Constraining The Mineralogy of Mercury Using Gamma Ray and Infrared Spectroscopy Maggie McAdam **Terps Conference** December 5, 2012

APOD 5/9/08, Nemiroff & Bonnell

Mercury – A brief summary

Small and difficult to observe with Space telescopes

- Difficult to get to with spacecraft
- Highly interesting scientifically
 - Highest uncompressed density in Solar System
 - Heterogeneous surface materials
 - Evidence for volcanic activity on surface
 - Thermal extremes on surface
 - Massive core and magneto sphere

Observations of Mercury

Infrared Spectroscopy

- Mineralogy of surface
- Grain size
- Thermal effects (longer wavelengths)
- Maturation of surface
- Gamma ray spectroscopy
 - Tells us what specific elements populate a surface
 - Probes top ~10 cm of surface

Gamma Ray Spectroscopy

Reflectance Spectra of Mercury

Fayilitic Olivine

Infrared Spectroscopy

Mid-Infrared Observations

Thermal Effects

Spectral Modeling

Current GRS Conclusions

Confirmed abundances of Al, Ca, S and Fe
Comparisons with XRS and NS indicate vertical homogeneity on 10's of cm scales
Confirmation of low global Fe
Mineralogy constrained to albite, Na-rich plagioclase and Mg end member of pyroxene, enstatite.

Local abundances?

 GRS results for global counts
 MESSENGER Scientists working on mapping counts so that individual mineralogical units can be identified

Questions?

Surface Maturation

Surface Maturation

Surface Maturation

Mid-IR of Mercury

