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THE SCATTERING OF RESONANCE-LINE RADIATION
IN THE LIMIT OF LARGE OPTICAL DEPTH
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SUMMARY

It is shown that the essential features of the transfer of resonance-line radiation
in very optically thick media of low density are described by the Poisson
equation. The solution of this equation is presented in the form of an eigen-
function expansion. Simple closed expressions are given for the mean number
of scatterings for escape and for the line profile at both the centre and surface
of the medium. In the case of a medium with a finite probability of photon
destruction upon scattering, we obtain the fraction of the photons which
escape and the limiting intensity at the centre as the optical depth tends to
infinity. These analytic results are shown to agree well with the available
numerical solutions.

I. INTRODUCTION

The escape of resonance-line radiation from optically thick media has been
considered by many authors (1)—(4). We will not discuss the history of this problem
or its astrophysical applications here. We limit our attention to the behaviour of
solutions for optical depths so large that the transfer problem is dominated by the
redistribution of radiation in the damping wings of the line. Adams (4) recently
presented numerical solutions for such cases. It is evident from his calculations
that the mean number of scatterings for escape is directly proportional to the
optical depth. Adams was able to offer some heurestic justification for this
behaviour.

In this paper, we regard the redistribution process as a diffusion in frequency
space and are thus led to solve a partial differential equation (it is, in fact, the
Poisson equation). This approach owes its inspiration to a paper by Unno (5),
who applied the technique to the problem of the He 11 L« line. While this paper is
often cited in the literature, the complexity of Unno’s application and certain
inadequacies of the result have obscured the potential value of this method. As we
shall see, a transformation of the frequency variable allows us to obtain analytic
expressions which are valid in the limit of large optical depths and which compare
well with the available numerical solutions.

2. FORMULATION OF THE DIFFERENTIAL EQUATION

We consider the medium to be a uniform plane-parallel slab with no opacity
other than the resonance line itself. If the density is low, the scattering will be
coherent in the rest frame of the atom and we may describe the frequency re-
distribution by Hummer’s (6) angle averaged function Ryr—a. We allow the possi-
bility that a photon may be destroyed rather than scattered and denote the possi-
bility of destruction per scattering, which we assume to be very small, by e. If we
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introduce the Eddington approximation, we can write a second-order equation for
the mean 1nten31ty in the form

1 d J(r, x) _

v i b UL Al S f J(r, &) g, ") ' = CC).

4.7)’

In this equation x is the frequency in Doppler widths, ¢(x) is the normalized Voigt
profile, 7 is the mean optical depth (i.e. 7, = ¢(x)r is the monochromatic optical
depth), G(7) is the source of radiation (per unit area, per unit mean optical depth),
and q(x, ') = Rp-a(x, x')/¢(x). Adams, Hummer & Rybicki (7) have given an
expansion of the redistribution function. The leading terms are

(1)

Rur-ale o) = %erfc(|r[+]s|)+fli iverfc(lrl)+...,‘ @)

where 7 = (x—«')/2 and s = (x+«')/2. In the line wings the first term can be
neglected and ¢(x) ~ af(wx?), so

(x,x)=——zerfc(| |), 3)

a form first obtained by Unno (8). We expand J(x') in a Taylor’s series about x
and, noting that x2/s2 ~ (1 + 27/x), obtain upon integration
J‘“’ I dJ(x)+1 d2J(x)

) g @) ar = T - LI, ()

Thus, to terms of second order, the transfer equation becomes

o2J 2 0] G\
2(1 — — 27V = 2 _
or? t ¢( ) {axz x 3x} 3¢ { «/ 4.71'} (5)
We now introduce the variable o defined by A
o) = [ (Gl sy as, ©)
so that '
dx _ 3 1/2 : X
wm G )
We then have
zzazJ_ziJ}_éi’_{}?é \L@}?f_f
¢ :8x2 x 0x] @02 ¢ oo t oy #) 00 .(8)
Now for large values of x we can easily show that
V2 7 43
x) ~ (=2
o) = (3722 N ©)
so that in the line wings where ¢ =~ a/(mx?) we find '
1 3¢> \/6 _Vb6a 46, :
¢30' v = T x3+ _.7;'—(#— © - - (x9)
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Thus, since (1 —€) ~ 1, we obtain

aZJ 3 J G

= 2 ——
pc) 3¢ { J 417}. (11)
In terms of the overall width of the line, ¢2 is very sharply peaked at o = o, so we
approximate it with a delta function. To preserve the normalization, we note that

[" strdo= |7 spTas=vs, ()

by the normalization of ¢. Thus we can represent the transfer problem by the
following partial differential equation: _

82J 32J G

o+ e = V6 o= 8. (13)

We consider the medium to have a total optical thickness 2B, with 7 = o at the
centre and boundaries at + B. The boundary conditions can then be written as

(gg):i:B =¥ %qSJ(B’ U) (14)
d
" lim J(r, o) =o. (15)
0—>+ ®© )

3. SOLUTION OF THE EQUATION

Following Unno (5), we employ an eigenfunction expansion. Consider-the
homogeneous equation

I xep = o | (16)

We can easily verify that solutions of the form*
Op =Acos(Ay7); m=1,2,... (17)
will satisfy the boundary conditions -(14) as long as )\n. sétisﬁes the equation
Ay tan (A, B) = 34. (18)

If we now define 2, = A,B, this equation is equivalent to
2y = m(n—1)+tan~1 {3 @}, n=1,2,... (19)
. 2 2

where the principal value of the arctangent is understood. Thus we see that
m(n—1)<2p<w(n—1/2). Now, for problems where the optical depth is large,
#B> 1 out to any frequency where there is appreciable radiation (i.e. the photons
escape before they diffuse to frequenc1es where the whole slab is optlcally thm)
It then follows that . :

2y 11'(11—-1/2) o (20)

to within a term of the order mn/¢B. Thus, while the A, depend on ¢ through ¢>

* We will only consider media with source terms symmetnc about the central plane. The
solutions must then be even functions of 7.
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in equation (18), this dependence is very slight. Now, the 8, are orthogonal on the
interval [— B, B] and

. _ 32}
f—B cos? (Ay7) dr = @/Z);ﬁ’z:/in B, (21)

so that the functions B~1/2 cos (A7) form an orthonormal set and we may represent
the mean intensity as

J(r, o) = él B172 cos (Agr) jiu(o). (22)

We introduce this series into equation (13), and upon multiplying by B-1/2 cos (A,7)
and integrating over =, obtain

d2% _ :
= hatin = V6 {gia=B112 2} 4(0) @3)

where
Op = f L, G(r) cos (Ay7) dr. (24)

Away from ¢ = o, the solution of equation (23) which satisfies the boundary con-
dition, (15) is
- ju(o) = Cexp (= An|al). (25)

Because of the delta function, the derivative of j;(o) must have a jump at ¢ = o
which satisfies

=\ = —2),C = — B-1/2
(do' o-10 do o—>—0 2 nC \/6 «C-B 47 ’ (26)
and this determines the constant C. Thus we obtain the solution of equation (13):

J(r,0) = \/: X On 008 (z"f:fféfé/f”k LoD (27)

4. EVALUATION FOR A CENTRAL SOURCE

In this and the following section we will consider € = o. The simplest case is
that of a source of unit strength located at the central plane of the slab. Then

On = fﬁB 8(7) cos (Ag7) dr = 1 (28)
and
J(r, 0) = %/;6 ”2__;1 2y~1 cos (2pB17) exp (—2,B71| a|). (29)

We may evaluate this expression at the centre of the slab with the help of approxi-
mation (20) and the series expansion of tanh=1:

J(O 0) \/6 Z exp(—w(n—-x/z)B—llol)

87 =4 77(71—1/2)

tanh"1 {exp (—=|o]|/2B)}.
(30)
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Using the approximate value of ¢ given by (9), this becomes
_ /6 ~1( [ a? (3)1/2 Ixal})
J(o, x) = pr=- tanh expl 53 B (31)

While this function has a logarithmic singularity at x = o which is characteristic
of a solution of Poisson’s equation for a point source in the o7 plane, away from
the origin it agrees well with numerical solutions. If we integrate the series term
by term and sum we obtain the integrated intensity at the centre:

(T>o = f ww J(o0, ¢) dx = l/%@ (243 —1) {(4/3)

w2 \2

3 (3\12 |3
x{ (—) aB} = 0-218136{aB}1’3, (32)

where {( ) is the Riemann zeta function.
We also obtain closed expressions at the boundaries. Here we have

J(B, 0) = %%6 ngl 2n7L cos (2n) exp (—2xB71|a]). (33)

From equation (18) we see that

cos (25) _ sin(zy) _ (—1)71

=W (3298 " (RSB’ (34)

so that (33) reduces to

_ Vo h{f (3)”2 Ix""l}
J(B, x) = ” sec 3 B (35)
This expression can be integrated to show that the flux emerging from both

boundaries is

aB 6

[°e]

J(B, ) dx = 1, (36)

2m{F>p = 4nl{J)p = 47rf

in agreement with the unit source. Setting the derivative of J(B, x) to zero we
obtain a transendental equation for the maximum of the emergent profile. The
resulting solution is

*¥m = *0-88119{aB}l/3, (37)
Finally, we consider the mean number of scatterings for escape. This is just

the number of photons absorbed (scattered) per unit time over the whole medium
divided by the generation rate. Thus

W= [ [ st )¢ i (39)

Integration over 7 yields

o

Ny = V6B 3 (~ortatu-1a [ exp(-sBilo)ddr. (29)
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When the optical depth is very large, we can easily verify that over the core of
the line 2,B~1|c| <1 up to large values of n. This simply establishes that at the
line centre where most of the scattering occurs, the intensity averaged over the whole
medium has a flat maximum. Setting the exponential to unity and recalling that ¢ is
normalized with respect to x, we have

—1)r-1
(N> = Z (= 1) 2)2 4;/ u2B = 0'909316B, (40)
where ug = 1—-3724572—724+ .. = 0'9159656.

5. EVALUATION FOR A UNIFORM SOURCE

Another case of interest is that of a uniform source distribution in the slab. If
we again normalize to unit generation in a column of unit area through the slab,
we must set G = (2B)~L. Then we find that

_sin (2y) o (=1)n1
On = ™ % (41)
and

J(r, 0) = %L 2 —1)"1 2,2 cos (2, B717) exp (— 2 B~1|0|). (42)

Proceeding analogously to the preceding section, we find
SEL R
J(O’ x) - 2773 S exp 6 3 a—B ’ (43)

where the function S is defined as

S 23 B 27 z 1\ A1
(z)=z—?+§é—7—2+...= 0arccot(@ ) 6-1 d6. (44)

Over the range o<z <1, S(2) = 2. Thus the intensity at the centre displays a flat
maximum with steep sides. The integrated intensity at the centre is

TS0 = \/ 6P(I/3) 2718 uy, (%2 (2)1/2 aB)I/3 = 0°060063{aB}1/3, (45)

where ug3 = 1—37"3+ 53—, .| = 0-9393807.
The intensity at the surface is
a ~ _w? (2\12 Ixsl})
J(B, x) = i tanh (exp { - (5) 1=, 46)

which attains a maximum at
" &m = ovi025(aB)A, (47)

Finally, the mean number of scatterings for escape is

Ny =TV U(3)B = 06647368, - (48)
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6. EVALUATION FOR A MEDIUM WITH A FINITE DESTRUCTION
PROBABILITY

We next consider the case of a non-zero photon destruction probability, but
still demand that this effect be small enough that the radiation spreads far out into
the damping wings. The principal example is the H1 La line in a static dust-free
H° region, where conversion to the two-photon continuum occurs at a rate of
€ = 44.1079 for sufficiently high densities (3). We consider a source at the centre
of the medium. Then the intensity at the central plane is given by

J(o, o) = 16 i exp (—w(n—1/2)B1|c|)

87 & w(n—1/2)++/6eBlz (49)

An important quantity is the integrated intensity. If we define p = +/6¢/27, we

obtain
_ VOUG/3) ((3)% 3 g\ ¥ I
oo = 12772 ((E) ;EaB) ,;1 (n—1/2)3{(n—1/2)+ pB} (50)

Let us consider optical depths so large that most photons are destroyed rather than
escape. Then pB>1, and the terms of the series will at first decrease slowly.
Beyond the first few terms, however, we can approximate the sum by an integral
over (n—1/2). With some manipulation we obtain

T = The first M terms + VO6T(1/3) (3 a|1/3 [® w dw
0= \ of equation (50). 4% e v, TF WP

b (51)

where wy = (M[pB)}/3. The integral is elementary. In the limit as B — o0, wo—> 0
and the value of the integral is 27/(34/3), so that

lim (730 =TUDV2 A _ orgpajeps. (52)

B—>00 T E
This is the greatest intensity which can be maintained in a medium with a given
photon destruction probability. The temperature dependence of the result is very
weak: {J>g oc al/3 oc T-V/6,
We can also obtain the amount of radiation which escapes the medium. We
evaluate equation (27) at = B with the aid of equation (34) and integrate over x

to obtain
o (-t

I
Pom = 27 n; m(n—1/2)++/6eB/2’ (53)

This sum can be expressed exactly as an integral. Since we have a unit source, the
fraction of the original photons which finally escape the slab is fo = 47(J)p.
Thus we find

fom 2 [arnyian (54)

where r = 3+4/6eB/2n. Note that for € = o, r = 1 and we recover (36). A more
useful expansion than the series in (53) follows upon integration by parts:

f, =1 (I+—I— A d ) (55)

a\r 2r(r+ 1)+' 2t (r+1). .. (r+n)+° o

4
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7. COMPARISON WITH NUMERICAL CALCULATIONS

Adams (4) has presented results of numerical calculations for line centre
optical depths up to 108. These results show that the number of scatterings for
escape is proportional to the optical thickness of the medium. Photons in the medium
are constantly changing frequency as they scatter, taking steps of about one
Doppler width. They originate in the line core and are scattered very frequently
there, but it is only on their excursions into the wings that they can travel an
appreciable distance from their point of origin. Since they are executing a sort of
random walk in frequency, they may return many times to the core. By introducing
a priori the assumption that only the lomgest single excursion into the wings is effec-
tive in moving a photon the distance needed for escape, Adams showed that the
photons should escape at a frequency of about 0-68 (aB)!/2 Doppler widths and
that the mean number of scatterings for escape should be about 1-5B. Aside from
the numerical constants, these are our equations (37) and (40). Examination of
Adams’ Fig. 1 and Fig. 5 shows that the constants we have obtained fit the numeri-
cal results as closely as can be judged from diagrams on this scale.

In a discussion of the dense early stages of planetary nebulae we have given
numerical results for the La radiation field in an H+ region surrounded by a thick
neutral shell (9). The solutions were obtained by the Feautrier method; the re-
distribution function was handled in a manner similar to that described by Adams
et al. (7). The parameters of the model were as follows: (a) the temperature of the

FOE—T T 1 T 1 T I 3
yoomy —
107 = -—
et -
JI10E —
1073 -
107t ] i ] ! L !
0 200 400 600 800 1000

A -

F1c. 1. The intensity at the centre of a slab with an optical half-thickness of B = 5.101t0
and a damping parameter of a = 3-33.1073. The solid curve is the analytic expression for a
source concentrated in the central plane as given by equation (31); the dashed curve is the
corresponding expression for a uniform source distribution given by equation (43). The filled
circles are the results of a numerical solution described in the text.
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ionized hydrogen was 10 ooo K and the mean optical depth of this zone in the line
was 108, (b) the temperature of the neutral shell was 200 K (a = 3:33.1073) with
a line optical depth of 5.1010. Because of the great optical depth of the shell,
the Ht region, in spite of the higher temperature, has only minor influence on
the solution and acts mainly as a photon source.

In Fig. 1 we show the numerical solution at the H+—-H° boundary in units
of the Doppler width in the neutral shell. The solid curve is the analytic
solution for the intensity at the centre of a slab with a central source as given by
equation (31), evaluated for B = 5.1010 and a = 3- 33. 1078, The broken curve is
the corresponding solution for a uniform source given by equation (43). The
plateau at the centre of the numerical solution is due mainly to the fact that the
source is not concentrated but extends from 7 = o to 106 and has a greater Doppler
width due to the higher temperature. The failure of the analytic solution due to
the use of a delta function in frequency in the source term would only show up a
few Doppler widths from line centre. (See Fig. 3 in the paper by Adams (4) for a
true central source, where the intensity at 7 = o continues to increase up to the
core-wing transition.)

In Fig. 2 we show the numerical solution at the surface of the H° shell
compared to equations (35) and (46). The emergent intensity is in excellent agree-
ment with the analytic solution for a central source.

L1

|

107

L1l

] ] 1 | { | ! 1 I
0 200 400 600 800 1000

X ——

FI1G. 2. The surface intensity for a slab with the same parameters as Fig. 1. The solid curve
1s the expression for a central source given by equation (35); the dashed curve is the corre-
sponding expression for a uniform source given by equation (46). The filled circles are a
numerical solution.
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Thus it appears that the expressions derived in this paper not only clarify the
asymptotic behaviour of this type of radiative transfer problem, but also provide
solutions of sufficient accuracy to be of practical application.
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