
Introduction to C

DISCLAIMER: This document leaves out lots of stuff. If you want to learn C properly, read Kernighan &
Ritchie (they created the language) or Prata (“C Primer Plus”). There is also an excellent online C tutorial1

that can get you started from scratch very quickly. Apart from some “do”s and “don’t”s in the next section,
this document deals only with certain specific and common tasks that might not be covered explicitly in a
reference manual.

Basic Rules

C can be as structured or as unstructured as you like, but it’s best to follow a few simple rules:

1. Stick to one statement per line.

2. Indent appropriately to show nested logic.

3. Use descriptive variable and function names.

4. Break large tasks into smaller tasks using functions.

5. Use comments (delimited by /* and */) effectively.

6. Avoid excessive use of global variables (in fact, avoid them altogether if possible!).

7. Always use assert()s or some other kind of error checking.

8. Reduce argument lists by using suitable structs where appropriate.

9. Define obscure numerical constants at the beginning of a source file with #define macros or const

statements; this makes the code easier to understand and change later on.

10. Consider using enums to give descriptive names to simple integer flag values.

Note that in C all variables and functions must be defined before they are used. This is a good thing.

Writing

Any text editor will do for writing your code, such as emacs, vi, pico, or a fancy GUI editor (some have
debugging facilities built-in). As outlined above, the key to writing good code is to make it readable. This
makes it easier for others to understand what your code does, and it will make it easier for you later if you
find you need to edit the code months after writing it. Remember that C library functions are documented
in the man pages—this is a handy reference tool when writing. Also remember your code must always
contain a function called main(): this is where the code execution begins. The shell can pass data to main()

(discussed below), and, when finished, main() can return an integer to the shell that, in csh anyway, can
be accessed via shell variable status. It is always good practice to return 0 on successful completion and a
non-zero value on failure.

Compiling

Most platforms these days have native C compilers (usually called cc) as well as one or more third-party
C compilers, the most common being gcc, the Gnu C compiler. Native compilers differ in their argument
syntax; check the man pages if in doubt. Compiling can be as simple as cc myprog.c (which produces
an executable version called a.out) or more complex like cc -O2 -o myprog myprog.c -lm (which names
the executable myprog, applies second-level optimization, and links to the math library). If an error is
encountered during the compilation, a message will appear indicating the nature of the problem and the
offending line number in the code.

Hint: Always fix the first reported error first! Often one error (e.g. forgetting a semi-colon or closing
brace) generates many more, making it seem like the code is full of problems when in fact there is just one
simple typo.

1http://www.strath.ac.uk/CC/Courses/NewCcourse/ccourse.html

1

Libraries and Header Files

To keep C as portable as possible, many machine-specific tasks are kept in separate libraries. To use these
library functions you must first include an appropriate header file that contains various declarations and
definitions. For example, to use printf() you must #include <stdio.h> at the top of the source file.
Other common header files include <stdlib.h> (for less-used functions like malloc() and rand()) and
<math.h> (for certain math functions, like sqrt() and pow()). In some instances you must also “link” to
the corresponding library when compiling. The most common library needed is the math library, which is
linked by appending “-lm” to the compile line (e.g. gcc myprog.c -lm). The man pages for the C library
functions have synopses of header file and linkage requirements. Note that the order in which libraries are
linked is sometimes important; it’s usually a good idea to put “-lm” last, since other libraries may depend
on the math library as well.

Running

If “.” is not in your executable search path (and it is good practice for it not to be), prepend “./” to the
name of the executable to run your code, e.g. ./myprog; otherwise just myprog will do (but you might need
to rehash the first time). If your code accepts arguments, these appear after the name of the executable, on
the same line, separated by spaces (e.g. ./myprog 1 6.5 apple). Users inevitably make input mistakes, so
make sure your code is idiot proof by checking the validity of all arguments. Use assert()s to trap any other
anticipated runtime problems (see below). Don’t be scared of “SEGV” errors (segmentation violation): these
are usually easy to track down with a debugger (not covered here, but see the gdb man page, for example),
or using a divide-and-conquer strategy with print statements.

Handy Macro: assert()

The assert() macro is convenient for debugging or bare-bones error trapping. If the argument to assert()

is an expression that evaluates “true” (non zero) then the statement has no effect. Otherwise execution is
halted with a “failed assert” message along with a line number indicating where in the source file the failure
occurred. To use assert(), simply #include <assert.h> at the beginning of the program. To disable
assert()s without physically removing them from the code, compile with the preprocessor option -DNDEBUG

or with the preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement.
There are code examples below that use assert()s.

Arrays, Pointers, and structs

Arrays

In C, you can make an array (e.g., of integers) in one of two ways: with a declaration at the start of the
function like int myarray[N];, where N is the number of elements in the array, or by declaring a pointer
int *myarray; and calling malloc() to allocate N ints to it (see section). In either case, you reference
element n in the array as myarray[n], noting that array indices start at 0 in C, not 1. Regardless of how you
declared the array, the name of the array (in this case myarray) is always a pointer to the first element, and
can be passed as a pointer to another function. This means a function that is passed an array can modify
the contents of the array, since it knows exactly where in memory the data is stored. As an example,

void init_array(int *myarray)

{

myarray[0] = 12;

}

void main(void)

{

int myarray[15];

init_array(myarray);

}

2

declares an array and calls a function to initialize the first element of it. Note that myfunc() does not know
the size of the array; usually you would pass this information as well, otherwise you risk accessing the array
out of bounds.

Pointers

Pointers are very powerful but also very dangerous. As you can see from the previous example, there’s
nothing stopping myfunc() from trying to write to element 99 of myarray. Doing so would at best result in a
“segmentation violation” (SEGV) error message. At worst, your program could be corrupted in unpredictable
ways as it’s running, leading to nonsensical results. To avoid the headache of tracking down seg faults, learn
to be paranoid about pointers. Here’s a much more careful version of the previous program:

#include <stdio.h>

#include <assert.h>

void init_array(int *myarray,int nelem,int elem,int val)

{

assert(myarray != NULL);

assert(elem >= 0 && elem < nelem);

myarray[elem] = val;

}

#define MAX_NELEM 15

void main(void)

{

int myarray[MAX_NELEM];

init_array(myarray,MAX_NELEM,0,12);

}

Here we used assert()s to ensure first that the pointer has a non-zero value and second that no attempt is
made to access the array out of bounds.

Generally pointers are used to allow a function to modify the contents of a memory address. This can
make for very elegant code, and indeed is the only way for a function to change the value of a passed scalar,
but it pays to be careful when using them.

structs

Structures (or structs) are a very convenient way of collecting disparate data types into a single data
element. The following example shows how a struct is defined as a type, how a variable of that type is
declared, and how to access data fields in the struct:

#include <stdio.h>

#include <assert.h>

struct dates_s {

int month;

int day;

int year;

};

void showdate(struct date_s *date)

{

assert(date != NULL);

printf("Date = %02i/%02i/%4i\n",date->month,date->day,date->year);

3

}

void main(void)

{

struct date_s date;

date.month = 1;

date.day = 27;

date.year = 2004;

showdate(&date);

}

Note that, unlike for arrays, the name of a structure is not a pointer to the structure. This means you
can pass the actual value (contents) of the structure to a function. However, it’s generally more efficient to
just pass a pointer, as in the example above, to avoid copying data unnecessarily.

Passing Arguments to main()

main() is passed two arguments from the shell: an integer and a pointer to an array of strings. Traditionally
these are declared as follows:

int main(int argc,char *argv[])

Here argc (“argument count”) contains one plus the number of arguments passed to the program from the
command line and argv (“argument vector”) contains a series of char pointers to these arguments. The first
element in argv is always the name of the program itself, so argc is always at least 1. The library function
getopt() can perform simple parsing of command-line arguments; see the listing in section 3c of the man
pages. Here’s a more simple example of passing two numbers and a string. Note the error trapping to force
the user to conform to the expected usage:

#include <stdio.h>

#include <stdlib.h> /* for atoi() */

int main(int argc,char *argv[]) {

int m,n;

if (argc != 4) {

printf("Usage: %s m n filename\n",argv[0]);

return 1;

}

m = atoi(argv[1]); /* convert strings to integers */

n = atoi(argv[2]);

printf("%s received m=%i n=%i filename=%s\n",argv[0],m,n,argv[3]);

return 0;

}

Recursion

C has the interesting property that functions can be called recursively, that is, a function can call itself.
Often this can make for elegant, but not necessarily efficient code. Recursive functions add to memory
overhead and are not easily optimized when compiling. However, there are times when recursive calls are a
natural choice, for example when handling tree-like data structures. Here’s a simple example of a recursive
function to compute the factorial of a number:

long int factorial(int n)

{

4

assert(n >= 0); /* negative values not allowed */

if (n < 2) return 1; /* this is the exit condition */

return n*factorial(n - 1);

}

This could equally well be written:

long int factorial(int n)

{

long int f;

assert(n >= 0);

for (f=n;n>1;n--)

f *= (n - 1);

return f;

}

Which version to use is mostly a matter of personal taste. Note that factorials get large very quickly, so
even a modest value of n can result in a factorial that exceeds long int capacity.

Variable-size Arrays

The library function malloc() can be used to allocate memory dynamically. The function free() returns
the memory to the pool when you’re done with it. For example, to allocate an array of n doubles:

double *myArray;

myArray = (double *) malloc(n*sizeof(double));

assert(myArray != NULL);

DoSomethingWith(myArray);

free((void *) myArray);

The return value of malloc() is a pointer to void (i.e., a so-called “generic” pointer; see below) so it
must be cast to the appropriate type, in this case pointer to double. Similarly, the pointer must be recast
to void * for freeing. If malloc() fails to allocate the memory (for example, if there’s none left!), NULL is
returned, hence the assert. Bad things happen when you operate on a NULL pointer...

Be sure to #include <stdlib.h> when using malloc().

Variable-size Multi-dimensional Arrays

One way to allocate dynamically a m by n array (of doubles, say) is to first allocate space for m pointers
to double and then allocate n doubles for each of these:

double **myArray;

int i;

myArray = (double **) malloc(m*sizeof(double *));

assert(myArray != NULL);

for (i=0;i<m;i++) {

myArray[i] = (double *) malloc(n*sizeof(double));

assert(myArray[i] != NULL);

}

DoSomethingWith(myArray);

for (i=0;i<m;i++)

free((void *) myArray[i]);

free((void *) myArray);

This naturally can be extended to any number of dimensions. Perhaps a better way is to simply allocate
a single m by n block of memory of the appropriate storage type and access the elements using row-column
formulae like i ∗ m + j, where i runs from 0 to m − 1 and j runs from 0 to n − 1.

5

Generic Pointers

In C you can use a “cast” to change data types. For example, x = (int) y;—if x and y are both floats, x will
be set to the value of y without whatever was after the decimal point. A particularly powerful application of
casting is for passing arbitrary data between functions. For example, suppose a numerical algorithm requires
you to pass the name of a function that computes derivatives, but that this computation depends on some
extra parameters, like particle masses. Rather than having to send the parameters explicitly, a well-written
numerical library (unfortunately, NRiC2 is not one of these!) will provide a generic pointer that it will pass
on to your function. For example:

void myFunction(double x[],double dxdt[],double t,void *data) {

double *mass = (double *) data;

/* now compute dxdt[], given x[], t, and the masses */

}

Here we used an explicit cast to change the generic pointer data to a pointer to an array of doubles
(mass). You can stuff whatever you want in data; structures are often very useful for this purpose. Just be
sure to cast the generic pointer to the correct type before operating on it.

Random Numbers

There are several random number generators available in the C library. For modern implementations, the
recommended one is int rand(void);, which returns a random integer between 0 and RAND MAX (#include
<stdlib.h>). Use void srand(unsigned int seed); to seed the generator. Ideally you want a different
seed for each invocation of the program. One way to do this is to use srand(getpid()); where getpid()

returns the ID number of the current process (#include <unistd.h>). A better seed can be obtained by
combining getpid() with the Unix time (#include <time.h>—see next section) and the parent ID: (int)
time(NULL) % getpid() + getppid(). You may want to print out the value of the seed used in case you
need to reproduce the results of the run later on.

NR3 has an extensive discussion about random numbers and provides algorithms that are far superior
to those available in the standard C library. See Chapter 7 in the text.

Timers

The library calls gettimeofday(), time(), clock(), times(), and getrusage() can all be used to measure
execution times. The best resolution is obtained from gettimeofday() (for wallclock) and getrusage()

(for user and system). Both these functions take structure pointers as arguments and fill the elements with
timer values. The best strategy for all such timers is to difference the before and after values. Check the
man pages for more info. Note the crucial difference between wallclock and user/system time is that the
former will increase as the load on the machine increases due to other processes whereas the latter will not.
Here’s a simple example using clock(), which returns the amount of CPU time used so far:

#include <stdio.h>

#include <time.h>

double getCPU(void)

{

return (double) clock()/CLOCKS_PER_SEC; /* convert to seconds */

}

int main(void)

{

double t0,dt;

t0 = getCPU(); /* get initial value */

MyExpensiveFunction();

6

dt = getCPU() - t0; /* difference to get execution time */

printf("Execution time: %g sec\n",dt);

return 0;

}

7

