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Now that we have looked at the equations that govern photoionization and recombination, 
we are ready to consider the relations between hot stars and the nebulae that surround 
them.  The energy radiated from a unit area of a star’s surface is written as πF(ν), where the 
flux F(ν) may be obtained from a model atmosphere calculated for a specific temperature, 
surface gravity and chemical composition.  To get the basic ideas, we will replace F with 
the blackbody Planck function B(ν,T).  We can then divide by the photon energy hν and 
integrate over all frequencies from the ionization threshold to infinity and multiply by the 
surface area of the star to obtain Q(H⁰),  the number of ionizing photons the star emits.
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Here ν₀ is the threshold frequency (hν₀ is the ionization potential) and R the radius of the 
star.  To do the integral,  we introduce the variable x=hν/kT and obtain
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The integral can be evaluated by expanding in a binomial series as follows
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The last integrals are elementary so we have that
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Putting in all the constants,  we finally obtain 

Q(H0) = 3.844× 1045
t
3 I(x0) (R/R⊙)2

. where t = 10−4
T and x0 = 15.78/t

Here are some results compared to the values from model atmospheres.  Not too bad.

In the same way we can estimate the number of photons able to doubly ionize helium,  Q(He+), by 
simply increasing the threshold energy by a factor of 4.  We would find that we would need T in 
excess of ∼80,000 K to get substantial values of Q(He+).

Now suppose our star is embedded in an H cloud of uniform density.  The ionizing radiation will 
form an H+ region around the star.  Strömgren (1939) showed that there would be a sharp 
transition from fully ionized to neutral gas -- the H+ region would be a sphere -- the “Strömgren 
sphere” -- wherein the rate of constant recombinations will balance the input of photons given by 
Q(H⁰).  This allows us to write down an equation for the radius of the H+ region:
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Spectral Effective Radius Blackbody Model Atmosphere

Type Temperature (solar units) I(x0) Q(H0) Q(H0)

B5 V 15,200 K 3.9 0.00404 8.30× 10
44

–

B0 V 30,000 K 7.4 0.209 1.19× 10
48

1.45× 10
48

O5 V 42,000 K 12 0.557 2.28× 1049 3.39× 1049
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As an example,  consider a Ströngren sphere around the B0 V star in the table.  We will use the 
model atmosphere value of Q(H⁰),  1.45e48 photon/s.  Let us assume a hydrogen density of 500 
per cm³.  Further,  we evaluate the recombination coefficient at 9000 K,  a typical value for H+ 
nebulae.   Plugging these numbers into our equation gives a radius of about half a parsec:

rs =
�

3 · 1.45× 1048

4π · 5002 · 2.77× 10−13

�1/3

= 1.71× 1018 cm = 0.554 pc

Real nebulae are of course not uniform in density,  but the concept of the Strömgren sphere 
does capture the idea of sharply bounded H+ regions and shows how the size is related to the 
density of the gas,  as well as to the spectral type of the exciting star(s).

The planetary nebula IC 418.  The ionized 
region seen here is surrounded by neutral  
gas,  so this is essentially a Strömgren 
sphere.  The temperature of the central star 
is about 35,000 K.
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Recombination Lines
The prominent emission lines of H and He seen in the spectra of gaseous nebulae are the result of 
recombinations.  For H the rate of recombinations to any energy level is a weak function of 
temperature and these rates have been calculated and tabulated.  Nevertheless, evaluating the 
emission in a particular spectral line is complex.  If the emission line is produced by a jump from 
level n’ to n (e.g. , 4→2 for Hβ) we need not only the rate of recombinations to n’,  but also the rate 
to all levels n’’>n’,  since those levels may feed n’ by n’’→n’ jumps. In fact,  it is necessary to solve the 
cascade problem,  where we follow all the possible downward jumps, feeding n’ by any path.  In 
addition,  we need to know the branching probabilities, i.e., the fraction of electrons arriving at n’ 
that then jump to n,  rather than some other lower level (i.e., 4→2 rather than 4→3 or 4→1).  
Fortunately,  this has been worked out long ago and tabulated.  Even better, it turns out that the 
results do not depend greatly on the gas temperature.

One result of this is that the relative intensities of the H lines are known.  The H lines in the optical 
part of the spectrum are known as the Balmer series,  and the way in which the intensities of these 
lines decrease as we go up the series (i.e.,  Hα, Hβ, Hγ, ...) is called the Balmer decrement.  If we 
measure line ratios that deviate from these theoretical ratios, say if Hα were 4 times stronger than 
Hβ,  we could usually conclude that this was due to interstellar reddening by dust, and correct all 
the other line intensities accordingly.  Another possibility would be that there is a contribution to 
the Hα line by collisional excitation -- a rare occurrence. 

Just as the recombination coefficient gives the rate of all recombinations,  we can define an 
effective recombination coefficient for Hβ (or any other line) which gives the rate of 
recombinations that result in the emission of an Hβ photon:

αeff (Hβ) = 3.03× 10−14
t
−0.874

cm
3
s
−1
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Energy Levels of the H⁰ atom
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Since we measure the energy radiated in a spectral line, not the number of photons, we must 
multiply this rate by the photon energy to obtain the energy radiated in Hβ per unit volume:

4πj(Hβ) = nen(H+) hνβ αeff (Hβ) = 1.24× 10−25
nen(H+) t

−0.874

Here j(Hβ) is the energy emitted per steradian,  so 4πj is the total emission per unit volume.

L(Hβ) =
4π

3
r
3
s 4πj(Hβ)

L(Hβ) =
4π

3
(1.71× 1018)3 · 5002 · 1.24× 10−25 · 0.9−0.874 = 7.12× 1035

erg s
−1

This seems like a lot of energy in one spectral line (the sun’s luminosity is only 3.8e33),  but 
consider that the luminosity of a B0 V star is >1e38 ergs/s,  and that the nebula is capturing all the  
star’s energy beyond 13.6 eV and converting  it into line emission.  Next,  let’s translate this into 
the flux we measure at the earth, F(Hβ).  If the distance to the nebula is D,  the flux we measure is 
the luminosity spread out over the surface area of a sphere of radius D centered on the nebula. 
Let’s assume the nebula is at a distance of D = 1 kpc = 3.086e21 cm.  Then we find

We can use this expression for j(Hβ) to do neat things. Consider the H+ region around the B0 
star that we looked earlier.  The total luminosity of this nebula in the Hβ line is given by 4π j(H) 
times the volume of the nebula:

F (Hβ) =
L(Hβ)
4πD2

=
7.12× 1035

4π(3.086× 1021)2
= 5.95× 10−9

erg cm
−2

s
−1

In spite of what I said above,  when dealing with modern instruments,  it may be more convenient to 
have the flux in photon numbers.  Since hν = 4.085e-12 at Hβ,  we have 

F (Hβ) = 1457 photons cm−2 s−1
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Such a flux is readily detected.  

We can turn this problem around.  From the observed flux,  if we know the distance to the nebula, 
we have the luminosity L(Hβ).  Then, noticing that both L(Hβ) and Q(H⁰) depend upon the integral 
over the volume of the nebula of n² times recombination coefficients that have a very similar 
temperature dependance,  we take the ratio of coefficients out of the integral and thus find that

Q(H0) =
αB(T )

αeff (Hβ)

�

vol
nen(H+) αeff (Hβ) dV = 105.3 D

2
F (Hβ)

where both F and Q are in photons/sec.  Thus the nebula is a photon counter,  counting the far UV 
photons from the star and transmitting an optical signal to us.  

Helium recombination lines

The other strong recombination lines is nebular spectra are due to recombinations and cascades 
through the energy levels of He⁰ and,  for highly excited gases,  He+.  Some of the transitions of 
He⁰ are shown on the next page (the He+ levels look just like H⁰).   We see that He⁰ is much more 
complicated,  with the levels divided into singlet and triplet states that hardly communicate.  About 
3/4 of the recombinations go to the triplets.  However, the ground state is a singlet,  so the triplet 
recombinations and cascades end up stuck in an excited level with a lifetime of 2 hours (this is what 
is called a metastable state).  The strongest line is the 10833 Å line (actually a triplet: 10832.1, 
10833.2 and 10833.3 Å) in the near IR.  Strong lines in the optical are 3890 Å,  4473 Å,  5877 Å
and 6680 Å with relative intensities of 2.2,  1.0,  2.7 and 0.8,  though these vary with T and density.
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← 10833 Å
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