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History & Evolution of the Early Solar System 

Study of the least processed surfaces w/ Spectroscopy 

  Comets 
»  Composition: primordial vs. evolutionary 

 mixing within early Solar System 
•  continued analysis of Deep Impact (ice, solids, surface) 
•  extended mission (DIXI) to Hartley 2 (Nov. 2010) 

  Asteroids and Meteorites 
»  Composition: timing and nature of accretion and alteration 

(igneous, aqueous, metamorphic, impact) 
•  laboratory analysis (Smithsonian) 
•  asteroid surveys (telescopic, SPEX) 
•  DAWN mission to mainbelt Asteroid 4 Vesta 

  The Moon 
»  Composition in a geologic context. Formation and relation to 

Earth and subsequent igneous and impact evolution; H20/OH !! 
•  Moon Mineralogy Mapper (M3) on-board Chandrayaan-1 



  Oldest known rocks  
»  mineralogy predicted for first  

nebular condensates 
»  date the start of the Solar System 
»  occur in all classes of chondrites 

  Spectrally dominated by spinel  
hercynite: [Fe,Mg]Al2O4 
»  strong 2 µm absorption 
»  absent or weak 1 µm bands 

Calcium Aluminum-Rich Inclusions:  CAIs 
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Calcium-Aluminum-Rich Asteroids 

  3 distinct parent bodies 
»  234 Barbara; 

Watsonia and Henan Families 

  Spectral models: 2x-3x > CAIs  
then any known meteorite  
»  implies very ancient 
»  early accretion 

  Survived as large bodies 
»  d = 50-100 km 

  if Al-rich why didn’t the melt? 
»  perhaps, pre-date Al26 injection  

into solar system ? 





Adsorbed OH and H2O 
Dec 2007	


June 2009	


Lab!
Reflectance!
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North Pole: 2nd & 9th Jun ‘09 
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Comparing highland units 
–  morning equals evening 

–  noon/afternoon weaker and 
shape change 



Noon	


Evening	
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Daytime Cycle 

  Diurnal change 
»  suggests surface effect 

  Entire surface is hydrated  
»  during at some part of the lunar day 

  Change in shape of absorption  
»  preferential loss of H2O vs. OH 

  Loss toward noon, recovery back to 
morning values by evening 
»  entirely in daylight 
»  not condensation 
»  rapid photodissociation of H2O ? 
»  short term migration? 
»  ready source? 

  Consistent with Solar Wind 
»  H+ reacts with O in lunar soil 
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Deep Impact  
eXtended Investigation  

to Comet Hartley 2 





















Water Ice on Tempel 1 

?	




Water Ice in Tempel 1 Ejecta 

Impact +50 to 80 sec    

Depth of 3 µm Ice Absorption 

IR (1.5 µm) Image 

Visible Image 
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Colorizing the Solar System 


