
1. Isotropic Scattering in Slabs: Comparison of Methods

One use of the spline-based matrix transforms given here is to provide accurate solutions

which may serve as test cases for more general methods. In particular, we would like to

test Monte Carlo codes which can then be applied to cases which do not have plane-parallel

geometry. The simplest such tests involve isotropic scattering (without polarization) in plane

parallel slabs of finite optical thickness. Let us start with the case of sources of radiation

distributed uniformly throughout slab. After the radiation is emitted, let it scatter without

absorption until it escapes. We want to find the resultant source function and the angular

dependence of the emergent radiation. The equation for the source function S in this case is

Sν(τν) = Λτν
(Sν) + S∗

ν(τν) , (1)

where S∗ is the uniformly distributed source term. This represents a process that emits

without absorbing – and it also corresponds to the limiting case of situations for which

λν << 1, so that (1 − λν) approaches unity. The matrix equation then is given by

[Iij − Λij ] Si = S∗
i (2)

with the solution

Si = [Iij − Λij ]
−1 S∗

i (3)

The J routine in the file Uniform.ijs provides this solution and the resulting emergent

intensity as a function of µ = cos(θ).

To set up the Monte Carlo approach, let us consider an x-y-z coordinate system with

its origin on the mid-plane of the slab and the z-axis perpendicular to the slab. Then we

see that the only variables of interest are the z coordinate of the scattering and the angle

µ = cos(θ) of the photons path with respect to the z-axis. The x and y coordinates are not

needed – we do not care at what point the photons emerge or with what φ angle, only with

what θ.

We set up a collection of photons uniformly distributed in z. We next assign a random

θ direction for each – this is given by assigning each a µ sampled over the interval [-1,1]. For

a photon at z traveling in direction µ, the distance to the edge of the slab (and escape) is

given by

τesc =
(T/2)

|µ|
−

z

µ
, for (T/2) ≥ z ≥ (−T/2) and 1 ≥ µ ≥ −1 , (4)

and thus the fraction that would escape along that path is fesc = e−τesc , while a fraction

(1− fesc) = 1− e−τesc will not escape but will be scattered somewhere along the path before

reaching the edge of the slab.

A uniform sample of the optical distances traveled by photons in an infinite medium is

given by τ = − ln(1−r), where r is a number drawn at random from the interval [0,1]. (E.g.,

r = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 leads to τ = 0.105, 0.223, 0.357, 0.511, 0.693,

0.916, 1.204, 1.609, 2.303)
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Now the most direct approach is to choose an r for each photon, and if the corresponding

τ is τ ≥ τesc, the photon escapes, while if τ < τesc, we keep the photon, letting it scatter into

a new random µ at location znew = zold + µ τ . Then when all, or nearly all, of the photons

have escaped we are done. Starting with a large group of photons, each scattering step will

process a lesser number of photons than that before, and this requires some book-keeping.

To demonstrate the simplest code, we will instead adopt photon splitting. Each “photon”

(suppose they represent a bundle of photons) has its own intensity Iold. Upon scattering, a

fraction fescIold of the photon’s intensity is recorded as escaped, while the remaining fraction

Inew = (1− fesc)Iold becomes a new (less intense) photon which is scattered in the slab. The

location of the scattering of the Inew photon is τsc = − ln(1− (1− fesc)r), where r is uniform

over [0,1]. We see that 0 ≤ τsc < τesc . The new z then becomes znew = zold + µ τsc . We

continue this process, scattering the same number of photons each time until the remaining

intensities are sufficiently small.

In the J implementation, each escape/scattering is done by a verb “Step”, so that we

can use the “power” function ˆ : to do nscat scatterings: Stepˆ :(nscat). We also need a

routine “Sort” to accumulate the escaping photons into a set of intervals in µ. The whole

routine is given in Monte Uslab.ijs and is quite compact.

A similar problem is that of a scattering slab with the source of photons located at

the mid-plane. The change in the Monte Carlo code is trivial: we just replace the initial

assignment of random z values with z = 0 for all photons. The matrix solution is not so

simple, as we do not want to introduce a delta function for S∗. We can mitigate this somewhat

by letting the source term S∗(τ) represent the first scattering of photons emitted from the

mid-plane. Now if radiation is emitted isotropically from the mid-plane with intensity I0,

the intensity reaching a layer at τ along direction µ will be I0 e−τ/|µ|. Then we see that the

radiation scattered from this beam in the layer τ to τ + dτ must be I0 e−τ/|µ| dτ/|µ|. Then

the total radiation scattered for the first time in this layer (let’s assume µ > 0, the upper

half plane) is given by

S∗(τ)dτ =

∫

1

0

I0 e−τ/µ dτ

µ
dµ = I0

{
∫

1

0

e−τ/µ dµ

µ

}

dτ = I0 E1(τ)dτ (5)

This may not seem to solve our problem, as S∗(τ) = I0 E1(τ) is still singular at τ = 0, the

mid-plane, but it is in fact better as it is just a logarithmic singularity. If we lay down a grid

that is finely spaced near the mid-plane as well as near the surface, and evaluate the last

E1(τ) not at τ = 0, but at a point midway between the last two τ ’s, we will make little error.

Note that if we wish the total (physical) flux (2π
∫

1

0
I(µ)µdµ) emerging from both faces of

the slab to be unity per unit area ( 1/2 from each face), we must normalize the intensity I0

properly: I0 = 1/8π. Also, note that some flux emerges directly with out being scattered,

and this is just E2(T/2), where T/2 is the half-thickness of the slab.

The J code for this approach is given in the file Mid plane.ijs, while the Monte Carlo

code is in MC mid-slab.ijs.
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Another problem of interest is a slab illuminated by an external beam incident at some

angle θi, corresponding to a cos(θ) of µi. In this case, the source term at a level τ is the

energy from the incoming beam which is first scattered in that layer. This is just

S∗(τ) =
1

4π µi

e−τ/µi , (6)

where the normalization involves µ−1

i so that a beam of unit intensity will produce a total

flux (from the top plus the bottom) per unit surface area of unity. (Note that a beam incident

at a shallow angle will be spread out over a large area of the slab’s surface.) The 1/(4π) is,

again, because the source term wants to be per steradian (the emission per unit volume is

4πS∗).

The matrix code to solve this in J is given in Beam.ijs. To solve the problem by a

Monte Carlo method, we set the initial intensity of the photons to I0 = (1 − e−T/µi), where

T is the optical thickness of the slab normal to its surface, because a fraction e−T/µi of the

beam passes through the slab without scattering. We then scatter all these photons with a

distribution in z based on equation (6). This turns out to be

z =
1

2
T − µiτsc ,where τsc = − ln

[

1 − (1 − e−T/µi)r
]

, (7)

and, as before, r is a random number drawn from the interval [0,1]. The J code for this

scheme is given in MC beam.ijs. Fig. 1 shows a comparison of the “exact” results with a

Monte Carlo run of 4× 106 photons scattered 30 times. The results are close except for one

point in the µ = 0.05 bin – the intensity at small µ has the largest error, as the intensity

has been scaled up by 1/µ from a relatively small number of escapes at shallow angles.

Finally, it should be clear that both the matrix and Monte Carlo codes can be generalized

to treat arbitrary variations of the source S∗(τ) or an arbitrary variation of external illumi-

nation with angle. Also, if there is true absorption present, we can see that the equation will

be

Sν(τν) = [1 − λν(τν)]Λτν
(Sν) + λν(τν) Bν(τν) + S∗

ν(τν) , (8)

and the corresponding solution for the source function is

Si = {Iij − (1 − λi)Λij}
−1 [λiBi + S∗

i ] (9)

The presence of absorption (λ 6= 0) will speed the convergence of the Monte Carlo solutions,

since in addition to escapes, the scattered intensity will decrease as (1 − λ)nscat.

3



Fig. 1.— A comparison of Beam.ijs with MC beam.ijs for a beam entering at µi = 0.864665 (θ = 30o) into

slab of total optical depth T = 2. The plot is (emergent intensity) vs. µ.

From top of slab: blue=Monte Carlo; green=matrix transform

From bottom of slab: red=Monte Carlo; purple=matrix transform
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