
Collisional Excitation and N-Level Atoms.

1 Collisional Excitation & Deexcitation

Consider an atom or ion with a lower energy level1 and an upper level2. Collision of a free
electron with kinetic energy greater thanE12 may excite the ion from1 to 2, while collisions with
electrons of any energy may deexcite the ion from2 to 1. In such acollisional deexcitation, no
radiation is emitted; rather the colliding electron carries away the deexcitation energyE12.

It is convenient to introduce the dimensionlesscollision strength, Ω, to describe such transitions.
The collision strength is related to the collision cross section σ (units of area) by

σ21(E) =

(

h2

8πmE

)

Ω21(E)

g2

, (1)

wherem is the mass of the electron,g2 is the statistical weight of the originating level andE is the
kinetic energy of the colliding electron. The rate of collisional deexcitations can then be written

R21 = NeN2

∫

∞

0

σ21(E) v(E) f(E) dE = NeN2 q21 (2)

Here, the velocity v(E) =
√

2E/m, andf(E) is the Maxwellian distribution:

f(E) =
2E1/2

π1/2 (kT )3/2
e−E/kT (3)

Combining the above, we see that therate coefficient, q21, is

q21 =
h2

8πmg2

√

2

m

2

π1/2 (kT )3/2

∫

∞

0

Ω21(E) e−E/kT dE (4)

We thus define theMaxwellian averaged collision strength(or theeffective collision strength) by
the expression

Υ21(T ) =
∫

∞

0

Ω21(E) e−E/kT d
(

E

kT

)

(5)

and see that the rate coefficient can be written as

q21 =
β√
T

Υ21

g2

where β =

(

2πh̄4

km3

)1/2

. (6)

Note that we introduced̄h = h/2π into the definition of the constantβ. In cgs units, its numerical
value isβ = 8.629 × 10−6.

Next consider the rate of collisional excitation. In this case the kinetic energy must be equal or
greater than the energy separation of the levels. Thus

R12 = NeN1

∫

∞

E12

σ12(E
′) v(E ′) f(E ′) dE ′ = NeN1 q12 (7)
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and

q12 =
h2

8πmg1

√

2

m

2

π1/2 (kT )3/2

∫

∞

E12

Ω12(E
′) e−E′/kT dE ′ (8)

If we change the variable of integration toE = E ′−E12, we see that the upward collision rate can
be written as

q12 =
β√
T

1

g1

e−E12/kT
∫

∞

0

Ω12(E + E12) e−E/kT d
(

E

kT

)

(9)

For many ions, in the energy range of interest, the collisionstrengthΩ is approximately con-
stant. In that case, the integral in equation (5) is unity,Υ21 = Ω21, and

q21 =
β√
T

Ω21

g2

. (10)

Likewise, if Ω12 is constant,

q12 =
β√
T

Ω12

g1

e−E12/kT . (11)

Now consider the case of thermodynamic equilibrium, where detailed balance must apply. Then
R12 = R21, that is,

NeN1

β√
T

Ω12

g1

e−E12/kT = NeN2

β√
T

Ω21

g2

. (12)

Canceling and rearranging, we have

N2

N1

=
Ω12

Ω21

g2

g1

e−E12/kT . (13)

But in thermodynamic equilibrium, the relative populationsof the levels must be given by the
Boltzmann distribution:

N2

N1

=
g2

g1

e−E12/kT . (14)

We thus see that the collision strengths are symmetric:Ω12 = Ω21.

This result is more general than the case of constantΩ. We see, in fact, that ifΩ12(E + E12) =
Ω21(E), then equation (9) becomes

q12 =
β√
T

Υ21

g1

e−E12/kT (15)

This symmetry ofΩ also follows from the condition that the collision process be invariant under
time reversal.
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2 The Two Level Atom

Consider an atom or ion with two levels. Suppose that the only processes which are of importance
are collisional excitation, collisional deexcitation andspontaneous radiative decays (no radiative
excitations or stimulated emissions). We can then write down the equation of statistical equilib-
rium, which requires that upward transitions balance the downward transitions:

NeN1 q12 = NeN2 q21 + N2A21 (16)

From this we see that

N2

N1

=
Ne q12

A21 + Ne q21

=
Ne

A21

β√
T

Υ21

g1

e−E12/kT

[

1 +
Ne

A21

β Υ21√
T g2

]

−1

(17)

The first term is just the population ratio that would result if collisional deexcitation were neglected,
while the term in brackets is the correction for this effect.We can see that in limit of lowNe,
[. . .] → 1, while in the limit of high density,Ne q21/A21 >> 1 and we have

N2

N1

→ Ne

A21

β√
T

Υ21

g1

e−E12/kT

(

A21

Ne

√
T

β

g2

Υ21

)

=
g2

g1

e−E12/kT , (18)

just the Boltzmann ratio. A simple measure of the importance of collisional deexcitation is pro-
vided by thecritical density, N crit

e , which is defined as the electron density for whichNe q21 = A21,
i.e.

N crit
e =

A21 g2

√
T

β Υ21

= 1.159 × 105
√

T
g2 A21

Υ21

(19)

(For multilevel atoms, we may define the critical density fora particular level by replacingA21 and
q21 by the sums of all the downwardA’s andq’s from that level.) We can useN crit

e to simplify the
appearance of equation (17):

N2

N1

=
Ne

N crit
e

g2

g1

e−E12/kT

[

1 +
Ne

N crit
e

]

−1

(20)

We are often interested in the amount of energy radiated by the downward radiative transi-
tions. This rate of energy loss is given by the number of transitions cm−3 times the energy of the
transition:

L12 = N2 A21 E12 = N1 A21 E12

(

N2

N1

)

(21)

The total number density of our two level ions isN = N1 +N2. If the densities are high,N1 ≃ N
may not be a good approximation. SinceN1 = N/(1 + N2/N1), we can show from equation (17)
that

N1 =

[

A21 + Ne q21

A21 + Ne (q21 + q12)

]

N (22)

and thus the energy loss is
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L12 = N A21 E12

[

A21 + Ne q21

A21 + Ne (q21 + q12)

] [

Ne q12

A21 + Ne q21

]

(23)

Putting in the explicit expressions for theq’s, we thus obtain

L12 = Ne N E12

β√
T

Υ21

g1

e−E12/kT

[

1 +
Ne

A21

βΥ21√
T

(

1

g2

+
1

g1

e−E12/kT

)]

−1

(24)

Or, in terms of the critical density,

L12 = Ne N E12

β√
T

Υ21

g1

e−E12/kT

[

1 +
Ne

N crit
e

(

1 +
g2

g1

e−E12/kT

)]

−1

(25)

We see that at low densities, (Ne << N crit
e ), the emission rate is

L12 = Ne N E12

β√
T

Υ21

g1

e−E12/kT ∝ NeN , (26)

while at high densities (Ne >> N crit
e ), the rate becomes

L12 = N A21 E12

(

1 +
g1

g2

e+E12/kT

)

−1

∝ NA21 . (27)

As an example, consider the C+ (C II) ion. It has a2Po ground state split into lower2Po
1/2

and
upper2Po

3/2
levels. These levels are 0.00786 eV apart, and the transition between them gives rise

to the far infrared line at 158µm. The line is highly forbidden, withA21 = 2.29 × 10−6 sec−1.
The collision strength varies a bit with temperature: at 10,000 K, Υ21 = 2.15, while at 1000 K,
Υ21 = 1.58. Then, from equation (19), we findN crit

e = 49 and21 cm−3, respectively. We see
that in all but the lowest density regions, collisional deexcitation will be important for this line.

For more examples, see Dopita & Sutherland, Table 3.3.
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3 The Three Level Atom

Next, consider an atom or ion with three levels. We can write down the equation for the third level
by equating the transitions into that level with the transitions out of it:

N1C13 + N2C23 = N3(A32 + C32 + A31 + C31) , (28)

where we are using the notationCij = Ne qij for the collisional transitions. Likewise, equating
transitions into and out of level 2, we have

N1C12 + N3(A32 + C32) = N2(A21 + C21 + C23) . (29)

With N = N1 + N2 + N3 as the third equation, we can easily find explicit expressions for the
relative populations,N1, N2, andN3, but they are complex and not very illuminating. Since we
are interested in theN3/N2 ratio, we can isolate theN1 terms of the above two equations and take
their ratio:

N1C13

N1C12

=
N3(A32 + C32 + A31 + C31) − N2C23

N2(A21 + C21 + C23) − N3(A32 + C32)
. (30)

CancelingN1 and solving for the population ratio yields

N3

N2

=
C13(A21 + C21 + C23) + C12C23

C12(A31 + C31 + A32 + C32) + C13(A32 + C32)
. (31)

3.1 Temperature Sensitive Line Ratios

There are a number of important ions with2s2 2p2 or 3s2 3p2 electron configurations which can be
treated as 3-level atoms. The prime example is O2+ (O III); others are N+ (N II), Ne4+ (Ne V) and
S2+ (S III). These ions have a3P0,1,2 ground term which we will treat as a single level. The first
excited level is1D2; well above that is the1S0 level. Transitions between these levels are forbidden,
but under typical nebular conditions the electron densityNe is well below their critical densities.
Thus theC ’s are small compared to theA’s, and equation (31) becomes

N3

N2

=
C13A21

C12(A31 + A32) + C13A32

≃ C13

C12

A21

(A31 + A32)
, (32)

where the last expression is a good approximation ifC13 << C12. This will be the case if
E23/kT >> 1, as is true for these ions at the temperatures of interest. Wecan now write down the
ratio of the intensity of the3 → 2 line to the2 → 1 line:

F32

F21

=
E23N3A32

E12N2A21

=
E23

E12

(

C13

C12

)

A32

(A31 + A32)
. (33)

The ratio of the energies is just the inverse of the ratio of the wavelengths of the transitions,λ21/λ32.
Further,C13/C12 = q13/q12, and using equation (15), we find

F32

F21

=
λ21

λ32

Υ31

Υ21

A32

(A31 + A32)
e−E23/kT . (34)

The quantityA32/(A31 + A32) is thebranching ratio; it gives the fraction of radiative decays from
level 3 which take the3 → 2 route.
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For the particular case of O2+, the 3 → 2 transition is the [O III]λ 4363 line, while the
2 → 1 transition produces two lines: [O III]λ 5007 (1D2 →3P2) and [O III] λ 4959 (1D2 →3P1).
Let us defineR as the ratio of the intensity of the2 → 1 transition to the3 → 2 transition:
R = I(λ5007 + λ4959)/I(λ4363). Then equation (34) becomes

R−1 =
5000

4363

Υ31

Υ21

A32

(A31 + A32)
e−11605 ǫ23/T . (35)

where “5000” is a mean wavelength for theλλ4959, 5007 pair, andǫ23 = 2.84, the energy separa-
tion in eV. Now for O III we find that the branching ratio is 0.888 and the collisions strengths are
Υ21 = 2.29 andΥ31 = 0.293 (at T = 10,000K, ignoring the mild temperature dependence ofthe
Υ’s). Inserting these numerical values we have

e32960/T = 1.145 × 0.128 × 0.888 ×R , (36)

and solving for the temperature, we finally obtain

T =
32, 960 K

ln (0.130 R)
. (37)

The [O III] λ5007 line is about three times stronger thanλ4959; the ratio is a constant, determined
by the Einstein A-values. Thus, if we defineR′ ≡ I(λ5007)/I(λ4363), thenR′ = 0.744 R and
we have

T =
32, 960 K

ln (0.175 R′)
. (38)

For example, ifλ5007 is 150 times the intensity ofλ4363, thenR′ = 150 and T = 10, 087
K. Because this line ratio is such an important temperature diagnostic for strongly ionized gases,
observers make an effort to measure the relatively faintλ4363 line. We see that asT ranges from
20,000 K to 8,000 K,R′ increases from 30 to 350 – below 8,000 K it becomes difficult tomeasure
λ4363.

Other ions with similar temperature-sensitive line ratiosinclude [N II] λ6584/λ5755, [S III]
λ9533/λ6310, [Ne V]λ3425/λ2974, [C I]λ9849/λ8727, etc. The [N II] ratio is especially impor-
tant, since many H+ regions may be photoionized by stars too cool to produce manyO2+ ions –
the ionization potential of O+ is 35 eV – but will still have plenty of N+. The analogous relation
to equation (38) for [N II] is

T =
25, 000 K

ln (0.164 R′)
where R′ =

I(λ6584)

I(λ5755)
. (39)

The problem we may encounter here is that the critical density of the upper level of theλ6584 line
is onlyN crit

e = 1.76 × 104 cm−3. As a result, the assumptions we have made in deriving equation
(34) may break down, and the [N II] line ratio may also depend upon density. The temperatures
that result from applying equation (39) under such circumstances will be too high, since the2 → 1
transition is more strongly affected by collisional deexcitation that the3 → 2 transition.
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3.2 Density Sensitive Line Ratios

Another important class of line ratios arises from ions with2s2 2p3 or 3s2 3p3 electron configu-
rations, such as [O II] or [S II]. These ions have a single4S3/2 ground level, with the first excited
levels being2D5/2 and2D3/2, which are only a few thousandths of an eV apart. The criticalden-
sities of these levels are∼ 103 − 104 cm−3, so collisional deexcitation will play a role at typical
nebular densities. As a result, the ratio of the3 → 1 to the2 → 1 transition – I(λ3726)/I(λ3729)
in [O II] – is sensitive to density but not to temperature. Letus write down the expression for the
ratio of the fluxes in these lines:

F31

F21

=
E13N3A31

E12N2A21

=
N3A31

N2A21

, (40)

sinceE13 ≃ E12 for these lines. We can insert our expression forN3/N2 from equation (31). Now
we see from the definition of theq’s – equation (15) – that forE13 ≃ E12, C13/C12 = Υ31/Υ21.
Thus we have

F31

F21

=
A31

A21

Υ31(A21 + C21 + C23) + Υ21C23

Υ21(A31 + C31 + A32 + C32) + Υ31(A32 + C32)
. (41)

Now, the2D3/2 to 2D5/2 transition is very unlikely, i.e.,A32 << A31 for these lines, so we can
simplify the expression further:

F31

F21

=
A31

A21

Υ31(A21 + C21 + C23) + Υ21C23

Υ21(A31 + C31 + C32) + Υ31C32

. (42)

We immediately see thatin the limit of low densities, whereA >> C, this becomes

F31

F21

=
A31

A21

Υ31

Υ21

A21

A31

=
Υ31

Υ21

(43)

Now when we have a collisional transition between a term witha single level (like4S3/2) and
a term with fine structure splitting (like2D 5/2, 2D3/2), the collision strengths are in proportion to
the statistical weights of theJ levels of the multiplet. (Strictly speaking, this is an approximation
that breaks down for heavier ions, where relativistic effects become important.) Thus we have
Υ31/Υ21 = g3/g2, and

F31

F21

=
g3

g2

(44)

In the case of O II (and similar ions), the second level is2D5/2, soJ = 5/2 andg2 = 2J+1 = 6.
Likewise, the third level is2D3/2, sog3 = 4. As a result, we have

lim
Ne→0

{

I(λ3726)

I(λ3729)

}

=
2

3
. (45)

On the other hand,in the limit of high density, collisions will set up a Boltzmann distribution
[equation (14)], and sinceE23/kT << 1, this is justN3/N2 = g3/g2. Thus from equation (40) we
find

F31

F21

=
g3

g2

A31

A21

. (46)

7



Now for the case of [O II],A31 = A(2D3/2 →4S3/2) = 1.79×10−4 andA21 = A(2D5/2 →4S3/2) =
3.50 × 10−5. Thus

lim
Ne→∞

{

I(λ3726)

I(λ3729)

}

=
4(1.79 × 10−4)

6(3.50 × 10−5)
= 3.41 . (47)

So we see that asNe ranges from low to high values, theλ3726/λ3729 ratio ranges from 0.667
to 3.41. The measurement of this ratio can therefore be used to determineNe. To do this, we
must tabulate the line ratio as a function ofNe, using equation (42) – or preferably the full N-level
equations, including higher levels. Graphs of this line ratio can be found in Osterbrock, AGN2,
p 134 (note that he plotsλ3729/λ3726). The other frequently used line ratio of this type is that of
[S II] λ6731/λ6716. Dopita and Sutherland plot this ratio on p 51. Note that for SII, the 2D5/2

level lies above2D3/2.

Since the collisional terms vary asNe/
√

T , it is traditional to introduce a variablex = 0.01Ne/
√

T
(at T=10,000K andNe = 104, x=1). Going back to equation (42), and with a lot of manipulation,
making use ofΥ31/Υ21 = g3/g2, g2C23 = g3C32, C21 = C31, etc., we can reduce this expression
to

F31

F21

=
A31

A21

g3

g2

{

A21 + Z x

A31 + Z x

}

, (48)

where

Z = 8.629 × 10−4

{

Υ21

g2

+
Υ32

g2

+
Υ32

g3

}

. (49)

Now, for [O II] at 10,000K,Υ21 = 0.801 andΥ32 = 1.17, soZ = 5.36 × 10−4. Thus the [O II]
line ratio, as a function of the parameterx is given by

I(λ3726)

I(λ3729)
= 3.41

{

0.0653 + x

0.334 + x

}

. (50)

The next page shows a plot of this expression (the solid line), along with a plot obtained by
solving the first five levels of O+ exactly (the dashed line) – they are nearly coincident. Finally, if
we letR = I(λ3726)/I(λ3729), the explicit solution isx = (0.334 R − 0.223)/(3.41 − R).

Note that if we observe a line ratio, we can use this curve to determinex, not Ne. To obtain
Ne, we at least need an estimate of the temperatureT . And strictly speaking, since theΥ’s are
functions ofT , we need an approximate value ofT to evaluateZ. This temperature dependence
is, however, a second order effect.
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4 The N-Level Atom

Let us consider the problem of an atom or ion withN energy levels. Assume that the only processes
of importance are spontaneous radiative decays and collisional excitations and deexcitations. As-
sume that we know the temperature of the gas and the electron density. Statistically speaking, what
are the relative populations of the levels?

Consider a particular level – call iti. The rate of transitions out of this level will be proportional
to the population of that level,Ni. Atoms in leveli can leave by collisional excitation upward at
rateNiNeqik, wherek > i, or by collision or radiative decay downward at rateNi(Neqik + Aik),
wherek < i. In equilibrium, these transitions out of leveli must equal the sum of transitions into
level i from all other levels. This yields an equation of the following form:

(Neq1i)N1 + · · · + (Neqi−1,i)Ni−1 −



Ne

N
∑

k=i+1

qik + Ne

i−1
∑

k=1

qik +
i−1
∑

k=1

Aik



 Ni

+ (Neqi+1,i + Ai+1,i) Ni+1 + · · · + (NeqN,i + AN,i) NN = 0

We thus have N equations in the N unknownsN1 · · ·NN of the form:

a11N1 + a12N2 + · · · + a1NNN = 0
a21N1 + a22N2 + · · · + a2NNN = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aN1N1 + aN2N2 + · · · + aNNNN = 0

If we specify a temperature and an electron density, and if weknow the various atomic con-
stants, we can evaluate all theaij – they then just become constant coefficients for a set of linear
equations for the unknown populationsNi. But it can be shown that this system isdegenerate, i.e.,
any one of the equations can be constructed as a linear combination of the other(N − 1). (To see
this in the simplest way, write down the two equations for a two level system: they are the same.)
We thus introduce another equation, which is the equation ofnormalization:

∑N
i=1 Ni = 1. This

plus any(N − 1) of the others may then be solved for the relative populationsNi:

a11N1 + a12N2 + · · · + a1NNN = 0
a21N1 + a22N2 + · · · + a2NNN = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aN−1,1N1 + aN−1,2N2 + · · · + aN−1,NNN = 0

1 · N1 + 1 · N2 + · · · + 1 · NN = 1

This set of equations can usually be solved by standard techniques. However, if we try to use this
set of equations under all conditions, we may run into problems at low densities and temperatures.
Then the populations of the upper levels become so low that wildly wrong – even negative –
populations can satisfy the

∑N
i=1 Ni = 1 constraint to the limit of precision of the computer. (For

example, atNe = 100 andT = 8000K, the levels of the C IV ion that give rise to resonanceλ1550
doublet have a population of∼ 10−18 relative to the ground state!) I have found that we can deal
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with such situations by solving the equations by iteration.First, divide each row by the diagonal
element of that row to obtain new coefficientsa′

ij:

a′

ij = −
N

∑

j=1

(

aij

aii

)

(51)

We then see that the equations take the form:

0 · N1 + a′

12N2 + · · · + a′

1NNN = N1

a′

21N1 + 0 · N2 + · · · + a′

2NNN = N2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a′

N1N1 + a′

N2N2 + · · · + 0 · NN = NN

Thus the matrixa′ times the true populations – the column vector~N – will just return ~N . But
if we start with arbitrary populations and multiply bya′ we will get an improved~N . Since this set
of equations does not contain the normalization condition,we should then renormalize the result
by dividing each component by

∑N
i=1 Ni. Further, to prevent oscillations, I’ve found it necessary

to operate witha′ on not the last~N , but on an average of the last two~N ’s:

~Uk+1 = a′ ×





~Nk + ~Nk−1

2



 , (52)

~Nk+1 =
~Uk+1

∑N
i=1 Uk+1

i

(53)

As the first guess~N0, we can use the Boltzmann distribution, since the populations of the
excited levels will seldom exceed the thermodynamic equilibrium values:

U0

i = gi exp(−Ei/kT ) , N0

i = U0

i /
N

∑

i=1

U0

i (54)

This scheme seems to converge to correct populations under most any conditions. Once we
have the populations, we can compute the energy lost in any transition of the ion from

Lij = Eji Ni Aij where Eji = hνij = hc/λij (55)

Finally, the total energy radiated by that ion will be given by

Λ =
N

∑

i=2

i−1
∑

j=1

Lij =
N

∑

i=2

i−1
∑

j=1

Eji Ni Aij (56)

(This is the loss per ion, since theNi are normalized to unity.)
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