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ABSTRACT

The critical luminosity at which the outward force of radiation balances the inward force of gravity plays an
important role in many astrophysical systems. We present expressions for the radiation force on particles with
arbitrary cross sections and analyze the radiation field produced by radiating matter, such as a disk, ring,
boundary layer, or stellar surface, that rotates slowly around a slowly rotating gravitating mass. We then use
these results to investigate the critical radiation flux and, where possible, the critical luminosity of such a
system in general relativity.

We demonstrate that if the radiation source is axisymmetric and emission is back—front symmetric with
respect to the local direction of motion of the radiating matter, as seen in the comoving frame, then the radial
component of the radiation flux and the diagonal components of the radiation stress-energy tensor outside the
source are the same, to first order in the rotation rates, as they would be if the radiation source and gravi-
tating mass were not rotating. If the opacity is independent of frequency and direction, the critical flux for
matter at the surface of a star or in orbit around a star or black hole is the same, at least to first order, as it
would be if the matter, radiation source, and gravitating mass were static. In this case the critical flux mea-
sured at the radiation source is also the same to first order as it would be if the matter, source, and mass were
static. We argue that the critical radiation flux for matter at rest in the locally nonrotating frame is often
satisfactory as an astrophysical benchmark flux and show that if this benchmark is adopted, many of the
complications potentially introduced by rotation of the radiation source and the gravitating mass are avoided.
If instead the opacity is frequency- or direction-dependent, the critical flux generally depends on the angular
size and spectrum of the source and is affected by rotation of the source and mass and orbital motion of the
matter to first order.

We show that if the radiation field in the absence of rotation would be spherically symmetric and the
opacity is independent of frequency and direction, one can define a critical luminosity for the system that is
independent of the spectrum and angular size of the radiation source and is unaffected by rotation of the
source and mass and orbital motion of the matter, to first order. Finally, we analyze the conditions under
which the maximum possible luminosity of a star or black hole powered by steady spherically symmetric

radial accretion is the same in general relativity as in the Newtonian limit.
Subject headings: accretion: accretion disks — black hole physics — radiative transfer — relativity —

stars: neutron

1. INTRODUCTION

The critical luminosity at which the outward force of radi-
ation balances the inward force of gravity was originally intro-
duced in the context of stellar structure (Eddington 1926). This
concept has since been found useful in understanding not only
the luminosities of massive stars (Zel’dovich & Novikov 1971),
but also a wide variety of other astrophysical phenomena
(Zook & Berg 1975; Bowers & Deeming 1984 ; Katz 1987). The
critical luminosity plays an especially important role in X-ray
bursts (see Lewin, van Paradijs, & Taam 1993), accretion by
neutron stars and black holes (see Shapiro & Teukolsky 1983;
Lamb 1991a; Mészaros 1992), quasi-periodic brightness oscil-
lations in the most luminous X-ray sources (Lamb 1989,
1991b; Fortner, Lamb, & Miller 1989, 1994; van der Klis
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1994a, b), and active galactic nuclei (see Begelman, Blandford,
& Rees 1984; Rees 1984; Abramowicz, Ellis, & Lanza 1990;
Svensson 1990).

There are several reasons for investigating further the critical
luminosities of black holes and relativistic stars. First, previous
analyses have assumed that the cross section is independent of
the frequency and direction of the incident radiation. However,
in many models of the inner regions of active galactic nuclei, a
substantial fraction of photons have energies hv > m,c? (see
Guilbert, Fabian, & Rees 1983; Svensson 1987, 1990; Krolik
1988; Done & Fabian 1989; Bjornsson & Svensson 1992;
Zdziarski 1992), in which case the electron scattering cross
section depends on the frequency v of the radiation. Cross
sections near magnetic neutron stars generally depend on
angle as well as frequency (see Bussard, Alexander, & Més-
zaros 1986; Daugherty & Harding 1986; Wang, Wasserman, &
Salpeter 1988; Graziani 1993).

Second, the standard expression for the critical luminosity
assumes that both the gravitating mass and the radiating
matter are static. Yet most black holes and relativistic stars
and especially the radiating matter around them are expected
to be rotating (see, e.g., Bardeen 1970a; Ghosh & Lamb 1979;
Czerny, Czerny, & Grindlay 1986; Blandford & Rees 1992). It
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is therefore important to know how accurate the standard
expression is for such systems.

A third reason for reconsidering the critical luminosities of
relativistic stars is that several authors (Nemiroff, Becker, &
Wood 1993; see also Walker 1992) have argued recently that
previous derivations of the critical luminosity for Thomson
scattering are incorrect, and that the critical luminosity
depends on the angular size of the radiation source; according
to Nemiroff et al., the critical luminosity in some circumstances
is 50% greater than the previously accepted value.

Here we first present expressions for the radiation force on
particles with arbitrary cross sections. We then investigate the
radiation field produced by a radiation source, such as a disk,
ring, boundary layer, or stellar surface, that rotates slowly
around a slowly rotating gravitating mass. We use the rela-
tivistic equation of motion to generalize the usual definition of
the critical radial force outside a nonrotating gravitating mass
to the case of a slowly rotating mass. We then use this defini-
tion to define and compute critical radiation fluxes and, where
possible, critical luminosities for matter at or outside the gravi-
tating mass. For conciseness we sometimes discuss relativistic
stars even though the results apply equally well to black
holes. Where our results apply only to stars, we indicate this
explicitly.

By “slowly rotating” we mean that the angular momentum
J of the gravitating mass is much less than GM?/c and that the
appropriately averaged azimuthal velocity <v,) of the radi-
ating matter as measured in the locally nonrotating frame or
LNRF (see Bardeen 1970b; Bardeen, Press, & Teukolsky 1972)
is much less than c. In practice, the requirement j = cJ/
GM? < 1is not very restrictive. For example, all neutron stars
with known periods are slowly rotating in this sense (j =~ 0.2
for a uniform density spherical star with a mass of 1.4 M, a
radius of 10 km, and a spin period of 1.6 ms). Black holes in
binary systems are also expected to be slowly rotating accord-
ing to this criterion because the accretion phase for black holes
with high-mass companions is too short for the hole to accrete
much angular momentum, while the total mass and hence
angular momentum that can be accreted from a low-mass
companion is too small (Miller & Lamb 1995). The angular
momenta of massive black holes in active galactic nuclei are
more uncertain, but some may have j < 1, depending on how
they are formed and fueled (Blandford 1990).

The requirement v = {v,>/c < 1 is also usually satisfied if
the black hole or neutron star is slowly rotating. Radiating
matter on the surface of a slowly rotating neutron star satisfies
v < 0.2, while the azimuthal velocity of matter in a viscous
boundary layer at the surface of such a star may range from
<0.2 to <0.5¢, so that v < 0.35. In neutron star or black hole
systems with luminosities greater than a few percent of the
critical luminosity, radiating matter experiences substantial
azimuthal radiation drag (see Miller & Lamb 1993, 1995), so
that v is likely to be <$0.3. For systems with near-critical lumi-
nosities, the orbital velocity of radiating matter in near-
Keplerian orbits is small, due to the large radial component of
the radiation force, and the radiation drag force is even strong-
er (see Fortner et al. 1989; Lamb 1989, 1991b).

The paper is organized as follows. In § 2 we derive expres-
sions for radiation forces near relativistic objects. In § 3 we
compute the radiation stress-energy tensor produced by non-
rotating and rotating radiation sources at the surface of or
outside nonrotating and slowly rotating relativistic stars and
black holes. In § 4, we use the expressions for the radiation
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force derived in § 2 and the results for the radial component of
the radiation flux obtained in § 3 to compute critical fluxes and
luminosities for static and moving matter in systems composed
of slowly rotating black holes or relativistic stars and slowly
rotating radiation sources. Our results are summarized in § 5.

2. RADIATION FORCE

In this section we consider radiation forces near relativistic
objects. We first discuss the force on a particle at rest in a
radiation field, paying special attention to the effects of
frequency- and angle-dependence of the differential cross
section. Next, we discuss methods of treating the force on a
particle in motion. We conclude this section with a brief dis-
cussion of how the force on an element of gas can be calculated
from knowledge of the forces on the particles that make up the
gas.

2.1. Force on a Particle at Rest

Consider first the radiation force on a particle that is
momentarily at rest, or equivalently, the force produced by the
radiation field seen in an inertial frame momentarily comoving
with the particle.

2.2.1. General Expressions

A particle in a radiation field may absorb, emit, or scatter
radiation. For simplicity, we assume that the radiation is unpo-
larized and that the interaction of the particle with the radi-
ation field is linear, ie., that processes such as induced
scattering can be neglected. Then the force on a particle at
position x? produced by scattering of the radiation in an infini-
tesimal range dv around frequency v propagating in an infini-
tesimal solid angle dQ about the direction n in the rest frame of
the particle is

% I, v; x")J; av L o ;;;, (n, v; 0, v') (n - "; n'> dvdQ,
0]

where I(n, v; x?) is the specific intensity of the incident radiation
propagating in direction n, do/dQ’ is the differential scattering
cross section, v’ is the frequency of the radiation scattered in
direction n’, and the relation between v and v' imposed by
momentum conservation is assumed to be included in the
expression for the differential cross section. Here and below
Greek indices run over the space and time components of
vectors and tensors, Roman indices run only over the space'
components, boldface indicates a 3-vector, and we use the
spacelike sign convention for the metric (signature — + + +).
If the angle and frequency distribution of the outgoing radi-
ation is such that its momentum in the rest frame of the parti-
cle is zero, the term —v'n’/v in the final parentheses of equation
(1) vanishes when the integration over Q' is performed.® This is
the case for electron scattering in the Thomson limit, but not
for Compton scattering. The force produced by absorption is
(1/c)I(m, v; x")a(n, v)n dv dQ, where a(n, v) is the absorption cross
section.

The force on the particle produced by its interaction with the
full radiation field is obtained by integrating expression (1)

5 The outgoing radiation need not be isotropic; if v' = v, it is sufficient that
the radiation pattern be unchanged under inversion of the coordinates.
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over n and v. Hence the k-component of the full radiation force,
in a local orthonormal coordinate system comoving with the
particle, may be written

fad = 1 J‘ dV J dQ I(l'l, v, xy) aﬁ(ns V) ) (2)
¢ Jo 4n
where
® ’ ’ da e vy _ v_l r ).
o*(n, v)=L dv Lndﬂ dQ'(n’ v,n,v)(n vn) k (3

is the cross section for momentum transfer in the k-direction.®
Here and below we use hats on indices to indicate the com-
ponents of vectors and tensors expressed in a local orthonor-
mal tetrad consisting of an orthonormal set of 4-vectors, three
spacelike and one timelike. If the distribution of scattered radi-

ation is such that its net momentum is parallel (or antiparallel)
'to the direction of the incident radiation, as in Compton scat-

tering, the momentum transferred to the particle will be paral-
lel to n and hence o* oc n*. If the particle absorbs radiation, the
force is given by expression (2) with ¢*(n, v) = o(n, v)n - k,
where a(n, v) is the cross section for absorption. The radiation
force cannot be written in the simple form (2) if the interaction
of the particle with the radiation is nonlinear.

Frequency- and angle-independent cross section—Suppose
that ¢ is independent of both the frequency and the direction of
the incident radiation. Then the cross section can be removed
from the integral on the right side of equation (2), and the
expression for the k-component of the radiation force at x*
reduces to

Fha = oFG; x4, @

where F(n*) is the radiation flux in the k-direction; in terms of
the radiation stress tensor T in the local orthonormal coordi-
nate system,

F(n*; x") = cT* = ¢ f dv f dQIm, v; x)n*.  (5)
0 4n

Thus, in this special case the radiation force is proportional to,
and in the same direction as the radiation flux at the position of
the particle.

Frequency- andfor angle-dependent cross section—If o
depends on the frequency or the direction of the incident radi-
ation, equations (2) and (5) show that the k-component of the
radiation force can still be written

1
fad = z o)) F(nf) (©)

where

o J8 v [4r dQIM, v; x) o*(n, v)
<o ="y [en dQ1(n, v; X)) 1

™

is the appropriately frequency- and angle-averaged cross
section at the position of the particle. Expressions (6) and (7)

6 ¢ is also the cross section for attenuation of the radiation momentum and
energy fluxes in the k-direction; it is the cross section for attenuation of the
photon number flux only if v/ = v.
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show that the magnitude of the force on the particle generally
is not proportional to the radiation flux, nor is the force on the
particle generally in the same direction as the radiation flux,
since {a(n®)) will usually depend on k. Whether expression (6)
is useful depends on the situation.

2.1.2. Examples

Consider now, as specific examples, Compton scattering,
absorption by an oriented flat particle (such as a dust grain),
and scattering by a charged particle in a magnetic field. The
first process often dominates near relativistic objects while the
second and third processes illustrate the behavior of radiation
forces when the cross section depends on angle.

Compton scattering—The differential cross section for
Compton scattering of unpolarized radiation is (see Berestet-
skii, Lifshitz, & Pitaevskil 1971, p. 297)

do N Y A Y LAY A

10 (n, v; ', v)—2 (mc’) (v) (v’ + , ~ sin 0’) , (8)
where ¢’ is the angle between n’ and n. Figure 1 shows that the
resulting momentum transfer cross section o,(v) is a steep func-
tion of the frequency v of the incident radiation for hv 2
0.1mc?; it is independent of the direction of the radiation. As
noted above, this cross section is the same as that for attenu-
ation of the radiation momentum and energy fluxes. Figure 1
also shows, for comparison, the cross section ¢,(v) for attenu-
ation of the photon number flux, the momentum transfer cross
section g7,(v) that would be obtained if the momentum impart-

1.0 T
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Cross Sections (Thomson)

0.0 X I | . el n
. - -ty +
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Scaled Cross Sections
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0.01 0.1 1 10
Photon Energy (mc?)

FIG. 1.—Top: Cross sections ¢, for momentum transfer (solid line) and o,
for attenuation of the photon number flux (dotted line) by Compton scattering,
in units of the Thomson cross section, as functions of the energy of the incident
photon in units of mc?. Also shown for comparison is the momentum transfer
cross section o), (dashed line) that would be obtained if the momentum impart-
ed by the scattered photon were (incorrectly) neglected. Bottom: Cross section
ratios 6,/c, (dotted line) and a,/0 , (dashed line) as functions of frequency.
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ed by the scattered radiation were (incorrectly) neglected, and
the ratios a,,(v)/o,(v) and g,(v)/,(v). All three cross sections are
equal in the Thomson limit, but all three differ when hv/mc?
cannot be neglected. Because the momentum transfer cross
section depends steeply on the frequency of the incident radi-
ation unless hv < 0.1mc?, the radiation force on the scattering
particle is in the same direction as the radiation flux with a
magnitude proportional to the flux only in the Thomson limit.

Absorption by a flat particle—Consider now the radiation
force on a flat, infinitesimally thick, perfectly absorbing small
but macroscopic (dimensions much greater than the wave-
length A of the radiation) particle of area ¢,. The cross section
presented by such a particle to radiation propagating in a
given direction depends on its orientation but not on the fre-
quency of the radiation.

In order to obtain explicit expressions for f* ;, we introduce
a local orthonormal coordinate system with polar angle 4 and
azimuthal angle b, centered on the particle and oriented so that
the polar axis (@ = 0) points in the —k-direction. We will also
need to refer to a direction perpendicular to k, which we
choose to be the direction d = n/2, b = n/2; for consistency
with the coordinate system used in § 3, we call this the ¢-
direction. Then n* = cos d and n® = sin & sin b. Because the
cross section is independent of frequency, we can work with the
frequency-integrated intensity I(n, x7).

Suppose first that the particle is oriented with its faces per-
pendicular to k. The force in the k-direction on the face with
outward normal in the — k-direction is due to radiation propa-
gating in the k-direction, which imparts momentum in that
direction to the particle; the force on the surface facing in the
k-direction is due to radiation propagating in the —k-
direction, which imparts momentum in that direction to the
particle. Integrating the radiation stress over the two surfaces
of the particle, one finds that the net force on the particle in the
k-direction is

1
ko= - J dQI(n; x") 6, |cos d|cos d, ©
4

where dQ = sin dda db. Comparison with equation (2) shows
that in this case, the momentum transfer cross section is
o*(n) = 6, | cos d|cos d. If instead the particle is oriented so
that its normal is in the ¢-direction, a similar analysis shows
that

1 ~
k= ; f dQI(n; x?) o, sin @|sin b|cos a . (10)
4n

Comparison with equation (2) shows that for this orienta-
tion, the momentum transfer cross section is o*(n) = o, sin
d|sin b|cos a. The cross section for attenuation of the photon
energy and number fluxes are equal to the momentum transfer
cross section.

It is instructive to compare the forces (9) and (10) with the
momentum carried by the radiation field, which is described by
the spatial components :

T = J dQ I(m) n'n’ (11)
4r
of the radiation stress-energy tensor. The diagonal spatial com-
ponent

T = j dQ I(m) cos @ cos a 12)
4n
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describes the flux of k-momentum flowing in the k-direction
and is sometimes said to represent the radiation “pressure” in
the k-direction. This might be misunderstood to imply that the
k-component of the radiation force on a flat particle oriented
with its faces perpendicular to k is proportional to T*. Com-
paring expression (9) with expression (12) shows that the k-
component of the radiation force on a flat particle oriented with
its faces perpendicular to k generally is not proportional to the
flux of k-momentum in the k-direction. The k-component of the
radiation force is proportional to T* if radiation falls only on
the face of the particle with outward normal in the —k-
direction; however, in general radiation also falls on the face
with outward normal in the k-direction.

The flux of k-momentum flowing in the ¢-direction is

T = j dQI(n) sin d sin b cos a . (13)
4n

Comparing expression (10) with expression (13) shows that the
k-component of the radiation force on a flat particle oriented with
its faces perpendicular to the ¢-direction generally is not pro-
portional to the flux of k-momentum in the ¢-direction, either.
The reason is that the k-momenta of rays coming from the two
sets of directions 0 < b <m and n < b < 27 contribute with
the same sign to the k-momentum imparted to the particle but
contribute with opposite signs to T*®. A similar result holds if
the particle is oriented with its faces in the k, ¢-plane.

Scattering by a charged particle in a magnetic field—When
radiation is scattered by a charged particle in a magnetic field,
the cross section for momentum transfer generally depends on
the frequency and direction of the incident radiation (see, e.g.,
Bussard et al. 1986; Daugherty & Harding 1986; Wang et al.
1988; Graziani 1993). In this case the radiation force is not
proportional to the radiation flux, or to any other component
of the radiation stress tensor.

2.1.3. Discussion

As mentioned in the Introduction, the radiation force on a
particle such as an electron is often loosely attributed to radi-
ation “pressure.” The preceding analysis shows that the mag-
nitude of the radiation force on a particle with a momentum
transfer cross section that depends on frequency or angle gen-
erally is not. proportional to the diagonal “pressure” com-
ponents of the radiation stress-energy tensor nor to any com-
ponent of the radiation stress-energy tensor, including the radi-
ation flux. Moreover, the force on such a particle generally is
not in the same direction as the local radiation flux. Only if the
cross section is independent of both angle and frequency, as in .
Thomson scattering, is the radiation force in the same direc-
tion as the radiation flux in the rest frame of the particle, with a
magnitude that is proportional to the flux.

The important distinction between the radiation pressure
and the radiation force on a particle is illustrated by the case of
an isotropic radiation field, which has nonzero pressure (an
evacuated, reflecting balloon would be collapsed by the radi-
ation pressure) but no net flux; it therefore exerts no force on
a particle with a cross section that is angle-independent.
However, even an isotropic radiation field may exert a force on
a particle, if the cross section for momentum transfer is angle-
dependent (a flat particle with one face that absorbs radiation
and one face that reflects it would be accelerated by the radi-
ation field).

In their recent discussion of the critical luminosity of a static,
spherically symmetric relativistic star, Nemiroff et al. (1993)
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write (incorrectly) the radial component of the radiation force
on an electron-proton pair as (in our notation).”

fP=“P,0or= % j dv L dQI(m, v)or|cos d|cos d, (14)
0 2]

where o is the Thomson cross section and the axis of the local
orthonormal coordinate system has been chosen in the —r-
direction. Here the quantity “P,,,” is neither the radiation
“pressure” (eq. [12]) nor the radiation flux (eq. [5]). Compari-
son of equation (14) with equation (9) shows that “P_,, "o
would be the radial component of the radiation force on an
infinitesimally thin particle of area ¢, oriented with its faces
perpendicular to the local radial direction. However, a
Thomson-scattering electron does not interact with radiation
like such a surface, since the Thomson cross section is angle-
independent. Hence, the factor | cos d| in the integrand of equa-
tion (14) is inappropriate (see eqs. [4] and [5]). The conclusion

“of Nemiroff et al. that the standard expression for the critical

luminosity is incorrect is due entirely to this error in comput-
ing the radiation force, as we show in § 4.

2.2. Force on a Particle in Motion

Up to now we have discussed computation of the radiation
force in a local orthonormal coordinate system momentarily
comoving with the particle. However, in astrophysical prob-
lems it is often more convenient to specify the radiation inten-
sity and other quantities in a global coordinate system related
to some object other than the particle, such as a star, and to
analyze the motion of the particle in the global coordinate
system. If this approach is followed, the intensity must first be
transformed from the global coordinate system to a local
orthonormal system, in order to compute the force on the
particle, and the force on the particle must then be transformed
to the global coordinate system (see, e.g., Shapiro & Teukolsky
1983, chap. 5).

In this work we are interested in relativistic stars. If the
exterior geometry is Schwarzschild and the particle is at rest in
the Schwarzschild coordinate system, the required transform-
ations are relatively simple. If instead the exterior geometry is
that produced by a rotating, axisymmetric star (see, e.g., Fried-
man, Ipser, & Parker 1986; Cook, Shapiro, & Teukolsky 1992,
1994), the required transformations are more complicated but
are still relatively simple when the particle is at rest in the
LNRF, where the effects of frame-dragging are minimized (see
Bardeen 1970b; Bardeen et al. 1972). If the particle is not at
rest in the static frame or, in the case of a rotating star, in the
LNREF, the required transformations are considerably more
complex.

The problem of computing the motion of the particle in the
global coordinate system is greatly simplified if the cross
section for momentum transfer is independent of the direction
and frequency of the radiation, since in this case the force on
the particle in the comoving frame is proportional to the radi-
ation flux in the comoving frame, as discussed in § 2.2.1. One
can therefore use the fact that the momentum flux density in

7 Nemiroff et al. write 6 where we write . Puzzlingly, they refer to 6 as “ the
angle between the detector normal and the line of sight.” From the context it
appears that 6 is actually the angle between the direction n of an arbitrary ray
incident on the particle and the radial direction. Nemiroff et al. also write I,
throughout their derivation without indicating any integration over frequency.
Presumably this integration was intended, and we have therefore included it in

eq. (14).
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the rest frame of the particle may be written as T*ug, where uf
is the particle’s four-velocity and all quantities are expressed in
the global coordinate system (see, e.g., Misner, Thorne, &
Wheeler 1973, p. 131), to write the radiation force on the par-
ticle, in the global coordinate system, as (see Abramowicz et al.
1990)

g
Tad = z hap Tﬂv“v s

(15)
w'here h*y = — 8% — (u*ug)/c? projects t_he components perpen-
dicular to uf and we have used the Einstein summation con-
vention.

2.3. Force on a Element of Gas

So far we have discussed the radiation force on a particle
with momentum transfer cross section o(n, v) However, in
most astrophysical problems one is interested in the radiation
force on a small volume of gas composed of several species of
particles rather than the force on a single particle.

Under fairly general conditions, the radiation force on a
small volume of gas is equal to the sum of the forces on the
individual particles. Some of the necessary conditions are that
the photon mean free path be much greater than the inter-
particle spacing, that the particles be independently and ran-
domly distributed in space, and that the particles be coupled
together by, for example, collisions. If, in addition, the velocity
distribution of the particles is such that the velocity-averaged
momentum transfer cross section is equal to the momentum
transfer cross section for a particle at rest in the local center-of-
momentum frame of the gas, then the k-component of the force
per unit mass, in the comoving frame of the gas is

b = 1 KOOFC), 16

where

Y. {n")
Z:’ mm

Here n; is the number density, m; is the mass, (5(n*)) is the
intensity-weighted cross section (7) for particles of species i,
and the sums run over all species; the bar indicates that the
cross section is to be averaged over the orientations of the
particles. Expression (17) generally is not valid if particle
thermal velocities are comparable to the speed of light, so that
terms of order (vy/c)? in the Lorentz transformations to the
center-of-momentum frame are important, or if there are large
electrical currents, so that the streaming velocities of particles
in the center-of-momentum frame of the gas are important.

In the preceding sections we showed that the expression for
the radiation force acting on an individual particle is much
simpler if the momentum transfer cross section is frequency-
and angle-independent. The opacity (eq. [17]) of a gas is gener-
ally direction-independent even if the cross sections of the indi-
vidual particles are not, unless the particles are oriented or the
angle dependence of their cross sections is related to some
special direction within the system, such as that defined by a
magnetic field. The average over particle orientations does not
reduce any frequency dependence of the opacity caused by
frequency dependence of the momentum transfer cross section.

If the mean free path of all photons is small compared to the
distance over which the relevant properties of the gas change,

K(n) = 17)
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the gas acts as a “container ” for the radiation. If in addition
the opacity is independent of angle and frequency, the force on
the gas may be related to the gradient of the radiation pressure,
since in this case the radiation energy flux is given by F(rnf) =
— D(0€/0xg) = —3D(OP,,q4/0x¢), where D = c¢/(3kp) is the diffu-
sion coefficient in terms of the mass density p of the gas, € is the
radiation energy density, and P,,q is the (isotropic) radiation
pressure (T* = P_, ). Inserting this expression for F(n*) in
equation (4), one finds that the k-component of the force per
unit mass is —(1/p}(0P,,q/0x¢). Obviously, this expression is
less general than equation (4), since equation (4) is valid even if
the photon mean free path is large.

3. RADIAL COMPONENT OF THE RADIATION FLUX

In this section we compute the radial component of the
radiation flux near a nonrotating or slowly rotating radiation
source located at or outside the surface of a relativistic star or
the horizon of a black hole that is nonrotating or slowly rotat-
ing. For our purposes a star or black hole is slowly rotating if
j=J/M? < 1, where J and M are the angular momentum and
gravitational mass of the star or black hole; here and below we
setc = G = 1. As discussed in § 1, all neutron stars with known
spin rates are slowly rotating in this sense. Black holes in
binary systems are expected to be slowly rotating and some
black holes in active galactic nuclei may havej < 1.

In general, the geometry of spacetime outside a rotating
relativistic star depends on the structure of the star (see, e.g.,
Friedman et al. 1986; Cook et al. 1992, 1994) and differs signifi-
cantly from the geometry outside the horizon of a rotating
black hole (see Miller & Lamb 1992; Cook, Shapiro, & Teu-
kolsky 1994). If, however, the star is axisymmetric and slowly
rotating, then the spacetime geometry outside it is unique to
first order in j, depends only on its mass and angular momen-
tum, and is the same as the geometry outside a black hole with
the same mass and angular momentum (Hartle & Thorne
1968; the effect on the geometry of the deviation from spher-
icity caused by rotation of a star is of second and higher order
in j). Thus, spacetime around any slowly rotating star or black
hole can be described by this two-parameter family of geome-
tries.

We begin by giving the transformations between coordinate
systems that we will need later in this section and in § 4. Next,
we compute the angular size and the radiation flux as a func-
tion of radius for a static, spherically symmetric radiation
source around a nonrotating star or black hole. Finally, we
consider the radial component of the radiation flux produced
by a slowly rotating radiation source in the rotation equator of
a slowly rotating star or black hole.

3.1. Coordinate Transformations

Below we compute the radial flux in the locally nonrotating
frame or LNRF (Bardeen 1970b; Bardeen et al. 1972), which
reduces to the static frame as j — 0. However, we also wish to
consider various elements of the radiation stress-energy tensor
in frames with azimuthal velocities different from that of the
LNRF, as well as in global Schwarzschild (for j = 0) or first-
order (in j) Boyer-Lindquist (1967) coordinates (for j # 0). We
therefore give here the transformations needed to go from one
to another of these coordinate systems. )

If the radiation stress-energy tensor in a given tetrad is T,
the stress-energy tensor in a tetrad moving with velocity f in
the @-direction relative to the original tetrad is

THY = [, TH (18)
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where
LP’P=I‘0,0= 1 ) E/i':Lé'&:yE(l_ﬁz)_l/z’

Ey=1%,= =8, (19
and all other elements of the Lorentz transformation tensor
I¥ , are zero.

The world line of a particle that is at rest in the LNRF is,
in Boyer-Lindquist coordinates, r = const., § = const., and
¢ = wt + const,, where o= —g,/g,, ~2jM*/r* is the
angular velocity of the LNRF as seen from infinity. The world
line of a particle with an arbitrary azimuthal velocity may be
written

r=const., O =const., and ¢ = Awt + const., (20)

where the dimensionless parameter A describes the angular
velocity of the particle relative to the static frame, in units of
the angular velocity of the LNRF as seen from infinity. If
A =0, the particle is at rest as seen by an observer at infinity
whereas if A = 1, the particle is at rest in the LNRF.

We denote the transformation from the tetrad comoving
with a particle to the first-order Boyer-Lindquist coordinate
system by e”;; for a particle with the world line (20), the
nonzero elements of e*; are, to first order in A and j,

M\ - 12 1/2
o= (1-20 (12",
r r

_ 1

T rsing’

M1 — )
P — 2M/r)

2jM?4 .

¢ _ -
CrTPA—2Mp e C4T

@1
Note that the diagonal elements of the transformation (21) and
its inverse are the same (to first order in j) as for a nonrotating
gravitating mass.

If the gravitating mass is not rotating, j = 0 and the trans-
formation (21) and its inverse show that the radial component
of the radiation flux in the Schwarzschild coordinate system is
equal to the radial component in the comoving tetrad to first
order in 4, i.€.,

F(n') = T" = e';¢’; T® = T" = F(rn') (22
and vice versa, regardless of the structure of T%, However, the
nonradial components of the radiation flux in the two coordi-:
nate systems generally are not equal to this order.

If the gravitating mass is rotating, j # 0 and the radial flux
F(n") in the Boyer-Lindquist coordinate system is in general
equal to the radial flux F(n") in the comoving tetrad to @(j) if
and only if the particle is at rest in the LNRF (4 = 1). Con-
versely, F(n) is in general equal to F(n") to O(j) if and only if the
particle is at rest in the LNRF. The two radial fluxes generally
are not equal to O(j?), even if the particle is at rest in the
LNRF.

3.2. Nonrotating Star or Black Hole and Radiation Source

Consider now the radial component of the radiation flux at
or outside a static, spherically symmetric radiation source of
radius R, centered on but outside a static, spherically sym-
metric distribution of gravitating matter, such as a nonrotating
star or black hole, with mass M. We are interested in situations
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in which the radiation field at and outside R.,, is stationary
and spherically symmetric about r = 0. If the gravitating mass
is a star, the radiation source could be its surface, a static
(pressure-supported) spherically symmetric distribution of
matter outside the surface, or a spherically symmetric distribu-
tion of inflowing matter. If the gravitating mass is a black hole,
the radiation source could be a spherically symmetric distribu-
tion of inflowing matter outside the event horizon. We define
the radius of the source as the radius outside which the lumi-
nosity does not change. In general, matter may be present
outside the star or black hole and the radiation source and
may interact with the radiation there. We assume that the
gravitational mass of any such matter is negligible compared
to the mass of the star or black hole, so that it does not affect
the geometry of spacetime outside the star or black hole.
Suppose first that there is no matter outside the source. For
simplicity we assume that the source emits isotropically (i.e.,

‘with a specific intensity that is independent of direction) as well

as uniformly. We present here expressions for the frequency-
integrated specific intensity and radiation flux outside the
source, since we will need these expressions later in this section
and the next. For this purpose, we introduce a unit spacelike
vector n with local tetrad components n*. We specify spacelike
directions by their polar angle & and azimuthal angle 5 in a
coordinate system oriented so that the polar axis (@ = 0) points
radially inward, the direction (@ = n/2, b = 0) is parallel to the
polar axis of the Schwarzschild (or below, the Boyer-Lindquist)
coordinate system, and (@ = n/2, b = =/2) points in the local
¢-direction. Then

nf=cosd, n®=sindcosh, n®=sindsinb, (23)

and the radial tetrad component of the radiation flux at r is
(compare eq. [5])

2= n o
T = f db f dad sin aI1(a, b;r)cos @, (24)
[} 0

where I1(d, b; r) is the frequency-integrated specific intensity at r
in the direction (&, b).
The frequency-integrated specific intensity I observed along
a given light ray is proportional to the fourth power of the
redshift from the point of emission to the point of reception
(one power comes from the change in photon frequency, one
from time dilation, and two from gravitational defocussing,
which causes the solid angle of a ray bundle to vary as the
square of the redshift). In the Schwarzschild geometry the red-
shift from any point on the source to any point x* outside the
source is a function only of the radius R, of the source and the
radius r of the point outside. Thus, the specific intensity at x* is
(see Abramowicz et al. 1990)
1 —2M/R,,\*
Io() = I(R,...)( Ty ) 25)
for all rays that reach x* from the source and zero for all other
rays. Here I(R,,,) is the frequency-integrated specific intensity
at the source and the subscript 0 indicates that neither the
gravitating mass nor the radiation source are rotating. The
specific intensity distribution at r is therefore

e I (9)

, d>uq,
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where o, is the half-angle of the limb of the source as seen at r;
it is given implicitly by (Abramowicz et al. 1990)

sin oy = —= L-2Mjr
°" »r \1-2M/R,,
1, R..>3M,
1/2
x 43/3 2M LM R <3M. @7
2 Rem Rem

The variation of a, with the radius of the observer differs for
sources larger and smaller than 3M because some of the
photons emitted from a source of radius R,,, < 3M are reab-
sorbed, whereas if R,, > 3M, all photons emitted from the
source escape to infinity. For R,,, < 3M, a, does not depend
onR,,.

Because the radiation field is spherically symmetric, the radi-
ation flux at a given point x* outside the source is in the radial
direction and depends only on the Schwarzschild radial coor-
dinate r. Substituting the specific intensity distribution (26)
into equation (24), one finds that the radial flux measured in a
static tetrad atr > R,,, is

F(n';r) = (tzTMA{II;:")F(n' i R s

where F(n’; R.,) is the radial flux measured at the source. One
factor of the redshift comes from the reduction of the photon
frequency and one from the reduction of the photon arrival
rate. The Lorentz transformation (eq. [19]) shows that the
radial flux measured in any tetrad moving in the azimuthal
direction with velocity S is, to first order in g, equal to the flux
measured in the static tetrad and is therefore also given by
equation (28) to this order. The transformation (eq. [21])
shows that the flux measured at r in the Schwarzschild coordi-
nate system is equal to the flux measured at r in the static
tetrad, i.e., F(n"; r) = F(n*;r). Hence

1— 2M/Rem) L(Rem) _ 1 L((X))
1—2M/r ) 4nR%, (1 — 2M/r) 4nr?’

r>R.,, (29

where L(R,,) = 4nR2, F(n"; R,,,) is the luminosity measured at
R, and L(o0) is the luminosity measured at radial infinity.
Although in deriving equations (28) and (29) we assumed that
matter in the source emits isotropically, this is not necessary;
spherical symmetry of the radiation field is sufficient. When F
is expressed in terms of L(o0), it is independent of the angular
size and radius of the source.

Suppose now that matter is present outside the source and
interacts with the radiation there. So long as the matter does
not change the luminosity and the radiation field remains
spherically symmetric at r, the radiation flux at r is still given
by equation (29) and is therefore independent of the optical
depth of any matter between the source and r, the angular size
of the radiation source seen at r (which depends on the optical
depth if the matter scatters radiation), and the optical depth of
any matter between r and infinity. The radial flux is given by
equation (29) whether r is at the surface of the radiation source,
in a region of negligible optical depth outside the source, or in
a spherically symmetric, optically thick cloud surrounding the
source.

If the radiation field produced by the source is asymmetric,
then in general the radial component of the radiation flux at a

28

Fn';r)= (
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given point x* outside the source depends not only on the
luminosity and the radius corresponding to x*, but also on the
direction. If scattering or absorbing matter is present, the flux
at a given point will generally depend on the distribution of the
matter and determination of the flux will require an analysis of
radiation transport in the neighborhood of the source.
However, if the matter is distributed spherically symmetrically
and has a large optical depth, the radiation field at »r may be
nearly spherically symmetric even if emission from the source
is asymmetric. In the case of accretion onto a black hole, equa-
tion (29) applies provided the accretion flow is spherically sym-
metric and does not change the luminosity outside R,,,,.

3.3. Rotating Star or Black Hole and Radiation Source

Next consider the radiation field produced by a system com-
posed of a rotating, stationary axisymmetric radiation source,
such as a disk or ring, rotating around a (possibly
differentially) rotating, stationary axisymmetric distribution of
gravitating matter with mass M. For conciseness we will refer
to the gravitating mass as a star; however, our results apply
equally well if the mass is a black hole.

We assume that the star is rotating about its symmetry axis.
As before, we parameterize the (appropriately averaged) azi-
muthal velocity of the radiating matter by v, as measured in the
LNRF, and the angular momentum of the star by j and assume
that the gravitational mass of any matter outside the star is so
small that it does not affect the geometry of spacetime there.
The spacetime outside such a star is stationary, axisymmetric,
and asymptotically flat, and the metric may therefore be
written in the standard form (eq. [2.4]) of Bardeen et al. (1972).

The radiation source may be the star’s surface, an axisym-
metric portion of it, or some other axisymmetric distribution of
matter. We assume that the source is rotating about its sym-
metry axis, and that this axis is co-aligned with the rotation
axis of the star. The radiation source may rotate in the same or
the opposite sense as the star and need not be symmetric with
respect to the plane defined by the rotation equator of the star;
the specific intensity radiated by matter in the source may
depend on direction. Nevertheless, the radiation field produced
by such a system depends only on the radial coordinate r and
colatitude 0 defined in the standard form of the metric.

Several important aspects of the radiation field produced by
a system of this kind are illustrated by explicit computation of
the radial component of the radiation flux for two simple
examples, namely, emission by a uniformly radiating, rotating
thin ring of radius R.,, in the rotation equator of the star and
emission by a similar half-ring.

To compute the radiation flux, we use first-order Boyer-
Lindquist coordinates (r, 6, ¢) centered on the star and intro-
duce a tetrad at the measurement point, which we take to be at
rest in the LNRF at an arbitrary radius r outside the surface of
the star. We specify directions in the tetrad at r using the same
spacelike unit vector n and the same polar and azimuthal
angles d and b introduced in § 3.2. The radial component T% of
the radiation flux in the tetrad may be computed from the
specific intensity distribution using equation (24).

Consider first the radiation field of the full ring. In order to
obtain a simple expression for the intensity distribution mea-
sured by an observer at rest in the LNRF outside the star, we
make some simplifying assumptions about the emission from
the ring. Introducing a unit vector n’ that is spacelike as seen
by a local observer riding on the ring, we assume for simplicity
that the specific intensity of the radiation is independent of n’,
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i.e., that the ring radiates isotropically. Our earlier assumption
that the ring radiates uniformly means that the specific inten-
sity seen by a locally comoving observer is also independent
of ¢.

To determine the specific intensity distribution at the mea-
surement point, we again use the completely general result that
along a given path the frequency-integrated specific intensity I
varies as v*, regardless of whether the frequency v of the ray is
changed by gravitational redshifts, Doppler shifts, frame-
dragging, cosmological redshifts, or any other similar effect or
combination of effects. For the full ring, we find (Miller &
Lamb 1995) that the specific intensity measured by an observer
who is at rest in the LNRF outside the star is, to first order in v
and j,

4r sin @ sin b
1= 2Mjn'"

v 2M\1/? M2 M?
- il —— — — 30
L (-r) G E)) e

where I 4(n; r) is equal to I(r) (see eq. [25]) in the directions n of
the ray paths that intersect the ring and zero otherwise. This
expression is valid for an observer at any radius r > R and any
colatitude 6. The term 2j(M2/R3, — M?/r3) in the bracket on
the right side of equation (30) represents the frequency shift due
to frame dragging while the term (v/R. )1 — 2M/R,)'/>
describes the Doppler shift caused by the rotation of the ring.
For a radiation source of more general but still axisymmetric
form, such as a uniformly rotating and uniformly emitting
spherical source of luminous rings at various latitudes, the
factor v on the right in equation (30) must be replaced by the
appropriate average velocity.

The Doppler effect on the intensity distribution is much
larger than the effect of frame dragging, because the angular
velocity Q,,, of the matter in the ring is much greater than the
angular velocity w of the LNRF at R,,,. To see this, note that
the velocity v of the radiating matter as measured by an ob-
server in the LNRF in the rotation equator at R,,, is (Q,,, — ®)
R..(1 — 2M/R,,)~ /2. Therefore, the first term in the square
brackets on the right side of equation (30), which is the
Doppler effect, is equal to Q. — w. At radial infinity, where
the LNRF coincides with the static frame, the second term in
the square brackets on the right side of equation (30), which is
the frame-dragging effect, is equal to w, to first order. Hence
the ratio of the Doppler and frame-dragging effects seen
at radial infinity is (Q,, /o) — 1. Now j = IQ/M? = «R2Q/M, -
where I is the stellar moment of inertia and « is the square
of the radius of gyration in units of the stellar radius, so
Q..o =~ Q.. R3./2jM?; hence the ratio of the Doppler and
frame-dragging effects is (1/20)(R .p/R)*(Rem/ M) Qer/Q) — 1.
For realistic neutron stars, a is ~0.3 (Friedman et al. 1986;
Cook et al. 1994), so for Q,,, > Q, R.,, > 4M, and r > R, the
ratio of effects is >5; for larger R, or smaller r the ratio is
even larger. This is a specific illustration of the general result
that if the angular velocity of the radiation source is similar to
or greater than the angular velocity of the gravitating mass, the
Doppler effects on the intensity distribution are much larger
than the effects of frame-dragging (see Friedman et al. 1986;
Miller & Lamb 1995).

For an observer who is not in the rotation equator, the ring
appears as a complicated curve in @ and b. However, for an
equatorial observer at rest in the LNRF at any radiusr > R,

I(n; r) = 1y(n; r){l +
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the ring is seen as a straxght line in the rotation _equator,
extending from @ = a,(n/2) to & = a,(37/2), where a,(b) is given

implicitly by
M (RS,
RZ, r3

x <1 _ iM)_m} + 0% (1)

em,

sin o, (b) = sin aol:l —2jsinb

and « is given implicitly by equation (27). Note that although
the angular position of the ring is shifted by an amount 0(}),
the angle subtended by the ring at any point in the rotation
equator at r > R, is the same, to first order in v = R, Q..
and j, as if neither the gravitating mass and nor the emitting
ring were rotating. For a source with a more general but still
axisymmetric shape, such as the surface of a star, the same
result holds; the source is shifted in position by an amount that

" is first order in j, but its angular area remains unchanged to

this order (see Miller & Lamb 1995).

The radial component of the radiation flux from the full ring
can be computed by substituting expression (30) for I(n; r) into
equation (24) and performing the indicated 1ntegrals over d and
b. The terms proportional to v sin b and j sin b integrate to
zero, showing that the lowest order corrections to the radial
flux are second order in v and j. The transformation (eq. [21])
demonstrates that this is also true for the radial component of
the radiation flux in the Boyer-Lindquist coordinate system.

To show that this result is not general, suppose now that
only half the ring (the half defined by b = —n/2, say) emits
radiation as before. It is intuitively clear that if the emitting half
of the ring is the half in which matter is moving toward the
observer, the flux will be increased; if instead the emitting half
of the ring is the half in which matter is moving away from the
observer, the flux will be decreased. Hence the sense of rotation
matters and the change in the radial flux caused by the rotation
of the source is @(v). This change is due to the Doppler effect. In
general, there is also a change () caused by the rotation of
the gravitating mass. This is confirmed by substituting the spe-
cific intensity distribution (30) with appropriately modified
angular limits into equation (24) and computing the radial flux.
The terms proportional to v sin b and j sin b do not integrate to
zero, so that the lowest order corrections are indeed @(v) and
O()).

The results for the ring and half-ring illustrate the fact that
rotation of the radiation source and the gravitating mass gen-
erally produces changes O(v) and 0 j), respectively, in the radi-
ation field, with the effects caused by the motion of the matter
in the source generally more important than the effects caused
by frame-dragging. This was the case for both the ring and the
half-ring. However, if the matter in the source emits symmetri-
cally in the forward and backward directions and, like the full
ring, is symmetric about its rotation axis, the radial flux mea-
sured by an observer at rest in the LNRF is unchanged to 0(v)
and 0( ).

The result for the full ring is a specific example of a more
general result, namely, that the radial component of the radi-
ation flux measured by an observer moving with an azimuthal
velocity B < I relative to the LNRF is the same, to first order in
J, v, and B, as it would be if the star, source, and observer were not
rotating, provided that the radiation source is axisymmetric
about its rotation axis and the emission from the matter in the
source, as seen by an observer comoving with it, is unchanged by
reflection through the local (r, 6)-plane. A mathematical proof
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of this is given in Miller & Lamb (1995), but it can also be
demonstrated using an argument based on the principle that a
physical quantity can change to first order in the (signed) quan-
tities j, v, and B if and only if its value depends on the senses of
rotation of the star, source, and observer. The argument goes
as follows.

Consider emission from a thin axisymmetric ring of matter
rotating slowly around a slowly rotating star (see Fig. 2).
Assume that the rotation axes of the ring and star are co-
aligned. The ring may be at or outside the surface of the star
and need not be in the star’s rotation equator. Suppose the
colatitude of the ring relative to the rotation equator of the star
is 0,,,. Assume that the emission from any small element of the
ring as seen by a comoving observer is unchanged by reflection
through the local (7, )-plane. Then, as measured in the LNRF,
the elements 7%, T, and T* of the radiation stress-energy
tensor are first-order in v and j; all other elements are in
general of order unity (Miller & Lamb 1995). If the source is
mlrror-symmetnc w1th respect to the rotation equator, the ele-
ments T%, T*, and T*? are zero.

Let F be the radial component of the radiation flux mea-
sured by an observer moving with azimuthal velocity #; < 1
with respect to the frame that appears static at infinity, at some
arbitrary colatitude 6, and some arbitrary spherical radius
R, outside the star. This is the initial configuration C,. If the
observer’s azimuthal velocity is changed by the small amount
AB; = — B; needed to bring the observer to rest in the static
frame, the Lorentz transformation (19) shows that the radial
flux measured by the observer is still equal to F, to first order
in ;. This is configuration C,.

Now consider the configuration C; produced by rotating
configuration C, by = radians about the axis defined by the
intersection of the rotation equator and the meridional plane
containing the observer (see Fig. 2). In configuration C; the
senses of rotation of the star and ring are opposite to those in
C, and C,; the beam originally seen by the observer is now on
the other side of the star while the corresponding beam on the
near side of the star points away from the observer. Next,
reflect the star, ring, and observer through the rotation
equator. In this rotated and mirror-imaged configuration,

s = T — Ogpes 0o = T — O, and the emission pattern is mir-
rored; the senses of rotation of the star and ring remain
opposite to those in the initial configuration C,, and the beam
on the near side of the star still points away from the observer.
However, if emission from the matter in the source is
unchanged by reflection though the local (r, 6)-plane, the inten-
sity of the beam pointing toward the observer is the same as
that in the beam pointing away, and hence the radial flux
measured by the observer in configuration C, is still F. Con-
figuration C, is identical to configuration C,, except that the
senses of rotation of the star and ring are reversed.

If, finally, the observer’s azimuthal velocity is changed by the
small amount AB, = B; needed to give the observer the same
azimuthal velocity as in the initial configuration C,, the final
configuration Cj is identical to the initial configuration, except
that the senses of rotation of the star and the ring are reversed.
The Lorentz transformation (19) shows that the radial flux
measured by the observer in the final configuration is equal to
the flux F measured in the initial configuration, to first order.

Because changing the sense of rotation of the star or the ring
does not change the radial flux, there can be no change in the
radial flux to first order in j or v. Also, as we have seen, there is
no change in the radial flux measured by the observer to first
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F1G. 2.—Sequence of operations described in the text which demonstrate that the radial component of the radiation flux and the diagonal components of the
radiation stress-energy tensor do not depend on the rotation rates of the gravitating mass or the radiation source, to first order. [1] Configuration C, of a system
composed of an axisymmetric ring source rotating slowly around a slowly rotating star or black hole and an observer. In this configuration the observer is at rest in
the static frame, matter in the ring rotates clockwise about the vertical axis, and the gravitating mass rotates counterclockwise about the same axis. Also shown is one
of the beams of radiation coming from the matter in the ring. The radial component of the radiation flux measured by the observer is F. [2] Configuration C,
produced by rotating the initial configuration by = radians about the axis defined by the intersection of the rotation equator and the meridional plane containing the
observer. The flux measured by the observer is again F. [3] Configuration produced by reflecting the rotated initial configuration through the rotation equator. The
flux measured by the observer is still F. [4] Configuration C, produced by reflecting the radiation beam through the local r, 6-plane. Provided that emission from the
matter in the ring is symmetric with respect to the local r, f-plane, configuration C, is identical to configuration C,, except that the sense of rotation of the star and
the ring are reversed. The radial flux measured by the observer in configuration C, is the same as the flux F measured by the observer in configuration C,.

order in the observer’s azimuthal velocity f. Since any axisym-
metric radiation source which emits radiation that is locally
symmetric with respect to the (r, 6)-plane can be constructed of
such rings, the radial flux measured by an observer rotating
slowly around such a source is the same, to first order in j, v,
and p, as if the mass, source, and observer were not rotating.

In addition to the radial component of the radiation flux, the
6-component of the flux as well as the off-diagonal element T%
and all the diagonal elements of the radiation stress-energy
tensor measured by a slowly rotating observer are unaffected,
to first order, by rotation of the radiation source and gravi-
tating mass and by the motion of the observer. In contrast, the
¢-component of the radiation flux and the off-diagonal ele-

ments T™ and T% of the stress-energy tensor are all first-order
inv,j,and .

To summarize, if a radiation source in axisymmetric and
rotating slowly about a slowly rotating mass and if emission
from the matter in the source is backward-forward symmetric
with respect to the local direction of motion of the matter, the
radial component of the radiation flux measured in a slowly
rotating tetrad is the same, to first order in the rotation rates of
the source, star, and tetrad, as it would be if none of them were
rotating. If these symmetries of the radiation source are absent,
as in the case of the half-ring, the radial flux will in general
depend on the rotation rates of the star, source, and tetrad to
first order.
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If a system without rotation would produce a spherically
symmetric radiation field, then to first order, the radiation field
produced by the system with rotation remains spherically sym-
metric and the radial flux measured in a slowly rotating tetrad
is given by equation (29), i.e., by the same expression as in the
absence of rotation. Even if the system with rotation produces
an asymmetric radiation field, if there is a spherically sym-
metric and optically thick distribution of matter between the
radiation source and the observer, the radiation field at the
radius of the observer may be nearly spherically symmetric, so
that the radial flux measured in a slowly rotating tetrad is
again given by equation (29).

4. CRITICAL FLUXES AND LUMINOSITIES

In this section we use the expressions for the radiation force
and the radial component of the radiation flux obtained in the

-previous two sections to compute critical radiation fluxes and

luminosities for a slowly rotating radiation source near a
slowly rotating star or black hole. In § 4.1 we introduce the
equation of motion for a test particle (which, by definition,
does not affect the metric or the stress-energy tensor of the
radiation) and use it to generalize the usual definition of the
critical (radial) force outside a nonrotating star or black hole to
the case of a slowly rotating object. In § 4.2 we use the gener-
alized definition of the critical force to define and then compute
critical fluxes and, where possible, critical luminosities for par-
ticles with cross sections that are independent of both the fre-
quency and the direction of the incident radiation. In § 4.3 we
discuss the behavior of critical fluxes and luminosities for par-
ticles with cross sections that depend on frequency and/or
direction, illustrating such effects by two examples. Finally, in
§ 4.4 we discuss the maximum luminosity in general relativity
of stars powered by steady, spherically symmetric radial accre-
tion.

4.1. Critical Radial Force

The general relativistic equation of motion for a test particle
of rest mass m may be written (see e.g., Abramowicz et al. 1990)

1
—f*=a*, 32
~f*=a (2
where f* includes all nongravitational forces and
d2 ]
@ =g + T (33)

is the acceleration measured by an accelerometer comoving
with the particle. In equation (33), 7 is the proper time and

r;v = %gaﬂ(gﬂu,v + gﬂv,p - guv,ﬁ) (34)

are the connection coefficients, where commas denote partial
derivatives.

As well as describing the motion of a single particle, equa-
tion (32) may in some cases adequately describe the motion of
an element of fluid. For example, near a strong X-ray source
matter is likely to be fully ionized by the radiation, the elec-
trons and ions are likely to be closely coupled by electric and
magnetic fields, and the temperature may be only a few keV,
due to Compton cooling. If gas-pressure—gradient forces can
be neglected, and if magnetic and viscous forces are also negli-
gible, the fluid may be treated approximately as a collection of
particles with a momentum transfer cross section equal to the
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electron Thomson cross section and a rest mass equal to the
mass per electron (see, e.g., Zel’dovich and Novikov 1971;
Shapiro & Teukolsky 1983, p. 397; Miller & Lamb 1993).

We define the critical force f,;, at radius r as that radial force
which keeps constant the radial velocity of a particle at r, i.e., the
radial force for which

d*r
F—O.

35
This definition makes it possible to consider the critical force
not only for a particle or an element of gas in the outer part of
a static star, but also for a particle or an element of gas in
motion near a star or black hole.

As noted in § 3.1, the geometry of spacetime outside a slowly
rotating star or black hole is unique to first order in j. The
critical force for a particle in this spacetime can be computed
from the radial component of the relativistic equation of
motion (32) expanded to first-order in j, and the definition (35)
of the critical force. The result for a particle with u, = uy = O is,
in Boyer-Lindquist coordinates,

LM ()
m” T 2 r ) r3sin? 6

6ju, u, M>
T+ 0, (6)
where M is the gravitational mass of the object and u, and —u,
are the specific angular momentum and energy of the particle.
This equation is exact in uy, to O(j). It shows that in general the
critical force depends on the angular momentum j of the gravi-
tating mass as well as the angular momentum u,, of the particle.

The term proportional to 43 in equation (36) shows that a
particle at » > 3M with u, # 0 has centrifugal support against
gravity, so that the critical force is less than it would be for a
particle with u, = 0. For a particle at r < 3M, on the other
hand, the critical force is greater if u, # 0 than if u, = 0. This is
related to the reversal of “inward” and “outward” at r = 3M
discussed by Abramowicz and collaborators (see, €.g., Abramo-
wicz 1992 and references therein).

If u, is not small, the term in equation (36) proportional to
uj can strongly affect the critical force, just as in the Newtonian
limit; moreover, in this case the critical force in general rela-
tively depends on the angular momentum of the star to first
order. Equation (36) shows that to first order in j and u, (and
their product), the critical force is

mM

Jow="3> (37
and is therefore unaffected by azimuthal motion of the particle or
rotation of the gravitating mass to this order. Thus, for a particle
that is at rest in the LNRF (u, = 0) or at rest in the frame that
appears static as seen from infinity (u® = 0), the effects caused
by rotation of the gravitating mass and azimuthal motion of
the particle are at most 0(j%), O(u3), and 0(juy), ie., second-
order. A particle with u, = 0 near a rotating radiation source
around a rotating mass generally experiences an azimuthal
radiation force that accelerates it in the azimuthal direction,
but the resulting u, is always small (Miller & Lamb 1995). A
particle in the outer part of a rotating star need not have any
special value of u,, but if the star is slowly rotating, u, will be
small. Thus, in these situations the effects caused by rotation of
the gravitating mass and azimuthal motion of the particle are
at most second-order, also.
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4.2. Frequency- and Angle-independent Momentum Transfer
Cross Section

Consider now the critical (radial) radiation flux for a particle
with a momentum transfer cross section that is independent of
the frequency and direction of the incident radiation. The criti-
cal flux for such a particle may be calculated from expression
(36) for the critical force and the relation between the radiation
force and the radiation flux. Expression (36) shows that the
critical flux depends on the specific angular momentum of the
particle. The dependence on u, means that the critical flux
varies with latitude for particles supported by gas pressure at
the surface of a uniformly rotating star, just as in the Newto-
nian limit. The critical flux generally also depends on the
angular momentum of the star, to first order, which is a purely
general relativistic effect. However, if u, and j are both small,
equation (37) shows that the critical flux is independent of the
angular momenta of the particle and the star, to first order.

We now compute explicitly the radial component of the
radiation force on a particle that has a small azimuthal velocity
B relative to the LNRF. As shown in § 2.1.1, the radial com-
ponent of the radiation force on the particle, in a tetrad
momentarily comoving with it, is f7., = ¢ T*", where T*" is the
radial component of the radiation flux measured in the co-
moving tetrad. The transformation (21) shows that, to first
order in § and j, the radial force on the particle in the Boyer-
Lindquist coordinate system is

fr=€ypf¥ =€ ff=(1-2M/r)'1’f". (38)

To obtain an expression for the force in terms of the radial
component T' of the radiation flux in the Boyer-Lindquist
coordinate system we first note that (see § 3.1)

e 2MP -
T" = ¢, ¢, T+ = T' —zirs—u — DT . (39)

To determine 1 — A, we note that if v* = B, then u® = fy and
u' = 7. Hence the angular velocity of the particle measured at
radial infinity is

u = 2jM?y ﬂrzz (1 - 2M/r)1/2] , (40

,3<1 _ 2_M)"2 [1 Y
r

and so

A=1+

i (1 - EA—J>U2 : 1)

2jM? r
Substituting this expression for 1 into equation (39), we find, to
first order in §3,

T"=T" + B (1 - Z—M)m T .
r r

Now T*'? is related to the stress-energy T** in the LNRF by a
Lorentz boost by f in the ¢-direction; using the Lorentz trans-
formation (19) gives, to first order in S,

42

M = T° — T, 43)
Finally, substituting this result into equation (42) gives
1/2
T = T 4 g ( _ gi\i) (Tﬁﬁ _ ﬁTié)
- M 1/2
=T +§<1 —27> T + 0(B?) . (44)
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As discussed in § 3.3, T™ is first-order in j and v, so the radial
flux F(n") = T" in the Boyer-Lindquist coordinate system is
equal to the flux T** in the comoving tetrad, plus terms 0(;j?),
8(B?), O(vj), O(Bv), and O(Bj). Thus, to first order in j, v, and B,
the radial component of the radiation force may be written

fraa=(—=2M/r)'?F(r; n) , 435)

in terms of quantities expressed in the Boyer-Lindquist coordi-
nate system. Equation (45) agrees, to first order, with the
expression one obtains by evaluating equation (15).

The critical radial flux for a particle at r, can be determined
by setting the radiation force (45) equal to the critical force
(37); the result is

oy (L= 2M'2 M (m
Fcrit,r(r’ n )‘ (1 —ZM/P‘,) r2 ( )

o
This critical flux is the same as in the absence of rotation.
Therefore, we conclude that if the momentum transfer cross
section is independent of both angle and frequency, the critical
Sflux for a slowly orbiting particle near a slowly rotating mass and
radiation source is the same, to first order in the rotation rates, as
if the particle, mass, and source were not rotating.

In § 3.3 we showed that if the radiation source is axisym-
metric about its rotation axis and the emission is back—front
symmetric, as expected for emission from a rotating star or an
accretion disk or boundary layer around a star or black hole,
the radial component of the radiation flux at r is independent
of the rotation rates of the star and the radiation source, to first
order in j and v. Thus, we can conclude not only that the
critical radial flux for a slowly orbiting particle at r, as mea-
sured at r, is the same, to first order, as it would be if the
particle, mass, and source were not rotating, but also that the
radial flux at the source that produces a critical flux at r is the
same, to first order, as it would be if the particle, mass, and source
were not rotating.

An important corollary is that the critical flux for a particle
moving in a circular Keplerian orbit in the rotation equator of
the gravitating mass is exactly the same as it would be for a static
particle at the same radius. The reason is that as the flux
approaches the critical flux, the specific angular momentum of
a particle in circular Keplerian orbit approaches zero, due to
the radial support provided by the radiation force, and the
terms in the radial equation of motion that involve u,, therefore
vanish.

Given these results, what is the best choice for a benchmark
flux for rotating astrophysical systems? For a system in which
the gravitational mass is spherically symmetric and static, the
critical flux at radius r that is most useful as an astrophysical
benchmark is the critical flux for a particle that is at rest at 7 in
the static frame (i.e., the frame that is at rest with respect to
infinity). In contrast, if the gravitational mass is rotating there
is no local property of spacetime that singles out particles that
are at rest as seen from infinity (i.e., particles with Q = d¢/
dt = 0); indeed, in general there is a region of spacetime, the
ergosphere, where a particle cannot be at rest with respect to
infinity (Bardeen et al. 1972).

Our results show that the critical flux for matter at rest in the
LNRF will often be satisfactory as an astrophysical bench-
mark flux. The critical fluxes for matter at rest in the static
frame (where this is possible), in Keplerian orbit around the
gravitating mass, or in the outer part of a slowly rotating star
are all equal to the critical flux for matter at rest in the LNRF,
at least to first order. Moreover, if the critical flux for matter at

(46)
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rest in the LNRF is adopted as the astrophysical benchmark
flux, many potential complications introduced by rotation of
the radiation source and the gravitating mass are avoided: the
radial components of the radiation flux in the LNRF and in
Boyer-Lindquist coordinates are equal, to first order in j (§ 3.1),
while for matter that is at rest in the LNRF, the change in the
critical flux caused by the rotation of the mass is zero, to first
order in j (§ 4.1). We therefore suggest that for a system with a
rotating gravitational mass, the critical radiation flux that is
likely to be most useful as an astrophysical benchmark is the
critical flux for matter at rest in the LNRF.

In many astrophysical situations it is the critical luminosity
(which is a global quantity) rather than the critical flux (a local
quantity) that is of interest as a benchmark. For the critical
luminosity to be well-defined, the radial component of the radi-
ation flux must be the same in all directions; otherwise, for a
given luminosity the radiation force could be subcritical in
some directions and supercritical in others. Fortunately, many
astrophysical objects produce radiation fluxes that are approx-
imately spherically symmetric.

In § 3 we showed that if the radiation flux produced by a
system composed of a nonrotating mass and radiation source
is spherically symmetric, the flux remains spherically sym-
metric to first order in the rotation rates when the mass and
source are rotating. As shown above, the critical flux for a
particle with specific angular momentum u, remains
unchanged to first order in j, v, u,. Combining these two
results, we find that the critical luminosity for a slowly orbiting
particle at r, as measured at v, is

(1= 2M/n)'?
(1 =2M/r)

so that the critical luminosity for a particle at r, as measured at
infinity, is

Lcrit,r(r,) = 4nr2Fcrit,r(rl; nrl) LE b} (47)

Lesi,(00) = (1 = 2M/r)!* L . (48)

Here
Lg = 4nM(m/o) 49)

is the critical luminosity in the Newtonian limit. The critical
luminosities (47) and (48) are the same as in the absence of
rotation (see, e.g., Shapiro & Teukolsky 1983, p. 396). Thus, if
the momentum transfer cross section is independent of both angle
and frequency, the critical luminosity for a slowly orbiting par-
ticle near a slowly rotating mass and radiation source is the
same, to first order in the rotation rates, as if the particle, mass,
and source were static. In this case the critical luminosity is also
independent of the spectrum and angular size of the radiation
source.

In the Newtonian limit the critical luminosity does not
depend on the location of the particle or the radius at which
the luminosity is measured, provided that the cross section is
independent of frequency and direction. The simplicity and
robustness of this result make Lg a good benchmark for lumi-
nous sources. The critical luminosity in general relativity
differs from the critical luminosity in the Newtonian limit in
that, for a particle at radius r, the critical luminosity measured
at ris a factor (1 — 2M/r)~ /2 larger than the Newtonian value,
while the critical luminosity measured at infinity is a factor
(1 — 2M/r)*/? smaller. Thus, in general relativity the critical
luminosity depends both on the radial position of the particle
and on the radius at which the luminosity is measured, even if
the cross section is frequency- and angle-independent.
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However, as we have shown here, the critical luminosity in
general relativity is robust in the sense that it is unaffected, to
first order, by rotation of the particle, mass, and source. Also,
the luminosity at the source that produces a critical luminosity
at r is the same, to first order, as it would be if the particle,
mass, and source were not rotating.

As discussed in § 2.3, the results presented here for a test
particle are also valid under fairly general conditions for an
element of gas, such as an electron-ion plasma, if m/o is
replaced by 1/x, where k is the opacity computed from the
relevant cross sections. As explained in § 2.3, even if the rele-
vant cross sections are angle-dependent, the opacity is gener-
ally direction-independent unless particles are oriented or the
angle dependence of the cross sections is related to some
special direction within the system, such as that defined by a
magnetic field. If in addition the opacity is frequency-
independent, the results derived in this section apply. Radial
dependence of the opacity can be accommodated by replacing
m/o by 1/k(r). Thus these results are more generally relevant
than they might at first seem to be.

4.3. Frequency- and/or Angle-dependent Momentum Transfer
Cross Section

Next consider the critical (radial) radiation flux for a particle
with a momentum transfer cross section that depends on the
frequency or direction of the incident radiation. As shown in
§ 2.1.1, the radial component of the force in a tetrad momen-
tarily comoving with the particle is f?,, = {a(n")>F(r'), where
the appropriately angle-averaged cross section is given by
equation (7). The argument leading to equation (46) is still
valid if o is replaced by (o). However, unlike in our previous
analysis, here {o) itself is generally a function of r.

As a simple example, suppose the cross section varies with
direction; then the variation of the apparent angular size of the
source with the particle’s distance from it will introduce a
dependence of (o) on r. As a result of the r-dependence of (¢,
the expression for the critical flux in this case has an r-
dependence that is different from the r-dependence of the stan-
dard Newtonian and general relativistic expressions for the
critical flux, which assume that the cross section is frequency-
and angle-independent.

In general, computation of (o) requires tracing of rays from
the radiation source to the position of the particle. If, however,
the radiating matter is all at the same radius, the specific inten-
sity at the radiation source is independent of direction (i.e., the
intensity distribution is isotropic), and the cross section is inde-
pendent of frequency, {¢) is easily computed without ray-
tracing, by using the relation I oc v* discussed in § 3.2. The
reason is that in this case the actual value of the specific inten-
sity at r does not enter the computation of {¢), which reduces
to a simple average of the cross section over the solid angle
subtended by the source at the position of the particle.

To illustrate the effect on the critical flux of cross section
angle-dependence, we consider particles with the two
frequency-independent but angle-dependent cross sections dis-
cussed in § 2.1.2, outside a nonrotating, uniformly emitting,
spherical source. To simplify the calculation, we assume that
the specific intensity at the source is independent of direction.
Then as just discussed, the angle average reduces to

% 6(d, b) cos d sin ddadb
far f&° cos a sin adadb

(oy =1 , (50)
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where «, is given by equation (27). For a flat particle with faces
of area g, oriented perpendicular to the radial direction,

2 (1 —|cos® o]
o> = 3 ( sin? o, 0>

and hence the critical flux for a particle at r, as measured at r/,
is

(51)

P ) G2 M3 (s

ud (case 1)
(1 —2M/r) r> 2\1 —|cos® ay|/ oo ’
(52)
where the subscript on the flux indicates the position of the
particle and its argument indicates the position at which the

flux is measured. If instead the faces of the particle are oriented
perpendicular to the ¢-direction,

(o) = (4'_s;'1;' ao)"o

and hence the critical flux for a particle at r, as measured at v/,
is

(33)

Fcrit,r(rl) =

1 —2M/r)!? _M_( 3n ) m (54)

— 2).
(1 —=2M/r) r* \4sin o/ a, (case 2)

Since the radiation field is spherically symmetric, the critical
luminosities are well-defined and are

(1 —2M/n'2 3 (
(1 —2M/r) 2

sin? aq
1 —|cos® o]

Lcrit,r(r,) = )LE (Case 1)

and (55)

~ (L=2M/n\? 3n

Lcrit,r(r) - (1 _ 2M/r/) (4 Sin ao)LE (Case 2) B (56)
where L is given by the usual expression for the critical lumi-
nosity in the Newtonian limit (eq. [49]), with ¢ replaced by o,.
In case 2, the effects of the redshift, time-dilation, and stronger
radial gravitational force in general relativity exactly offset the
change in the apparent angular size of the source, so that
Ly, ,(00) oc r in general relativity as well as in the Newtonian
limit.

The critical luminosities for case 1 and case 2 are shown as
functions of r in Figure 3. Also shown is the critical luminosity
for an angle-independent cross section equal to o. These plots
show that the effect of cross section angle dependence can be
quite large. In case 1, the critical luminosity is 50% greater
than the standard Newtonian or general relativistic critical
luminosities at the source (where a = n/2). In case 2, the critical
luminosity is 2.4 times larger than the standard luminosities at
the source, and becomes arbitrarily large as r — oo and « — 0.

These examples show that if the cross section is angle-
dependent, the apparent angular size of the radiation source
generally enters the expression for the critical flux, changing its
dependence on the radial position r of the particle. As a result,
the critical luminosity generally depends on r even in the Newto-
nian limit. The r-dependence of the critical luminosity in
general relativity is different from that in the Newtonian limit
because the apparent angular size of the source is affected by
gravitational lensing while the radiation flux is affected by red-
shift and time-dilation. Moreover, in general relativity the
apparent angular size of the source varies with radial position
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FiG. 3—Critical luminosities for particles as a function of their radial posi-
tion r, as measured at infinity in units of Lg, the critical luminosity in the
Newtonian limit, for spherically symmetric emission from a spherical surface of
radius 2.01M. Shown are the critical luminosities for a particle with an angle-
independent cross section (solid line) and oriented particles with the two angle-
dependent cross sections referred to in the text as case 1 (dotted line) and case 2
(dashed line).

differently for source radii larger and smaller than 3M; there-
fore, if the cross section is angle-dependent, the variation of the
critical luminosity with r depends on whether the radius of the
source is greater or less than 3M (see eq. [27]).

Although the derivation given here assumes a nonrotating
mass and radiation source, for the two particle orientations we
have considered the critical fluxes and luminosities are not
affected, to first order, if the mass and radiation source are
rotating. However, in general the critical fluxes and lumi-
nosities are affected to first order. More generally, the cross
section may depend on frequency and direction in a correlated
way, in which case the critical flux will depend in a correlated
way on the spectrum of the radiation source as well as its
angular size.

Equation (55) is (in our notation) the expression presented
(incorrectly) by Nemiroff et al. (1993) as the critical luminosity
for a Thomson-scattering particle.® Our analysis shows that
the difference between their expression and the usual expres-
sion (47) is due entirely to their use of an incorrect expression
for the force on the particle. As discussed in § 2.1.3, their
expression for the force is equivalent to assuming that the cross
section for Thomson scattering is g(n) = o1 |cos d| rather than
or, i€, that the electron behaves like a flat, infinitesimally
thick, perfectly absorbing surface of area g, oriented so that
its normal points in the local radial direction. This is

8 Their expression for the critical luminosity is given by their egs. (7) and (8).
Nemiroff et al. denote the Schwarzschild coordinate radius of the particle by
7,y and use Y where we use « to denote the half-angle of the limb of the source.
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responsible for the erroneous conclusion of Nemiroff et al. that
the critical luminosity for Thomson scattering depends on the
angular size of the source.

As in the case of frequency- and angle-independent cross
sections, the results presented in this section are valid under
fairly general conditions for an element of gas, if m/o is
replaced by 1/x(n"), where x(n") is the opacity computed from
the appropriately angle-, frequency-, and particle-averaged
cross sections (see § 2.3).

4.4. Critical Luminosity for Radial Accretion

So far we have considered the critical fluxes and luminosities
that keep the radial velocity of a particle constant. They there-
fore cause a particle that is at radius r and initially has no
radial velocity (4, = 0) to remain at r. In computing these
fluxes and luminosities, we allowed the gravitating mass and

‘the radiation source to be surrounded by a vacuum or by
‘absorbing or scattering matter, but we always assumed that

the luminosity of the system was unaffected by such matter. We
now consider the maximum luminosity of a nonrotating star
that is powered, at least in part, by spherically symmetric
radial accretion. In this case the accreting matter outside the
radiation source generally does affect the luminosity of the
system. In such a system, the matter outside the star is flowing
radially inward, so that u, # 0.

We assume that the radiation field is spherically symmetric.
Because the critical luminosity (47) decreases with radius in
general relativity, one might expect that inflow could begin at
some large radius, where the luminosity is subcritical, only to
stall at a smaller radius, where the luminosity has become
supercritical. As we show, generalizing an argument due to
Park & Miller (1991), this is possible, but only if the fraction of
the total luminosity produced by the accretion flow is less than
the efficiency € = 1 — (1 — 2M/R)'/? of the system in produc-
ing radiation from a unit mass of accreted matter (for a
neutron star R is the stellar radius, whereas for radial flow onto
a black hole R is the smallest radius at which luminosity is
produced). The reason is that the infalling matter performs
work on the escaping radiation. As a result, the luminosity
increases with increasing radius and, unless the accretion lumi-
nosity is a sufficiently small fraction of the total,
L (00)/Ly (o) is greatest at radial infinity and hence the criti-
cal luminosity for steady flow in general relativity, as measured
at infinity, is Lg, the same as in the Newtonian approximation.

To see this, we begin by noting that, as shown by the
detailed study of Park & Miller (1991), | u, | is small everywhere
throughout the flow when the luminosity approaches its criti-
cal value. If | u, | were zero, the radiation flux F (r) measured in
the local frame comoving with the matter would be equal to
the stationary-frame flux F(r), and the luminosity would be
critical when, somewhere in the flow, F(r) became equal to the
local critical flux F, (r). Since | u, | is not zero, the luminosity
is critical when F,(r) exceeds the local critical flux F . (r) by
an amount sufficient to halt the inflow. The precise condition
for criticality cannot be determined without a detailed, global
flow solution. However, Park & Miller (1991) have shown that
|u,| is very small near the critical radius r_;, where F_(r) first
equals F; (r). Therefore, it is a good approximation to
assume that the luminosity is critical when F_(r) equals
F i (r) somewhere in the flow. Since F(r) bounds F(r) from
below, this implies that steady inflow is not possible if F(r) >
F . ,(r) somewhere in the flow. Hence, we can determine the
maximum luminosity of the system by computing the accretion
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luminosity L,,., = €M, or equivalently, the radial mass flux M,
for which F(r) first equals F;, ,(r) somewhere in the flow.

For simplicity, we continue the argument in terms of lumi-
nosities rather than fluxes and measure all luminosities in a
static frame at radial infinity. The maximum luminosity of the
system will be equal to the critical luminosity for matter at
infinity, L, ,(c0), if and only if L, (c0) = L,(co0) for all finite
r when L (0) = L. (o). The luminosity generated between
radial infinity and r by interaction of the accretion flow with
the radiation field is [1 — (1 — 2M/r)!/>]M (the kinetic energy
terms that would normally appear in this expression have
been neglected, because the radial inflow is slow everywhere).
Therefore, when L (0) = Ly, (), L{0) = L, o0(0) —
[1 — (1 — 2M/r)*/*]M, so the condition Ly, (o) > L(c0) can
be written

Lerit,(00) = Legit,0(0) — [1 — (1 = 2M/N**IM  (all r < c0) .
&)

Given any L, (o) (such as that for a direction- or radius-
dependent opacity), inequality (57) can be used to determine
whether the maximum luminosity is equal to the critical lumi-
nosity at radial infinity.

Suppose now that the opacity is direction- and radius-inde-
pendent. Then Lcrit.oo(w) = LB9 Lcrit,r(w) = (1 - ZM/r)l/ZLE,
and condition (57) becomes

(A =2M/mV*(Lg—M)>Lg—M (allr< o). (58)

This condition is satisfied if M > Ly, i.., if the accretion flow
produces at least the fraction € of the total luminosity. For
typical neutron star masses and equations of state, € ~ 0.2, so
condition (58) will generally be satisfied if more than ~20% of
the luminosity is produced by the radial accretion flow. In
accreting neutron star systems, a radial flow component that
generates this fraction of the total luminosity is expected to be
created by azimuthal radiation drag, when the luminosity is
near-critical (Lamb 1989, 1991b, 1994; Fortner, Lamb, &
Miller 1989, 1994). .

To see what happens when M < Lg, we need to investigate
the variation of Ly, ,(00) — L(0) = (1 — 2M/r)*/2Lg — L/(c0)
with radius, which is shown by its derivative

d . 2M\"12 M
2 [Lanr(e0) = Lio0)] = (L - M)(l - 7) 5. (9

Until the critical luminosity is reached somewhere, L (c0)
— L/(o0) is positive everywhere. Also, the factor (1 — 2M/
)~ Y2 on the right is always positive outside 2M. Therefore, if
M > Lg, the derivative of L, ,(00) — L(c0) is negative,
showing that the stationary-frame luminosity gets closer to the
critical luminosity as r increases, and is closest at infinity, con-
firming our earlier result. If on the other hand M < Lg, then
the derivative of L, (00) — L(o0) is negative, showing that
the stationary-frame luminosity gets closer to the critical lumi-
nosity as r decreases, and is closest at the stellar surface, so it is
possible for matter to begin to accrete from infinity and then
to stall closer to the star, causing the flow to become
time-dependent. If M < Lg, the maximum luminosity for
steady spherical inflow, as seen at infinity, is L, (o) =
(1 —2M/R)**Lg + €M.

5. RESULTS AND CONCLUSIONS

The critical flux (or luminosity) at which the outward force
of radiation balances the inward force of gravity plays an
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important role in many astrophysical systems. In this work we
have studied the radiation force on particles with arbitrary
cross sections and investigated the radiation field produced by
radiating matter, such as a disk, ring, or stellar surface, that
rotates slowly around a slowly rotating, gravitating mass. We
then used the results to obtain expressions for the critical radi-
ation flux and, where appropriate, the critical luminosity, both
when the opacity is frequency- and direction-independent and
when it is frequency- or direction-dependent. As discussed in
§ 1, all neutron stars with known periods rotate slowly in the
sense referred to here. Black holes in binary systems are also
expected to be slowly rotating in this sense, and some black
holes in active galactic nuclei may be slowly rotating.

Here we summarize our results; details may be found in the
cited subsections.

5.1. Radiation Force

In § 2 we analyzed the radiation force on a scattering or
absorbing particle and showed that:

1. The radiation force on a particle or an element of gas is
not proportional to the diagonal (“ pressure ”) components of
the radiation stress-energy tensor nor is it in general pro-
portional to any component of the radiation stress-energy
tensor, including the radiation flux. In particular, if the cross
section depends on the frequency but not the direction of the
incident radiation, as in Compton scattering, the radiation
force generally is neither proportional to nor in the direction of
the radiation flux (§ 2.1).

2. If the momentum transfer cross section is independent of
both the frequency and the direction of the incident radiation,
the radiation force is in the direction of the local radiation flux
measured in an orthonormal tetrad comoving with the par-
ticle, with a magnitude that is proportional to the radiation
flux (§ 2.1).

3. The radiation force on a small volume of gas is equal to
the sum of the forces on the constituent particles under fairly
general conditions (§ 2.3). The momentum transfer cross sec-
tions of the constituent particles may be replaced by the cross
sections of particles at rest in the center-of-momentum frame of
the gas if the thermal and drift velocities of the particles are not
too large (§ 2.3). Even if the cross sections of the constituent
particles are angle-dependent, the opacity of an element of gas
is independent of direction unless the particles are oriented or
the angle dependence of the cross sections is related to some
direction in the system, such as that defined by a magnetic
field. Only if the opacity is independent of both frequency and
direction, the relevant particle speeds are small compared to c,
and the photon mean free path is small compared to other
relevant distances is the force on an element of gas proportion-
al to the gradient of the radiation pressure (§ 2.3).

5.2. Radial Component of the Radiation Flux

In § 3.2 we analyzed the radial component of the radiation
flux measured in a static tetrad near a nonrotating black hole
or relativistic star that produces a time-independent and spher-
ically symmetric radiation field and showed that it is indepen-
dent of the radius and angular size of the radiation source. The
flux is also independent of the optical depth of any matter that
may surround the radiation source, provided the matter is
distributed spherically symmetrically and does not alter the
luminosity.

In § 3.3 we investigated the radiation field produced by radi-
ating matter, such as a disk ring, or stellar surface, that rotates
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slowly around a slowly rotating gravitating mass. We showed
that if the rotation axes of the radiating matter and the gravi-
tating mass are co-aligned (the radiating matter and the mass
need not rotate at the same rate, or in the same sense), then:

1. Doppler and frame-dragging effects causes changes in the
radiation field that are first-order in the appropriately aver-
aged azimuthal velocity v of the matter in the radiation source
and the dimensionless angular momentum j of the rotating
mass. If the angular velocity of the radiation source is similar
to or greater than the angular velocity of the gravitating mass,
the Doppler effects are generally much larger than the effects of
frame-dragging.

2. If the radiation source has symmetries that are expected
for many astrophysical sources, then the angular shape of the
radiation source, the radial component of the radiation flux,
and all of the diagonal elements of the stress-energy tensor
measured in a slowly rotating tetrad are the same, to first order
in v, j, and the velocity of the tetrad, as they would be if the
source, mass, and tetrad were not rotating. Since j < 0.2 for
neutron stars with measured spin periods, the effects of rota-
tion are at most 0(j2) ~ 4% for these stars.

5.3. Critical Fluxes and Luminosities

If the radiation field produced near a star or black hole is
asymmetric, as it would be if radiation is emitted only from a
thin band around the equator (perhaps because the object is
accreting matter from a geometrically thin disk), there is no
obvious definition of the critical luminosity nor, supposing a
definition were adopted, would it be likely to prove useful as a
general benchmark. Fortunately, many astrophysical systems
produce radiation fields that are approximately spherically
symmetric. If the flux produced by a system would be spher-
ically symmetric in the absence of rotation, it remains spher-
ically symmetric to first order in j and v if the mass and source
are rotating. Thus one can define a critical luminosity for such
a system that is accurate to first order.

In general, the critical flux and luminosity depend not only
on the specific angular momentum of the matter, but also on
the angular momentum of the gravitating mass. However, if
both u, and j are small, the dependence is only second-order
LO(j®), O(juy), and Ou3)] (§ 4.2). Our results for this case may
be summarized as follows.

Frequency- and direction-independent opacity—If the
opacity is independent of both the frequency and the direction
of the incident radiation, then:

1. The critical radial flux for slowly rotating matter is given
by equation (46) and is the same, to first order in the specific
angular momentum u, of the matter, the angular momentum j
of the mass, and the appropriately averaged azimuthal velocity
v of the radiation source, as it would be if the matter, mass, and
source were not rotating. The critical flux for matter in circular
Keplerian orbit in the rotation equator of the gravitating mass
is exactly the same as it would be for static matter at the same
radius, since uy, =0 for such an orbit if the flux is critical
§ 4.2.1).

2. The critical luminosity for slowly rotating matter in a
system that would produce a spherically symmetric radiation
field in the absence of rotation is given by equation (48) and is
the same, to first order in uy, j, and v, as it would be if the
matter, mass, and source were not rotating. Unlike in the New-
tonian limit, in general relativity the critical luminosity varies
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with the radial location of the matter and the radius at which
the luminosity is measured (§ 4.2.1).

3. As in the Newtonian approximation, the critical lumi-
nosity in general relativity is independent of the angular size as
well as the spectrum of the radiation source. Thus, if the radi-
ation field produced by the system is spherically symmetric, a
spherically symmetric distribution of absorbing or scattering
material between the source and the matter in question that
does not change the luminosity will not change the critical
luminosity at the matter or the luminosity at the radiation
source that produces the critical luminosity at the matter. The
conclusion of Nemiroff et al. (1993) that the critical luminosity
for Thomson scattering depends on the angular size of the
radiation source (see also Walker 1992) is due entirely to their
use of an incorrect expression for the radiation force on a
Thomson-scattering particle (§ 4.2.1).

4. Our results show that the critical flux for matter at rest in
the LNRF will often be satisfactory as an astrophysical bench-
mark flux, since the critical fluxes for matter at rest in the static
frame (where this is possible), in Keplerian orbit around the
gravitating mass, or in the outer part of a slowly rotating star
are all equal to the critical flux for matter at rest in the LNRF,
at least to first order (§ 4.2). Moreover, if the critical flux for
matter at rest in the LNRF is adopted as the astrophysical
benchmark flux, many of the complications potentially intro-
duced by rotation of the radiation source and the gravitating
mass are avoided (§§ 3.1 and 4.1). We therefore suggest that for
a system with a rotating gravitational mass, the critical radiation
flux for matter at rest in the LNRF should be used as the astro-
physical benchmark.

Frequency- andjor direction-dependent opacity—If the
opacity depends on either the frequency or the direction of the
incident radiation, as in Compton scattering, then:

1. The critical flux generally differs by amounts that are
first-order in uy, j, and v, from what it would be if the matter,
mass, and source were not rotating. However, for neutron stars
with measured periods, j < 0.2, so even in this case the effects of
rotation are at most only ~20% (§ 4.2.2).

2. Even if the flux produced by a slowly rotating system is
spherically symmetric to first order in j and v, the luminosity
that produces a critical flux in one direction generally differs
from the luminosity that produces a critical flux in another by
amounts that are first-order in uy, j, and v. Therefore, one
generally cannot define a critical luminosity that is accurate to
first order (§ 4.2.2).

3. If the radiation field is spherically symmetric and the
matter, mass, and source are all static, one can define a critical
luminosity. However, the critical luminosity generally depends
on the angular size and spectrum of the radiation source, both
in the Newtonian approximation as well as in general rela-
tivity. If so, the critical luminosity will depend on the radial
location of the matter even in the Newtonian limit (§ 4.2.2).
Moreover, a spherically symmetric distribution of matter
between the source and the matter in question will generally
change the critical flux by, for example, altering the angular
brightness distribution or the spectrum of the radiation source
seen by the matter in question, even if it does not change the
luminosity. These effects may be important in some systems,
such as active galactic nuclei, that have hard spectra and
copious numbers of electrons.

Although direction dependence of the opacity can strongly
affect the critical luminosity, this complication is rarely of prac-
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tical importance in situations where the critical luminosity is
relevant. Even if the relevant particle cross sections are angle-
dependent, the opacity of a gas of particles is generally
direction-independent, unless the particles are oriented for
some reason or the angle dependence of the cross section is
related to some special direction within the system (§ 2.3). An
example of the latter is Compton scattering in a strong mag-
netic field, which leads to an opacity that depends on the angle
between the direction of the incident radiation and the direc-
tion of the magnetic field. However, if the magnetic field is
strong enough to affect cross sections, magnetic forces are
likely to be dynamically important, in which case a critical
luminosity defined in terms of gravitational and radiation
forces alone probably will not be very useful.

5.4. Spherically Symmetric Accretion

In § 4.4 we considered the maximum luminosity of a non-
rotating star powered, at least in part, by spherically symmetric
raidal accretion. Generalizing slightly an argument of Park &
Miller (1991), we derived a condition on the critical luminosity
as a function of radius that, if satisfied, guarantees that the
critical luminosity of the system is equal to the critical lumi-
nosity for matter at infinity.

We then showed that if the opacity is direction- and radius-
independent and Mc? > Ly, the maximum luminosity for
steady inflow is exactly the classical Eddington luminosity Ly.
This condition on M is equivalent to the statement that the
radial accretion flow accounts for at least a fraction € of the
total luminosity, where € is the efficiency of gravitational mass
in producing radiation from accreting mass. For neutron stars,
€ ~ 0.2, so the critical luminosity is L if the radial accretion
flow accounts for at least 20% of the luminosity. This is
thought to be the case, for example, in the luminous neutron
star sources called “Z sources,” when they are on the normal
branch (Lamb 1989, 1991b, 1994; Fortner et al, 1989, 1994).

If instead Mc? < Lg (or, equivalently, if the radial accretion
flow accounts for less than a fraction € of the total luminosity),
the luminosity first becomes critical at the stellar surface, so it
is possible for matter to begin to accrete from infinity and then
to stall closer to the star causing the flow to become time-
dependent. In this case the maximum luminosity for steady
spherical inflow is (1 — 2M/R)'>Lg + €M, where R is the
stellar radius.

5.5. Conclusion

Despite many potential complications, the critical lumi-
nosities of systems composed of a slowly rotating black hole or
relativistic star and a rotating radiation source are usually
accurately given by the expressions for the critical luminosities
of systems composed of static masses and sources. The critical
luminosity for relativistic stars and black holes powered by
radial accretion is exactly the classical Eddington critical lumi-
nosity. Only when, as in Compton scattering, the opacity is
strongly frequency-dependent are the effects of rotation likely
to be appreciable. Even in this case the effects are <20% for
slowly rotating systems.
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