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ABSTRACT
Observations made with the Rossi X-Ray T iming Explorer have revealed kilohertz quasi-periodic

brightness oscillations (QPOs) from nearly twenty di†erent neutron star low-mass X-ray binaries
(LMXBs). These frequencies often appear as a pair of kilohertz QPOs in a given power density spec-
trum. It is extremely likely that the frequency of the higher frequency of these QPOs is the orbital fre-
quency of gas at some radius near the neutron star. It is also likely that the QPOs are caused by the
movement of bright arcs or luminous clumps around the star, which produce a modulation in the
observed X-ray intensity as they are periodically occulted by the star or as they present a di†erent
viewing aspect to the observer at inÐnity. If this picture is correct, it means that this type of QPO is a
beaming oscillation. In such models it is expected that there will also be beaming oscillations at the
stellar spin frequency and at overtones of the orbital frequency, but no strong QPOs have been detected
at these frequencies.

We therefore examine the processes that can attenuate beaming oscillations near neutron stars, and in
doing so we extend the work on this subject that was initiated by the discovery of lower frequency
QPOs from LMXBs. We consider attenuation by scattering, attenuation by light deÑection, and the
decrease in modulation caused by integration over the visible surface of the neutron star. Our main
results are (1) in a spherical scattering cloud, all overtones of rotationally modulated beaming oscil-
lations are attenuated strongly, not just the even harmonics, (2) the amount of attenuation is diminished,
and hence the observed modulation amplitude is increased, by the presence of a central, Ðnite-sized star,
even if the scattering cloud is much larger than the star, and (3) if the speciÐc intensity of radiating
points on the star has a large angular width, then even with zero optical depth from the stellar surface to
the observer, and even in the approximation of straight-line photon propagation, the modulation ampli-
tude seen at inÐnity is decreased signiÐcantly by integration over the visible portion of the surface. We
also compare the modulation of Ñux as seen at inÐnity with the modulation near the star and show that
(4) it is possible to have a relatively high-amplitude modulation near the star at, e.g., the stellar spin
frequency, even if no peak at that frequency is detectable in a power density spectrum taken at inÐnity.
Subject headings : binaries : close È stars : neutron È X-rays : stars

1. INTRODUCTION

The discovery of kilohertz quasi-periodic brightness
oscillations (QPOs) from many neutron star low-mass
X-ray binaries (LMXBs) has given us a sensitive probe of
the conditions near accreting neutron stars (see van der Klis
2000 for a review of the properties of kilohertz QPOs). A
variety of models have been suggested for this phenomenon,
including beat-frequency models (Strohmayer et al. 1996 ;
Miller, Lamb, & Psaltis 1998), relativistic precession models
(Stella & Vietri 1998), and disk oscillation models (e.g.,
Osherovich & Titarchuk 1999).

In any such model, the brightness oscillations can be
produced in two general ways. In a pure luminosity oscil-
lation, the total luminosity of the source changes quasi-
periodically but the angular distribution of the radiation
remains Ðxed. In a pure beaming oscillation, the total lumi-
nosity remains constant but the angular distribution of the
radiation changes and hence the Ñux in the direction of the
observer is modulated. An example of a luminosity oscil-
lation is the beat-frequency oscillation in the magneto-
spheric beat-frequency model proposed for the so-called
horizontal-branch oscillation seen from Z sources (Alpar &
Shaham 1985 ; Lamb et al. 1985 ; Shibazaki & Lamb 1987).

1 Current address : Department of Astronomy, University of Maryland,
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An example of a beaming oscillation is the modulation
created by an accretion-powered pulsar, in which, as the
neutron star rotates, the hot spots on the magnetic polar
cap pass into and out of our view, creating an observed
modulation.

Here we focus on beaming oscillations. In some models of
the kilohertz QPOs (e.g., Miller et al. 1998), the QPO peak
with the highest frequency in a given source is a beaming
oscillation caused by the movement of bright arcs of impact
around the star, at the orbital frequencies in a special range
of radii in the accretion disk. Only the fundamental for such
an oscillation has been observed, and the amplitudes at any
overtones are down by at least factors of several. Moreover,
in no kilohertz QPO source has there been a strong bright-
ness oscillation observed at the putative stellar spin fre-
quency during the persistent emission between type 1 X-ray
bursts (kilohertz QPOs have not been observed from the
millisecond X-ray pulsar SAX J1808[3658). For some of
the higher luminosity sources, such as Sco X-1, the upper
limit on the pulsed fraction is as low as 0.3% (Vaughan et al.
1994). This constrains beat-frequency models, in which the
lower frequency QPO peak is created in part by a modula-
tion at the spin frequency. It is therefore necessary to
explain how the spin modulation can be important close to
the star but undetectable by current instruments at inÐnity.

To understand this, we need to consider various ways in
which beaming oscillations can be attenuated on their way
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to us. Two general e†ects are (1) integration over the visible
surface of the star, which tends to smooth out variations in
intensity, and (2) scattering in a surrounding hot central
corona, whose existence has been inferred from previously
existing spectral and temporal modeling of neutron star
LMXBs (Lamb 1989 ; Miller & Lamb 1992 ; Psaltis, Lamb,
& Miller 1995 ; Psaltis & Lamb 1997). Previous treatments
of the attenuation of beaming oscillations by scattering
(Brainerd & Lamb 1987 ; KylaÐs & Phinney 1989) assumed
for simplicity that the source of radiation was a pencil beam
at the center of a scattering cloud with uniform electron
density (although see Wang & Schlickeiser 1987 for a dis-
cussion of o†set emission and varying electron density in
the di†usion approximation) and have implicitly assumed
that photons follow straight-line trajectories (although for a
treatment of general relativistic light-bending without scat-
tering, see Wood, Ftaclas, & Kearney 1988 ; Me� sza� ros,
Ri†ert, & Berthiaume 1988). With the large amounts of data
available from the Rossi X-ray T iming Explorer (RXT E), it
is now important to examine some of the deviations
expected from this idealization.

Here we calculate the attenuation of beaming oscillations
near neutron stars, taking into account the Ðnite size of the
star, the varying electron number density near the star, and
general relativistic light deÑection. In ° 2 we explain our
numerical method. In ° 3 we discuss the decrease in the
modulation amplitude of beaming oscillations caused by
integration over the visible surface of the star. In ° 4 we treat
several aspects of the attenuation of beaming oscillations by
scattering, including the presence of a Ðnite object, varying
electron number density, modulation from multiple
harmonics of emission, the angular dependence of the spe-
ciÐc intensity, and general relativistic light deÑection. In ° 5
we calculate the modulation amplitude close to the star,
within the scattering cloud. In ° 6 we summarize and give
our conclusions.

2. NUMERICAL METHOD

The numerical results in this paper are generated using a
Monte Carlo code. We assume that a star of radius R is in
the center of a scattering cloud. We also deÐne optical
depths and such that if the locally measured electronq

R
q
cnumber density were uniform, then, if the star were not

present, the optical depth from the center of the sphere to
the radius of the star would be and the optical depthq

Rfrom the center to the outer boundary of the scattering
sphere would be Photons are introduced into the sphereq

c
.

at some radius and angle, traveling in some given direction,
and they are followed individually as they scatter in the
sphere. When the photons escape, their direction is stored.
After all the photons (104È106, depending on the run) have
been tracked, rms amplitudes or beaming ratios can be
computed.

We now discuss how photon paths between scatterings
and after escape are followed for straight-line propagation
and light deÑection.

2.1. Straight-L ine Photon Propagation
The number x of mean free paths traversed between two

scatterings is selected randomly according to e~x. If the
scattering cloud has a uniform density, then the physical
distance traveled is proportional to x ; otherwise the dis-
tance must be calculated from the density distribution.
Once the distance between two given scatterings is ascer-

tained, the code checks whether (1) the photon hits the star,
or (2) the photon escapes. If the photon escapes, the current
direction of propagation of the photon is stored. If the
photon hits the star, then in the next iteration the photon is
assumed to be emitted in an outward direction from the
point of impact, selected from an isotropic distribution.
Otherwise, the new location is calculated by adding the
vector of the photon path to the previous position.

2.2. L ight DeÑection
When light deÑection is included, the propagation of

photons is slightly more complicated than it is if photons
propagate in straight lines. Although light deÑection occurs
in Newtonian gravity as well as in general relativity, light
deÑection is important only when gravity is strong enough
to make general relativistic corrections to Newtonian
gravity signiÐcant. Hence, we consider an external space-
time that is the Schwarzschild spacetime, which is appropri-
ate outside spherically symmetric, nonrotating neutron
stars. This spacetime includes most of the important fea-
tures of, e.g., light deÑection around neutron stars, and the
results are easier to evaluate than the results of scattering
around rotating neutron stars.

In the Schwarzschild spacetime, any geodesic can be
treated as an equatorial geodesic by an appropriate rota-
tion of the coordinate system (a statement that is not true
for general spacetimes with rotation). This feature means
that a simple way to treat photon propagation between
scatters is to follow the path in that temporary ““ equatorial
plane ÏÏ and then rotate back into the global coordinate
system. Hence, there are three new tasks brought up by the
inclusion of light deÑection : (1) calculation of temporary
equatorial planes, (2) computation of the curved trajectory
of the photon in that plane, and (3) determination of the
additional curvature of the photon trajectory after it
escapes from the scattering cloud. We now treat these in
order.

Let the current angular location of the photon have a
colatitude h and an azimuthal angle / in the global coordi-
nate system. We represent the unit vector in this direction
by (h, /), which in Cartesian coordinates is as usual the
three-vector (sin h cos /, sin h sin /, cos h), where the Ðrst,
second, and third components are along the global x, y, and
z directions, respectively. Let the initial direction of propa-
gation of the photon, also in the global coordinate system,
be (a, b). We set up the new equatorial plane as follows. The

is in the direction (h, /), and since this is properlyxü -axis
normalized we assign The is perpendicularxü \ (h, /). zü -axis
to the plane containing (h, /) and (a, b) and is thus in the
direction (h, /) ] (a, b). The remaining axis is in the direc-
tion If the angle between (h, /) and (a, b) is t,yü \ zü Â xü .
then the unit vectors are

xü \ (h, /) ,

yü \ 1
sin t

[(a, b) [ (h, /) cos t] ,

zü \ 1
sin t

(h, /) ] (a, b) , (1)

and the equatorial plane is deÐned by andxü yü .
Thus, if we use /@ to denote the azimuthal angle in this

new equatorial plane [where /@4 0 at the original angular
location (h, /)], then the location in the original, global
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Cartesian coordinates at an arbitrary radius r and angle /@
is just r cos /@xü ] r sin /@yü .

The next task is to follow the propagation of a photon in
this new equatorial plane between scatterings. To do this,
we note that the locally measured spacelike components of
the photon four-velocity are just

ur9 \ cos t ,

uÕ9 \ sin t . (2)

Here we use geometrized units in which c\ G4 1. In this
and subsequent equations, hatted quantities such as areur9
measured in a local tetrad, in contrast to unhatted quan-
tities such as ur, which are measured in the global Boyer-
Lindquist coordinate system. The components of the
four-velocity in global Boyer-Lindquist coordinates are
given by the transformation of these quantities from the
local to global frames (see, e.g., Abramowicz, Ellis, & Lanza
1990 ; Miller & Lamb 1996) :

ur \ (1[ 2M/r)1@2ur9 and

uÕ\ uÕ9 /r . (3)

The photon path is followed by moving a small distance ds
along the ray (we found that ds \ 0.02 in units of the mean
free path gives sufficient accuracy) and recalculating the
propagation angle t :

sin tnew\ sin told
A rold
rnew

B (1[ 2M/rnew)1@2
(1[ 2M/rold)1@2

(4)

(see, e.g., Abramowicz et al. 1990 or Miller & Lamb 1996).
Using this formula, we can determine the total deÑection /@
and rotate back from the temporary equatorial plane to the
global coordinate system.

The last task is to follow the deÑection of the photon after
it has escaped. This is done straightforwardly using the
approach of, e.g., Pechenick, Ftaclas, & Cohen (1983). In
this approach, we deÐne the impact parameter
b \ (sin t)r(1[ 2M/r)~1@2 and let The totalu

b
\ M/b.

deÑection angle from radius r to inÐnity is (Pechenick et al.
1983, eq. [2.12])

*/\
P
0

M@r
[u

b
2[ (1[ 2u)u2]~1@2du . (5)

Note that, as deÐned, this is actually the di†erence between
the global azimuthal angle at inÐnity /(O) and the global
azimuthal angle /(r) at r. That is, even without general
relativistic light deÑection, */ can be nonzero. For
example, if t\ n/2 (so that the photon is emitted tangen-
tially to the radial vector), then if r ? M then */\ n/2.
After computing */, the angular location in the global
coordinate system can be calculated as before, by rotating
from the temporary equatorial plane to the global system.

2.3. Boundary Conditions
The initial location and direction of propagation of the

photons depend on the run. The default condition is that
the photons start on the surface of the star and are beamed
directly outward (we will refer to this as a ““ pencil-beam ÏÏ
speciÐc intensity). We will, however, consider other speciÐc
intensities, such as one that is isotropic outward or one that
has the slightly beamed pattern appropriate for radiation
that was generated deep in the star and that propagated

outward via isotropic scattering (see Chandrasekhar 1960,
70). The individual scatters are assumed to be locally
isotropic.

Note that we make a distinction between the angular
width of the speciÐc intensity and the angular pattern of
emission on the star. The former is what an observer stand-
ing on the star would measure from a particular emitting
point, whereas the latter is the variation in total intensity
(integrated over local angles) as a function of position on
the star.

3. ATTENUATION OF BEAMING PATTERNS

WITHOUT SCATTERING

Before treating the e†ects of scattering, we Ðrst note that
a beaming pattern of high amplitude at the surface of the
star may appear to an observer at inÐnity to have a low or
zero amplitude. This could happen because the angular
width of the speciÐc intensity from radiating points on the
stellar surface is nonzero, and thus an observer at inÐnity
sees light from everywhere on the visible portion of the star.
If the speciÐc intensity has a wide beaming pattern (e.g., if
the pattern is isotropic), then the intensity seen by the obser-
ver integrates over much of the star and radiation patterns
with large numbers of lobes are smeared out at inÐnity,
leading to low amplitudes of intensity modulation as the
star rotates.

In this section we derive expressions for the modulation
amplitude seen at inÐnity, with no scattering, under various
assumptions about the speciÐc intensity and the angular
pattern of emission on the star. We Ðrst treat the case of
straight-line photon propagation and show that for an iso-
tropic speciÐc intensity and an odd number n [ 1 of lobes
in the stellar emission pattern the intensity seen at inÐnity is
constant. Thus, the relative modulation amplitude mea-
sured at inÐnity can be much less than the relative ampli-
tude measured at the source even without light deÑection.
We then consider general relativistic light deÑection. We
conÐrm that, as demonstrated before (e.g., Pechenick et al.
1983), light deÑection has a tendency to decrease the modu-
lation amplitude. However, we also show that for some
harmonics of the stellar spin frequency, the modulation seen
at inÐnity can actually have a higher amplitude when light
deÑection is included, compared with the modulation that
would be observed if the photon trajectories were straight.
In our treatments of both the straight and curved photon
trajectories, we assume that the emission pattern on the star
is a thin equatorial belt, with a half-thickness h much less
than R. This is intended to model the intensity distribution
expected in beat-frequency models of kilohertz QPOs.

3.1. Straight-L ine Photon Propagation
Assume that the speciÐc intensity is isotropic outward

and that the emission intensity at an azimuthal angle / is

I(/) \ I0] ;
n/1

=
I
n

cos (n/) . (6)

Here n gives the nth harmonic ; n \ 1 is the fundamental,
n \ 2 is the Ðrst overtone, and so on. The Ñux observed at
inÐnity from a short segment of the equatorial belt is pro-
portional to the product of the projected area of the
segment (which is proportional to the cosine of the angle m
between the line of sight and the surface normal) and the
emission intensity of the segment. Let the observer be at an
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FIG. 1.ÈFractional rms amplitude vs. compactness of a neutron star,
without scattering. We assume a speciÐc intensity at the surface that is
isotropic outward. The solid line is for a radiation emission pattern with
one lobe (i.e., intensity proportional to 1 ] cos /, where / is the azimuthal
angle on the stellar surface). This is therefore a pattern that would produce
a pure sinusoid at the fundamental of the spin frequency. If there is a
nonzero background and the intensity is therefore actually proportional to
1 ] A cos /, where A\ 1, then the amplitudes in this Ðgure are multiplied
by A. Similarly, the dotted line is for two lobes (i.e., the Ðrst overtone, or
the second harmonic), the short dashed line is for three lobes (the second
overtone, or third harmonic), and the long dashed line is for four lobes (the
third overtone, or fourth harmonic). This Ðgure demonstrates that light
deÑection usually decreases, but can increase, the fractional rms of an
oscillation as observed at inÐnity, compared with the case of straight-line
photon propagation, which is equivalent to the M/R] 0 results in this
Ðgure.

angle (h,0) and assume that the segment of interest is at the
angle (n/2, /). Then cos m \ sin h cos /, and thus emission
is observed between /\ [n/2 and /\ n/2. If the star
rotates with angular frequency u, then at a time t the star is
at a rotational phase ut and the observed intensity is

IP sin h
P
~n@2

n@2 MI0] ;
n/1

=
I
n

cos [n(/] ut)]N cos /d/

\ sin h
G
2I0] I1

n
2

cos ut

] ;
m/1

=
I2m

2
4m2 [ 1

cos 2mut
H

. (7)

Hence, the modulation amplitude vanishes for odd-
numbered harmonics other than the fundamental and
decreases as Dn~2 for the even harmonics. If the speciÐc
intensity is proportional to sinm m, then the variable part of
the observed Ñux vanishes if n ] m is odd and n D m] 1
and is Ðnite otherwise. Thus, contingent on the angle depen-
dence of the speciÐc intensity, either odd or even harmonics
can integrate to zero.

3.2. Curved Photon Trajectories
When light deÑection is included, the observer can see

more of the star. A larger fraction of the emission is thus

observed, and hence one might expect that the general ten-
dency will be for light deÑection to reduce the observed
amplitude modulation. Indeed, this is the case at, e.g., the
fundamental of the rotation frequency when the speciÐc
intensity is isotropic. However, since the constancy of the
Ñux when and n ] m is odd comes from the van-n D m] 1
ishing of the integral when the limits are exactly [n/2 and
n/2, the change of these limits by light deÑection means that
the amplitudes at these harmonics are actually larger when
light deÑection occurs than they would be in the limit of
straight-line photon propagation. We show this e†ect in
Figure 1, in which we plot the rms amplitude versus M/R
for di†erent numbers n of lobes in the emission pattern (i.e.,
di†erent harmonic numbers n).

4. SCATTERING AROUND FINITE OBJECTS

Shortly after low-frequency QPOs were Ðrst discovered
in neutron star LMXBs (van der Klis et al. 1985 ; for a
review see van der Klis 1989), a beat-frequency model was
suggested for them in which the frequency of the QPO is
equal to the di†erence between the stellar spin frequency
and the frequency of a Keplerian orbit near the main mag-
netospheric gas pickup radius (Alpar & Shaham 1985 ;
Lamb et al. 1985 ; Shibazaki & Lamb 1987). In such a
model, one would also expect to see a peak in the power
density spectrum at the stellar spin frequency itself, but no
such peak was observed. An early qualitative idea (Lamb et
al. 1985 ; Lamb 1986), backed up by more quantitative cal-
culations (Brainerd & Lamb 1987 ; Wang & Schlickeiser
1987 ; KylaÐs & Phinney 1989), was that whereas the beat-
frequency oscillation is a luminosity oscillation and thus
not easily attenuated, the brightness oscillation expected at
the stellar spin frequency is a beaming oscillation and is
thus relatively easily isotropized and attenuated by scat-
tering through a hot central corona.

The existence of such a scattering corona near the
neutron stars in LMXBs has been inferred by detailed com-
parisons of spectral models with observations (see, e.g.,
Psaltis et al. 1995). These model Ðts give radial optical
depths to Thomson scattering of qD 2È10 and scattering
corona radii of cm (see Miller et al. 1998).r

c
D 1È3 ] 106

With such radii and optical depths, the beaming oscillation
at the spin frequency is expected to be attenuated by a
factor of several, which would lower the observed ampli-
tudes to values consistent with current upper limits.

Now that RXT E has observed a number of these sources
and discovered high-frequency QPOs, we are once again
faced with the quantitative question of why the spin fre-
quency or other harmonics of the kilohertz Keplerian fre-
quency are not observed in the power spectra from these
LMXBs. Because of the high quality of RXT E data and the
more stringent upper limits it provides, we need to consider
a number of the e†ects that previous treatments neglected
for simplicity. We do this in this section, where we consider
(1) a beaming pattern that originates from the surface of a
Ðnite-sized neutron star instead of from the center of the
scattering cloud, (2) a corona with a number density that
changes with radius, (3) beaming patterns for di†erent har-
monics, (4) di†erent speciÐc intensity distributions, and (5)
the e†ects of general relativistic light deÑection. Our most
important results are that the Ðnite size of the neutron star
decreases the expected attenuation of a beaming oscillation
as seen at inÐnity even if the corona is much larger than the
star and that for many emission geometries all overtones
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TABLE 1

BEAMING RATIOS WITH A CENTRAL OBJECT

q
c

q
R

\ 0 q
R

\ 1 q
R

\ 2 q
R

\ 3 q
R

\ 4 q
R

\ 5

1 . . . . . . . 0.465 . . . . . . . . . . . . . . .
2 . . . . . . . 0.301 0.697(0.605) . . . . . . . . . . . .
3 . . . . . . . 0.246 0.528(0.459) 0.810(0.712) . . . . . . . . .
4 . . . . . . . 0.199 0.448(0.364) 0.678(0.566) 0.877(0.774) . . . . . .
5 . . . . . . . 0.174 0.380(0.311) 0.601(0.486) 0.769(0.643) 0.906(0.814) . . .
10 . . . . . . 0.094 0.218(0.183) 0.337(0.273) 0.453(0.366) 0.577(0.461) 0.699(0.556)
20 . . . . . . 0.056 0.121(0.085) 0.184(0.145) 0.254(0.205) 0.332(0.234) 0.391(0.299)

(not just the even harmonics) are attenuated far more than
is the fundamental.

4.1. Two-Stream Analysis of Expected Modulation
To follow the treatment of Brainerd & Lamb (1987), con-

sider a plane-parallel slab that goes from optical depth [q
cto and assume that there is a source of intensityq

c
, F0pointing forward (toward at If we solve thisq\ q

c
) q\ q

R
.

problem in the two-stream approximation, where isI
f
(q)

the forward intensity at q and is the backward intensityI
b
(q)

at q, the equations are

dI
f

dq
\ [ 1

2
I
f
] 1

2
I
b
] F0 d(q[ q

R
) ,

dI
b

dq
\ [ 1

2
I
f
] 1

2
I
b

, (8)

with the boundary conditions I
f
([q

c
)\ I

b
(q

c
)\ 0.

Solving these equations, we Ðnd that

I
f
(q

c
)\ 1

2
F0

1
1 ] q

c
(2] q

c
] q

R
), and

I
b
([q

c
)\ 1

2
F0

1
1 ] q

c
(q

c
[ q

R
) . (9)

A measure of the asymmetry of the emission is the
beaming ratio

I
f
[ I

b
I
f
] I

b
\ 1 ] q

R
1 ] q

c
. (10)

This conÐrms the result of Wang & Schlickeiser (1987), who
showed that in the di†usion approximation (q

c
? 1, q

R
? 1)

the anisotropy of radiation depends approximately on the
ratio Brainerd & Lamb (1987) e†ectively consideredq

R
/q

c
.

the special case Note that the o†set of the emissionq
R

\ 0.
from the center of the scattering cloud multiplies the modu-
lation amplitude seen at inÐnity by the constant factor 1

and does not asymptote to the amplitude even] q
R

q
R

\ 0
when The results of the numerical calculation withq

c
? q

R
.

a Ðnite object are shown in Table 1, where both the star and
the scattering cloud are assumed to be spherical. In this
table, 104 photons were used for each calculation, and each
one started out on the surface of the star at an optical depth

from the center and was directed radially outward (thus,q
Rthis is a result for an initial pencil beam). The numbers are

the ratios of forward-to-backward intensity, deÐned as the
ratio of the emergent intensity through the northern hemi-
sphere (cos h [ 0) to the emergent intensity through the
southern hemisphere. The numbers in parentheses are for
no central star but a photon that starts at radius thisq

R
;

comparison indicates the importance of a hard surface
versus the importance of an initial o†set from the center.

This table shows that the presence of a central star
increases the beaming ratio signiÐcantly when compared
with the beaming ratio produced without a Ðnite central
star, both by the o†set of the initial emission from the center
of the scattering cloud and by the presence of a hard surface.
The analytical estimate for the beaming ratio matches the
numerical results well when there is no star but the photon
starts at an optical depth q

R
.

4.2. Radius-dependent Number Density
Now consider what happens when the electron number

density is not constant with radius. We explore three di†er-
ent density proÐles. First, a density that goes as n D (r02[ r2), where is the radius of the scattering region.r0Second, a density that is for and n \n \ 2n0 0 ¹ r \ r0/2for Third, a density that is forn0 r0/2 ¹ r ¹ r0. n \ n0 0 ¹

and for In Table 2 wer \ r0/2 n \ 2n0 r0/2 ¹ r \ r0.compare the beaming ratios for these three di†erent density
proÐles (““ Quad,ÏÏ ““ 2] 1,ÏÏ and ““ 1 ] 2,ÏÏ respectively) for

and the same total optical depth from the centerq
R

\ 0 qtotalto In each case we assume a pencil-beam speciÐc inten-r0.sity originating from the center of the scattering cloud. This
table shows that, compared with a uniform-density scat-
tering cloud, a cloud with an edge concentration yields a
higher anisotropy as seen at inÐnity. This is because the
lower the number density is close in, the farther photons can
travel before scattering. For a pencil-beam speciÐc intensity
this is e†ectively similar to having the source of the radi-
ation be o†set from the center by a relatively large distance,
implying that the anisotropy of the emergent radiation is
larger than it would have been for uniform density. Con-
versely, a cloud with a central concentration yields a lower
anisotropy at inÐnity than if the cloud had uniform density.

4.3. Attenuation of Overtones
Using the same treatment as Brainerd & Lamb (1987), we

Ðnd that as the scattering GreenÏs functionq
c
] O

TABLE 2

BEAMING RATIOS WITH DIFFERENT DENSITY

DEPENDENCES

qtotal Constant Quad 2 ] 1 1 ] 2

1 . . . . . . . 0.465 0.453 0.462 0.487
2 . . . . . . . 0.301 0.273 0.268 0.334
3 . . . . . . . 0.246 0.206 0.206 0.286
4 . . . . . . . 0.199 0.173 0.152 0.224
5 . . . . . . . 0.174 0.127 0.134 0.195
10 . . . . . . 0.094 0.082 0.070 0.109
20 . . . . . . 0.056 0.041 0.033 0.055
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approaches

G(h, /, q
c
)\ 1

4n
C
1 ] 2

A1 ] q
R

1 ] q
c

B
cos h

D
, (11)

where h is the angular distance between the observer and
the point of emission and there is no dependence on the
longitude / of the observer. We wish to determine the inten-
sity seen at inÐnity if the emission pattern on the surface has
some number of lobes (equivalently, for some harmonic).
Consider Ðrst the lobe structure used by Brainerd & Lamb,
which is that the intensity on the surface is proportional to
1 ] cos (nh). This intensity pattern is appropriate for an
emission that has a favored axis, such as a centered dipole.

If the center of the emission is at an angle (h@, 0)
and the observer is at an angle (h, /),
then the cosine of the angle between them is just
cos t\ sin h sin h@ cos /] cos h cos h@. The intensity
seen at (h, /) is

I(h, /, q
c
)\
P
0

2nP
0

n
G(t, /, q

c
)I(h@) sin h@dh@d/@ , (12)

where I(h@) is the intensity at the stellar surface at the colati-
tude h@. The / term will therefore always integrate to zero,
regardless of the number of lobes. The intensity is then

I(h, /, q
c
)D

1
2
P
0

n C
1 ] 2

A1 ] q
R

1 ] q
c

B
cos h cos h@

D

](1] cos nh@) sin h@dh@

\

4

5

6

0
0

1

4n
C
1 ]

A 2

4 [ n2
BA1 ] q

R
1 ] q

c

B
cos h

D
I0, n odd

1

4n
I0, n even

(13)

in the limit Here we have assumedq
c
? 1. I(h@) \ I0(1Note that a fraction of the photons will] cos nh@). De~qc

escape directly, and hence for Ðnite the amplitude at evenq
charmonics is nonzero but small. This extends the result of

Brainerd & Lamb (1987) to photons o†set from the center
of the scattering cloud : for emission symmetric around an
axis, even-lobed patterns are attenuated much more rapidly
than are odd-lobed patterns, and odd-lobed patterns with
n [ 1 are more rapidly attenuated than is the n \ 1 pattern.

Consider now a pattern that is symmetric about the
equatorial plane but is not axisymmetric. This is the pattern
of interest for any rotationally or orbitally modulated emis-
sion, such as the emission believed to produce the higher
frequency QPO peaks observed during persistent emission
from neutron star LMXBs, which is symmetric about the
rotational equator but is otherwise arbitrary. SpeciÐ-
cally, consider an emission pattern I0(h@, /@) D
[1] T (h@) cos n/@], where T (h@)\ T (n [ h@). In this case,
the intensity seen at inÐnity in the direction (h, /) is

I(h, /, q
c
)D
P
0

nP
0

2n
G(t, /, q

c
)[1] T (h@) cos n/@]

] sin h@dh@ d/@ , (14)

where t is the angle between (h, /) and (h@, /@) :
cos t\ sin h@ sin h sin /@ sin /

]sin h@ sin h cos /@ cos /] cos h@ cos h . (15)

The /-dependent terms in this integral are proportional

to either or/02n sin /@ cos n/@d/@ /02n cos /@ cos n/@d/@.
However, note that for n D 1,

P
0

2n
sin /@ cos n/@d/@

\
Ccos (n [ 1)/@

2(n [ 1)
[ cos (n ] 1)/@

2(n ] 1)
D
0

2n \ 0 ,

and

P
0

2n
cos /@ cos n/@d/@

\
Csin (n [ 1)/@

2(n [ 1)
] sin (n ] 1)/@

2(n ] 1)
D
0

2n\ 0 . (16)

Note also that the cos h@T (h@) term integrates to zero
because of the symmetry of T (h@). Therefore, in the di†usion
limit I(h, /, for n [ 1.(q

c
? 1), q

c
) ] 0

This result means that for any emission pattern that is
symmetric about the rotational equator, all overtones are
attenuated extremely rapidly, not just the even harmonics.
In particular, note that it is not necessary to have the same
/@ dependence at all latitudes ; an arbitrary emission pattern
symmetric about the equator can be built up using pairs of
rings of the form d(h@ [ h0)H(/@) ] d[h@[ (n [ h0)]H(/@),
where H(/@) is some function of /@ (H can, therefore, be
Fourier-decomposed into terms proportional to cos n/@).
This is a strong reason why, even if the fundamental is
strong at the sonic-point Keplerian frequency, we do not
expect to see signiÐcant peaks in the power spectrum at
overtones of lKs.

FIG. 2.ÈFractional rms amplitude for harmonic numbers n vs. the
optical depth of a surrounding scattering cloud, assuming a pencil-beam
speciÐc intensity, straight-line photon propagation, and This Ðgureq

R
\ 1.

shows that for rotationally modulated beaming oscillations the amplitudes
at all overtones of the fundamental oscillation frequency are decreased
very rapidly by propagation through a scattering cloud. This is an impor-
tant reason why, to date, no overtones of Keplerian orbital frequencies
near neutron stars have been observed from low-mass X-ray binaries.
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FIG. 3.ÈFractional rms amplitude vs. optical depth for di†erent
beaming patterns at the surface. We assume straight-line photon propaga-
tion. Here and the amplitudes are for a single lobe (i.e., the funda-q

R
\ 1,

mental of the oscillation frequency), with emission intensity proportional
to 1 ] cos /. As expected, the more beamed the intensity, the higher the
oscillation amplitude. The beaming pattern derived by Chandrasekhar,
which is the emergent speciÐc intensity for radiation generated deep below
the surface that propagates upward by isotropic scattering, gives ampli-
tudes very close to the isotropic case.

Figure 2 shows the fractional rms amplitude of di†erent
harmonics as a function of the optical depth of the scat-
tering cloud. Here we assume a pencil-beam speciÐc inten-
sity and straight-line photon propagation, and we assume
that the central object has a radius of optical depth.q

R
\ 1

FIG. 4.ÈFractional rms amplitudes vs. compactness of a neutron star
for di†erent numbers n of lobes (equivalently, for di†erent harmonic
numbers n), where, as before, we assume a total intensity proportional to
1 ] cos n/. We assume straight-line photon propagation. Here the initial
beaming pattern is a pencil beam, and it is clear that the amplitude at any
overtone is small. The stellar radius, in optical depths, is and theq

R
\ 1

radius of the scattering cloud in optical depths is q
c
\ 5.

FIG. 5.ÈFractional rms amplitudes vs. compactness of a neutron star
for (a) a pencil beam, (b) an isotropic beam, and (c) an artiÐcial case in
which the photons travel in straight lines after escape from the scattering
cloud (for this curve we assume a pencil beam). As in Fig. 4, andq

R
\ 1

Here we assume a single lobe (i.e., the fundamental of the oscillationq
c
\ 5.

frequency), with intensity proportional to 1 ] cos /.

Therefore, would mean that there is no scatteringq
c
\ 1

cloud ; would mean that the radial optical depth fromq
c
\ 2

the stellar surface to the edge of the cloud is q
c
[ q

R
\ 1,

and so on. As in Figure 1, n is the number of lobes in the
radiation emission pattern from the surface ; thus n \ 1 is
the fundamental of the spin frequency, n \ 2 is the Ðrst
overtone, and so on. For harmonic number n we assume an
emission intensity proportional to 1 ] cos n/ ; for an inten-
sity actually proportional to 1 ] A cos n/, with A\ 1, the
magnitude of the amplitude must be multiplied by A. This
Ðgure shows that all overtones of the fundamental oscil-
lation frequency are attenuated rapidly by scattering.

4.4. T he Angular Dependence of the SpeciÐc Intensity
Heretofore we have considered only a pencil-beam type

of speciÐc intensity. In reality, the angular dependence of
the speciÐc intensity is likely to di†er from a pencil beam. In
Figure 3 we show the rms amplitude versus optical depth
for a pencil beamÈthe beamed pattern appropriate for
radiation generated at great depth (see Chandrasekhar
1960, 70)Èand for an isotropic beam. These di†erent
speciÐc intensity distributions have di†erent uses. A pencil
beam may be considered to set an upper limit on the aniso-
tropy, but it is unlikely to be of direct signiÐcance in the
physical situations considered here. The beamed pattern
appropriate for radiation generated at great depth that pro-
pagates to the surface via isotropic scattering is likely to
represent well the emergent radiation pattern from an X-ray
burst. An isotropic speciÐc intensity may be a good model
for the radiation produced by accretion, since the energy is
likely to be released in a shallow layer. From this Ðgure, we
see that, as expected, the more beamed the pattern the
greater the rms amplitude of variation for a given surface
intensity distribution. We also see that the Chandrasekhar-
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type speciÐc intensity gives a modulation amplitude closer
to an isotropic beam than to a pencil beam.

4.5. T he E†ects of L ight DeÑection
As we described in ° 2, the code has the capability to

follow curved photon trajectories. We show the e†ects of
light deÑection in a scattering cloud in Figures 4 and 5.
Figure 4 plots the rms amplitude versus M/R for di†erent
numbers of nodes for a pencil beam with q

R
\ 1, q

c
\ 5.

Figure 5 compares the amplitude versus M/R for q
R

\ 1,
for a pencil beam (solid line), an isotropic beamq

c
\ 5

(dotted line), and a pencil beam that undergoes no light
deÑection after it escapes from the scattering cloud (dashed
line). The curves in Figure 5, especially those for the pencil
beam with and without deÑection after escape, demonstrate
that there are actually two e†ects on the amplitude that
compete with each other. The deÑection of light after escape
spreads out the beam and hence decreases the amplitude.
The deÑection of light between scatters, however, can have
the opposite e†ect. For a given distance traveled after one
scatter, the subsequent scatter is angularly closer to the Ðrst
because the photon travels in a curved trajectory. This
tends to increase the number of scatters, because the coordi-
nate distance traveled is less between scatterings. However,
for a Ðxed number of scatters the angular distance traveled
is smaller, and hence the e†ective isotropization is dimin-
ished. The overall e†ect is always that the modulation
amplitude decreases with increasing compactness M/R, but
Figure 5 shows that for the amplitude wouldM/R[ D 16increase with increasing M/R if there were no deÑection
after escape.

5. MODULATION AMPLITUDE INSIDE A

SCATTERING CLOUD

Another important question is how great a modulation
amplitude is to be expected inside a scattering cloud. For
example, in the sonic-point model (Miller et al. 1998) the
lower frequency QPO in a pair is generated by the inter-
action of radiation at the surface with clumps of matter in
the disk. The radiation is modulated at the stellar spin fre-
quency, and thus the mass accretion rate from the clump is
modulated at the di†erence between the sonic-point
Keplerian frequency and the stellar spin frequency. From
no source with kilohertz QPOs has there been a strong
peak at the stellar spin frequency detected in the power
density spectrum, and hence it is important to determine if
it is possible that the modulation at the spin frequency is
strong near the star, where the beat frequency is generated,
yet weak enough at inÐnity that no peak in the power
density spectrum is evident. It is not easy to compute the
modulation in mass accretion rate that results from a given
modulation amplitude in the radiation force or any of the
components of the radiation stress-energy tensor, because
the e†ects of radiation drag can be nonlinear. For example,
since extra radiation drag increases the radial velocity of gas
and thus decreases the optical depth from the stellar surface
(““ radiation-induced transparency ÏÏ ; see Miller & Lamb
1996 ; Miller et al. 1998), a small increase in radiation drag
can in principle lead to a large increase in the accretion rate.
Nonetheless, as a proof of principle we can calculate the
radiation energy density, in order to determine whether it is
modulated signiÐcantly near the star.

Figure 6 shows the result of this calculation. Here we
have chosen and for illustrative purposes,q

R
\ 1 q

c
\ 5,

FIG. 6.ÈRoot mean square amplitude of modulation of the energy
density (the component of the stress-energy tensor) divided by the rmstüt ü
amplitude at the stellar surface. Here and and the stellarq

R
\ 1 q

c
\ 5,

radius is R\ 5M (we therefore include light deÑection in this calculation).
For this Ðgure we assume pencil-beam emission from a single spot on the
star. The dashed horizontal line is the rms amplitude (divided by the
amplitude at r \ R) observed at inÐnity. The high ratio of amplitude near
the star to amplitude at inÐnity shows that it is possible to have a bright-
ness oscillation of relatively large amplitude near the star that is weak or
undetectable far from the star.

and we assume a central star of radius R\ 5M. The solid
line shows the fractional rms amplitude of the modulation
in the radiation energy density, and the horizontal dotted
line shows the fractional rms amplitude in the energy
density as observed at inÐnity. It is clear from this Ðgure
that the modulation amplitude can be much higher near the
star than at inÐnity. For example, the rms amplitude is
more than 10 times as high at the surface of the star as it is
at inÐnity. This conÐrms that a brightness oscillation can
have strong e†ects near the star but be relatively weak at
inÐnity.

6. DISCUSSION AND CONCLUSIONS

The amplitude of beaming oscillations as seen at inÐnity
depends on a number of variables, including the radiation
pattern on the surface of the star, the angular width of the
speciÐc intensity, the size of the star, and the size, optical
depth, and density proÐle of the scattering cloud. Some of
the trends evident from this paper are (1) when there is a
scattering cloud, the observed amplitudes of all overtones
are much less than the observed amplitude of the funda-
mental, (2) a brightness oscillation that is weak or unde-
tectable with current instruments at inÐnity can nonetheless
have a signiÐcant amplitude near the star, and (3) the pres-
ence of a Ðnite-sized star in the center of a scattering cloud
decreases the attenuation of beaming oscillations compared
with the attenuation expected when the photons are emitted
at the center of the cloud.

These results are particularly useful in the study of the
kilohertz QPOs from neutron star LMXBs. Spectral models
(see Lamb 1989 ; Miller & Lamb 1992 ; Psaltis et al. 1995)
suggest that many of the neutron stars in LMXBs are sur-
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rounded by hot central coronae with radii of 1È2 ] 106 cm
and optical depths qD 3È10. The observed amplitudes of
kilohertz QPOs, combined with a detailed model of them,
can be used to place further restrictions on the radius and
optical depth of the central corona and possibly even on the
compactness of the neutron star.

In conclusion, the results presented here on attenuation
of beaming oscillations explain several features of the kilo-
hertz QPOs, including why no overtones of a beaming
oscillation have been detected and why the beaming oscil-
lation at the stellar spin frequency can be strong enough
near the star to generate a beat-frequency QPO (see Miller
et al. 1998) yet too weak to detect at inÐnity. The attenu-
ation factors at frequencies such as the Keplerian QPO
frequency, the spin frequency, and the overtones and side-

bands of these fundamental frequencies depend on the
radius and optical depth of the scattering cloud and on the
redshift at the surface of the neutron star, and hence detec-
tions of QPOs at these frequencies, or strong upper limits
on their amplitudes, provide a valuable source of informa-
tion about the conditions near neutron stars.
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