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4Institut de Ciències del Cosmos, Facultat de Fı́sica Marti i Franquès, 1 E-08028 Barcelona, Spain

Accepted 2012 April 23. Received 2012 April 19; in original form 2011 May 27

ABSTRACT
Several galaxies have exhibited X-ray flares that are consistent with the tidal disruption of a
star by a central supermassive black hole. In theoretical treatments of this process it is usually
assumed that the star was initially on a nearly parabolic orbit relative to the black hole. Such an
assumption leads in the simplest approximation to a t−5/3 decay of the bolometric luminosity
and this is indeed consistent with the relatively poorly sampled light curves of such flares.
We point out that there is another regime in which the decay would be different: if a binary
is tidally separated and the star that remains close to the hole is eventually tidally disrupted
from a moderate eccentricity orbit, the decay is slower, typically ∼t−1.2. As a result, careful
sampling of the light curves of such flares could distinguish between these processes and yield
insight into the dynamics of binaries as well as single stars in galactic centres. We explore this
process using three-body simulations and analytic treatments and discuss the consequences
for present-day X-ray detections and future gravitational wave observations.

Key words: black hole physics – gravitational waves – hydrodynamics – X-rays: general.

1 IN T RO D U C T I O N

In the past few years, several galaxies have exhibited X-
ray/ultraviolet flares consistent with the tidal disruption of a star
by a supermassive black hole (SMBH; for flare observations see
Donley et al. 2002; Dogiel et al. 2009; Gezari et al. 2009). These
candidate disruptions are relevant to the fuelling of some active
galactic nuclei (AGN; particularly low-mass ones; see Wang &
Merritt 2004) and contain important information about stellar
dynamics in the centres of galaxies. In addition, they are related
to one of the processes believed to lead to extreme mass ratio inspi-
rals (EMRIs), in which a stellar-mass object spirals into an SMBH;
EMRIs are thought to be among the most promising sources for
milli-Hertz gravitational wave detectors such as the evolved Laser
Interferometer Space Antenna (LISA; see Amaro-Seoane et al. 2007,
2012).

Analyses of stellar tidal disruptions have focused on stars whose
orbits are nearly parabolic relative to the SMBH (Rees 1988). In
this case, roughly half of the stellar material becomes unbound and
the rest rains down on the SMBH with a rate that, for simplified
stellar structure, scales with the time t since disruption as Ṁ ∼ t−5/3

(this is expected at late times even for more realistic structure; see
Lodato, King & Pringle 2009).

�E-mail: Pau.Amaro-Seoane@aei.mpg.de

There is, however, another possible path to disruptions. Binaries
that get close enough to an SMBH can be tidally separated without
destroying either star. The result is that one star becomes relatively
tightly bound to the SMBH whereas the other is flung out at high
speed. The bound star will undergo dynamical interactions and its
orbit will also shrink and circularize due to gravitational radiation.
The star may eventually be tidally disrupted, but on an orbit that is
much more bound than in the standard scenario. This will lead to
a remnant disc of the type analysed by Cannizzo, Lee & Goodman
(1990), for which the accretion rate decreases more slowly than in
the parabolic scenario: Ṁ ∼ t−1.2 for reasonable opacities. If flare
light curves are sampled sufficiently these decays could in principle
be distinguished from each other, which would give us new insight
into stellar dynamics and the prospects for EMRIs.

Here we present numerical and analytical analyses of binary tidal
separation and subsequent tidal disruption of the remaining star. We
note that there exist similar but not identical numerical studies. In
particular, Gould & Quillen (2003) use a mass for the black hole
of 3.6 × 106 M� but show results only for the subset that gives
captured stars with similar parameters to the observed stars S2-0.
Their initial binary distributions are similar to ours, although they do
not examine binaries with initial semimajor axis <1 au and focus
on higher masses. Ginsburg & Loeb (2006) address a black hole
mass of 4 × 106 M� and their binaries are formed of two stars of
masses 3 M�. They present a few sample orbits of captured stars
similar to the S stars, but do not give a detailed distribution. Perets
& Gualandris (2010) also focus on 4 × 106 M� massive black holes
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(MBHs), and find as expected that the captured stars tend to have
high eccentricities e > 0.97, but do not give a periapsis distribution
for the stars. Madigan, Levin & Hopman (2009) present in their
notable work direct-summation N-body simulations of small discs
of stars with semimajor axes of 0.026 and 0.26 pc with 4 × 106 M�
MBHs, which produced stars with high eccentricities that did not,
however, enter the region of greatest interest to us. Hence we have
performed new numerical simulations to explore our scenario.

In Section 2 we discuss tidal separations and present our three-
body simulations of the process. In Section 3 we use these results
as initial conditions and analyse the competition between stellar
dynamical processes (which can raise or lower the eccentricity) and
gravitational radiation (which shrinks and circularizes the orbit) to
determine the mass ranges most likely to lead to moderate eccen-
tricities at the point of disruption. In Section 4 we discuss the tidal
process itself, and argue that the small but non-zero residual eccen-
tricities mean that for sufficiently low-mass SMBHs the star will
typically be disrupted rather than settling into a phase of steady
mass accretion on to the SMBH. We present our conclusions in
Section 5.

2 BI NA RY TI DA L S E PA R AT I O N

Tidal separation of binaries by SMBHs was first discussed by Hills
(1988). He suggested that one member of the binary would be
ejected with a velocity of >103 km s−1, a ‘hypervelocity star’; sev-
eral such objects have now been observed (see Brown et al. 2009
for a discussion of their observed properties). The other member
would settle into a fairly tightly bound orbit around the SMBH; see
Miller et al. (2005) for a discussion in the context of EMRIs into an
SMBH.

To simulate this process we assume a uniform distribution of
pericentre distances between 1 and 700 au for the orbit of the bi-
nary around a 107 M� MBH. The initial orbit is also assumed
to be parabolic and to have its relative inclination uniformly dis-
tributed over a sphere. In total 228 000 numerical simulations were
conducted using a generalized three-body code described by Zare
(1974) and Aarseth & Zare (1974). This numerical integrator is
based on Kustaanheimo–Stiefel regularization of a two-body sys-
tem, which is described in Kustaanheimo & Stiefel (1965) and
Aarseth (2003). The total energy and angular momentum of the
system are conserved to a high degree of accuracy and close en-
counters between bodies do not induce unphysical velocities.

The resulting distribution for the pericentre distance and eccen-
tricity of the captured population, as well as the velocity distribution
for the star re-ejected into the stellar system, are shown in Fig. 1 for
an initial internal binary eccentricity of ei = 0.4 and a stellar mass
of 1 M�. To produce this figure we chose 107 sets of parameters for
fixed eccentricities and drew the semimajor axis of the initial stellar
binary from a log-normal distribution between 0.05 and 10 au. This
is taken from observations of the period distribution of binaries in
local field stars (Duquennoy & Mayor 1991). The mean would be
about 0.37 au.

In the figure we show the resulting probabilities, where we plot
the probability of finding a captured star with a particular pericentre
and eccentricity bin given that a binary is scattered to within 700 au
of the MBH. The distribution of semimajor axes for captured stars
is shown in Fig. 2 for a 1 M� star that was taken from an initial
stellar binary with eccentricity ei = 0.0, 0.4, 0.7 or 0.9.

We now discuss the evolution of the orbits of the stars after
capture, under the combined influence of two-body relaxation and
gravitational radiation.

Figure 1. Distribution of the pericentre distance and eccentricity of the cap-
tured companion at the tidal separation radius for an initial eccentricity of
ei = 0.4 and a stellar mass of 1 M�. Other eccentricities do not change sig-
nificantly the shape of the distribution. The red line indicates the maximum
pericentre distance for which the tidal disruption occurs within a Hubble
time under the influence of gravitational radiation alone. In the limit e → 1,
rp approaches the tidal disruption radius, which we display as a green line,
at 1.3 au, although this cannot be seen directly in the figure because we use
a resolution of δe = 10−4.

Figure 2. Cumulative probability distribution of the semimajor axis of the
captured star after the tidal separation of the binary for a 1 M� star. The
colours denote the initial eccentricity of the binary before being disrupted
by the MBH, where black (solid line) denotes ei = 0.0, red (dashed line)
ei = 0.4, green (dot–dashed line) ei = 0.7 and blue (dotted line) ei = 0.9.
The probabilities of captures are different in the different eccentricity cases;
in particular, the case ei = 0.9 is easier to capture than the others.

3 C OMPETI TI ON BETWEEN STELLAR
DY NA M I C S A N D G R AV I TAT I O NA L
R A D I AT I O N

Suppose that a binary has been tidally separated by a close passage
to an SMBH, but that the remaining object is outside the tidal radius
(i.e. it is not torn apart yet). Gravitational radiation will circularize
the orbit as it shrinks, but dynamical processes can increase the
eccentricity. Eventually, the star will move inside the tidal radius
and (as we argue in Section 4) will probably be tidally disrupted if
the SMBH is of sufficiently low mass.
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In this section, we discuss the dynamics subsequent to a tidal sep-
aration. We presume that the pericentre of the orbit of the remaining
star is outside the tidal radius, so that there is no immediate tidal
disruption. The star will then be subjected to two-body interactions
that can change the semimajor axis and eccentricity of its orbit. In
principle, resonant relaxation (Rauch & Tremaine 1996) could also
play a role, in particular due to the high eccentricity the orbit has,
since the component of the torque is linearly proportional to eccen-
tricity (Gürkan & Hopman 2007), but for the relevant tight orbits
general relativistic pericentre precession essentially eliminates this
effect (Merritt et al. 2011). We will therefore focus exclusively on
two-body interactions.

The two-body energy relaxation time (during which the semima-
jor axis of the orbit will be roughly doubled or halved) for a star
of mass m moving against a background of density ρ and velocity
dispersion σ is (Spitzer 1987)

ten ≈ 0.3

ln �

σ 3

G2ρm
. (1)

Here ln � ∼ 10 is the Coulomb logarithm. For our purposes, how-
ever, it is not the semimajor axis but the pericentre distance that is
important, because this is what determines whether the star enters
the tidal region. It is therefore the angular momentum relaxation
time that is more relevant. For a nearly circular orbit this time is
comparable to the energy relaxation time, but as we saw in Section 2
the initial eccentricity is close to unity in almost all cases. The an-
gular momentum of an orbit scales as

√
a(1 − e2), so an orbit with

eccentricity e has an angular momentum a factor of (1 − e2)1/2 less
than a circular orbit with the same semimajor axis. Two-body relax-
ation is a diffusive process; hence, the expected change in energy
or angular momentum after time t scales as t1/2. As a result, the
angular momentum relaxation time is a factor of [(1 − e2)1/2]2 =
1 − e2 less than the energy relaxation time:

tam = 0.3

ln �

σ 3

G2ρm
(1 − e2) . (2)

For e ∼ 1 this is much shorter than the energy relaxation time;
hence, we will assume that a is fixed throughout. We also note that
because angular momentum relaxation is a random walk process,
the angular momentum could go up or down; if it goes up then
nothing interesting happens to the star. Thus we will consider only
the case in which the angular momentum and hence the pericentre
distance decreases.

To be more quantitative, let us suppose that we have a galactic
centre with an SMBH of mass M with a stellar mass density profile
ρ(r) = ρ0(r/rinfl)−α inside the radius of influence rinfl ≡ 2GM/σ 2

0 ,
where σ 0 is the velocity dispersion in the bulge of the galaxy. The
radius of influence is by definition the radius inside of which the total
stellar mass equals the black hole mass; hence, the normalization
is ρ0 = 3−α

4π
M

r3
infl

. Suppose we make the simplifying approximation

that the velocity dispersion is σ (r) = σ 0(r/rinfl)−1/2 (this scaling
is accurate for r < rinfl but not for r ∼ rinfl because of the mass
contribution from stars). Let us assume in addition an M−σ0 relation
of the form M = 108 M�(σ 0/200 km s−1)4 (Tremaine et al. 2002).
Then rinfl ≈ 3M

1/2
7 pc, where M = 107M7 M� and

tam ≈ 7 × 1011 yr (3 − α)−1M
5/4
7 m−1

0 (r/rinfl)α−3/2(1 − e2) (3)

with m0 ≡ m/M�. tam is the time-scale on which two-body processes
can raise or lower the pericentre distance significantly. Competing
against this is the gravitational radiation time-scale

tGR ≈ 3 × 1015 yr m−1
0 M−2

7

( a

1000 au

)4
(1 − e2)7/2 . (4)

Over a time t ≈ tGR, the orbit shrinks and circularizes significantly.
Setting the two time-scales equal to each other and noting that the
pericentre distance is rp = a(1 − e) gives a critical pericentre
distance of

rp, crit ≈ 16 au (8 × 10−4)(2α−3)/5

× (3 − α)2/5M
(8−α)/5
7

( a

1000 au

)(2α−6)/5
.

(5)

Typical values for rp, crit can be read directly off of the simulations.
For one that can decay faster than a Hubble time, it is <10 au,
and for one that can decay faster than it would be disrupted by two-
body relaxation, it is more like 5 au. At a smaller pericentre distance
than is given by this expression, gravitational radiation dominates
the evolution; conversely, at a larger pericentre distance, two-body
relaxation dominates.

At the MBH masses ∼107 M� that we consider, there may or
may not be time for the stars to relax dynamically; hence, it is not
clear which value of α to take. If strong mass segregation occurs,
then α = 2 is likely (Alexander & Hopman 2009; Preto & Amaro-
Seoane 2010; Amaro-Seoane & Preto 2011), but flatter slopes may
also be relevant, particularly if there has been scouring by a previous
MBH merger and the system has not yet readjusted. For a selection
of slopes we find

rp,crit ≈ 14 au M
13/10
7 (a/1000 au)−3/5, α = 3/2

rp,crit ≈ 7 au M
5/4
7 (a/1000 au)−1/2, α = 7/4

rp,crit ≈ 4 au M
6/5
7 (a/1000 au)−2/5, α = 2. (6)

We will simplify by assuming that gravitational radiation is unim-
portant until rp = rp, crit, at which point it takes over completely with
no further influence from two-body effects. If this is true, then the
next question is whether rp, crit is greater than the tidal radius. If
we focus on main-sequence stars of mass m � M�, then over a
wide range of masses their radii are reasonably fitted by R� ≈
0.85 R�(m/M�)2/3 (Demircan & Kahraman 1991) and the tidal
radius is

rT ≈ R�

(
3M

m

)1/3

≈ 1.3 au M
1/3
7 m

1/3
0 . (7)

Thus we see that stars in this mass range will typically enter the grav-
itational radiation regime before they are tidally disrupted. Given
that the critical pericentre is just a few times the tidal radius, and that
many aspects of this calculation are uncertain, it is quite possible
that although tidal effects drop off very sharply with distance they
could have an impact on the orbit outside rT. An exploration of this
possibility would require careful hydrodynamic simulations, but for
our purposes we will assume that they are not dominant.

Assuming that this is the case, we can compute the eccentricity of
the orbit at the point that the pericentre distance equals rT, when (as
we show in the next section) the star is likely to be tidally disrupted
instead of settling into a phase of steady accretion. We calculate
the eccentricity by noting that to lowest (quadrupolar) order, pure
evolution via gravitational radiation conserves the quantity

C = ae−12/19(1 − e2)

(
1 + 121

304
e2

)−870/2299

(8)

(Peters 1964). We saw in Section 2 that the initial eccentricity after
tidal separation is nearly unity, so 1 + e ≈ 2. From our assumptions
we also know that rp = a(1 − e) = rp, crit. Finally, if we assume that
at the tidal radius the eccentricity is eT � 1, so that aT ≈ rT, we get

aTe
−12/19
T ≈ 1.8rp, crit

eT ≈ 0.4
(

rp, crit

rT

)−19/12
. (9)
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For our three slopes the eccentricity at the tidal radius is thus

eT ≈ 0.01M
−551/360
7 m

19/36
0 (a/1000 au)19/20, α = 3/2

eT ≈ 0.03M
−209/144
7 m

19/36
0 (a/1000 au)19/24, α = 7/4

eT ≈ 0.07M
−247/180
7 m

19/36
0 (a/1000 au)19/30, α = 2. (10)

We now explore the consequences of the star sinking inside the
tidal radius with this eccentricity, and argue that tidal disruption is
the most likely outcome if the SMBH has sufficiently low mass.
We then demonstrate that tidal disruption with a small eccentricity
leads to a different light curve than the more commonly considered
tidal disruption of a star on a parabolic orbit.

4 H Y D RO DY NA M I C S N E A R A N D I N S I D E
T H E TI DA L R A D I U S

Suppose that the star sinks gradually under the influence of gravita-
tional radiation towards the tidal radius. The tidal stresses increase
as ∼(R�/r)6, where R� is the stellar radius and r is the distance from
the SMBH. Therefore, the star will be flexed and distorted, and
internal modes will be excited as it sinks (for a recent discussion
and simple model of this complicated process, see Ogilvie 2009).
If the energy from these modes could be dissipated, then the orbit
would undergo tidal circularization and might end up in a stable
mass transfer state. However, the energy that must be dissipated is
significantly larger than the binding energy of the star. To see this,
note that at the tidal radius rT, we have rT = (3M/m)1/3R�. The
binding energy of the star is E� ≈ Gm2/R�. The binding energy of
the orbit is Eorb ≈ GMm/rT. Circularization of an orbit with eccen-
tricity e at constant angular momentum releases an energy e2Eorb,
so the ratio of released energy to stellar binding energy is

e2 Eorb

E�

≈ e2

(
M

m

) (
R�

rT

)
≈ 3−1/3e2

(
M

m

)2/3

. (11)

If M ∼ 107m, the ratio is therefore ∼3 × 104e2. From the previous
section we found e ∼ 0.01−0.07 for M = 107 M�, so the energy
required to circularize the orbit would be ∼3–150 times the binding
energy of the star. If this energy could be released slowly, this would
cause no problems (note for comparison that in its lifetime the Sun
will radiate a few hundred times its binding energy). However, the
thermal (Kelvin–Helmholtz) time for solar-type stars is a few tens
of millions of years, much longer than the inspiral time in our case
and thus the tidal stresses will build up more rapidly than their mode
energy can be radiated.

The competition is therefore between the time needed for gravi-
tational radiation to move the star into the tidal radius (where mass
transfer will ensue) and the time needed for circularization due to
tidal dissipation to deposit stellar binding energy into the star and
thus, presumably, to tidally disrupt the star. Note that Alexander &
Morris (2003) discussed how tidal energy could produce ‘squeezars’
with a different appearance from normal stars, without destroying
the stars if the pericentre distance is sufficiently large. Here we are
interested in the conditions for tidal destruction.

To evaluate this we adapt the expressions from Leconte et al.
(2010) for the energy deposition rate of tidal dissipation in a planet
due to its eccentric orbit around a star. They find

Ėtides = 2Kp

∣∣∣∣∣Na(e) − N2(e)

�(e)

∣∣∣∣∣, (12)

where

N (e) = 1 + 15
2 e2 + 45

8 e4 + 5
16 e6

(1 − e2)6
, (13)

Na(e) = 1 + 31
2 e2 + 255

8 e4 + 185
16 e6 + 25

64 e8

(1 − e2)15/2
, (14)

�(e) = 1 + 3
2 e2 + 1

8 e4

(1 − e2)5
(15)

and

Kp ≈ 9

4
Q−1

(
Gm2

R∗

) (
M

m

)2 (
R∗
a

)6 (
GM

a3

)1/2

. (16)

In the last equation Q is the quality factor of the star, a stan-
dard parametrization of the rate of tidal effects on to the star. The
magnitude of Q is notoriously uncertain; values of Q = 105−6 are
commonly used (see, e.g., Miller, Fortney & Jackson 2009 for a
recent example). If we use the expression aT = (3M/m)1/3R∗ for
the tidal radius, the last expression reduces to

Kp ≈ 1

4
Q−1

(
Gm2

R∗

) (
a

aT

)−6 (
GM

a3

)1/2

. (17)

In the limit e < 1 we find Na(e) ≈ 1 + 23e2, N2(e) ≈ 1 + 27e2 and
�(e) ≈ 1 + 15

2 e2. Thus

Ėtides ≈ 7

4
Q−1e2

(
Gm2

R∗

) (
a

aT

)−6 (
GM

a3

)1/2

. (18)

Thus the time needed to circularize the available energy
∼e2(M/3m)2/3(Gm2/R∗) at a = aT is

Tcirc,tide ≈ e2(M/3m)1/3(Gm2/R∗)

×
[
(7/4)Q−1e2(Gm2/R∗)(GM/a3)1/2

]−1

= 3 × 107 s QM
2/3
7 m

−1/6
0 ,

(19)

where in the second line we have substituted R∗ = 0.85 R�m
2/3
0

and aT = (3M/m)R∗. The circularization time from gravitational
radiation alone, at e � 1, is

Tcirc,GW ≈ (15/304)c5a4/(G3μM2)

≈ 6 × 1011 s M
−2/3
7 m

1/3
0

(20)

(Peters 1964), where in the last line we again substituted in
a = aT. Thus Tcirc,GW/Tcirc,tide ≈ 2 × 104Q−1M

−4/3
7 m

1/2
0 , which

for Q ∼ 105−6 is typically less than unity; hence, only a fraction
Tcirc,GW/Tcirc,tide of the circularization energy will go into tidal heat-
ing. Note, however, that for lower masses the eccentricity at the tidal
radius is larger (scaling roughly as M−3/2 for our three power laws)
and that the ratio of the circularization energy to the internal bind-
ing energy scales as e2, meaning that the total energy dissipated
tidally scales as ∼M−4, approximately. Thus even for Q = 106,
several times the stellar binding energy will be dissipated for
M < 3 × 106 M�.

If instead the SMBH mass is large, so that gravitational wave
circularization dominates tidal circularization, we expect that the
star will settle into a period of steady mass transfer. The rate would
be such that it balances the inward movement due to gravitational
radiation, i.e. the characteristic time would be of the order of the
gravitational radiation time. For our typical values, this is roughly
105 yr, implying a rate of ∼10−5 M� yr−1. Even if the luminosity
is produced with an efficiency of 10 per cent, this would produce a
luminosity of only ∼1041 erg s−1, weak enough and steady enough
that it would not be distinguishable from a standard low-luminosity
AGN. We therefore focus on the possibility that the star is tidally
disrupted and that its debris is subsequently accreted by the SMBH.
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If a star is disrupted from a low-eccentricity orbit the evolution
of its tidal debris proceeds differently than if it is disrupted from a
parabolic orbit. To see this, note that in the original argument of Rees
(1988) it was demonstrated that the spread in the binding energy
of the debris is comparable to the range in orbital binding energy
from one side of the star to the other. If m/M ∼ 10−7, therefore,
the fractional spread is ∼(m/M)1/3 ∼ 10−2. As a result, if an orbit
with a pericentre r ∼ rT has an eccentricity e � 0.99, the debris
semi-uniformly samples binding energies from zero to the binding
energy of the original stellar centre of mass. The assumption of
exactly uniform sampling (equal mass for equal range in binding
energy) leads to a mass accretion rate that scales with time t as
t−5/3; this law is more generally obtained at late times even for
more realistic assumptions about stellar structure (e.g. Lodato et al.
2009). In contrast, if the spread in debris energies is much less
than the average binding energy (corresponding to e � 0.99 in our
example), then to lowest order the debris moves in a thin stream
that intersects itself and settles within a few orbits into a remnant
disc.

Such discs were studied by Cannizzo et al. (1990), who found that
for plausible opacities the accretion rate would decay more gradu-
ally, e.g. Ṁ ∝ t−1.2 for Thomson scattering. Moreover, because the
debris would all be bound to the SMBH (unlike for the parabolic
case, where roughly half of the stellar mass escapes to infinity), the
accretion rate could be quite substantial for comparatively low-mass
SMBHs. For Thomson scattering, the expressions from Cannizzo
et al. (1990) lead to

Ṁ = 2 × 1023 g s−1
( α

0.1

)4/3
ρ̄7/9M

−10/9
7

(
	M

M�

)5/3

. (21)

Here ρ̄ is the average density of the star in units of g cm−3, 	M is the
mass of the remnant disc (which will initially be the mass of the star)
and α is the Shakura & Sunyaev (1973) viscosity parameter. For
M7 � 1 this therefore has the possibility of shining at luminosities
that are a significant fraction of the Eddington luminosity LE =
1.3 × 1045M7 erg s−1 assuming an efficiency L/Ṁc2 = 0.1.

As pointed out to us by Phinney (personal communication), de-
pending on the very uncertain details of how tidal energy is de-
posited, it is possible that there will be a gravitational wave sig-
nature that attends the electromagnetic signature of disruption. In
particular, it is not well established whether the tidal energy is de-
posited uniformly in the volume of the star or primarily where most
of the matter is (both of which would lead to full disruption) or pri-
marily in the envelope. If the last occurs, then the envelope would
be stripped and lead to significant accretion with the characteristic
decay discussed above, but the dense core would survive and could
spiral in further. This would lead to a coincident gravitational wave
signal that could be detected with the proposed LISA if the source
is close enough (Freitag 2003).

5 C O N C L U S I O N S

In his work, Hopman (2009) estimates that for a galactic nucleus
such as ours, the tidal separation rate of binaries which start far
away from the MBH is 
GC

tid sep ∼ 7 × 10−7(fb|GC/0.05) yr−1, where
‘GC’ stands for Galactic Center and fb is the fraction of stars in
binaries. Fig. 6 of Hopman (2009) shows that the rate increases
when we go to higher energies, because the loss-cone is depleted,
allowing more binaries to ‘survive’ in their way to the GC. Yu &
Tremaine (2003) estimate that the number is enhanced by an order
of magnitude by binaries not bound to the MBH. More remarkably,
the event rates can be at least temporarily enhanced by many orders

of magnitude if one considers the role of massive perturbers, such
as giant molecular clouds or intermediate mass black holes, which
can accelerate relaxation by orders of magnitude as compared to
two-body stellar relaxation (Perets, Hopman & Alexander 2007).
Another important potential boosting effect is the possibility that the
potential is triaxial and not spherically symmetric (Poon & Merritt
2002, 2004; Merritt & Poon 2004). Taking these effects into account,
we assume 
GC

tid sep ∼ 10−5(fb|GC/0.05) yr−1. The fraction of main-
sequence stars that will eventually spiral into the SMBH after tidal
separation is at least a few per cent, so a plausible estimate of the
total event rate for tidal disruptions of a single star originated by a
separated binary in a Hubble time is 
GC ∼ 10−7(fb|GC/0.05) yr−1,
and it could be higher. This rate is probably a subset of the rate
at which single stars are likely to encounter SMBHs on parabolic
orbits (see Amaro-Seoane et al. 2007, for a discussion of such
EMRIs). It is therefore possible that events with the L ∝ t−1.2 decay
characteristic of low-eccentricity disruption may have rates smaller
than or similar to events with the L ∝ t−5/3 decay that is expected
to be signatures of disruption of single stars in galactic nuclei and
that is consistent with the initial decay of the recent Swift event Sw
1644+57 (Bloom et al. 2011).
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