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ABSTRACT
A promising channel for producing binary black hole mergers is the Lidov–Kozai orbital resonance in hierarchical triple systems.
While this mechanism has been studied in isolation, the distribution of such mergers in time and across star-forming environments
is not well characterized. In this work, we explore Lidov–Kozai-induced black hole mergers in open clusters, combining semi-
analytical and Monte Carlo methods to calculate merger rates and delay times for nine different population models. We predict
a merger rate density of ∼1–10 Gpc−3 yr−1 for the Lidov–Kozai channel in the local Universe, and all models yield delay-time
distributions in which a significant fraction of binary black hole mergers (e.g. ∼20–50 per cent in our baseline model) occur
during the open cluster phase. Our findings suggest that a substantial fraction of mergers from hierarchical triples occur within
star-forming regions in spiral galaxies.
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1 IN T RO D U C T I O N

The detection of binary black hole (BBH) mergers via gravitational
wave (GW) emission became routine by the O3 observational
run of the LIGO and Virgo collaborations. To date, tens of BBH
mergers have been detected, with an overall merger rate density of
RBBH = 23.9+14.9

−8.6 Gpc−3 yr−1 (Abbott et al. 2020). The identification
of relevant channels that lead to mergers via GW emission is an
ongoing endeavour that spans a number of subfields, including orbital
dynamics, stellar evolution, and dynamics on the scale of galaxies.

Channels for BBH mergers may be grouped into four broad
categories. The first, isolated binary stellar evolution of massive
stars (e.g. Tutukov & Yungelson 1973, 1993; Lipunov, Postnov &
Prokhorov 1997; Bethe & Brown 1998; Portegies Zwart & Yungelson
1998; Kalogera 2000; Voss & Tauris 2003; Kalogera et al. 2007;
Belczynski et al. 2008, 2016; Mandel & O’Shaughnessy 2010;
Dominik et al. 2012, 2013, 2015; de Mink & Belczynski 2015;
Eldridge et al. 2017; Giacobbo, Mapelli & Spera 2018; Olejak et al.
2020), proposes that some massive stellar binaries evolve to short-
period binaries prior to either star forming a black hole (BH). One
type of such evolution occurs during one or two common envelope
episodes, in which one star swells during the giant phase, imparting
drag on the other and shrinking their mutual orbit. The total orbital
energy loss is directly related to the amount of energy transferred to
the envelope of the giant star. If the energy transfer is too efficient,
then the binary merges before the objects turn into BHs; if the transfer
is too inefficient, then the binary does not lose enough orbital energy
to merge via GW emission. The result is a short-period stellar binary
that then evolves to a BBH and merges via GW emission within a
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Hubble time. Studies of this channel predict a delay-time distribution
(DTD) ∝t−1 that starts 10−100 Myr after star formation. They also
predict no measurable eccentricity in the LIGO detection band (due to
circularization during the binary interaction phase and the subsequent
circularization from gravitational radiation) and merger rate densities
of ∼10−2 to 103 Gpc−3 yr−1.

Another isolated binary formation scenario is the chemically
homogeneous stellar evolution (de Mink & Mandel 2016; Mandel
& de Mink 2016; Marchant et al. 2016). In this scenario, a massive
binary that is close to contact experiences intense internal mixing
that keeps the stars chemically homogeneous while the cores are
burning hydrogen. The hydrogen in the star is thus nearly exhausted
and thus a common envelope phase is avoided. The predicted BBH
merger rate is up to 500 Gpc−3 yr−1 (de Mink & Mandel 2016).

A second merger channel is dynamical in nature and proposes that
existing BBHs are induced to merge in dense environments such as
galactic centres, active galactic nucleus accretion discs, or globular
clusters. In these settings, BBHs experience strong gravitational
interactions with individual stars or high-multiplicity systems, and
these interactions tend to harden the target binaries and may increase
their eccentricities (Kulkarni, Hut & McMillan 1993; Sigurdsson &
Phinney 1993; Portegies Zwart & McMillan 2000; Madau & Rees
2001; Miller & Hamilton 2002a; Gültekin, Miller & Hamilton 2004,
2006; Miller & Lauburg 2009; McKernan et al. 2012; Samsing,
MacLeod & Ramirez-Ruiz 2014; Rodriguez, Chatterjee & Rasio
2016; Stone, Metzger & Haiman 2017; Banerjee 2018; Fragione
& Kocsis 2018; Hamers et al. 2018; Leigh et al. 2018; Rodriguez
et al. 2018, 2021). Models of these interactions predict merger rate
densities of ∼2–25 Gpc−3 yr−1.

The third channel concerns mergers of initially wide, isolated
systems, either binaries or triples, in the field of the host galaxy
(Michaely & Perets 2019, 2020; Michaely 2021). For wide systems,
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the field of the host galaxy is considered a collisional environment due
to frequent flyby interactions with field stars. These interactions are
capable of exciting the eccentricity (in the case of binaries) or outer
eccentricity (in case of triples), with the result that mergers occur
via increased GW emission (binaries) or three-body instabilities
(triples). Predicted BBH merger rate densities for this channel are
∼1–100 Gpc−3 yr−1.

The fourth merger channel, and the focus of this paper, is secular
evolution in hierarchical triple systems. These systems reside either
in the field of the host galaxy (e.g. Antonini et al. 2016; Antonini,
Toonen & Hamers 2017; Silsbee & Tremaine 2017; Liu & Lai
2018; Vigna-Gómez et al. 2021) or in dense environments (Miller
& Hamilton 2002b; Antonini, Murray & Mikkola 2014; Kimpson
et al. 2016; Samsing & D’Orazio 2018; Hamilton & Rafikov 2019;
Martinez et al. 2020). Additionally, there are cases in which the
third object is the supermassive BH in the centre of the host galaxy
(Antonini & Perets 2012; Petrovich & Antonini 2017; Hoang et al.
2018; Fragione et al. 2019; Wang et al. 2020). In this channel, a
BBH experiences secular effects due to its tertiary companion in
the form of the Lidov–Kozai resonance (Kozai 1962; Lidov 1962;
Harrington 1968; Lidov & Ziglin 1976; Innanen et al. 1997; Ford,
Kozinsky & Rasio 2000; Blaes, Lee & Socrates 2002); for a recent
review, see Naoz (2016). In this resonance, the eccentricity of the
BBH experiences cyclic changes that boost the GW emission rate of
the inner binary and lead to a merger. Predicted merger rate densities
due to this channel are ∼0.5–15 Gpc−3 yr−1.

Distinguishing the various channels for producing BBH mergers
is important, given that each may yield mergers with particular
observational signatures and with different spatial or temporal
distributions. BBH mergers in open clusters have been studied
previously via N-body simulations (Banerjee 2018; Di Carlo et al.
2019, 2020; Kumamoto, Fujii & Tanikawa 2019; González et al.
2021; Weatherford et al. 2021), which predict merger rate densities
of ∼0.3 Gpc−3 yr−1 in these environments. Michaely & Perets (2018)
found that a small fraction, up to fraction of a per cent, of mergers
are expected to occur extremely close in time to the formation
of the second BH, specifically within years to decades following
the supernova. Open clusters are loosely bound groups of young
stars with stellar number densities n∗ ∼ 0.1–10 pc−3 and typical
velocity dispersions σ ∼ 1–5 km s−1 (Moraux 2016). We assume that
effectively all star formation occurs in these clusters (Lada & Lada
2003), which remain bound for lifetimes ranging from ∼100 Myr for
the sparsest examples to a few Gyr for the densest clusters (Moraux
2016).

In this work, we apply semi-analytical modelling and Monte
Carlo simulations to the hierarchical triple channel, studying a set
of models describing different initial triple system populations. For
each model, we calculate the total BBH merger rate density as well
as the cumulative distribution of mergers as a function of time since
star formation; this is known as the DTD. In particular, we calculate
the fraction of mergers that occur while a triple still resides in its
birth cluster. The main aim of this work is to estimate, out of the total
population of mergers induced by secular evolution, which fraction
of mergers occur during the open cluster phase.

We begin by describing our semi-analytical treatment of BBH
mergers induced by the secular Lidov–Kozai resonance in Section 2.
In Section 3, we then establish our numerical approach and the
different population models considered. Section 4 presents the
simulation results, including the DTD and merger rate for each
model. Section 5 discusses our model assumptions and limitations,
and in Section 6, we summarize and offer broader context for our
results.

Figure 1. Illustration of a hierarchical triple system. The inner binary
consists of two objects with masses m1 and m2 whose orbit is defined by
an SMA a1 and eccentricity e1. In this study, we set e1 = 0. The outer binary
consists of the tertiary of mass m3 and the centre of mass of the inner binary.
The orbit of the outer binary is defined by an SMA a2 and eccentricity e2.
The angle between the planes of the inner and outer binaries is the system
inclination I.

2 B B H M E R G E R S FRO M H I E R A R C H I C A L
TRIPLES

In the following section, we briefly describe the secular evolution of
triple systems under the Lidov–Kozai resonance. For a more detailed
description of this mechanism, see Naoz (2016).

2.1 Newtonian treatment

A hierarchical triple system is composed of an inner binary with
masses m1 and m2, and a distant tertiary of mass m3. The inner
binary is characterized by its orbital semimajor axis (SMA) a1

and eccentricity e1. The centre of mass of the inner binary then
hierarchically constitutes an additional two-body system with the
tertiary; this system is referred to as the outer binary, with SMA a2

and eccentricity e2. Each binary defines a unique orbital plane, and
the angle between these two planes is the inclination I associated with
the triple system. Within these planes, the orientations of the inner
and outer orbits are given by their arguments of pericentre ω1 and
ω2, respectively. See Fig. 1 for a diagram of a general hierarchical
triple system.

A three-body system is chaotic when the system masses and
separations are similar. Such a system thus tends to break apart
on dynamical time-scales. Hence, on grounds of system stability,
most astrophysical triple systems are hierarchical in scale, i.e. a1 �
a2. This hierarchy of spatial scales sets a corresponding hierarchy
of time-scales for these systems: the inner binary orbital period P1

is much shorter than the outer binary orbital period P2, and any
dynamical evolution of the system occurs on time-scales much longer
than both.

When the secular approximation is applied to hierarchical triple
systems, one can show that the orbital energies of each binary are
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conserved quantities, and therefore the SMAs a1 and a2 are constant
in time. Long-term changes to the system do occur, however, due to
mutual torque and angular momentum transfer between the inner and
outer binaries. The result of this secular evolution is simultaneous
oscillations of the inner eccentricity e1 and system inclination I, such
that the total angular momentum of the triple system is conserved; at
higher order, the outer orbit can evolve as well. Peak eccentricity in
the inner binary occurs at the time of minimum inclination, and vice
versa, and these oscillations are referred to as Lidov–Kozai cycles
(Kozai 1962; Lidov 1962).

Following Miller & Hamilton (2002b) and VanLandingham et al.
(2016), we define a conserved quantity derived from the quadrupole-
order Hamiltonian for a hierarchical triple system:

WN = −2ε + ε cos2 I + 5(1 − ε) sin2 ω1(cos2 I − 1) , (1)

where ε ≡ 1 − e2
1. The minimum value of ε, which corresponds to

the maximum value of e1, occurs when ω1 = π /2. Hence, knowing
the initial values ω1,0 and e1,0, one can exploit the conservation of
W to calculate the maximum value of the inner binary eccentricity,
denoted emax. We note that when octupole-order effects are included,
the maximal inner eccentricity reached during the evolution is usually
higher than the quadrupole counterpart, and hence the BBH merger
time-scale is shorter (Harrington 1968; Ford et al. 2000; Blaes et al.
2002; Thompson 2011; Naoz et al. 2013; Michaely & Perets 2014;
Naoz 2016). Thus, if we were to include this effect, the fraction
of BBH mergers that occur within the open cluster lifetime would
be increased by a small amount. Our focus on quadrupole-level
evolution is therefore conservative in the sense that we slightly
underestimate this fraction.

Innanen et al. (1997) provide a concise and useful relation between
the initial inclination and the maximal eccentricity due to the Lidov–
Kozai resonance in the quadrupole approximation when the tertiary
dominates the system angular momentum:

emax =
(

1 − 5

3
cos2 I0

)1/2

, (2)

which implies that for the restricted three-body problem, the inner
binary eccentricity tends to unity if I0 = π /2. The growth of the
inner eccentricity to its maximum value over long time-scales is
a consequence of coherent perturbations by the potential of the
tertiary, specifically inner binary precession. If the inner eccentricity
is sufficiently high, one might expect the inner binary’s components
to interact and thus to disrupt this precession. In the following
subsection, we consider such an effect in general relativity (GR),
namely GR pericentre precession in the inner binary.

2.2 Post-Newtonian treatment

In a triple system whose inner binary evolves to sufficiently high
eccentricity, GR precession of the inner binary pericentre becomes
non-negligible. This precession interferes with the coherent perturba-
tions due to the tertiary and suppresses the Lidov–Kozai resonance.
Following Miller & Hamilton (2002b), we account for this quenching
effect of GR precession by adding to equation (1) the following post-
Newtonian term:

WPN = 8√
ε

M1

m3

(
b2

a1

)3
GM1

a1c2
≡ θPNε−1/2 . (3)

Here, M1 ≡ m1 + m2 is the total mass of the inner binary, b2 =
a2(1 − e2

2)1/2 is the semiminor axis of the outer binary, G is the
Newtonian gravitational constant, and c is the speed of light. Note
that we include a term for GR pericentre precession but continue to

treat GW emission as negligible for the purposes of the Lidov–Kozai
resonance; as a result, the sum of equations (1) and (3),

W = WN + WPN , (4)

remains a conserved quantity. As before, the maximal eccentricity
(minimal ε) is obtained when ω = π /2, and the result in this post-
Newtonian treatment becomes

ε1/2
min ≈ 1

6

(
θPN +

√
θ2

PN + 60 cos2 I0

)
. (5)

This maximal eccentricity can be used to estimate the merger time
of the inner binary due to GW emission. The merger time-scale for
a binary of eccentricity e ≈ 1 is given by Peters (1964) as

TGW ≈ 768

425
Tc(a1)(1 − e2)7/2, (6)

where Tc ≡ a4
1/β is the merger time-scale for a circular binary and

β ≡ 64G3m1m2(m1 + m2)/(5c5). However, in the case of a triple
system whose inner binary oscillates between its initial eccentricity
e1,0 and maximal eccentricity emax, the merger time-scale due to GW
emission is necessarily longer. Randall & Xianyu (2018) analytically
estimate the merger time in this case to be

Tmerger = TGW

ε
1/2
min

. (7)

In this work, we are interested in merger times Tmerger < THubble

for the purpose of calculating the merger rate density and DTD of
BBH mergers originating from hierarchical triples. In the following
section, we describe a method for numerically selecting different
triple populations in order to calculate these statistics.

3 N U M E R I C A L M E T H O D

Our approach to calculating merger rate densities and DTDs is
as follows. In each of several population models, described in
Sections 3.2 and 3.3, we employ a Monte Carlo simulation to generate
106 representative triple systems. For each triple system in a given
model, the model analytically determines whether an inner BBH
merger occurs within THubble using equation (7) and records the value
of Tmerger in order to calculate the theoretical DTD.

As stated earlier, we assume that star formation occurs entirely
within open clusters (Lada & Lada 2003) and that as a result, BH
progenitor stars all form simultaneously, i.e. we do not calculate
any detailed dynamical effects during the main-sequence (MS)
phase.

Note that we ignore secular evolution during the short MS phase. If
a triple system undergoes substantial eccentricity oscillations during
the MS phase, then the inner binary stars, prior to their evolution into
compact objects, will essentially decouple their dynamical evolution
from the triple system (e.g. Naoz 2016; Hamers & Thompson 2019).
This happens because tidal interactions introduce an additional
precession term which quenches the Lidov–Kozai oscillation. In
this case, the evolution of the massive stars is similar to classical
isolated binary evolution, which is the first channel described in the
introduction (e.g. Tutukov & Yungelson 1973, 1993; Lipunov et al.
1997; Bethe & Brown 1998; Portegies Zwart & Yungelson 1998;
Kalogera 2000; Voss & Tauris 2003; Kalogera et al. 2007; Belczynski
et al. 2008, 2016; Mandel & O’Shaughnessy 2010; Dominik et al.
2012, 2013, 2015; de Mink & Belczynski 2015; Eldridge et al. 2017;
Giacobbo et al. 2018; Olejak et al. 2020).
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3.1 Creating a population model

Each population model uses a Monte Carlo approach to generate
a set of stable, hierarchical triple systems whose inner binaries
evolve to BBHs. Although binary stellar evolution processes are
beyond the scope of this study, we do consider basic restrictions
imposed on triple systems due to their passage through the MS
phase. Specifically, in some models we exclude triples whose inner
binary components would have interacted as MS stars. We exclude
any triple that is considered dynamically unstable by the criterion
of Mardling & Aarseth (2001). Additionally, we work under the
simplifying assumption that the probability distributions of all system
parameters are independent, meaning that an individual triple system
can be generated by drawing each of its parameters independently.

Triple systems are produced in this model by drawing initial stellar
masses and orbital parameters, then mapping those stellar masses to
final BH masses. To generate the inner binary for a system, we draw
the primary mass m1 from the Kroupa initial mass function (IMF;
Kroupa 2001), denoted fIMF(m), with a range [mmin, mmax]. Because
we are interested in masses of BH progenitors, we concern ourselves
only with the upper end of the range of initial masses. The Kroupa and
Salpeter IMFs (Salpeter 1955) are similar in the high-mass regime,
and therefore we do not expect that a different choice of IMF would
affect the results presented here. However, the specific choice of IMF
is important for the normalization of the results (see Section 4.1).

With m1 determined, the next parameter drawn is the inner binary
SMA, a1. Motivated by observations (Duchêne & Kraus 2013; Moe
& Di Stefano 2017), we draw the inner SMA from a log-uniform
distribution (Öpik’s law) over a range [a1,min, a1,max]. The mass of
the second inner binary object is determined by

m2 = m1q1 , (8)

where q1 is the inner binary mass ratio, drawn from a power-
law distribution f(q)∝qγ . For high-mass stars (M∗ � 16 M
), this
distribution covers the range [0.1, 1]. The power-law index γ is
determined by the SMA of the inner binary, with γ = 0 for
a1 < 100 au and γ = −1/2 for a1 > 100 au (Duchêne & Kraus 2013).

The remaining parameters of the inner binary orbit are its eccen-
tricity e1 and argument of pericentre ω1. In order to be conservative in
our calculation of merger times, we set the inner binary eccentricity
to be zero, e1 → 0. Any other choice of inner eccentricity distribution
would shorten the merger time-scale by increasing the maximal
eccentricity reached in the Lidov–Kozai resonance (Lidov & Ziglin
1976; Naoz 2016). Finally, ω1 is drawn from a uniform distribution
on [0, 2π ]. These five parameters define our inner binary progenitor
star system.

As mentioned previously, we discard any system whose inner
binary would have interacted during the MS phase. To check for such
interactions, our method calculates the radii of the progenitor stars
and compares these to the stars’ respective Roche limits. The stellar
radius–mass relation is given by ri ∝ m0.57

i (Demircan & Kahraman
1991) and the Roche limit by

R1(2) = a1 × 0.49q
2/3
1(2)

0.6q
2/3
1(2) + ln

(
1 + q

1/3
1(2)

) , (9)

where q1(2) = m1(2)/m2(1) (Eggleton 1983). A system is discarded if
ri > Ri for either progenitor star, reflecting the likelihood that such a
system would have interacted significantly during the MS phase and
might have failed to produce a BBH.

We now address the parameters characterizing the outer binary.
The tertiary mass m3 is set by drawing the outer mass ratio q2 ≡

m3/M1 from a power-law distribution q ∝ M
γ

1 with γ = −2 (Moe
& Di Stefano 2017) over a range [0.1, 1]. The outer eccentricity e2

is drawn from a thermal distribution f(e) = 2e and the outer SMA
a2 from a log-uniform distribution over a range [a2,min, a2,max]. The
final parameter needed to specify the triple system is the mutual
orbital inclination I; this value is drawn from a distribution function
f(I) which varies by model and is discussed further in the following
sections.

With the system parameters fully determined, our method next
checks that the triple is indeed dynamically stable. The outer
pericentre distance is given by Rout

P = a2(1 − e2), and Mardling &
Aarseth (2001) define the stability threshold

κ = 2.8

[
(1 + q2)

(1 + e2)

(1 − e2)

]2/5

a1 , (10)

which specifies the smallest outer pericentre value for which the
system remains stable. Accordingly, a system is discarded by our
model if Rout

P < κ .
The steps described to this point are sufficient to generate a stable,

hierarchical, stellar triple. The initial masses of the three system
components must now be mapped to the final masses of the BHs or
other objects to which they evolve. When the simulation generates
a star of sufficient mass, it converts it into a BH by establishing
two mass regimes. For a star whose initial mass mi falls in the range
20 M
 ≤ mi ≤ 60 M
, the resulting BH is assigned a final mass mi/2,
in keeping with the approximate relation between progenitor mass
and final BH mass for stars in this range. A star with initial mass mi >

60 M
 is converted to a BH with a final mass of 30 M
, reflecting
the significant mass-loss experienced by very massive MS stars.

The tertiary is treated differently from the initial binary, as it
does not necessarily evolve to a BH. For m3 ≤ 8 M
, the simulation
checks the MS lifetime for that mass; if it is less than Tmerger, then m3

is converted to a 1-M
 white dwarf. In this case, we ignore any ex-
pansion of the outer SMA a2, given that the expected mass-loss of the
tertiary stellar companion in this case is negligible relative to the total
mass of the triple. To obtain the total merger time, the original MS
lifetime is then added to the merger time for the white dwarf system.

For a tertiary in the range 8 M
 < m3 < 20 M
, i.e. the mass
range for forming a neutron star (NS), the calculation is stopped and
the system discarded. In this case, it is expected that the triple system
will be disrupted by the natal kick of the NS (Hobbs et al. 2005),
precluding any secular evolution.

The following section introduces the baseline (‘standard’) popu-
lation model, which adopts the most plausible assumptions for the
various triple system parameter distributions. A set of additional
models then extends the standard model by modifying a single
assumption at a time.

3.2 Standard model

The baseline model assumes that BHs are formed with no natal kicks,
because of either a failed supernova or massive fallback. The limits on
the primary mass are set to m1,min = 30 M
 and m1,max = 100 M
.
While 20-M
 O-type stars might produce BHs, there is considerable
speculation regarding which mass ranges will yield a natal kick
when forming compact objects. By raising the minimum mass for
BH formation in our simulation, we impose a conservative buffer
which makes it more likely that natal kicks can be neglected.

This model sets the bounds on the inner binary SMA to a1,min =
0.1 au and a1,max = 100 au. In keeping with the focus on hierar-
chical triples, the outer binary SMA is assigned a lower bound of
a2,min = 5a1 and an upper bound of a2,max = 1000 au. This upper

MNRAS 505, 3844–3852 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/3/3844/6295322 by U
niversity of M

aryland user on 30 July 2021



3848 D. Britt et al.

Figure 2. Top row: Initial parameter distributions produced by the Monte Carlo simulation for the various population models. Left-hand panel: inner binary
SMA; middle panel: outer binary SMA; right-hand panel: system inclination plotted as cos I0. Note that in the distribution of inclinations, only the standard,
isotropic, and prograde models are shown; all others exhibit no significant differences from the standard model in their distributions of inclinations. Bottom row:
the same three parameter distributions shown in the top row, but restricted to the subset of triple systems which merge within a Hubble time in our model. All
plots are normalized to unity.

bound is determined by the environment: we do not expect open
clusters to contain ultra-wide systems, as these would be ionized
due to the relatively high stellar density in the cluster. For a more
detailed treatment of the open cluster environment, see Section 5. As
mentioned in Section 3.1, the distributions of both the inner SMA,
a1, and outer SMA, a2 are log-uniform.

The inclination I of each system is of particular interest when
studying the Lidov–Kozai resonance. Given the dearth of observa-
tional constraints on the inclinations of high-multiplicity systems
within open clusters, we make the reasonable assumption that open
clusters and their constituents exhibit a bias towards aligned angular
momenta. For triple systems, such a bias favours coplanar orbits. To
account for this preference, the standard model draws inclinations
from a distribution that increases linearly with cos I in the range cos I
∈ [−1, 1] (see Fig. 2).

3.3 Additional models

To probe the sensitivity of merger rates and the DTD to the as-
sumptions used in the standard model, we present several additional
models. Each isolates and modifies a single assumption in order to
test the robustness of our results.

3.3.1 No natal kicks

The standard model excludes primary object masses below m1,min =
30 M
 due to uncertainty regarding BH natal kicks below this mass.
In this no natal kicks model, it is assumed that all BHs are born with

no natal kick, and thus m1,min is lowered to the traditionally accepted
lower limit of 20 M
 for BH progenitors.

3.3.2 Isotropic distribution

In order to test the sensitivity of our results to the initial distribution
of mutual inclinations, this model implements an isotropic (rather
than prograde-biased) distribution for I. Inclinations are drawn from
a uniform distribution of cos I ∈ [−1, 1], i.e. from prograde to
retrograde mutual inclinations. See Fig. 2 for the distribution of
inclinations generated by this model.

3.3.3 Prograde-only

This model restricts the mutual inclination I to prograde values by
drawing from a linear distribution of cos I ∈ [0, 1]. See again Fig. 2
for the initial distribution of inclinations.

3.3.4 BH tertiary

This and the following model concern modifications to the tertiary
object in the triple system. In the standard model, the tertiary star is
either massive enough to become a BH, forming a hierarchical triple
BH, or has a mass low enough to evolve to a white dwarf. Recall that
if the tertiary mass falls in the intermediate regime 8 M
 < m3 <

20 M
, it is assumed to form a NS and disrupt the triple via a high
natal kick velocity. In this BH tertiary population model, only tertiary

MNRAS 505, 3844–3852 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/3/3844/6295322 by U
niversity of M

aryland user on 30 July 2021



BBH mergers in open clusters 3849

companions which form BHs are included, and so only systems with
tertiary masses m3 > 20 M
 are considered.

3.3.5 Stellar tertiary

Complementary to the previous model, here only lower-mass tertiary
objects are allowed. The evolution of these stars is modelled in two
phases, as previously described in Section 3.1. In the first, a star
retains its zero-age MS mass m3. In the second phase, the mass of
the tertiary star is set to 1 M
 to account for mass-loss during the
giant phases and final evolution to a white dwarf. As before, these
low-mass tertiaries are restricted to m3 ≤ 8 M
.

3.3.6 SMA boundaries model a

In all previous models, the inner binary SMA a1 is drawn from
the range [0.1 au, 100 au]. This model considers only larger inner
binaries by increasing the lower bound of the inner binary SMA by
an order of magnitude, drawing a1 ∈ [1 au, 100 au].

3.3.7 SMA boundaries model b

This model complements the previous model by doubling the upper
bound on the inner binary SMA, drawing a1 ∈ [0.1 au, 200 au].

3.3.8 SMA boundaries model c

To fully rule out any possible interaction of the inner binary
components while they are in the MS phase, this model draws the
inner binary SMA from the range, a1 ∈ [10 au, 100 au]. In this case,
the inner binary components will not overflow their mutual Roche
sphere during their binary stellar evolution (Antonini et al. 2017).

4 R ESULTS

4.1 Normalization and rates

We calculate the merger rate density for Lidov–Kozai-assisted BBHs
under the assumption that the Milky Way is the prototypical spiral
galaxy with a population of N ≈ 1010 stars. The fraction of primary
objects in our triple systems that will form BHs is given by

fp =
∫ 100 M


30 M
 m−2.3 dm∫ 100 M

0.08 M
 fIMF(m) dm

. (11)

We continue to treat BHs as forming in high-multiplicity systems
(Duchêne & Kraus 2013) and without natal kicks. Therefore, taking
a uniform distribution of mass ratios q1 ∈ [0.1, 1] for the inner binary,
the fraction of secondary stars forming BHs is fs ≈ 0.4. Drawing from
a mass ratio distribution q2 ∝ M−2

1 for a tertiary at large distances
to the inner binary, the fraction of tertiary objects that remain in
triple systems is ft ≈ 0.25. Recall that all tertiary masses in the range
[8 M
, 30 M
] are rejected, as these are expected to disrupt the triple
system due to large natal kicks during NS formation (Hobbs et al.
2005). The fraction of the total stellar population which resides in
triple systems is taken to be ftriple ≈ 0.1 (Tokovinin 2004). Recall that
because this work concerns triples within open clusters, we consider
only those triples with a maximum outer binary SMA of 1000 au
and maximum inner binary SMA of 100 au; see Section 5 for a
discussion of this choice of values. The fraction of stars which form

Figure 3. DTD for simulated mergers in the standard model. The blue curve
shows the distribution function for systems which merged within a Hubble
time. The grey box indicates the fraction of mergers occurring during the
open cluster phase, using 109 yr as the upper limit of an open cluster lifetime.
For comparison, the orange curve shows the DTD that would result if all
BBHs merged in isolation via GW emission alone.

triple systems with inner binary BBHs that merge via the Lidov–
Kozai resonance is then given by

Fmodel = 10−5

(
fp

10−3

) (
fs

0.4

) (
ft

0.25

) (
ftriple

0.1

)
fmerger , (12)

where fmerger is the merger fraction for hierarchical triples calculated
by our numerical model. Recall that a triple system is considered to
have merged if Tmerger < THubble. The average merger rate for a single
Milky Way-like galaxy over a Hubble time is therefore

�MW = N × Fmodel

THubble
≈ 0.53 Myr−1 . (13)

Following Belczynski et al. (2016), the merger rate density in the
local Universe is given by

R = ρgal × N × Fmodel

THubble
≈ 6

(
Fmodel

10−5

)
Gpc−3 yr−1 , (14)

where ρgal ≈ 0.0116 Mpc−3 is the Milky Way-like galaxy density in
the local Universe (Belczynski et al. 2016). Depending on the values
of the factors that determine Fmodel (see equation 12 above), this rate is
plausibly comparable to the observed LIGO rate of ∼20 Gpc−3 yr−1.

4.2 Delay-time distribution

Having recorded Tmerger for each triple system, we can calculate
the fraction of systems which merge within a given time after star
formation. Fig. 3 shows the standard model DTD, i.e. the cumulative
merger fraction as a function of time. We find that approximately
half of mergers in the standard model occur within the lifetime of
open clusters, suggesting that a significant fraction of Lidov–Kozai-
induced mergers may occur in these clusters before their dissolution.

Fig. 4 compares the DTD for the standard model to those for the
additional models. Accounting for white dwarf formation in low-
mass tertiaries and allowing all viable systems to evolve in time, we
find that ∼20–50 per cent of Lidov–Kozai-assisted BBH mergers
occur within the lifetime of open clusters. We find that the DTD is
not particularly sensitive to model assumptions, with the exception
of the stellar tertiary model, which is skewed towards later merger
times and yields a smaller merger fraction within the lifetime of open
clusters. This difference can be understood as the result of lower-mass
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Figure 4. Comparison of DTDs for simulated mergers across all population
models. Curves show the distribution function for systems that merged within
a Hubble time in all models. The grey box indicates the fraction of mergers that
occurred during the open cluster phase in the standard model. The distribution
shows little sensitivity to initial assumptions, with the exception of low tertiary
masses in the stellar tertiary model.

tertiary objects, which have weaker effects on the secular evolution
of triple systems.

5 D ISCUSSION

5.1 Assumptions

Each of the population models developed in this work rests on a set
of underlying assumptions regarding the parameter distributions of
its triple systems. In what follows, we discuss the justification for
and implications of several key model assumptions.

5.1.1 BH natal kicks

The first and most important of these assumptions is that BHs are
born with little or no natal kick. While it remains unclear whether
such kicks are significant (Nelemans, Tauris & van den Heuvel 1999;
Willems et al. 2005; Repetto, Davies & Sigurdsson 2012; Wong et al.
2012, 2014; Mandel 2016; Repetto, Igoshev & Nelemans 2017),
observational evidence supports BH formation via failed supernova
or direct collapse (Fryer, Woosley & Hartmann 1999; Ertl et al.
2016; Adams et al. 2017). Both mechanisms imply small natal kicks
or none at all, supporting the use of our simplifying assumption. In
future work, however, we aim to test the importance and sensitivity
of this assumption by implementing a more sophisticated population
synthesis method.

5.1.2 Triple formation

Throughout this study, we assume that all star formation occurs in
open clusters or associations (Lada & Lada 2003). The issue of triple
formation is not explicitly addressed; our standard model effectively
treats each hierarchical triple as primordial. This assumption of pri-
mordial system formation is reflected in the non-isotropic distribution
of inclinations used in the standard model. We explore a deviation
from this assumption by including the isotropic distribution model,
which draws from a uniform distribution of cos I and thus simulates
triples formed by dynamical processes. In our results, neither the
merger rate density nor the DTD depends sensitively on the initial
distribution of inclinations.

5.1.3 SMA bounds

In the standard model, the lower bound on the inner binary SMA is
set to a1,min = 0.1 au. For an isolated BBH with m1 = m2 = 20 M

and a1 = 0.1 au in a circular orbit, equation (6) gives an inspiral time
(via GW emission only) of TGW ≈ 1010 yr, which is of the order of
a Hubble time. Therefore, for smaller values of a1,min, we would not
expect our Lidov–Kozai channel to increase the overall rate of BBH
mergers. The upper bound a2,max on the outer binary SMA is set by
environmental constraints, specifically the lifetime of a wide orbit
in a collisional environment. Following Bahcall, Hut & Tremaine
(1985), one can calculate the half-life of a wide system of SMA a2

in a collisional environment according to

t1/2 = 0.002 33
venc

Gmpn∗a2
, (15)

where venc is the typical encounter velocity at infinity, mp is the mass
of the perturbing body, and n∗ is the local stellar number density.
For an open cluster, we take venc to be a typical velocity dispersion
σ ≈ 5 km s−1, and assume a stellar number density n∗ ≈ 0.5 pc−3

and a perturber mass mp = 1 M
. Taking 109 yr to be a typical open
cluster lifetime, the outer binary SMA of a system whose half-life is
equal to the lifetime of the cluster is a2 ≈ 1000 au; this serves as the
upper limit for the size of the outer binary.

5.2 Mergers in the open cluster phase

As summarized in Fig. 4 and in Table 1 for all models considered, the
fraction of mergers occurring during the lifetime of open clusters is
significant. In the standard model, assuming an open cluster lifetime
of 109 Myr (108 Myr), we find that 49.9 per cent (18.9 per cent) of
BBH mergers induced by the Lidov–Kozai resonance occur in open
clusters. This result implies that at least this fraction of mergers
from the secular triple channel occur in young environments within
star-forming galaxies.

6 C O N C L U S I O N S

In this work, we calculate the merger rates and DTD of BBH mergers
occurring in hierarchical triple systems within open clusters via the
Lidov–Kozai resonance. This resonance increases the inner binary
eccentricity in cycles, allowing the binary to dissipate orbital energy
and inspiral via GW emission. Given the sensitive dependence of
merger time on orbital eccentricity, BBH mergers in triple systems
experiencing the Lidov–Kozai resonance are expected to occur on
much shorter time-scales than those in isolated binaries. Calculating
the DTD for hierarchical triples in open clusters, we find that a
significant fraction of mergers (18–50 per cent in our baseline model)
occur before the open cluster has dissolved. This result suggests that
many mergers in hierarchical triples occur in star-forming regions
and hence in spiral galaxies.
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Table 1. Parameter distributions and merger results for the standard and additional models. For comparison with the lifetimes of open
clusters, the percentages of systems that have merged at 108 and 109 yr are reported.

Model m1 (M
) m3 (M
) Inclination [f(I)] a1 (au) Local rate Merger time
(Gpc−3 yr−1) ≤109 yr (108 yr) (per cent)

Standard 30–100 m ≤ 8 Linear in cos I 0.1–100 6.2 49.9 (18.9)
m ≥ 30

No natal kicks 20–100 m ≤ 8 Linear in cos I 0.1–100 4.5 48.4 (18.1)
m ≥ 20

Isotropic distribution 30–100 m ≤ 8 Uniform in cos I 0.1–100 6.6 51.0 (19.5)
m ≥ 30

Prograde-only 30–100 m ≤ 8 Linear in cos I, 0.1–100 2.1 33.3 (7.9)
m ≥ 30 0 ≤I ≤ 1

BH tertiary 30–100 m ≥ 30 Linear in cos I 0.1–100 6.7 50.5 (19.3)

Stellar tertiary 30–100 m ≤ 8 Linear in cos I 0.1–100 0.9 15.8 (0.6)

SMA boundaries a 30–100 m ≤ 8 Linear in cos I 1–100 3.7 51.5 (20.0)
m ≥ 30

SMA boundaries b 30–100 m ≤ 8 Linear in cos I 0.1–200 6.2 33.3 (7.9)
m ≥ 30

SMA boundaries c 30–100 m ≤ 8 Linear in cos I 10–100 2.1 51.2 (21)
m ≥ 30
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