WASP and APHID Microcontroller Command Interface
BIMA Memorandum #383

A 1. Harris
Department of Astronomy, University of Maryland
28 June 2002, code version wasp219

Each WASP and APHID spectrometer contains an Intel 80C251SB microcontroller that
manages the spectrometer’s real-time and other hardware tasks. In single-dish observing the
microcontroller would, for instance, accumulate data from the spectrometer hardware, send
signals to the telescope’s chopping secondary and beamswitch (“nodding”) inputs, and set the
spectrometer’s instrument state. It communicates with a host computer or terminal using simple
commands and a serial interface. This memorandum describes the microcontroller commands.

The basic logic for spectrometer control is that the host should command the microcontroller
for a single completely specified action, leave the microcontroller to its task unattended, and
recognize that the task is finished when the microcontroller sends its attention signal. In this
way, the host is always certain of the task’s setup. This simplifies the programming interface and
allows the host to communicate with many spectrometers without conflicts. The price for this
is small: a few extra characters are needed to initiate tasks in a specific state. The command
set is deliberately small. Most of the hardware-specific mode settings are programmed in the
microcontroller rather than set as options by the host computer.

A typical command sequence would be for the host computer to send a command for a
chopped and nodded astronomical integration with a string specifying the chopping, nodding,
and blanking variables: n 80 0 100 10 4 400; wait for the microcontroller to finish and send
its attention signal: !; and then read back the data: s 1024. If the microcontroller detects an
error state it returns a single character in place of the !. Table 1 is a summary of the possible
commands, and Table 6 summarizes the error states and messages.

All commands to the microcontroller are case-sensitive and end with a <return>. In “ter-
minal” mode the data return as alpha-numeric ASCII characters; in “computer” mode the data
return in signed (two’s complement) 32-bit integer words. The word is composed of 4 bytes
with the most significant byte sent first. The basic time unit for the commands is the frame
rate of spectrometer readouts, a time base of 11.520 ms. The serial port setup is RS-232,
19.2 kbaud, 8 bits, one stop bit, no parity. In principle the transfer obeys Xon/Xoff, but this
has not been thoroughly tested. Enabling Xon/Xoff at the host end is inadvisable since the
control characters (0x11, 0x13) may easily occur during a binary transfer.

1 COMMAND LISTING

1.1 Help, h

Send the table containing the command menu in terminal mode with h. There is no action in
computer mode.

1.2 Computer or terminal, d

Set computer and terminal modes with d mode, where mode = 0 is computer and mode = 1 is
terminal mode. The default at boot is the terminal mode. In terminal mode, the output is
designed to be read by a human: it is more verbose and the numbers are in decimal format.

Action Command Function

Help h help: print menu

Term/Comp | d # select computer (0) terminal (else)

Zero z # # internal offsets, n_fra cycles, mode 0-3
Level 1 # # set level in lag to |vall; set atten # dB
TotPwr t # sum data for n_fra frame pair

Chop CH HH#H# n_fra, nodside, chops, c_wait

Nod n # # # # # # | n_fra, nodside, chops, c_wait, nods, n_wait
Halt int. (any key) any key stops integration

Send data s # send (nbytes of) accumulated data

Stats m mean, variance

O’scope o F# # # time seq: adc, n_sum, n_sam

Nod tel f toggle nod state

Boss b # write chop, nod signals if 1; slave if 0

Init ADCs i send ADC setup string

Query q # query # chans of instrument info

Switch X # # write to switch #, state=1,0

Write w # write # to DAC

APHID a # start APHID readout mode with # reads/cycle
Eval e # evaluation modes (0 for normal operation)
Version v version of code

Table 1: Command list for the WASP and APHID spectrometers.

In computer mode, the communication is cut to the minimum: commands are not echoed, and
the data are transferred in binary format.

1.3 Zero, z

Find internal electronic offsets over an integration time of length n_fra readouts and in mode
0, 1, 2, or 3 with the command z n_fra mode. Setting mode to 3 switches the microwave power
off with a switch inside the amplifier module, measures the zero level, and then returns the
attenuation to its original setting. In mode 0, 1, or 2, zero is measured by shutting off the usual
microwave phase switch clock. In mode 0, the mixer is set to phase 0; mode 1 puts the mixer in
phase 1; and mode 2 is the average of both phases. Phase modes other than 0, 1, 2, and 3 return
zeros. (Note: if n_fra is not even in phase mode 2 (n_fra, 2), the number of readout cycles
will be rounded to the next lowest integer.) Dividing the sum in the output buffer by n_fra
produces the average offset value. The readout frame time is 11.520 ms, so the integration time
tint,z is:

tint,» = n_fra x 11.520 ms .

(1)

Settling and synchronization times add a few times 11.520 ms to ¢, for the elapsed time.
The result will be 128 signed 4-byte words in ADC readout order (not time lag order) in the
data buffer.

1.4 Level, 1

Use the attenuator in the amplifier module to auto-set the power level in adc number adc_no
for |val| counts per readout with 1 adcno val. For instance, 1 3 18000 will set the absolute
value of the level in adc number 3 to 18000 counts per readout, if this is within the attenuation
range. Note that this routine works on the raw adc number rather than the (reordered) lag
numbers, so using the m or t command is a good way to find the zero lag. Attenuation values
between 1 and 15 dB are preferred for band flatness. The routine returns values for attenuation,
final value, and requested value after the lag readout data in words 128, 129, and 130 of the
data buffer. The routine returns an error state if the final level is not within a factor of 0.7
(1.55 dB) of the requested level.

Setting the adc number to values between 600 and 699 sets the attenuator value directly
with an offset of 600. For example, 1 600 sets the attenuator to 0 dB and 1 609 sets it to 9 dB.
The attenuation range is 0-31 dB; requesting higher values activates a switch in the module
that provides more than 60 dB attenuation.

Setting the adc number to values between 700 and 799 is reserved for level setting using
an external power detector read by one of the system ADC channels. This has not been
implemented yet.

1.5 Total Power, t

Accumulate total power data from the spectrometer for n_fra readout frames with t n_fra.
The readout frame time is 11.520 ms, so the integration time #;,; ¢ is:

tinty = n_fra x 11.520 ms . (2)

The output will be 128 signed 4-byte words in ADC readout order (not time lag order). Because
the microcontroller synchronizes itself to the readout frame clock, there will be an uncertainty
between 0 and 11.520 ms in the actual start time after the microcontroller receives the command.

1.6 Chop, c

Accumulate chopped power data from the spectrometer for n_fra readout frames per chop
side, into even or odd nod side nodside, for a total of chops chop cycles, and a chopper tran-
sition blanking time of c_wait frames with ¢ n_fra nodside chops c_wait. The chopping
frequency is

1
2(n_fra+ cwait + 1)11.520 ms’

3)

fchop =
and the integration time on the sky is
tint,e = 2 X chops X n_fra x 11.520 ms . (4)

The nodside variable determines whether the data are stored in the first 128 words of the data
buffer (even, 0) or the second 128 words (1, odd). Synchronization at the beginning of each
chop side takes 11.520 ms, accounting for the additional 1 in the equation for f.;.,. Because
the microcontroller synchronizes itself to the readout frame clock, there will be an uncertainty
between 0 and 11.520 ms in the actual start time after the microcontroller receives the command.

1.7 Chop and nod, n

Integrate with chopping and nodding. This command builds on the chopping command with
the addition of the number of nod cycles nod and telescope move blanking time n wait:
n n fra nodside chops c_wait nod n_wait. The integration time on the sky is

tint;n = 2 X n0ods X tins . =4 X nods x chops x n_fra x 11.520 ms . (5)
The blanking time for telescope moves is
twait(tel) = nwait x 11.520 ms . (6)
The elapsed time, including blanking time overheads is
t = (4 X nods X chops X (n.fra+ 1+ cwait)+ (2 X nods + 1) X n.wait) x 11.520 ms. (7)

The telescope always nods at the beginning of an integration to insure that the telescope has
a well-defined pointing for chopping and nodding. Without this initial nod, the telescope
may point between the two beams; this will always the case for a new source. The nodside
variable sets the beginning nod state, even or odd. The data are stored as 256 words, with
the first 128 containing data from the even nod side, and the second 128 from the odd nod
side. Synchronization at the beginning of each chop side requires 11.520 ms, accounting for the
first 1 in the equation for elapsed time. Because the microcontroller synchronizes itself to the
readout frame clock, there will be an uncertainty between 0 and 11.520 ms in the actual start
time after the microcontroller receives the command, the second 1 in the equation.

1.8 Halt integration, (any key)

Sending any character to the microcontroller will halt the integration and return it to its
listening mode, awaiting the next command. The microcontroller retains the characters that
halted the integration and will act on them as soon as <return> is in the string.

1.9 Send data, s

Send nbytes bytes or words from the data buffer with s nbytes. The data buffer words are
signed (two’s complement) 4-byte (32-bit) integer words. In computer mode s transmitsnbytes
bytes starting with the first byte in the buffer, then the second, and so on. In terminal mode,
s transmits nbytes words (ADC values) in decimal form. At 19.2 kbaud, the transfer time for
256 words is about 0.5 sec in computer mode. The transfer time in terminal mode depends on
the values and is unpredictable.

1.10 Statistics, m

Compute the mean and variance for 32 consecutive readouts of the input data for all channels.
The mean is in the first 128 words of the data buffer, the variance is in the second 128. The
data are in order of ADC readout, not time lag.

1.11 Oscilloscope, o

Record a time sequence data for one lag channel. o adc n_sum n_sam takes n_sam data points
from ADC adc, summing n_sum frames at each datum. The lag selected is in order of ADC

readout, not time delay. As an exception in the oscilloscope mode, data always return without
prompting in ASCII mode in two columns: sample number and data. Table 2 gives the lag-to-
ADC correspondence: That is, the first value from the microcontroller is from lag 1, the second

ADC 0 1 2
Lag (A) |1 3 5
Lag (B) [14 12 10

5 6 7 8 9 10 11 12 13 14 15
11 13 15 14 12 10 8 6 4 2 O
4 2 0 1 3 5 7 9 11 13 15

O O

3
7
8

Table 2: Readout order corresponding to time lag for cables connected in the A and B config-
urations.

is from lag 3, and so on. In WASP2 the zero time lag falls near lag 2 (ADC 14) or 1 (ADC 0).
To get data into a file tser.dat on the host computer, use a command like

serial 0 "o 14 9 2520" timeout=260 out=tser.dat

Table 3 gives a list of useful setups for Allan variance measurements. Series with n_sam in mul-

tiples of 360 give particularly useful series of data for Allan variance analysis. The integration

time for each sample, in seconds, is

tintg = n_sum X 11.520 ms , (8)
the elapsed time for the entire series, in seconds, is
telapsed = tjnt X n_sam, (9)

and the timeout time for the receiving computer is timeout seconds, which should be slightly
longer than Z¢japsed-

tint (sec) | n_sum | n_sam | elapsed (min) | timeout
0.104 9| 2520 4.4 265
0.254 22 | 1080 4.6 275
0.507 44 | 1080 9.1 550
1.003 87 | 1080 18.1 1085
5.004 434 720 60.0 3610

Table 3: Useful setups for Allan variance measurements; good number of samples are 1080,
2520, 5040.

1.12 Nod telescope, £

Nod the telescope back and forth between beams for test and setup purposes with £. The nod
pulse is 4 seconds long.

1.13 Boss, b

Switch the signal direction to write (b 1) or read (b 0) the synchronization signals Chop,
Nod A, Nod B, and Blanking, to or from the external port. The default direction is set by a
compile-time variable in the microcontroller code, so this is a way to change from the default.
Caution: a 1 k() current limiting resistor should buffer the signals; excessive current may flow
if a low-impedance external signal is connected to the buffer when it is the master.

1.14 Initialize ADCs, i

Send the setup string to the spectrometer’s analog to digital converters with i. The micro-
controller does this (with an approximately 2 second delay to allow power supplies to settle if
needed) on power-up and hardware reset, but this command is a soft way to reset the ADCs if
the microcomputer and spectrometer have different power supplies or if the ADCs seem upset
by static discharge or some other problem.

1.15 Query, q

Query instrument state channels 0—q; e.g. q 2 will get information for the first two channels,
0 and 1. Get the data by sending the s command for the corresponding number of channels.
The value returned is a sensor voltage in mV. For the LM50C thermal sensors in the system,

the temperature is
Visensor — 500 mV

10 ’
so 773 mV corresponds to 27.3°C. Table 4 is a list of the sensor channel numbers and descrip-
tions.

T(°C) =

(10)

Sensor | WASP APHID

0 Last corr card Amplifier plate temp.

1 First corr card Correlator board temp.

2 Avg. corr nos 1, 6

3 Avg. inner 4 corr cards

4 Amplifier module

5 Interface card Ambient (ADC temp.)

6 Unbuffered ext. inp.

7 Buffered (x — 1) ext. inp. | Buffered (x — 1) ext. inp.

Table 4: Sensor channel numbers and descriptions.

1.16 Switch, x

Send commands to drive switches for external devices with the x command. The first variable
denotes the switch number (0-3), the second its state (0 or 1). A state other than 0 or 1 will
set all switches off. The switch driver is a Texas Instruments TPIC6595 part which can switch
ground-returned voltages to 45 V, 1.5 A pulsed current, and 250 mA continuous current. The
drivers have internal snubbing for inductive loads such as relay coils. Table 5 is a list of the
external switch numbers and functions.

Switch | WASP | APHID
0

1
2
3

Table 5: External switch numbers and functions.

1.17 Write, w

Write a number to the DAC. The output voltage will be this number in millivolts, with a range
of 0 to 4096 mV.

1.18 APHID, a

Start continuous readouts of the first 16 lags in the APHID spectrometer mode with a m. The
argument m is the sky integration time in units of 11.520 ms readout times. The voltage from
a temperature sensor, measured at the end of the sky integration, returns in word 17. Data
from 16 correlator ADCs and the temperature sensor return immediately at the end of the
integration without the ! attention character.

Ten (TBC) plus four additional readout times are necessary for the temperature measure-
ment and data transfer, so the total time per integration cycle is:

teyete = (m+ 14) x 11.520 ms . (11)

In the internally-triggered (boss) mode the next integration begins immediately after the data
transfer. If the microcontroller is in slave mode for synchronization (b 0, see Boss), the readouts
start on the first rising edge at the chop signal port after the command has been received. Exit
from the continuous readout mode by sending any character to the microcontroller; the character
is retained but not acted upon until the string terminates with a <return> character.

1.19 FEvaluation modes, e

A number of evaluation modes are available through the e # command, where # is a mode
number. The mode is held until it is reset by the e command or a hardware reset. Specifying
mode 0 or an undefined mode number results in normal, default operation. Current modes are:

1.19.1 Evaluation mode 0, default
Normal operation.

1.19.2 Evaluation mode 1, raw ADC data

Return the raw ADC data, summed but not software differenced. With no microwave signal
the command t 1 and then s 128 should return the ADC input bias values near 2!5 = 32,786.
The format is values for the two readout phases in adjacent columns.

1.19.3 Evaluation mode 2, generate data pattern

Generate a test data array to check serial interface and endianism; return data with s #. The
data array starts with a 4-byte word containing the numerical value 1 as an endianism check,
then increments succeeding bytes in the array as 0x01, 0x02, 0x03, ..., Oxff, 0x00, etc. The
80C251 microcontrollers are big-endian: the most significant byte is stored at the base address,
with remaining bytes at higher addresses, to the least significant byte at the highest address.
This mode is also useful for testing error rates on the serial link.

1.19.4 Evaluation mode 3, count APHID readouts

Within the APHID continuous readout mode a #, provide a sequential readout count number,
starting with 0, in the ADCO value. This is useful for measuring the system’s overall maximum
readout rate.

1.20 Version, v

Send a message with information about the version number and build date. This information is
updated manually in the wasp2.h header file in the microcontroller programming environment.

2 SYNCHRONIZATION TO EXTERNAL TIMING SIGNALS

In slave mode (b 0) the microcontroller starts integrations in response to external timing signals.
These signals are:

e Blanking, a data blanking line which is low for valid data, high for blanking times.

e Chop, the secondary mirror chop phase.

Nod A, which pulses high when the telescope moves to the A beam (100 ms minimum,
telescope slew time maximum).

Nod B, which pulses high when the telescope moves to the B beam (100 ms minimum,
telescope slew time maximum).

These signals and a representation of the actual secondary mirror position are shown
schematically in Figure 1. The logic for total power, chopped, and chopped and nodded obser-
vations follow below.

| |

i
1f

Chop signal _| | | | | | | | | | | | |
Chopper position "\ . | \. mm | PR —
Blanking [| [[[.
Nod A 4
Nod B I

1f
\—Telescope slew

Figure 1: Schematic view of external timing signals. Integrations after a nod begin at the times
marked by the small arrows above the chop signal.

2.1 Total power

Integration starts on the falling edge of the blanking signal. A high blanking signal at the end
of an integration indicates that the integration time is too long and generates a blanking timing
error; the actual integration time must be slightly shorter than the interval with the blanking
signal low to assure proper synchronization.

2.2 Chopped

Integration starts on the first rising chop signal edge following the blanking signal’s falling edge.
Again, the actual integration time must be slightly shorter than the time in each chop side for
proper synchronization. The blanking line should rise at the beginning of each chopper signal
and remain high through the switching and settling time.

Trapped error conditions are blanking line high at end of integration (blanking timing
error) or chop phase different at the beginning and end of an integration (chop phase error). An

untrapped error is if the timing is so badly off that data accumulate through the following phase
and two blanking phases. This error will be obvious from the overall timing: an integration
will take somewhat longer than twice the requested duration.

2.3 Chop and nod

Chopping and nodding adds two additional nod signals, one for each nod position (A and B),
to the chopping mode. To initiate integration in either the nod A or nod B position, pulse
the corresponding signal high. The pulse duration must be at least 100 ms and at most the
telescope slew time for the nod. Data acquisition begins within a chop time after the blanking
signal falls, so the blanking signal must remain high during the slew and settling times. The
actual integration time must be slightly shorter than the interval with low blanking signal. The
system assumes an alternating nod pattern with intermediate slews left out for efficiency (e.g.
for three nods: A, slew, B, B, slew, A, A, slew, B). Trapped errors (nod timing error) are
generated if either nod signal is high at the end of an integration or if both are high at the same
time. Other errors can be generated by chop mistiming (sec. 2.2). Repeatedly nodding into
the same beam is an untrapped error that can be detected by comparing the two nod buffers.
Values in the two buffers should be approximately equal when the nodding pattern is correct.

3 ERROR MESSAGES

Table 6 summarizes the error messages that the microcontroller can return.

Computer mode | Terminal mode Explanation

! WASP2> No errors detected

S WASP2 serial line interrupt> Serial line activity during inte-
gration

O WASP2 overflow error> ADC overflow

B WASP2 blanking timing error> Blanking line high at end of inte-
gration

C WASP2 chop timing error> Chopper in different phase at end
of integration

N WASP2 nod timing error> Nod signals both high or nod sig-
nal high at end of integration

D WASP2 data stream not detected> Data stream from ADCs not de-
tected at startup

L WASP2 atten loop did not converge> | Auto-tune attenuator loop did
not converge within limit

! WASP2 (ERROR 0x77?7)> Hex value of error not defined
above

Table 6: Error list for the WASP and APHID spectrometers.

4 MISCELLANY

4.1 Data stream detection

The microcontroller board accepts data from both a differential line receiver and a single-ended
input. Data are permitted on both inputs simultaneously, but the microcontroller will read
only one. On boot, the microcontroller first tries to find a data stream at the differential
receiver. If that fails, it tries the single-ended input. If that fails, it leaves the input select at
the single-ended input and returns with an error message that no data stream has been found.
Port information is available in the data buffer: the first value is the datum used to select the
port, and the second value is the port number: 1 for differential, 2 for single-ended.

4.2 Downloading code to the Phytec microModul251

The microcontroller’s flash memory loads over the serial port with the following steps:

e Connect a Windows PC to the serial port.

e Simultaneously press both buttons (reset and boot) at the edge of the microcontroller
board.

e Release the inner (reset) button while continuing to hold the outer (flash) button.
e Release the outer button.

e From the directory with the microcontroller and flash tools code, run the script £1.bat.
This invokes the Phytec flash tools with the string flasht br (19200) 1. If the Windows
PC’s serial port is not COMI1, replace the last 1 in the string with the appropriate port
number.

e A DOS screen should appear with messages from the microcontroller. Choose option 1
(64 kB memory), then option 6 (erase and load), then y to confirm the erase.

e When the flash has been erased, hit the function key F2 to enter the file name. Type
wasp2.hex at the prompt for the file name. The code will spill down the screen as it
loads. Distracting the Windows PC during the download may cause the download to fail.

e When the download is complete, reboot the microcontroller with the reset button (inner)
or cycle the power. The DOS screen will function as a terminal emulator.

e Hit the function key F1 to exit from the flash tools. Close the window and disconnect the
Windows PC.

e Reconnect to the usual host PC.

10

