Composition from IR Spectra: Comets, Asteroids, Meteorites, and the Moon Prof. Jessica M. Sunshine

Planetary Group

History & Evolution of the Early Solar System

Study of the least processed surfaces w/ Spectroscopy

Comets

- » Composition: primordial vs. evolutionary mixing within early Solar System
 - continued analysis of Deep Impact (ice, solids, surface)
 - extended mission (DIXI) to Hartley 2 (Nov. 2010)

Asteroids and Meteorites

- Composition: timing and nature of accretion and alteration (igneous, aqueous, metamorphic, impact)
 - laboratory analysis (Smithsonian)
 - asteroid surveys (telescopic, SPEX)
 - DAWN mission to mainbelt Asteroid 4 Vesta

The Moon

- » Composition in a geologic context. Formation and relation to Earth and subsequent igneous and impact evolution; H₂0/OH !!
 - Moon Mineralogy Mapper (M³) on-board Chandrayaan-1

Calcium Aluminum-Rich Inclusions: CAIs

Oldest known rocks

- » mineralogy predicted for first nebular condensates
- » date the start of the Solar System
- » occur in all classes of chondrites

Spectrally dominated by spinel hercynite: [Fe,Mg]Al₂O₄

- » strong 2 µm absorption
- » absent or weak 1 µm bands

Calcium-Aluminum-Rich Asteroids

- 3 distinct parent bodies
 - » 234 Barbara;
 Watsonia and Henan Families
- Spectral models: 2x-3x > CAIs then any known meteorite
 - » implies very ancient
 - » early accretion
- Survived as large bodies
 - » d = 50-100 km
- if Al-rich why didn't the melt?
 - » perhaps, pre-date Al²⁶ injection into solar system ?

Water on the Lunar Surface

Water on the Lunar Surface

Adsorbed OH and H₂O

Dec 2007

June 2009

North Pole: 2nd & 9th Jun '09

Change with Time of Day

- morning equals evening
- noon/afternoon weaker and shape change

Daytime Cycle

- Diurnal change
 - » suggests surface effect
- Entire surface is hydrated
 - » during at some part of the lunar day
- Change in shape of absorption
 » preferential loss of H₂O vs. OH
- Loss toward noon, recovery back to morning values by evening
 - » entirely in daylight
 - » not condensation
 - » rapid photodissociation of H₂O ?
 - » short term migration?
 - ready source?
- **Consistent with Solar Wind**
 - » H⁺ reacts with O in lunar soil

Deep Impact eXtended Investigation to Comet Hartley 2

MRI Camera View of Nucleus and Inner Coma

context view

enlarged view

Water Ice on Tempel 1

Water Ice in Tempel 1 Ejecta

Visible Image

IR (1.5 µm) Image

Depth of 3 µm Ice Absorption

