Collisional Excitation and N-Level Atoms.

1 Collisonal Excitation & Deexcitation

Consider an atom or ion with a lower energy leveand an upper level. Collision of a free
electron with kinetic energy greater thah, may excite the ion from to 2, while collisions with
electrons of any energy may deexcite the ion fraito 1. In such acollisional deexcitationno
radiation is emitted; rather the colliding electron casraevay the deexcitation energys.

Itis convenient to introduce the dimensionlesdlision strength(?, to describe such transitions.
The collision strength is related to the collision crosgisecr (units of area) by
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wherem is the mass of the electrog, is the statistical weight of the originating level afds the
kinetic energy of the colliding electron. The rate of catiizal deexcitations can then be written
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Here, the velocity YE) = (/2E/m, andf(FE) is the Maxwellian distribution:
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Combining the above, we see that tage coefficientqsy, is
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We thus define théaxwellian averaged collision strengtbr theeffective collision strengjtby
the expression
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and see that the rate coefficient can be written as
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Note that we introducetl = h /27 into the definition of the constapt In cgs units, its numerical
value isg = 8.629 x 107,

Next consider the rate of collisional excitation. In thisedhe kinetic energy must be equal or
greater than the energy separation of the levels. Thus
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If we change the variable of integration¥= E’' — F15, we see that the upward collision rate can
be written as
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For many ions, in the energy range of interest, the collisivangth( is approximately con-
stant. In that case, the integral in equation (5) is uAity, = 2, and

Q
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Likewise, if 2,5 is constant,
Q
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Now consider the case of thermodynamic equilibrium, whetaited balance must apply. Then
Ris = R, that iS,
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Canceling and rearranging, we have
N _ Q2o popr (13)
Ny Qo1 g1

But in thermodynamic equilibrium, the relative populatiarfsthe levels must be given by the
Boltzmann distribution:
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We thus see that the collision strengths are symmetig:= (2.

This result is more general than the case of congtam/e see, in fact, that f2,,(F + E15) =
1 (E), then equation (9) becomes
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This symmetry of2 also follows from the condition that the collision processitwvariant under
time reversal.



2 TheTwoLevel Atom

Consider an atom or ion with two levels. Suppose that the omdggsses which are of importance
are collisional excitation, collisional deexcitation asjgbntaneous radiative decays (no radiative
excitations or stimulated emissions). We can then writerdtve equation of statistical equilib-
rium, which requires that upward transitions balance themeard transitions:

NNy i = NeNa gor + NoAgy (16)
From this we see that
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The first termis just the population ratio that would redudbilisional deexcitation were neglected,
while the term in brackets is the correction for this effedfe can see that in limit of lowV,,
[...] — 1, while in the limit of high density/N, ¢2; /A2 >> 1 and we have
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just the Boltzmann ratio. A simple measure of the importarfosotlisional deexcitation is pro-

vided by thecritical density N, which is defined as the electron density for whichg,, = Asy,
i.e.

: (18)
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(For multilevel atoms, we may define the critical densitydqgrarticular level by replacing,; and
q21 by the sums of all the downward’s andq’s from that level.) We can us&<"* to simplify the
appearance of equation (17):
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We are often interested in the amount of energy radiated éydtdwnward radiative transi-
tions. This rate of energy loss is given by the number of ttams cn 3 times the energy of the
transition:

Ny
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The total number density of our two level ionsNs = N; + Ns,. If the densities are highy; ~ N
may not be a good approximation. Sinte = N/(1 + N,/N;), we can show from equation (17)
that

Ny = (22)
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and thus the energy loss is
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Putting in the explicit expressions for this, we thus obtain
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Or, in terms of the critical density,
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We see that at low densitiesy( << N¢*), the emission rate is
L, = N.N Ej \/ﬁfil e P/t « NN | (26)
while at high densities, >> N¢), the rate becomes
—1
Lis = N Ay Ey (1 n z; e+E12/’fT) x NAy . (27)

As an example, consider the"QC Il) ion. It has a*P° ground state split into IOW(-:?t1:>§/2 and
upperQPg/2 levels. These levels are 0.00786 eV apart, and the tramdiBbween them gives rise

to the far infrared line at 158m. The line is highly forbidden, withl,; = 2.29 x 107% sec.
The collision strength varies a bit with temperature: ab@0,K, To; = 2.15, while at 1000 K,
YTy = 1.58. Then, from equation (19), we fin¥<* = 49 and21 cm™3, respectively. We see
that in all but the lowest density regions, collisional datation will be important for this line.

For more examples, see Dopita & Sutherland, Table 3.3.



3 TheThreeLevel Atom

Next, consider an atom or ion with three levels. We can wra@rdthe equation for the third level
by equating the transitions into that level with the transi$ out of it:

NiCi3 + NyCss = N3(Asy + Csa + Asp + Csy) (28)

where we are using the notatidr); = N, g;; for the collisional transitions. Likewise, equating
transitions into and out of level 2, we have

N1Cia + N3(Asy + Cs3) = No(Ay + Cun + Cas) - (29)

With N = N; + N, + Nj as the third equation, we can easily find explicit expressfonthe
relative populations]N;, Ny, and N3, but they are complex and not very illuminating. Since we
are interested in th&/; /N, ratio, we can isolate th#; terms of the above two equations and take
their ratio:

NiCiz N3(Azx + Csp + Az + Cz1) — NoCos

= 30
N1Chy Ny(Ag + Co + Ch3) — N3(Ase + Cso) (30)

Canceling/V; and solving for the population ratio yields
Ny Ci3(Agr + Oy + Chz) + Cr1aC0ss (31)

E B Cia(Az1 + Cs1 + Asy + Cs) + Ciz(Ase + Cso)

3.1 Temperature Sensitive Line Ratios

There are a number of important ions witk? 2p? or 3s% 3p? electron configurations which can be

treated as 3-level atoms. The prime example3s @ IIl); others are N (N II), Ne** (Ne V) and

S** (S Il). These ions have & ; » ground term which we will treat as a single level. The first

excited level is D,; well above that is théS, level. Transitions between these levels are forbidden,

but under typical nebular conditions the electron denaityis well below their critical densities.

Thus theC’s are small compared to th&'s, and equation (31) becomes
% CI3A21 ~ Cl3 A21

Ny Ci2(As1 + Asg) + Ci3Ase — Cha(Asn + Az)
where the last expression is a good approximatiotiif << Cis. This will be the case if
E»3/kET >> 1, as is true for these ions at the temperatures of interestawaow write down the
ratio of the intensity of th8 — 2 line to the2 — 1 line:

(32)

F35  FEpN3Azy  Eag <013> Asp (33)
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The ratio of the energies is just the inverse of the ratio efthvelengths of the transitions, / \ss.
Further,C13/C12 = q13/¢12, and using equation (15), we find

By _dw Ty Ag
Fy As2 Top (As1 + As)

The quantityAs, /(As; + Asz) is thebranching ratiq it gives the fraction of radiative decays from
level 3 which take th& — 2 route.

e P/hT (34)



For the particular case of O, the 3 — 2 transition is the [O 1]\ 4363 line, while the
2 — 1 transition produces two lines: [O 1)} 5007 ¢D, —3P,) and [O Il1] X 4959 (D, —3P,).
Let us defineR as the ratio of the intensity of th2 — 1 transition to the3 — 2 transition:
R = I(A5007 + A\4959)/1(A\4363). Then equation (34) becomes

_ 5000 T3 Aso _
R 1 _ e 11605 e23/T ) 35
4363 Tgl (Agl + Agg) ( )
where “5000” is a mean wavelength for tha4959, 5007 pair, aneh; = 2.84, the energy separa-
tion in eV. Now for O IIl we find that the branching ratio is 08&nd the collisions strengths are
Ty = 229 andY3; = 0.293 (at T = 10,000K, ignoring the mild temperature dependendbef

T’s). Inserting these numerical values we have

e2%0/T — 1,145 x 0.128 x 0.888 xR (36)
and solving for the temperature, we finally obtain
_32,960K
~ In (0.130 R)

The [O 1ll] A5007 line is about three times stronger tha®59; the ratio is a constant, determined
by the Einstein A-values. Thus, if we defi@ = 1(\5007)/1(A\4363), thenR’ = 0.744 R and
we have

(37)

32,960 K
T = —1—1—— . 38
In (0.175 R/) (38)
For example, ifA5007 is 150 times the intensity 04363, thenR’ = 150 andT = 10,087
K. Because this line ratio is such an important temperatuagraistic for strongly ionized gases,
observers make an effort to measure the relatively fadi363 line. We see that dsranges from
20,000 K to 8,000 KR’ increases from 30 to 350 — below 8,000 K it becomes difficuth&@asure

M363.

Other ions with similar temperature-sensitive line raiiedude [N [I] A6584A5755, [S IlI]
A9533M6310, [Ne V]A3425A2974, [C []A9849M8727, etc. The [N II] ratio is especially impor-
tant, since many H regions may be photoionized by stars too cool to produce nyions —
the ionization potential of ©is 35 eV — but will still have plenty of N. The analogous relation
to equation (38) for [N Il] is

2 K 1(\6584
o _ 25,000 where 7o/ — L(A6384)

In (0.164 R’) I(A5755)
The problem we may encounter here is that the critical dgon$ihe upper level of tha6584 line
is only N = 1.76 x 10* cm™3. As a result, the assumptions we have made in deriving esquati
(34) may break down, and the [N 1] line ratio may also depepdrudensity. The temperatures
that result from applying equation (39) under such circamsgs will be too high, since tlze— 1
transition is more strongly affected by collisional de¢ation that the3 — 2 transition.

(39)



3.2 Density Sensitive Line Ratios

Another important class of line ratios arises from ions with 2p® or 3s* 3p3 electron configu-
rations, such as [O II] or [S Il]. These ions have a sinffg» ground level, with the first excited
levels being’Ds,/, and>Ds,,, which are only a few thousandths of an eV apart. The critieal-
sities of these levels are 10° — 10* cm3, so collisional deexcitation will play a role at typical
nebular densities. As a result, the ratio of the» 1 to the2 — 1 transition — 103726)/I\3729)

in [O Il] — is sensitive to density but not to temperature. ustwrite down the expression for the
ratio of the fluxes in these lines:

& _ E13N3A31 _ N3A31
F21 E12N2A21 N2A21 ’
sinceFE3 ~ Fi, for these lines. We can insert our expression/¥ey N, from equation (31). Now

we see from the definition of thgs — equation (15) — that foE3 ~ Ej5, C13/C19 = Y31/ Yo;.
Thus we have

(40)

Fso Asm T31(Ag + Co1 + Chz) + T2,053

Fy Ay Yo1(As1 + Cs1 + Ago + C32) + T31(Asz + Csa)
Now, the2D3/2 to 2D5/2 transition is very unlikely, i.e.A3; << Ajz; for these lines, so we can
simplify the expression further:

Fs Am T31(Ag + Cop + Coz) + T9053

(41)

= 42
Fy A To1(Asg + Cs1 + Cs2) + Y5105 (42)

We immediately see that the limit of low densitieswhereA >> C, this becomes
& _ A31 TSI A21 _ TSI (43)

F21 A21 T21 ASl T21
Now when we have a collisional transition between a term wittingle level (like'S;,) and
a term with fine structure splitting (lik&D 5,,, 2Ds/2), the collision strengths are in proportion to
the statistical weights of thé levels of the multiplet. (Strictly speaking, this is an apgmation
that breaks down for heavier ions, where relativistic éfdzecome important.) Thus we have

Y31/ Y21 = g3/g2, and

Fy g3
— = == 44
Fy g2 ( )

In the case of O Il (and similar ions), the second levéDs,, so.J = 5/2 andg, = 2.J+1 = 6.
Likewise, the third level ié’Dg/Q, S0gs = 4. As a result, we have

_[I()3726)] 2
J\EIBO{](/\3729)} 3 (43)

On the other handn the limit of high densitycollisions will set up a Boltzmann distribution
[equation (14)], and sincEy; /kT << 1, this is justN3 /Ny = g3/g.. Thus from equation (40) we
find

F3 g3 Az

— = = — 46
Fy g2 Ay ( )
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Now fOI’the case Of [O “]A31 == A(2D3/2 —>4S3/2) = 1.79><10_4 andA21 == A(2D5/2 —>453/2) -
3.50 x 107, Thus

, 1(A\3726) 4(1.79 x 107*)
lim ¢ o) — 341 . 47
N {I()\3729)} 6(3.50 x 10-5) 47

So we see that a8, ranges from low to high values, th&726/A3729 ratio ranges from 0.667
to 3.41. The measurement of this ratio can therefore be usdétermineN,.. To do this, we
must tabulate the line ratio as a function/éf, using equation (42) — or preferably the full N-level
equations, including higher levels. Graphs of this lingoraan be found in Osterbrock, AGN
p 134 (note that he plots3729/A3726). The other frequently used line ratio of this type is that of
[S 1I] A\6731/A6716. Dopita and Sutherland plot this ratio on p 51. Note that fok, e 2D;
level lies abové Ds 5.

Since the collisional terms vary 8 /+/T, it is traditional to introduce a variable= 0.01N, /v/T
(at T=10,000K andV, = 10%, x=1). Going back to equation (42), and with a lot of manifiola,
making use of3; /Yo = g3/92, g2Ca3 = g3Cs2, Co1 = Csy, €tc., we can reduce this expression
to

F3 Asi g3 {A21 + Zx}
In_ e g , 48
Fy Ag g2 Az + Z 2 (48)
where
Z = 8629 x 1074 {T” 4 Lo T”} (49)
g2 g2 g3

Now, for [O 1] at 10,000K,Y5; = 0.801 and T3, = 1.17, s0Z = 5.36 x 10~%. Thus the [O II]
line ratio, as a function of the parameteis given by

I(A3726) _ , . {0.0653 + x}
I(\3729) 0.334 + x
The next page shows a plot of this expression (the solid,limeng with a plot obtained by

solving the first five levels of © exactly (the dashed line) — they are nearly coincident. IFin&
we letR = 1(A3726)/1(A3729), the explicit solutionisc = (0.334 R — 0.223)/(3.41 — R).

(50)

Note that if we observe a line ratio, we can use this curve terdenexz, not N.. To obtain
N., we at least need an estimate of the temperdfurénd strictly speaking, since thé’s are
functions ofT’, we need an approximate valueBfto evaluateZ. This temperature dependence
is, however, a second order effect.



4 TheN-Level Atom

Let us consider the problem of an atom or ion wilenergy levels. Assume that the only processes
of importance are spontaneous radiative decays and ooliisexcitations and deexcitations. As-
sume that we know the temperature of the gas and the elecrmitgl Statistically speaking, what
are the relative populations of the levels?

Consider a particular level — callit The rate of transitions out of this level will be proportadn
to the population of that levely;. Atoms in leveli can leave by collisional excitation upward at
rate N; N.q;x, wherek > 4, or by collision or radiative decay downward at ré&fg N.q;, + Aix),
wherek < i. In equilibrium, these transitions out of levieinust equal the sum of transitions into
leveli from all other levels. This yields an equation of the follagiiform:

N i1 i1
(Neqii) N1 + -+ + (NeGi—1:)Nicw — | Ne Z Qik + Nez%'k + ZAik: N;

k=i+1 k=1 k=1

+ (NeQiv1; + Aix1i)) Nigw + -+ + (Negyi + Ani) Ny = 0

We thus have N equations in the N unknowsis: - - Ny of the form:

a11N1 + a12N2 + -+ alNNN =0
a21N1 + a22N2 + -+ aQNNN =0

ani Ny +anaNo + - +ayyNy =0

If we specify a temperature and an electron density, and ikmav the various atomic con-
stants, we can evaluate all thg — they then just become constant coefficients for a set oétine
equations for the unknown populations. But it can be shown that this systentisgeneratgi.e.,
any one of the equations can be constructed as a linear catidnirof the othe(/N — 1). (To see
this in the simplest way, write down the two equations for a tewel system: they are the same.)
We thus introduce another equation, which is the equatiaroahalization: ", N; = 1. This
plus any(N — 1) of the others may then be solved for the relative populatigns

anNy + aipNy +---+ ainNy =0
aantN1 + apNy +---+ anNy =0
an—11N1 +an_12Na+---+any_1 NNy =0
1Ny, + 1N, -+ 1.Ny =1

This set of equations can usually be solved by standarditpodsr However, if we try to use this
set of equations under all conditions, we may run into proislat low densities and temperatures.
Then the populations of the upper levels become so low thilalywvrong — even negative —
populations can satisfy tHe€Y , N; = 1 constraint to the limit of precision of the computer. (For
example, atV, = 100 and7" = 8000K, the levels of the C IV ion that give rise to resonand&50
doublet have a population ef 10~ relative to the ground state!) | have found that we can deal



with such situations by solving the equations by iteratibirst, divide each row by the diagonal
element of that row to obtain new coefficieits;:

di = —é(“ﬂ> (51)

A

We then see that the equations take the form:

0'N1 + CLI12N2 +"'+CL’1NNN1 N1
CL’21N1 + ONQ +"'+CL/2NNN= N2

Thus the matrix:.’ times the true populations — the column vechor will just return N. But

if we start with arbitrary populations and multiply kywe will get an improved’\7 . Since this set
of equations does not contain the normalization conditree should then renormalize the result
by dividing each component by ¥, N;. Further, to prevent oscillations, I've found it necessary

to operate with:’ on not the lastV, but on an average of the last tGs:

. Nk + Nkt
Uk+1 — / oo - 52
INEERy .
. (‘jk+1
Nk+1 — ~ Uk+1 (53)

As the first gues§\70, we can use the Boltzmann distribution, since the populatiminthe
excited levels will seldom exceed the thermodynamic elopinlm values:

N
Ui = gi exp(=E;/kT) , N} = U}/ 3 UF (54)
i=1

This scheme seems to converge to correct populations undgr any conditions. Once we
have the populations, we can compute the energy lost in angitron of the ion from
Lij = Eji Nz Aij where Eji = hVij = hC/)\Z’j (55)
Finally, the total energy radiated by that ion will be given b
N i—1 N i—1

A = ZZLij = ZZEJZ Nj Ay (56)

i=2 j=1 i=2 j=1
(This is the loss per ion, since thé are normalized to unity.)
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