1. The Coupled Escape Probability Method in Spherical Symmetry

1.1. Absorption Probability Along a Specific Line-of-Sight

We consider a line with a Doppler profile, so that the (normalized) line profile function
for absorption is
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where Avp is the Doppler width of the line. Then, with the assumption of complete redistri-

bution, the distribution in frequency of the radiation emitted — by scattering or by thermal
processes — is given by the same profile ¢(z). The optical depth at frequency z is given by
T¢(x), where 7 is called the mean optical depth in the line. (Note that the line center optical
depth 7(x = 0) is 7/4/7.) Thus the probability that radiation will be emitted at frequency x
and travel optical depth 7 without absorption is just ¢(x) e~™*®). So we define the function
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Then, along a particular line-of-sight, the fraction of radiation intercepted between opti-
cal depth 7; and optical depth 7 will be n(m) — (7). This n(7) is in some sense analogous
to the a(7) of Elitzur and Ramos (2005) (ER05). Note that 7(7) is a smooth function which
can be tabulated and easily interpolated for any 7. For small values of 7 , a power-series
expansion is useful.(!

1.2. The Line Coupling Matrix for Spherical Shells

Consider a series of spheres of radius R; for i = 1,2, ..., (N + 1), which bound N nested
spherical shells. Consider a point at radius R; < r; < Rjy; in the " shell. Let a ray
from this point r; which makes an angle # with the radial direction (and define p = cos )
ultimately cross the boundaries of shell j at points 7(u, R;) and 7(u, Rj11). (For some p
the line may miss shells j < i. For other ps the line may cut the same shell twice. A
line may also cut R;.; twice, but not R;.). The 7’s must be calculated by summing up
the segments ki Ar(u, Rg, Riy1) through all the intervening shells. Here, Ar(u, Ry, Ri+1)
represents the distance through shell £ from r; along the direction . Then the quantity
mij(pn) = n[T(p, Rj)|] —n[7(p, Rj11)] is the chance that radiation traveling in direction p will
be intercepted in shell j. If we then integrate over all angles, we obtain
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the probability that radiation leaving point 7; in shell ¢ will be intercepted by shell 7. The



value of m;; will vary with the position of r; within the shell. Thus we must also integrate
r; over the volume of the shell, dV; = 4rridr;, for R; < r; < R;y1, to obtain
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and we call the array of M;; the coupling matrix. Note that the value M;; is the probability
that the radiation is re-absorbed in the same shell from which it was emitted. We have
written J code to compute this matrix given a set of shell radii Ry, ..., Ry1 and shell opacities
R1,...RN.

1.3. The Line Source Function for the Two-Level Atom

Consider the line radiation emitted from a spherical shell j with volume V;. This will be
just 477 ; V;, where J is the emission coefficient. Now the source function is just S =7/,
so the radiation emitted from the shell is 47x; S; V;. Now the ji element of our coupling
matrix Mj; is the probability that radiation emitted by shell j will be intercepted by shell ¢,
so the radiation emitted by j and scattered in i is 47k, S; V; Mj;.

On the other hand, in terms of the mean intensity J;, the radiation scattered in shell i
must be 47J; k; V;. If we denote by jij the the mean intensity in shell ¢ which originates
in shell 7, then we can write the radiation emitted in 7 and scattered in i as 47Tjij Kk; V.
Equating this to the expression in the previous paragraph and summing over all emitting
shells j we have
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which leads to our expression for the mean intensity in shell i:
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Now the line source function for the two-level atom is given by

so the equation for the source function S; becomes
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or, with I representing the identity matrix, we have the matrix equation

1.4. Multi-Level Atoms: The Net Radiative Bracket

The CEP treatment developed by ER05 makes use of the “net radiative bracket” of
Athay and Skumanich (ER05, eq. 6):
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From our expression for the mean intensity given above, we thus have

Jj=1

This can be inserted into the code we developed for the plane-parallel problems to provide
solutions to the corresponding problems in spherical symmetry.

() If 7 is small, a useful expression for 7(7) can be obtained by expanding the exponential
in equation (2):
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Explicitly, the first few terms are
n(t) ~ 1 — 0.39894228 7 + 0.09188815 72 — 0.01496559 7% + 0.00188801 7* —



