
1. Hydrostatic Equilibrium and Stellar Structure

1.1. The Isothermal Sphere and Stellar Cores

We previously discussed truncated isothermal spheres and their stability as applied to

clouds in the interstellar medium (”Bonnor-Ebert spheres”). A similar question of stability

arises in the case of stellar evolution. When hydrogen-burning has exhausted the supply of

hydrogen in the core of a star, an inert helium core remains. This core has no energy source,

and hence will become isothermal – the temperature will be constant at the value set by

the inner edge of the hydrogen-burning shell surrounding this core. This core will have the

structure of a truncated isothermal sphere.

Students sometimes suppose that isothermal regions in stars will have constant density,

but this is not the case. The density must increase toward the center to satisfy the equation

of hydrostatic equilibrium. While the star is burning hydrogen in its core, the temperature

is highest at the center. For an ideal gas, this temperature gradient helps support the star,

while for an isothermal core, the density gradient alone must support the stellar mass, and

the density gradient steepens.

As hydrogen burning in the surrounding shell adds mass to the inert helium core, the

isothermal sphere extends further from the center and the center/edge density ratio increases.

Just as in the case of the Bonnor-Ebert spheres, if we consider a fixed core mass Mc, and

decrease the core radius Rc, we find that the pressure at Rc reaches a maximum Pmax and

then decreases – beyond that point the core is unstable. Thus a solution is possible only if

the pressure of the envelope is below that maximum pressure. We further find that Pmax

decreases with increasing core mass as M −2
c . This means that as an isothermal core grows,

it will reach a point of instability – the core will rapidly contract and heat, and this may lead

to the onset of helium burning. This limit to the ratio of the core mass to the total stellar

mass is known as the Schönberg-Chandrasekhar limit (sometimes Chandrasekhar-Schönberg

limit). It is approximately

Mc

M
≤ 0.37

(

µenv

µcore

)2

where µenv is the mean molecular weight of the envelope (≃ 0.66), and µcore that of the core

(≃ 1.33), so that Mc/M ≤ 0.09.

Note: This in not the same as the Chandrasekhar mass, the mass limit for a white

dwarf. That is for material which is degenerate, while the stellar core discussed here is of

lower density and behaves as an ideal monatomic gas.
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1.2. A Lower Limit to the Central Pressure in Stars

Let us recall the equation of hydrostatic equilibrium and the equation for Mr :

dP

dr
= −

GMr

r2
ρ and

dMr

dr
= 4πr2ρ

Let’s combine these equations

dP

dMr

=
dP

dr

dr

dMr

=

(

−
GMr

r2
ρ

) (

1

4πr2ρ

)

to obtain the equation of hydrostatic equilibrium in terms of the variable Mr:

dP

dMr

= −
GMr

4π r4

Now integrate this expression from r = 0 to r = R:
∫ P (R)

P (0)

dP = −
G

4π

∫ M

0

Mr dMr

r4

The pressure at the surface, P (R), is zero so
∫ P (R)

P (0)

dP = P (R) − P (0) = − Pc

Now, since 1/r4 ≥ 1/R4 , we have the inequality

Pc >
G

4πR4

∫ M

0

Mr dMr

and thus

Pc >
G M2

8π R4
= 4.49 × 1014

(

M

M⊙

)2 (

R⊙

R

)4

dyne cm−2

This is not a very close limit (it’s orders of magnitude too small), but it does show that

the central pressures of stars must be quite high. We can actually get a better estimate by

assuming that the density through the star is constant. That assumption leads to

Pc =
3GM2

8π R4

(You might try proving this.) That this is a lower limit requires demonstrating the (reason-

able) proposition that a star where the density is not constant, but increases inwards, must

have a higher central pressure.

The mean density of a star is < ρ >= M/V = 3M/4πR3 , which for the Sun works out

to < ρ >⊙= 1.41 gm cm−3. If we write the central pressure of our constant density star as

Pc =
3GM2

8π R4
=

G

2

M

R

(

3M

4πR3

)

=
G

2

M

R
ρ
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then we can equate this to the pressure from the ideal gas law,

G

2

M

R
ρ = Pc =

NAk

k
ρ Tc ,

cancel the ρ, and solve for Tc to obtain

Tc =
G µ

2NAk

M

R
= 11.5 × 106 µ

(

M

M⊙

) (

R⊙

R

)

K

With µ = 0.66 , this gives us Tc = 7.6 × 106 K for the sun; the actual value is almost twice

as high (Tc = 14.4 × 106 K). But remember that the constant density model only gives us a

lower limit.

1.3. The Virial Theorem for Stars

The volume inside radius r is just Vr = 4
3
πr3. Let us multiply both sides of the dP/dMr

version of the hydrostatic equilibrium equation by Vr to obtain

Vr dP = −
G

3

Mr dMr

r

and integrate this over the whole star

∫ P (R)

P (0)

Vr dP = −
1

3

∫ M

0

GMr

r
dMr

Now, it turns out that the integral on the right hand side is 1/3 the gravitational potential

energy of the star. We can see this if we consider the work against gravity we need to expend

if we disperse the star by lifting off successive layers of mass dMr. The work required to lift

one layer dMr from r to ∞ is

dW = dMr · force · distance = dMr ·

∫

∞

r

GMr

r′2
dr′ = dMr ·

[

−
GMr

r′

]∞

r

= dMr ·
GMr

r

and this must be integrated over all the mass shells to obtain the energy needed to disperse

the star. Thus the negative of this quantity is the gravitational potential energy Ω:

Ω = −

∫ M

0

GMr

r
dMr

and the equation above becomes

∫ P (R)

P (0)

Vr dP =
1

3
Ω .

On the left hand side of this equation we employ integration by parts.
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∫

Vr dP = [P Vr]
R
0 −

∫

P dVr

Since the pressure is zero at r = R and the volume Vr is zero at r = 0, the first term on the

RHS vanishes and we are left with
∫ R

0

P dVr = −
1

3
Ω .

Now from our earlier discussion of the thermal properties of gases, we recall that the pressure

is related to the internal energy by P = (γ − 1) u . Therefore

∫ R

0

P dVr = (γ − 1)

∫ R

0

u dV = (γ − 1) U ,

where U is the total internal (thermal) energy of the star. Thus we arrive at

The Virial Theorem: Ω = − 3 (γ − 1) U

Consider the case relevant to most stars, where the material behaves as an ideal, monatomic

gas. Then γ = 5/3 , (γ − 1) = 2/3 and the virial theorem becomes

Ω = − 2 U or U = −
1

2
Ω .

It is also informative to look at the total (thermal + gravitational) energy Etotal :

Etotal = Ω + U =
1

2
Ω = − U .

It is no surprise that Etotal < 0 , since stars are gravitationally bound. By contrast, consider

the case where γ = 4/3 . (Recall that this is the case for radiation. There are other examples

as well, such as relativistic degenerate material.) Then

γ =
4

3
=⇒ (γ − 1) =

1

3
=⇒ Ω = − U =⇒ Etotal = 0 !

It’s not just that we can’t make a gravitationally bound object out of radiation alone; this

also implies that very massive stars, where most of the pressure is due to radiation not gas,

are only weakly bound, as Etotal will approach zero.

So how can we estimate the gravitational potential energy Ω ? Let us start again with our

constant density approximation. It is easy to see that in this case (Mr/M) is proportional

to the ratio of volumes:

Mr =

(

r3

R3

)

M for ρ = const.
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Then

dMr = 3M

(

r2

R3

)

dr =⇒ Ω = −

∫ R

0

G

r
M

(

r3

R3

)

3M
r2

R3
dr

Ω = −
3GM2

R6

∫ R

0

r4 dr = −
3GM2

R6

[

1

5
r5

]R

0

= −
3

5

GM2

R

So we can write our result as

Ω = − q
GM2

R
where, for ρ = constant, q =

3

5

It turns out that the form given above is quite general, with the value of q depending on

the distribution of matter within the star. The minimum value for q is the constant density

value of 3/5; a more typical value might be q ≃ 1.5 . For the density distribution of a

polytrope (discussed in the next section) we have the remarkable result that q = 3/(5−n) ,

where n is the index of the polytrope.

To look at numerical values, we can introduce the solar mass and radius:

Ω = − 3.8 × 1048 q

(

M

M⊙

)2 (

R

R⊙

)−1

erg

When a star of mass M and radius R is formed, −Ω is the amount of gravitational energy

released; half of this energy goes into thermal energy that the star needs to support itself,

while the other half must be radiated away. (Well, not quite half: some energy is used

dissociating H2 molecules and then ionizing the gas.)

Going back to the virial theorem, U = −
1
2
Ω , we see we have an estimate for the

average thermal energy of the Sun: U ∼ 2 × 1048 erg. Dividing by the Sun’s volume,

V⊙ = 4
3
πR⊙

3 = 1.41×1033 cm3, the energy per unit volume is < u⊙ >= U/V⊙ = 1.4×1015

erg cm−3. Now the thermal energy is related to the temperature by < u⊙ >= 3
2
nk < T⊙ > .

The number of particles is n = NAρ/µ , so can write < T⊙ >= 2µ

3NAρk
< u⊙ > . Plugging

in the solar values, we find < T⊙ >≃ 5 × 106 K. So without much physics beyond the

virial theorem we are able to establish that the interior temperature of the Sun is millions

of degrees.

The virial theorem has many uses which we cannot go into here, but it is worth noting

that it can be applied to part of a star: in our derivation we just integrate out to some radius

r = Rs rather than the surface r = R. Then we find that

Ω + 3 (γ − 1) U = 3Ps Vs ,

where Ω and U refer to the part of the star within radius Rs, Ps is the pressure at that radius

and Vs the enclosed volume.
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1.4. Polytropic Stellar Models

A proper understanding of stellar structure draws on many different areas of physics,e.g.,

thermonuclear reactions, the atomic physics of stellar opacity, etc. However, we can go a

good bit further using the principles of hydrostatic equilibrium. There is a rather beautiful

mathematical theory developed over a century ago, the theory of polytropic models. Our

discussion of the isothermal sphere was a special case of such models. Recall equation (26)

that we derived there:
1

r2

d

dr

[

r2

ρ

dP

dr

]

= − 4π G ρ .

In general, P = P (ρ, T ) and the equation above must be coupled with an equation for

T . But there are cases where we may assume that P = P (ρ) only. This is the case with

the so-called polytropes, which are the solutions which follow when P ∝ ργ , where γ is a

constant. (In some – but not all – cases γ is the ratio of specific heats we have used before.)

It is usual to define a polytropic index n, which is related to gamma by γ = 1+(1/n) . Then

the pressure can be written

P = K ρ1+ 1

n

where K is another constant. We now replace ρ by a new variable θ defined by the relation

ρ = ρc θn ,

where ρc is the density at the center of the star. The pressure then becomes

P = Kρ
n+1

n
c θn+1 .

We also introduce a dimensionless variable ξ in place of the radius r by r = aξ. With the

right choice of a (see, e.g. Choudhuri, p 133), our equation becomes

1

ξ2

d

dξ

(

ξ2dθ

dξ

)

= − θn .

This is known as the Lane-Emden equation. It is a second-order differential equation,

and needs two boundary conditions to define a solution. These conditions are θ = 1

and dθ/dξ = 0 at the center ξ = 0 . If n = 0, 1 or 5 , there are analytic solutions:

for example, for n = 1, θ(ξ) = (sin ξ)/ξ is a solution. Otherwise, the equation must be

integrated numerically. As with the case of the isothermal sphere (which, by the way, can be

considered the n = ∞ case), the numerical integration cannot be started at ξ = 0 because

of the 1/ξ2 term. Again, we use a series expansion near the origin:

θ(ξ) = 1 −
1

6
ξ2 +

n

120
ξ4

−
n(8n − 5)

15120
ξ6 + · · ·

As the index n varies, we obtain a series of models with increasing central mass concentration

(the n = 0 case is in fact the constant density model). Here we show some solutions

normalized to the same radius and central density.

6



Fig. 1.— Density Distribution as a Function of Polytropic Index
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Fig. 2.— Log Density Distribution as a Function of Polytropic Index
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Before astronomers learned to make “real” stellar models, polytropes were quite impor-

tant. As shown in the next figure, where I have plotted the actual density distribution of

the Sun compared with an n = 3 polytrope, there is a real similarity. While polytropes are

only of historical interest for the study of main sequence and giant stars, they still have their

use. For example, white dwarf stars of low mass (non-relativistic) look like polytropes of

index n = 1.5 (γ = 5/3), while with increasing density, as the electron degeneracy becomes

relativistic, the structure of a white dwarf approaches that of an n = 3 (γ = 4/3) polytrope.

1.5. The Equations of Stellar Structure

The proper construction of a stellar model requires the simultaneous solution of four

differential equations. These basic equations are (Maoz, p 42; Choudhuri, p 71):

dP

dr
= −

GMr

r2
ρ

dMr

dr
= 4πr2 ρ

dT

dr
= −

3Lr κ ρ

4πr2 4ac T 3

dLr

dr
= 4πr2 ρ ǫ

In addition, we need what is called the equation of state. This is the relation between

pressure, temperature and density. In stars like the sun, this would be the ideal gas law:

P =
NAk

µ
ρ T ,

while for massive stars we have to add a term ∝ T 4 due to radiation pressure. The equation

of state becomes even more complicated for the cores of stars in the late stages of stellar

evolution, when the quantum effects known as “degeneracy” set in.

We are familiar with the first two of these four equations. The third equation for the

temperature gradient dT/dr has a lot of physics behind the quantity κ , which represents

the mean opacity of the stellar material. It is a complex function of temperature, density

and chemical composition.

The fourth equation tells us how the luminosity Lr flowing outward increases due to

energy generation by nucleosynthesis. The symbol ǫ represents the energy generation per

gram, and is an extremely strong function of temperature.
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Fig. 3.— The Solar Density Distribution Compared to an n=3 Polytrope
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