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1. THE HENYEY-GREENSTEIN PHASE
FUNCTION.

Henyey and Greenstein (1941) introduced a function which, by the variation

of one parameter, −1 ≤ g ≤ 1, ranges from backscattering through isotropic

scattering to forward scattering. The function is

p(θ) =
1

4π

1 − g2

[1 + g2 − 2g cos(θ) ]3/2
, (1)

This function is normalized such that the integral over 4π steradians is unity:
∫ 2π

0

{
∫ π

0

p(θ) sin(θ) dθ

}

dφ = 1 (2)

We can write it as a function of µ = cos(θ) :

p(µ) =
1

2

1 − g2

[1 + g2 − 2g µ ]3/2
, and then

∫ 1

−1

p(µ) dµ = 1 . (3)

Forward scattering is θ = 0, µ = 1, and in that case p(1) = (1−g2)/2(1−g)3,

while for back-scattering, θ = π, µ = −1, and p(−1) = (1−g2)/2(1+g)3. We

see that the ratio of forward to back scattering is [(1+g)/(1−g)]3. For g > 0,

forward scattering is dominant, while for g < 0, backscattering predominates.

Fig. 1 shows 2π p(θ) for 3 values of g. This figure may be misleading, as it

seems that the area of the 0.5 curve is much larger than the 0.1 curve. But

the scattering per unit solid angle is actually 2π p(θ) sin(θ) , as shown in

Fig. 2. Note that for isotropic scattering, or nearly isotropic scattering such

as the g = 0.1 case, most of the radiation is scattered sideways.

It’s also known that the H-G function has a simple expansion in terms of

the Legendre polynomials, Pn:

p(µ) =
∞
∑

n=1

(2n+ 1) gn Pn(µ) . (4)



Figure 1. Polar plot of p(θ) for g = 0.1, green; g = 0.3, blue; g = 0.5, red.

In order to use the H-G function for Monte Carlo models, we need the

accumulated distribution:

P (µ) =
1

2

∫ µ

−1

(1 − g2) dµ

[1 + g2 − 2g µ ]3/2
(5)

The integral is elementary and has the value

P (µ) =
1− g2

2g

{

(

1 + g2 − 2g µ
)−1/2

− (1 + g)−1
}

(6)

We see that P (−1) = 0 and P (1) = 1. We can invert this to express µ as a

function of P . The result can be written

µ =
1

2g

{

1 + g2 −

(

1− g2

1 + gs

)2
}

,where we define s = 2P − 1 . (7)

We see that as P varies from [0 → 1], s varies from [−1 → 1], and µ ranges

from [−1 → 1]. If we then replace P by some r drawn uniformly at random on

2



Figure 2. Polar plot of p(θ) sin(θ) for g = 0.1, green; g = 0.3, blue; g = 0.5, red.

the interval [0, 1], the distribution of the values of µ will, for a large sample,

approach the Henyey-Greenstein phase function.

Equation (7) breaks down at g = 0, but if we expand in powers of g, we see

that

µ ≃ s +
3

2
g (1− s2) − 2 g2 s(1− s2) − · · · (8)

which approaches the isotropic result µ = s for g = 0.

Here is a J verb for the inverse of the accumulated H-G function:

NB. The inverse of the accumulated Henyey-Greenstein phase

NB. function. Run “g iAHG r” for random numbers r in

NB. the interval [0,1]; this gives a distribution of µ = cos(θ)’s

NB. over the range [-1,1], following the H-G function with parameter g.

iAHG=: 4 : 0
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s=. 1+ +:y

a=. 1+ g2=. *: g=. x

if. 1e 5< |g do.

b=. *:(1-g2)%>:g*s

-: g%˜ a-b

else.

s2=. 1- *:s

s+ (1.5*g*s2)- +:g2*s*s2

end.

)
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2. THE RAYLEIGH SCATTERING PHASE FUNCTION.

Small particles and electrons may scatter light according to the Rayleigh

phase function. While such scattering will result in polarization, if we neglect

polarization effects, we can just write the phase function for the amplitude

of the light scattered from an unpolarized beam. This function is

R(µ) =
3

8

(

1 + µ2
)

,which is normalized:

∫ 1

−1

R(µ) dµ = 1 . (9)

The accumulated function is seen to be

F (µ) =

∫ µ

−1

R(µ) dµ =
1

2
+

1

8
µ
(

3 + µ2
)

. (10)

We want to assign F (µ) = r, where r are random numbers over the interval

[0,1], and obtain the corresponding distribution in µ. Multiplying by 8, the

equation we want to solve is

µ3 + 3µ + 4(1− 2r) = 0 (11)

which we write as

µ3 + 3µ − 2z = 0 where we have defined z = 2(2r − 1) . (12)

By Cardano’s formula, the solution of this depressed cubic equation is:

µ = A+B ,where A =
[

z +
√

z2 + 1
]1/3

and B =
[

z −
√

z2 + 1
]1/3

.

(13)

(Note that we take the real cube root in this expression.)
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Figure 3. Polar plot of the Rayleigh phase function R(θ) = (3/8)[1 + cos2(θ)] .
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