed by Singer 1996
- Evidence:
 - Larger angular momentum then can be easily described by ordered accretion^(1,3)
 - Surface features
 - Large craters hold impact history
 - Oblique craters on surface from moonlets scraping Mars' surface

Increased Angular Momentum

• Define *r* as a relation between the planets mass and hill sphere ^(1,2)

$$r = \frac{R_P}{R_H} = \frac{R_P}{(GM_p/\Omega^2)^{1/3}}$$

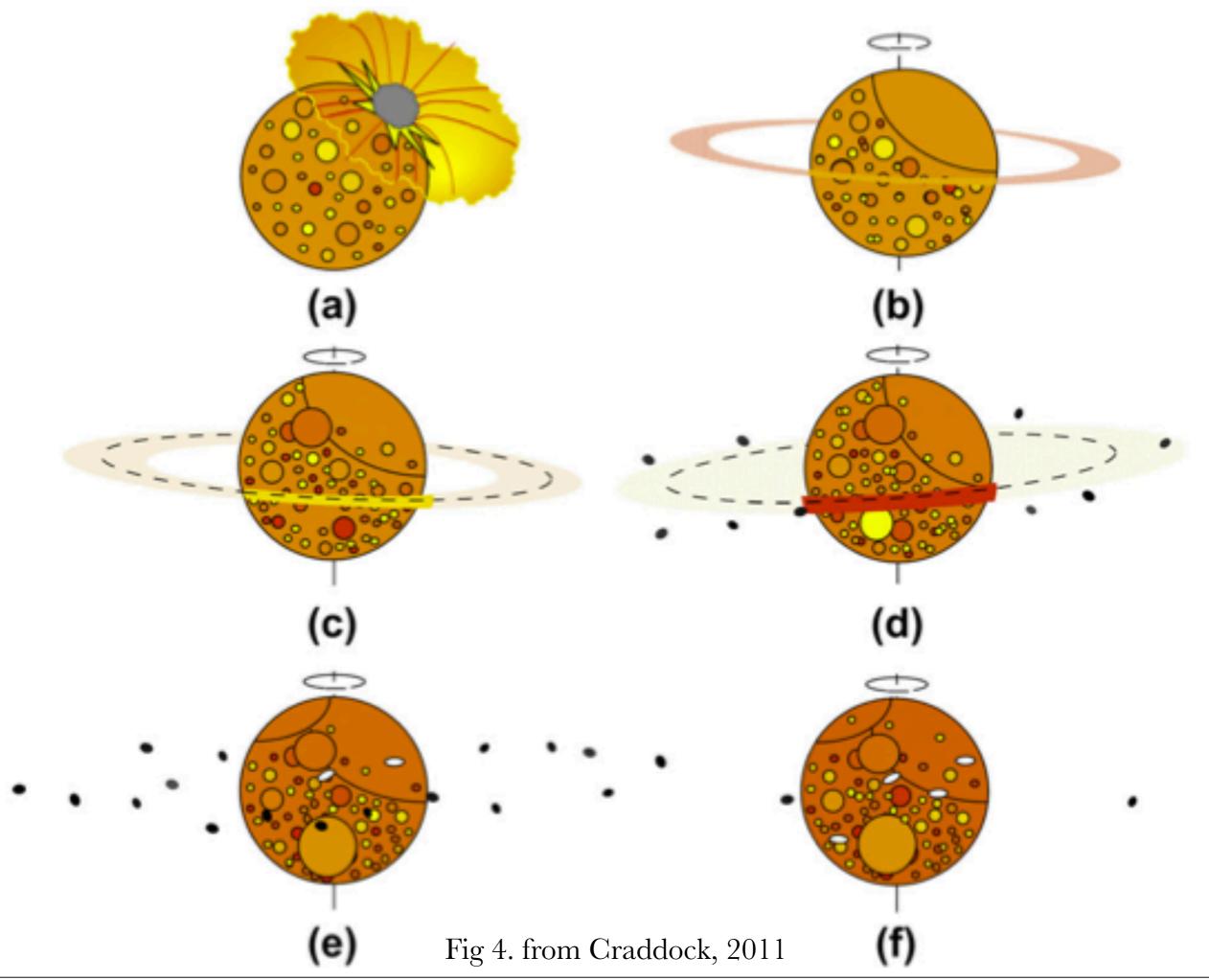
• Number of rotations per revolution^(1,2)

$$\mathcal{R} = rac{3 < I_z >}{2\Omega R_p^2}$$

- In ordered accretion -2.2 < Rr < 0.3⁽³⁾
- For Mars R = 670 and r = 0.002 meaning that Rr = 1.5

Impactor Mass

• In stochastic accretion, we can define *S_m* as the ratio between the effective mass of the impactor to the planet defined


• S_m is related to the excess spin by ⁽¹⁾

$$|\mathcal{R}| pprox rac{S_m}{r^{3/2}} pprox rac{m_1}{M_P} r^{-3/2}$$

• Can determine the mass of the impactor using previously calculated values of *R* and *r*

 $m_1 = 7.23 \times 10^{22} \text{kg}$

Leads to a size of 1795.7 km (assuming a density of 3 g/cm³)

Large Craters

- Scaling relation for sizes of impact craters⁽¹⁾ $D = 1.8 \ \rho_i^{0.11} \ \rho_t^{-1/3} \ g^{-0.22} \ L^{0.13} \ W^{0.22}$
- We can use this to determine the energy impacted to the surface.
 - Get the impact velocity and the object and check against accretion theories to see if the speed is feasible
 - Values of 5 10 km/s are applicable ⁽¹⁾

Crater	Diameter (km)	Energy $(10^3 6 \text{ W})$	Impact Velocity (km/s)
Boreallis A	9550	79.79	15.37
Boreallis B	7700	29.98	9.42
Elysium	4970	4.09	3.48
Daedalia	4500	2.61	2.78
Utopia	3300	0.646	1.37

Oblique Craters

- Potentially many moonlets were in orbit around Mars at one time and fell back down to the surface due to tidal effects
- A double, oblique impact crater located at 40.5°N, 222.5°E
 - Best explained by the impact of a former
 Mars-orbiting moonlet.

Chappelow and Herrick (2008)

Summary

- Phobos and Deimos were likely formed in a giant impact scenario much like our moon
- Mars has too much angular momentum to have been formed with ordered accretion
- We can determine impactor mass from excess spin
- Then we can compare impactor mass to craters on Martian surface

References

- R. A. Craddock. Are Phobos and Deimos the result of a giant impact? Icarus, 211:1150–1161, February 2011.
- [2] L. Dones and S. Tremaine. On the origin of planetary spins. *Icarus*, 103:67–92, May 1993.
- [3] L. Dones and S. Tremaine. Why does the earth spin forward? Science, 259:350–354, January 1993.