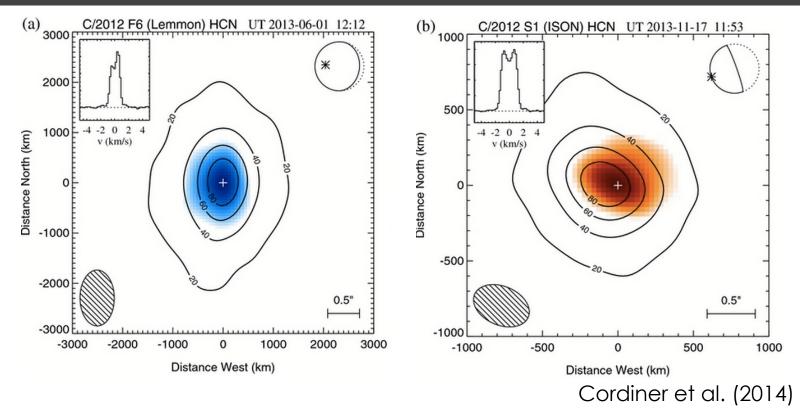
2013 • HST WFC3/UVIS F606W V

Enhanced (coma model ratio)

Modelling Distribution of HCN in Comets

Tiara Hung 11th Dec 2014

	ToSun	
		N
15,000 mi	les	× ×
24,100 km	7″.8	Er


Haser Model (1957)

- Describes the distribution of gas species in cometary coma
- Assumes parent species evolve directly off the nucleus
- Isotropic radial outflow
- Parent species creates daughter species through photodissociation:

$$n(r) = \frac{Q}{4\pi v r^2} exp^{-r/l_p}$$

Q is the production rate (s⁻¹) r is the distance from the nucleus v is the radial outflow speed n is the number density of the parent species Ip is the parent scale length (analogous to life-time)

Applying Haser model to HCN

- Integrate model along line of sight to derive predicted column density
- From observation direct conversion from integrated flux to column density


Observations

	Date	R _{helio} (AU)	R _{geo} ∆(AU)	Dust Mass (kg)	Kinetic Temp (K)	Outflow Velocity (km/s)
C/2012 F6 (Lemmon)	2013 Jun 1	1.47	1.75	2.3x10 ⁹	55	0.7
C/2012 S1 (ISON)	2013 Nov 17	0.54	0.88	2.6x10 ⁸	90	1.2

ALMA band 7 @354GHz Spatial resolution: 0.4-0.9'' PSF FWHM ~ 0.7''

$$M_{dust} = \frac{S_{\nu}\Delta^2}{B_{\nu}(T)\kappa(\lambda)}$$

Radial profile of HCN

Radial profile of HCN

	Scale Length (km)	Production rate Q (1/s)	Q (1/s) from literature
Lemmon	12700	1.3E+26	2.3E+26
ISON	2000	9E+25	3.5E+26

Power law of scale length:

$$l = l_p r_h^b$$

□ b~1.8

Scale length ~ 7.5x10⁴ km in Hale-Bopp at R_{helio} = 0.92 AU (Snyder et al. 2001)

Some HCN are released from dust grains at larger radii