
. Scattering of Radiation with Polarization.

1. Stokes Parameters

The four parameters {I, Q, U, V} give a complete description of the polarized light

relative to some reference axis. The degree of polarization is just p =
√

Q2 + U 2 + V 2/I.

The total intensity I is always positive, but Q, U and V may have negative values, as long

as [Q2 + U 2 + V 2] ≤ I2. The parameter V represents the circular polarization - its sign

denotes right- or left-circular polarization. Q and U represent the amount (Q2 + U 2) and

direction (tan 2χ = U/Q) of the linear polarization. We assume we are looking along the

direction of propagation, and the angle χ is measured counter-clockwise from the reference

axis. Then if the light is 100% linearly polarized at 0o (i.e., along the reference axis) the

Stokes parameters are {1, 1, 0, 0}. If the plane of polarization is at an angle of 45o, the

parameters will be {1, 0, 1, 0}; at 90o, {1,−1, 0, 0}; and at 135o, {1, 0,−1, 0}. In fact the

Q and U components of a 100% linearly polarized beam, which makes an angle χ with the

reference axis (measured counter-clockwise looking along the direction of propagation) are

given by Q = cos 2χ and U = sin 2χ (See Fig. 1).

Further, we can always represent any beam as the sum of an unpolarized component and

a 100% polarized component:
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Here, p is the degree of polarization as defined above.

2. Transformation of the Stokes Parameters Under Rotation

If we rotate the direction of the reference axis, the total intensity I and circular polariza-

tion V are unchanged. We also see that Q2 +U 2, and hence the degree of linear polarization,
√

Q2 + U 2/I, is unchanged as well. The relative values of Q and U will change, however.

We can write the transformation of the initial set of Stokes parameters {I,Q, U, V } to a new

set of parameters {I ′, Q′, U ′, V ′} as a matrix multiplication. For a counter-clockwise rotation

of the reference axis through an angle φ as viewed along the direction of propagation of the

beam we have:
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Fig. 1.— Variation of Q (blue) and U (red) with angle for pure linear polarization.
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Writing this out explicitly, I ′ = I,

Q′ = Q cos 2φ + U sin 2φ , (3)

U ′ = − Q sin 2φ + U cos 2φ , (4)

and V ′ = V .

Suppose that V = 0. Then for Stokes parameters {I,Q, U, 0}, the angle between the

reference axis and the plane of linear polarization, χ, is given by

χ =
1

2
arctan

(

U

Q

)

. (5)

Note that we must use a two-argument arctan function: U = Q = 1/
√

2 corresponds to

χ = 22.5o while U = Q = −1/
√

2 must give χ = 112.5o , even though (U/Q) = 1 in both

cases.

If we then rotate the reference axis counter-clockwise by χ, we see from eq. (3) & (4),

using cos arctan(x) = 1/
√

1 + x2 and sin arctan(x) = x/
√

1 + x2 , that Q′ =
√

Q2 + U 2 and

U ′ = 0 . Thus, with a rotation of the reference axis, it is possible to express any beam with

partial linear polarization as a sum of unpolarized and completely polarized components:
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3. Rayleigh Scattering

In the case of Rayleigh scattering, where the Stokes parameters are referred to the

scattering plane (i.e., a Stokes vector of {1, 1, 0, 0} corresponds to an incoming beam which

is 100% polarized in the plane of scattering), the scattering matrix takes the form
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Here the constant (3/4) is such that the scattering is normalized for unpolarized radiation

integrated over all angles. That is, the scattered intensity integrated over all directions equals

the intensity of the incoming beam. We show this below.

3.1. Angle Averages of Rayleigh Scattered Radiation

Suppose we have a reference axis perpendicular to our beam, and relative to that axis the

Stokes parameters are {Ii, Qi, Ui, Vi} . The radiation may be scattered in any direction. The

incoming and outgoing beams will define a plane: let it make an angle φ with reference axis.

Within that plane, the outgoing beam makes an angle θ with the incoming beam (θ = π for

backscatter). We want to integrate over the angles φ and θ. Since the Rayleigh scattering

matrix is defined for Stokes parameters in the scattering plane, we must rotate the incoming

parameters to that plane using eq (2). Thus the rotated (primed) parameters are
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We then apply the scattering matrix (eq 7) to these parameters to obtain the parameters

of the scattered beam:
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For a given orientation of the scattering plane, φ, we can integrate over all scattering

angles θ. It is useful to make the variable change to µ = cos θ. Then dµ = − sin θ dθ and

the desired integrals have the form

1

4π

∫

2π

0

∫ π

0

{I ′
s, Q

′
s, U

′
s, V

′
s} sin θ dθ dφ =

1

4π

∫

2π

0

dφ

∫

1

−1

{I ′
s, Q

′
s, U

′
s, V

′
s} dµ . (10)

The integrals over µ(= cos θ) have the values

1

2

∫

1

−1

(µ2 + 1) dµ =
4

3
,

1

2

∫

1

−1

(µ2 − 1) dµ = − 2

3
,

1

2

∫

1

−1

µ dµ = 0 . (11)

So the Stokes parameters integrated over µ in a given φ plane are
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At this point, we see that for an unpolarized input beam, {Ii, 0, 0, 0}, the scattered

radiation will be (Ii/2π){1,−1

2
, 0, 0}, independent of φ. The Q′

s = −1/2 and U ′
s = 0 values

indicate that the polarization is perpendicular to the plane of scattering.

Now since the reference axis varies with φ, we cannot simply integrate eqn (12) over that

angle: we can only add Stokes parameters referred to the same axis. Thus we must first

transform {I ′
s, Q

′
s, U

′
s, V

′
s} back to the original axis by rotating by −φ. Using eqn (2) and

noting that sin(−2φ) = − sin(2φ) and cos(−2φ) = cos(2φ), the parameters referred to the

original axis become
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In integrating this expression over the range φ = 0 to φ = 2π , the only non-vanishing

integrals are

∫

2π

0

dφ = 2π ,

∫

2π

0

cos2 2φ dφ = π , and

∫

2π

0

sin2 2φ dφ = π . (15)

Thus we finally obtain
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We see that the normalization is preserved, as Is = Ii. Why does the circular polariza-

tion vanish? Apparently, as much radiation is backscattered as forward scattered, and the

reversal of the sign for backscattered radiation (2 cos θ < 0 for θ > π/2) results in complete
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cancellation. We also note that an unpolarized beam, {1, 0, 0, 0}, results in zero polarization

for the integrated radiation: of course the radiation is strongly polarized perpendicular to

the scattering plane, but the various polarization directions cancel out when integrated over

all φ.

3.2. Finding the angular distributions for Monte Carlo calculations

If we have a normalized probability of scattering into some angle φ given by f(φ) over

some range φl to φu, then consider the cumulative distribution function given by

F (φ) =

∫ φ≤φu

φl

f(φ′)dφ′ , where F (φu) = 1 . (17)

The function F ranges over the interval 0 ≤ F (φ) ≤ 1 .

Let r be a random number on the interval [0,1]. (Then R = φl + (φu − φl) ∗ r will be

uniformly distributed on the interval [φl, φu] .) Now if the function F (φ) can be inverted,

then φ(r) = F−1(r) will provide the probability of scattering into particular values of φ .

Unfortunately, while f(φ) may be easy to invert, F−1(φ) is usually not analytic.

3.3. Distribution of φ angles.

Let us examine the case of Rayleigh scattering. We first want find the distribution in

the angle φ between the reference axis and the scattering plane. For unpolarized radiation,

this must be just the uniform distribution φ = 2π r . Since by eqn (6) we can express

any incident beam as the sum of unpolarized and completely polarized components, it will

suffice to consider the case {Ii, Qi, Ui, Vi} = {1, 1, 0, vi}. Then from eqn (14) we see that

the intensity of the scattered radiation integrated over θ will be Is = [1 − 1

2
cos 2φ]/2π .

This makes sense, as the Is will be a minimum when φ = 0 , as this puts the plane of

polarization in the scattering plane; Is reaches a maximum for φ = π/2 , when the beam

is polarized perpendicular to the scattering plane. Looking at the cumulative distribution

function F (φ) , we find

F (φ) =

∫ φ

0

Is(φ
′)dφ′ =

1

2π

∫ φ

0

(1 − 1

2
cos 2φ′)dφ′ =

1

2π

[

φ − 1

4
sin 2φ

]

. (18)

We see that F (φ) ranges over [0,1] as φ ranges from 0 to 2π, as it should. Now given

uniformly random numbers r over the interval [0,1], to obtain the corresponding φ(r) we

must solve

2π r = φ − 1

4
sin 2φ . (19)
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for φ. There is no analytic solution. For, if we define E = 2φ and M = 4π r , this equation

becomes

M = E − 1

2
sin E , (20)

which is just Kepler’s equation for an eccentricity of e = 1

2
! In Fig. 2 we plot E as a

function of M. The symmetry of the curve is more apparent when we plot G(M) = E(M)-M

as a function of M, as in Fig. 3. G(M) = 0 for those values of E where sin E vanishes:

M = 0, π, 2π, 3π and 4π . We see from the symmetry of the curve that the solution of

equation (20) for any 0 ≤ M ≤ 4π can be obtained from the solution on the interval

0 ≤ M ≤ π. For if we define α and β as follows:

0 ≤ M ≤ π α = 0 β = 1

π < M ≤ 2π α = 2π β = −1

2π < M ≤ 3π α = −2π β = 1

3π < M ≤ 4π α = 4π β = −1

we can map M into M ′ = α + β × M , where 0 ≤ M ′ < π. Then, if G′ is the solution for

this M ′, we see that E(M) = M + β × G′.

The simplest method of solution is to iterate En+1 = M + 0.5 ∗ sin En . Tests show this

seems always to converge, but often takes over 40 iterations to reach full machine accuracy.

Simple Newton-Raphson also seems always to converge, and in only 6 iterations for full

accuracy. The algorithm is

En+1 = En +
(M − En) + 1

2
sinEn

1 − 1

2
cosEn

, with E0 = M . (21)

Since we need only find G(M’) over the interval [0, π], we might try fitting this function

with some approximation. We have tried a least-squares polynomial. Setting the constant

term to zero forces the fit to have a zero at M ′ = 0, as it should. We also enforce a zero at

M ′ = π. The coefficients for a 6th degree polynomial fit are:

c0 = 0, c1 = 1.092516365, c2 = −0.6952445333, c3 = 0.05051354154,

c4 = 0.07996340757, c5 = −0.02929178498, c6 = 0.003160021201

In Fig. 4 we show G(M’) and this polynomial fit. The fit is close but hardly perfect: in Fig.

5 we plot the error (Approx. − G(M)). The error is less than ∼0.005.

So to find a uniform sampling of scattering angles φ′, we get random values M = 4π r

for 0 ≤ r ≤ 1 , then solve eqn (20) for E, and our sample is φ′ = E/2 . Of course, since φ′ is

relative to the plane of polarization, we must then add the angle of the incoming polarization

plane χi from eqn (5) to get the sampled angle relative to the reference plane: φ = φ′ + χi .
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Fig. 2.— The the inverse of Kepler’s equation (20).
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Fig. 3.— A plot of G(M) = E(M)-M in the interval [0,4π].
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Fig. 4.— G(M)(=E(M)-M)(blue) and a polynomial fit (red) on the interval [0,π].
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Fig. 5.— A plot of the error in the polynomial fit to G(M’).

11



If the linear polarization is not complete, we can take the random number r, and if

0 ≤ r < p , apply the foregoing to M = 4π(r/p), while if p ≤ r ≤ 1 , we use a uniform

distribution φ = 2π (1 − r)/(1 − p) .

On the other hand, we may consider the case of partial polarization more directly. As-

sume we have rotated to the plane of polarization so that the Stokes parameters have the

form {1, p, 0, v}. Then from eqn (14) we see that the intensity of the scattered radiation inte-

grated over θ will be Is = [1− 1

2
p cos 2φ]/2π . Then, as with equation (18), the cumulative

distribution function F (φ) becomes

F (φ) =
1

2π

∫ φ

0

(1 − 1

2
p cos 2φ′)dφ′ =

1

2π

[

φ − p

4
sin 2φ

]

. (22)

As a result, for an arbitrary degree of polarization p, equation (20) becomes

M = E − p

2
sin E , (23)

i.e., Kepler’s equation for an eccentricity of e = p/2. The Newton-Raphson algorithm

(eqn 21) continues to apply if we replace 1

2
with 1

2
p.

3.4. Distribution of θ angles.

Let us suppose we have chosen a value of φ as outlined above. We now want to get a

uniform sampling of θ, the scattering angle in the plane of scattering. From equations (9)

we have I ′
s = 3

4
(cos2 θ + 1)Ii + 3

4
(cos2 θ − 1)(Qi cos 2φ + Ui sin 2φ) . With µ = cos θ and

α = (Qi/Ii) cos 2φ + (Ui/Ii) sin 2φ , the cumulative distribution has the form

1

2

∫ θ

0

Is(θ
′) sin θ′dθ′ = Ii

3

8

∫

1

µ

(µ′ 2 + 1) + α(µ′ 2 − 1) dµ′ . (24)

Integrating over [-1,1], we get the normalization factor

Ii

3

8

∫

1

−1

(µ2 + 1) + α(µ2 − 1) dµ =
(

1 − α

2

)

Ii (25)

thus the normalized cumulative distribution is just

F (µ) =
1

2 − α

{

1 − 1

4
µ(3 + µ2) − α

(

1

2
− 1

4
µ(3 − µ2)

)}

. (26)

We want the distribution of −1 ≤ µ ≤ 1 such that F (µ) = r where r is uniformly random

over [0,1]. Upon expansion this leads to a cubic equation in µ :
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Fig. 6.— The cumulative function F (µ). (Plotted against (−µ) as µ = 1 corresponds to θ = 0.
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µ3 + 3

(

1 − α

1 + α

)

µ − 2(2 − α)(1 − 2r)

1 + α
= 0 . (27)

The parameter α ranges over − 1 ≤ α ≤ 1 . The value α = −1 is a special case, for

if we multiply eqn (24) by (1 + α) , we see that the cubic term vanishes and we have the

solution

µ = 1 − 2r for the case α = − 1 . (28)

A value of α = −1 will occur, for example, if the light is 100% linearly polarized perpendic-

ular to the plane of scattering, so that (Qi/Ii) = −1 for φ = 0 . Then the scattering will

be independent of θ aside from the sin θ from the differential of the spherical coordinate

system. And indeed, eqn (26) is just a uniform distribution in µ = cos θ over [-1,1].

Another special case is α = 1 . This corresponds to 100% polarization in the plane of

scattering. We see that then the coefficient of µ in eqn (24) vanishes and we have

µ3 − (1 − 2r) = 0 → µ = [1 − 2r]
1

3 . (29)

Another important case is unpolarized radiation, in which case α = 0 . Then eqn (24)

becomes

µ3 + 3µ − 2z = 0 where z = 2(1 − 2r) . (30)

The only real solution to this cubic equation is

µ = A + B , where A =
[

z +
√

z2 + 1
]

1

3

and B =
[

z −
√

z2 + 1
]

1

3

. (31)

The solution of eqn (24) for arbitrary α is not much more complex.

Let z = (2 − α)(1 − 2r) . Then we obtain

µ =
A + B

(1 + α)
1

3

, where A =

[

z +

√

z2 +
(1 − α)3

(1 + α)

]

1

3

and B =

[

z −
√

z2 +
(1 − α)3

(1 + α)

]

1

3

.

(32)

Since the direct solution is a bit unwieldy, we might consider an iterative solution. If we

call the l.h.s. of eqn (24) f(µ) , the Newton-Raphson iterate µn+1 = µn − f(µ)/(df/dµ) is

given by

µn+1 = µn − (1 + α)µ3
n + 3(1 − α)µn − 2(2 − α)(1 − 2r)

3 [(1 + α)µ2
n + (1 − α)]

. (33)
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Fig. 7.— The inverse of the cumulative function F (µ). (The angle µ = cos θ plotted against F .) Plotted

for α = -1, 0, 0.5, 1 (violet, green, red, blue).
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Starting with µ0 = r , this converges well (less than 10 iterations) for − 1 ≤ α ≤ 0.5 .

However, as α → 1 , more and more iterations are needed (e.g., 40 at α = 0.999999, and

over 600 at α = 1).

4. Scattering by general non-aligned particles

A sufficiently general expression for the change of Stokes parameters under scattering by

a collection on non-aligned particles is given by (Bohren & Huffman, p 413):
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





=






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S11 S12 0 0

S12 S22 0 0

0 0 S33 S34

0 0 −S34 S44
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











Ii

Qi

Ui

Vi









(34)

The Sij are of course functions of the scattering angle θ, and we exclude the case of parti-

cles with intrinsic optical activity, although linear birefringence and dichroism are permitted.

If, further, we have isotropic spherical particles, then S11 = S22 and S33 = S44.

We might wonder why Is is dependent on Qi but has no dependence of Ui. Recall that

Ui represents radiation polarized at an angle of 450 to the plane of scattering, and thus has

equal intensities parallel and perpendicular to that plane. Thus the Ui intensity is equivalent

to unpolarized radiation.

By analogy with equation (9) for the Rayleigh scattering case, the Stokes parameters

of radiation scattered through angle θ in a scattering plane which makes an angle φ with

respect to our reference axis is (referred to the plane of scattering)









I ′
s

Q′
s

U ′
s

V ′
s









=









S11(θ)Ii + S12(θ)(Qi cos 2φ + Ui sin 2φ)

S12(θ)Ii + S22(θ)(Qi cos 2φ + Ui sin 2φ)

S33(θ)(−Qi sin 2φ + Ui cos 2φ) + S34(θ)Vi

S34(θ)(Qi sin 2φ − Ui cos 2φ) + S44(θ)Vi









(35)

To find the distribution of the scattered radiation as a function of φ, we can, as with

Rayleigh scattering in § 3.1, integrate over all angles θ in the scattering plane. Let is define

the averaged scattering elements as

S11 =
1

2

∫ π

0

S11(θ) sin(θ)dθ =
1

2

∫

1

−1

S11(µ)dµ and S12 =
1

2

∫

1

−1

S12(µ)dµ (36)

where µ = cos(θ). We define S22, S33, S34, and S44 in the same way. As before, to combine

Stokes parameters for different φ, we must rotate back to the original reference axis to obtain
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


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

Is
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Vs









=
1

2π









Ii S11 + (Qi cos 2φ + Ui sin 2φ) S12

cos 2φ[IiS12 + (Qi cos 2φ + Ui sin 2φ)S22] + sin 2φ[(Qi sin 2φ − Ui cos 2φ)S33 + ViS34]

sin 2φ[IiS12 + (Qi cos 2φ + Ui sin 2φ)S22] + cos 2φ[(−Qi sin 2φ + Ui cos 2φ)S33 + ViS34]

(Qi sin 2φ − Ui cos 2φ) S34 + Vi S44









(37)

The total scattered intensity then follows upon integration of Is over φ:

Is =

∫

2π

0

Isdφ = Ii S11 +
S12

2π

∫

2π

0

(Qi cos 2φ + Ui sin 2φ) dφ = Ii S11 (38)

where the second term vanishes since integrals of cos 2φ and sin 2φ over a multiple of π are

zero. Thus to normalize the scattering matrix so that Is = Ii , we must divide the elements by

S11 . From this point on, we will assume the scattering matrix has been properly normalized,

such that

S11 =
1

2

∫ π

0

S11(θ) sin(θ)dθ =
1

2

∫

1

−1

S11(µ)dµ = 1 . (39)

(In the case of Rayleigh scattering, where S11 = S22 = 3

4
(1 + µ2) , S12 = −3

4
(1 − µ2) ,

S33 = S44 = 3

2
µ , and S34 = 0 , we see that this normalization holds.)

Let us adopt lowercase for the Stokes parameters normalized by the incident intensity

Ii : qi ≡ Qi/Ii , ui ≡ Ui/Ii , vi ≡ Vi/Ii , is ≡ Is/Ii , etc. Then we see that equation (35) can

be written equation (35) can be written









i′s
q′s
u′

s

v′
s









=









S11(θ) + (qi cos 2φ + ui sin 2φ)S12(θ)

S12(θ) + (qi cos 2φ + ui sin 2φ)S22(θ)

(−qi sin 2φ + ui cos 2φ)S33(θ) + viS34(θ)

(qi sin 2φ − ui cos 2φ)S34(θ) + viS44(θ)









(40)

Likewise, equation (37) can be written









is
qs

us

vs









=
1

2π









1 + (qi cos 2φ + ui sin 2φ) S12

cos 2φ[S12 + (qi cos 2φ + ui sin 2φ)S22] + sin 2φ[(qi sin 2φ − ui cos 2φ)S33 + viS34]

sin 2φ[S12 + (qi cos 2φ + ui sin 2φ)S22] + cos 2φ[(−qi sin 2φ + ui cos 2φ)S33 + viS34]

(qi sin 2φ − ui cos 2φ) S34 + vi S44









(41)

If we then integrate over φ, as with equations (15) and (16), we see that
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









is
qs

us

vs











=









1
1

2
[S22 + S33] qi

1

2
[S22 + S33] ui

S44 vi









(42)

Since for Rayleigh scattering, S22 = 1 while S33 = S44 = 0 , this reduces to equation (16).

4.1. Distribution of φ angles.

We now generalize the treatment of §3.3 to this more general scattering matrix. We

may assume we have rotated the reference axis to the plane of polarization of the incident

beam. Then the normalized Stokes parameters will have the form {1, pi, 0, vi}. Then from

eqn (41) we see that the intensity of the scattered radiation integrated over θ will be

is = [1 + piS12 cos 2φ]/2π. (Note that S12 will generally be negative.) The cumulative

distribution function F (φ) will then be

F (φ) =

∫ φ

0

is(φ
′)dφ′ =

1

2π

∫ φ

0

(1 + piS12 cos 2φ′)dφ′ =
1

2π

[

φ +
1

2
piS12 sin 2φ

]

. (43)

We see that F (φ) ranges over [0,1] as φ ranges from 0 to 2π, as it should. Now given

that F (φ) is to be uniform over the interval [0,1], i.e., that F (φ) is represented by random

numbers r over [0,1], to obtain the corresponding φ(r)’s we must solve

4πr = 2φ + piS12 sin 2φ . (44)

or, in the form of Kepler’s equation,

M = E + piS12 sinE , (45)

where M = 4π r , E = 2φ , and the eccentricity is piS12. Recall that pi is just the fractional

linear polarization of the incident radiation. (For Rayleigh scattering, S12 = −1/2 and we

recover equation 23.) Again, we can solve this equation using a Newton-Raphson iteration:

En+1 = En +
(M − En) − piS12 sin En

1 + piS12 cos En

, with E0 = M . (46)

So to find a uniform sampling of scattering angles φ′, we get random values M = 4π r

for 0 ≤ r ≤ 1 , then solve eqn (45) for E, and our sample is φ′ = E/2 . And again, since φ′ is

relative to the incoming plane of polarization, we we must add the angle of the polarization

plane χi from eqn (5) to get the sampled angle relative to the reference plane: φ = φ′ + χi .
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Another possible approach is to tabulate the solutions of (45) as a function of M and pi ,

and use a 2-dimensional interpolation to find E.

4.2. Distribution of θ angles.

Let us suppose we have chosen a value of φ as outlined above. We now want to get a

uniform sampling of θ, the scattering angle in the plane of scattering. From equation (40) we

have i′s = S11(θ)+(qi cos 2φ+ui sin 2φ)S12(θ) . With α = qi cos 2φ+ui sin 2φ and µ = cos θ ,

the cumulative distribution has the form

1

2

∫ θ

0

i′s(θ
′) sin θ′ dθ′ =

1

2

∫ µ

−1

i′s(µ
′) dµ′ =

1

2

∫ µ

−1

S11(µ
′) dµ′ +

α

2

∫ µ

−1

S12(µ
′) dµ′ (47)

Integrating over [-1,1], we see that the normalization factor must be

1

2

∫

1

−1

S11(µ) dµ +
α

2

∫

1

−1

S12(µ) dµ = S11 + α S12 = 1 + α S12 (48)

thus the normalized cumulative distribution is given by

F (µ) =
1

1 + αS12

{

1

2

∫ µ

−1

S11(µ
′) dµ′ +

α

2

∫ µ

−1

S12(µ
′) dµ′

}

=
Σ11(µ) + α Σ12(µ)

1 + αS12

,

(49)

where we have defined the integrated elements of the scattering matrix as

Σ11(µ) =
1

2

∫ µ

−1

S11(µ
′) dµ′ and Σ12(µ) =

1

2

∫ µ

−1

S12(µ
′) dµ′ . (50)

Thus to obtain the angles θ = arccosµ for a Monte Carlo routine, we this need to solve the

equation

(1 + αS12) r = Σ11(µ) + α Σ12(µ) (51)

for µ , where r is a random number on the interval [0,1]. For any realistic scattering matrix,

S11(µ), S12(µ), etc. will result from numerical computations, and equation (51) must be

solved numerically. For a given scattering matrix, we may compute S12, Σ11(µ), and Σ12(µ),

and then compute a table of µ as a function of r and α.
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5. Distribution of Scattering Angles by the Rejection Technique

Because the methods given above for obtaining the uniform sampling of the scattering

angles θ and φ are complex, it is worthwhile to consider a statistical method which avoids

the cumulative distribution function, the so-called rejection technique (von Neumann 1951).

Consider the scattering phase function plotted over its full range, [0, 2π] for φ and [-1,1] for

µ = cos θ. Draw a horizontal line that is everywhere above this curve. Then we choose a

pair of random numbers ξ1 and ξ2 that are uniformly distributed over this rectangular area,

where ξ1 represents the φ (or µ) coordinate, and ξ2 the vertical (phase function) coordinate.

If the point is below the curve, we accept ξ1 as our sample, while if ξ2 is above the curve at

that ξ1, we reject this pair and sample new (ξ1, ξ2) pairs until we succeed.

Consider the case of φ for Rayleigh scattering. The scattered intensity is given by

Is = [1 − 1

2
p cos 2φ]/2π (see equations (14) and (22)). We can thus consider the function

f(φ) = 1 − 1

2
p cos 2φ, which has an upper bound of fmax = 1 + 1

2
p. So we choose a pair

of points r1, r2 both uniform over [0,1], so that ξ1 = 2π r1 and ξ2 = (1 + 1

2
p) r2, and ask if

ξ2 ≤ f(ξ1), i.e.,

If
(

1 +
p

2

)

r2 ≤ 1 − p

2
cos(4π r1) then set φ = 2π r1 , otherwise reject. (52)

Fig. 8 shows the J code to get an array of φ’s given an array of p’s. Fetching 106 values

takes less than a second.

We may find a uniform sample of µ’s (and hence θ = cos−1(µ)) in the same manner. The

phase function is f(µ) = (1 + µ2)−α(1−µ2) and fmax = 2 (§3.4) so if we take ξ1 = 2r1 − 1

and ξ2 = 2r2, the test ξ2 ≤ f(ξ1) becomes, for a pair (r1, r2) uniform over [0,1],

If 2 r2 ≤ [1+(2r1−1)2]−α[1−(2r1−1)2] then set µ = 2r1−1 , otherwise reject. (53)

For the more general scattering matrix considered in §4, we have from §4.1 the phase

function f(φ) = 1 + S12 p cos 2φ, which leads to the rejection condition

If
(

1 + |S12| p
)

r2 ≤ 1+S12 p cos(4π r1) then set φ = 2π r1 , otherwise reject. (54)

Likewise, the more general expression for µ follows from §4.2, where we see that the phase

function is f(µ) = S11(µ) + αS12(µ). Now we need to know fmax, the maximum value of

f(µ) over the interval −1 ≤ µ ≤ 1. The parameter α = qi cos 2φ + ui sin 2φ can take any

value over the range −1 ≤ α ≤ 1. With a detailed knowledge of S11(µ) and S12(µ), we can

evaluate fmax(α). Then the rejection condition for µ becomes

If fmax(α) r2 ≤ S11(2r1−1)+αS12(2r1−1) then µ = 2r1−1 , otherwise reject. (55)

A problem may arise if S11(µ) and/or S12(µ) has a strong peak, e.g. Mie scattering by large

particles in the forward direction (µ = 1). Then over other values of µ, our [ξ1, ξ2] pairs will

be strongly rejected, and excessive re-sampling will occur.
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Fig. 8.— J code for finding φ by rejection technique.
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