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Abstract

The increasing richness of data related to cold dense matter, from laboratory experiments to neutron-star
observations, requires a framework for constraining the properties of such matter that makes use of all relevant
information. Here, we present a rigorous but practical Bayesian approach that can include diverse evidence, such as
nuclear data and the inferred masses, radii, tidal deformabilities, moments of inertia, and gravitational binding
energies of neutron stars. We emphasize that the full posterior probability distributions of measurements should be
used rather than, as is common, imposing a cut on the maximum mass or other quantities. Our method can be used
with any parameterization of the equation of state (EOS). We use both a spectral parameterization and a piecewise
polytropic parameterization with variable transition densities to illustrate the implications of current measurements
and show how future measurements in many domains could improve our understanding of cold catalyzed matter.
We find that different types of measurements will play distinct roles in constraining the EOS in different density
ranges. For example, better symmetry energy measurements will have a major influence on our understanding of
matter somewhat below nuclear saturation density but little influence above that density. In contrast, precise radius
measurements or multiple tidal deformability measurements of the quality of those from GW170817 or better will
improve our knowledge of the EOS over a broader density range.
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1. Introduction

Several recent or upcoming astronomical measurements
have or will have important implications for our understanding
of the properties of the cold, catalyzed matter in the cores of
neutron stars. Chief among them are the measurements of the
binary tidal deformability from the gravitational-wave event
GW170817 (Abbott et al. 2017, 2019b) and the expected
measurements of neutron-star radii and masses using the
Neutron Star Interior Composition Explorer (NICER;
Gendreau et al. 2016). This information, combined with
nuclear data and other astronomical constraints, such as the
high measured masses of a few neutron stars (Demorest et al.
2010; Antoniadis et al. 2013; Cromartie et al. 2019), opens up
new opportunities to constrain the equation of state (EOS) of
cold high-density matter.

Here, we present a rigorous and practical Bayesian procedure
that can be used to combine information from different types of
nuclear measurements and observations of neutron star systems
to constrain the EOS of high-density cold matter. Our
procedure can also be used to constrain other properties of
neutron stars. For example, data on the cooling of neutron stars
could be used to constrain the composition of the interior of
neutron stars (see Potekhin et al. (2015) and Wijnands et al.
(2017) for recent reviews), providing information that would be
complementary to constraints on the EOS. In Section 2, we
discuss our general statistical methodology. In Section 3, we
discuss the use of particular types of data, such as the highest
measured masses of neutron stars and tidal deformabilities from
individual events. In Section 4, we compare our methodology
to previous work on constraining the high-density EOS. In
Section 5, we discuss our assumed priors and present the results

for our illustrative EOS models. We summarize our conclu-
sions in Section 6.

2. Statistical Approach

In this section, we describe our methodology. We suppose
that different types of observations have been made of a set of
neutron stars and that we are considering one or more
parameterized models of the EOS of neutron star matter.
How should we analyze these observations to correctly use all
the available information to obtain estimates of the posterior
probability densities of the parameters in these EOS models?
We assume that n neutron stars have been observed and

denote a property of star i by a subscript i on the symbol for
that property. The observations can be of very different types,
e.g., separate measurements of different stars could inform us
about their masses, or masses and radii, or moments of inertia,
or tidal deformabilities. Our notation is:
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Note that given α and a rotation rate, rc i, determines the mass
Mi of star i. By assumption, the true value of a is the same for
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all neutron stars, and the true value of rc i, is fixed for a given
star (and thus does not vary with the measurement j), but can
vary from one star to another. Examples of other parameters
that are fixed for a given star are the observer inclination and
distance to the star; those parameters can, of course, vary from
one star to another. The other parameters gi j, (such as the
surface emission pattern during a thermonuclear burst) can vary
from one measurement to the next of a single star, and can vary
from one star to another. The measurements could be of
entirely distinct types.

We are interested in the posterior probability density aP ( ). We
obtain this by marginalizing the full posterior probability density
a b g a b g a b gr r rµ P q, , , , , , , , ,c i i i j c i i i j c i i i j, , , , , ,( ) ( ) ( ) over the

nuisance parameters (i.e., the parameters that do not depend
directly on the EOS) rc i, , bi, and gi j, :
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The proportionality in this expression is to remind us that we will
need, as a final step, to normalize aP ( ) so that ò a a =P d 1( ) .
The likelihood is the product of all of the individual likelihoods,
so

a b g a b gr r= , , , , , , , 3c i i i j
i j

i j c i i i j, ,
,

, , ,( ) ( ) ( )

where a b gr , , ,i j c i i i j, , ,( ) is the likelihood of measuring data
set j from star i given the model under consideration with
parameter values a, rc i, , bi, and gi j, .

We make the following two simplifying assumptions:
Assumption 1: the prior a b grq , , ,c i i i j, ,( ) in expression (2)

can be represented as the product of the following factors:
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Thus, we assume that the priors are independent of each other,
with the exception of the prior on the central density. We write
the prior on rc i, as arq c i,( ∣ ) because it is possible that the prior
will depend on other parameters (for example, for a nonrotating
star, the maximum central density of a stable star will often
depend only on a, but in general, the maximum stable density
will also depend on the rotation rate). In principle, other
parameters could also be codependent, e.g., if one of our
parameters is the rotation frequency, then its maximum
value depends on both rc i, and a. However, for the cases we
consider here, the rotation frequency is small enough that it is
unimportant.

Assumption 2: We assume that when we break the overall
likelihood into a product of the likelihoods of the individual
data sets given the model and parameter values, the parameters
not associated with a given observed quantity do not affect the
likelihood of the measured value of that quantity. For example,
for a given distribution of central densities, we assume that the
central density of one star has no influence on the likelihoods of
the data taken from another star. This means we can write

a b g a b g

a b g
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Here, “ j i∣ ” means “the set j of measurements of star i”.
These assumptions allow us to write the posterior probability

density for a as follows:
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When we compare this with the general expression a µP ( )
a aq ( ) ( ), we see that, given our assumptions, the likelihood

of the full set of all data given the model and parameter values
a is

ò

ò

a a b

g a b g g b

r

r r

= 







q q

q d d d, , , . 7

i c i i

j i i j i j c i i i j i j c i i

,

, , , , , ,

⎡⎣
⎤⎦( )

( ) ( ∣ ) ( )

( ) ( ) ( )∣

Loosely speaking, this approach assigns the likelihood of each
set of values of the measured quantities, given the data, to all
combinations of the model parameter values that yield these
values of the measured quantities. To see why this is appropriate,
note that when we analyze particular neutron-star data, we find
that the central density and EOS parameters only influence a
subset of the parameters that are used to describe the data. For
example, the distance, direction, and orientation of a merging
binary do not depend on either rc i, ora. Similarly, when energy-
dependent X-ray waveforms from NICER are analyzed, only the
gravitational mass M and circumferential radius R depend on rc i,
and a. Thus, in, e.g., the waveform case, the marginalized
likelihood associated with given rc i, anda will be the same as the
corresponding marginalized likelihood associated with the
corresponding M and R, where the marginalization is performed
over all of the other parameters that describe the particular
data set.
Once we have the posterior density at each of a large number

of EOS parameter combinations, we compute the posterior
density in pressure at a specific density ρ0 by (1)determining
the pressures predicted at ρ0 using each parameter combination,
(2)assigning a statistical weight to each pressure that is the
same as the posterior density for the parameter combination,
and then (3)sorting the predicted pressures at ρ0 in increasing
order. We then determine a given credibility quantile (e.g., the
5% quantile of the pressure at ρ0) by summing the normalized
weights of the pressures at ρ0 until 5% is reached.

3. Using Different Types of Measurements

Different measurements and observations require different
approaches to use them in our statistical procedure for
constraining the EOS. Some, such as the nuclear symmetry
energy, can be computed directly from the EOS for a broad
category of nuclear models. Others, such as the binary tidal
deformability measured for GW170817 or future events,
require marginalization. We now discuss illustrative measure-
ments and observations and how they can be used in our
statistical procedure. As we discussed in Section 2, we can
obtain the likelihood from multiple independent measurements
by simply multiplying their individual likelihoods. We also
note that additional measurements beyond what we consider
here, such as measurements of neutron-star quasinormal modes
(e.g., Kokkotas & Schmidt 1999) may be available in the
future.
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3.1. Constraints Not Requiring Marginalization

3.1.1. Nuclear Symmetry Energy

In our discussion here, we assume that the nuclear symmetry
energy S is the difference in the energy per nucleon between pure
neutron matter and symmetric nuclear matter (which at density n
we denote by ò(n)/n), at the nuclear saturation density ns. We are
interested in the EOS of cold catalyzed matter, which is not purely
neutrons. However, as pointed out by Lattimer & Prakash (2016),
the proton fraction at ns is only∼1%, which is small enough to be
neglected. With this approximation, = -S n n Es s sym( ) , where

= -E 16.0 MeVsym is the energy per nucleon of symmetric
matter at nuclear saturation density (Tsang et al. 2012). If the
measured value of S is S0 and the predicted value for EOS
parameters a is aS ( ), then the likelihood factor associated with
the symmetry energy is simply

a a=  S S . 8S 0( ) ( ∣ ( )) ( )

3.1.2. Gravitational Mass

We can in principle obtain information about the EOS from any
measurement of a neutron-star mass. For example, if an EOS has
a maximum mass of 2.5Me but no neutron stars are found to
have masses larger than 2.2Me, that EOS could be disfavored
(we thank R. Essick for emphasizing this point to us). However,
the observed mass distribution of neutron stars depends on more
than the EOS. For instance, although all equations of state allow
0.5Me neutron stars to exist, there are no plausible suggestions
for how such stars can form. Moreover, the path to forming high-
mass neutron stars is not well understood; in the example above, it
could be that it is simply extremely rare that a star’s birth and
subsequent accretion will produce a mass above 2.2Me, even if
significantly higher masses are allowed by the EOS. A complete
analysis would take all measured masses into account using a
joint, parameterized model of birth and accretion as well as the
EOS, but this is not currently feasible. We therefore focus on the
highest measured masses.

In the limit of slow rotation, the maximum gravitational
mass is a function only of the EOS. It is the gravitational mass
Mmax at the largest central total mass–energy density ρc such
that dM/dρc�0.

If the posterior probability distribution for the mass of star j
is P(Mj), then the likelihood factor for the EOS parameter
values a for that star is

òa =
a

 P M dM. 9M

M

j
0

j

max

( ) ( ) ( )
( )

A similar integral can take into account observations that
disfavor large maximum masses, and in Section 5, we show the
results for one such hypothetical constraint.

3.1.3. Moment of Inertia

For a given EOS, the expected moment of inertia can be
computed given either a central density or a mass (Hartle 1967).
If we assume that we know the mass M0 very precisely (as is
the case for both components of the double pulsar
PSR J0737–3039, which is the system of greatest promise for
moment-of-inertia measurements), then when a measurement is
made of the moment of inertia of the pulsar, the likelihood

factor will be

a a= =  I I M M, , 10I obs 0( ) ( ∣ ( )) ( )

where a = I I M M,obs 0( ∣ ( )) is the likelihood of observing a
moment of inertia Iobs if the expected value at M=M0 is aI ( )
for EOS parameter values a.

3.1.4. Gravitational Binding Energy

Suppose that a star with a precisely measured gravitational
mass M0 is thought to have a baryonic mass Mbary,0 (and thus
a binding energy -M c M cbary,0

2
0

2) with some likelihood
 M Mbary,0 0( ∣ ) (one such possible scenario is if there is evidence
that the neutron star was formed in an electron-capture
supernova (Nomoto 1984; Podsiadlowski et al. 2004, 2005;
Zha et al. 2019); see Section 5 for details and caveats). Then

a a=  M M M, , 11E bary,0 bary 0bind( ) ( ∣ ( )) ( )

where aM M,bary 0( ) is the baryonic mass for a gravitational
mass M0 that is predicted using the EOS with parameter
values a.

3.2. Constraints Requiring Marginalization

3.2.1. Binary Tidal Deformability in Neutron-star Mergers

The newest category of EOS-relevant neutron-star observa-
tions is the constraint on the tidal deformability of neutron stars
that has been obtained using the gravitational-wave observa-
tions of GW170817 (Abbott et al. 2019b). The dimensionless
form of the tidal deformability, for a star of gravitational mass
M and circumferential radius R, is

L = k
Rc

GM

2

3
. 122

2 5⎛
⎝⎜

⎞
⎠⎟ ( )

Here, k2 is the tidal Love number. Hinderer (2008) has a good
discussion of how to compute Λ given an EOS and the central
density (see also the erratum at Hinderer 2009). Gravitational-
wave measurements give a tighter constraint on the binary tidal
deformability than on the tidal deformabilities of the two stars
individually: indeed, at least for the Taylor family of post-
Newtonian waveforms, the most easily measurable quantity for
stars of masses M1 and M2�M1 with tidal deformabilities Λ1

and Λ2 is (Wade et al. 2014)

L =
+ L + + L

+
M M M M M M

M M

16

13

12 12
. 131 2 1

4
1 2 1 2

4
2

1 2
5

˜ ( ) ( )
( )

( )

In such events, the masses are not measured well individually,
but the chirp mass = +M M M M Mch 1 2

3 5
1 2

1 5( ) ( ) is known
precisely; for example, for GW170817, = M 1.186ch

M0.001  (Abbott et al. 2019b). We note that, for fixed Mch,
L̃ is relatively insensitive to the mass ratio M2/M1. For
instance, using the scaling L µ -M 6 suggested by De et al.
(2018), L̃ for M2/M1=0.6 is only ∼5% larger than L̃ for
M2/M1=1.
Because only Mch is measured precisely, we need to margin-

alize over the individual masses. We approach this margin-
alization problem by assuming that gravitational-wave data
analysis has given us a full posterior in LM M, ,1 2( ˜ ) space. For
given EOS parameter values, the prior probability distribution for
the masses is set by the prior probability distribution for the
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central densities (or by equivalent criteria). For fixed EOS
parameter values, we can compute aL = L M M, ,1 2

˜ ˜ ( ). Thus, in
general, we would compute this likelihood factor by integrating
over both M1 and M2:

ò òa a= LL dM q M q M M M dM, , , 141 1 2 1 2 2( ) ( ) ( ) ( ˜ ∣ ) ( )

where q(M1) and q(M) are the priors for M1 and M2 and
aL M M, ,1 2( ˜ ∣ ) is the three-dimensional likelihood obtained

from the analysis of the gravitational-wave data, given EOS
parameter values a.

However, Mch is known with such high precision and
accuracy that, given a value for M1, M2 is known to high
accuracy. Therefore, we can recast the likelihood factor as

ò
ò

a

a

=

´ L

L



dM q M

q M M M M M dM, , , , 15

1 1

2 ch 1 1 2 ch

( ) ( )

( ∣ ) ( ˜ ∣ ) ( )

where q M M M,2 ch 1( ∣ ) is the prior probability density for M2 at
the value of M2 implied by Mch and M1, and the integral is over
the probability distribution for Mch obtained from the
gravitational-wave analysis. Note that even if Mch is known
with high precision, we cannot write the second integral as a
delta function. This is because the total probability in the
narrow range ofM2 allowed for a givenMch andM1 depends on
the EOS and the prior for the masses (or central densities). As a
result, this factor must be calculated directly for each EOS.

3.2.2. Radius and Mass

Suppose that for a given star the likelihood of a mass M and
radius R is  M R,( ). For a given stellar mass, the radius R is
determined precisely for given EOS parameters. Thus, the
likelihood factor associated with a radius measurement is

òa a= dMq M M R M, , , 16R l( ) ( ) ( ( )) ( )

where aR M,( ) is the circumferential radius for a gravitational
mass M given EOS parameter values a, and q(M) is the prior
on M. Note that the integration is equivalent to integrating the
full (M, R) likelihood over the full (M, R) curve predicted using
a given EOS.

3.3. Combination of Constraints

Under the assumption of independent measurements that we
described earlier, we can determine the final likelihood a( ) at
a given set of values of the EOS parametersa by simply setting
it equal to the product of the individual likelihoods. Thus, if
there is some set i of independent symmetry energy measure-
ments, some set j of neutron-star mass measurements high
enough to be constraining (noting that here the use of i and j is
different than it was in Section 2), some set k of binary tidal
deformability measurements, some set l of mass–radius pairs,
some set m of moments of inertia, and some set n of
gravitational binding energies, then the final likelihood is

a a a a

a a a

=   

  

L   

   . 17
i S i j M k k

l R l m I m n E n

, ,

, , ,

j

bind

( ) [ ( )][ ( )][ ( )]
[ ( )][ ( )][ ( )] ( )

We stress that this expression implicitly assumes that systematic
errors can be neglected. If they cannot, then—as always—there is
the prospect for significant bias.

4. Comparison with Previous Approaches

In this section, we compare our statistical method with EOS
constraint methods in the literature. In Section 5, we will
discuss specific examples of inferred masses, radii, etc. that we
then use to constrain the EOS. Here, we focus on our statistical
method. Our method is generally consistent with other methods
that are fully Bayesian, e.g., among recent papers Lackey &
Wade (2015), Agathos et al. (2015), Alvarez-Castillo et al.
(2016), and Riley et al. (2018). The nonparametric approach of
Landry & Essick (2019) is also worth consideration.

4.1. Use of Bounds in Mass or Other Quantities

As we have emphasized, in a fully consistent Bayesian
analysis, a given observation needs to be incorporated using a
likelihood-based procedure. Imposing a strict bound of any kind,
other than bounds stemming from fundamental physical laws,
may discard important information. However, to our knowledge,
all previous analyses except that of Alvarez-Castillo et al. (2016)
have used a hard lower bound on the maximum mass, in the sense
that a given EOS or parameter combination is allowed if it has a
maximum mass above some specified value (often 1.97Me
because the M= 2.01±0.04Me reported by Antoniadis et al.
(2013) for PSR J0347+0432 was the highest reported mass until
the = -

+M M2.14 0.09
0.10

 mass reported by (Cromartie et al. 2019)
of PSRJ0740+6620), and disallowed if the maximum mass is
below the bound. A similar approach is taken commonly, but not
as universally, with the tidal deformability measurement from
GW170817.
The first reason that this is incorrect is illustrated nicely by

the progression in time of the estimates of the mass of
PSR1614–2230. The first measurement, by Demorest et al.
(2010), was M=1.97±0.04Me. The second measurement,
by Fonseca et al. (2016), was M=1.928±0.017Me. The
most recent measurement, by Arzoumanian et al. (2018), is
M=1.908±0.016Me. Thus, the best estimate of the mass in
both updates is slightly more than one standard deviation lower
than the previous best estimate. Thus, a strict lower bound at
the −1σ mass M=1.93Me from the first measurement would
be too restrictive given our current knowledge of the mass of
PSR1614–2230. Instead, one should use the full posterior
distribution of the mass.
The second reason why this approach is suboptimal is that there

is, after all, uncertainty in the mass measurements. If we accept
= -

+M M2.14 0.09
0.10

 as the mass estimate for PSRJ0740+6620,
then using the hard-bound approach, an EOS with a maximum
mass of 2.05Me is just as viable as an EOS with a maximum
mass of 2.14Me. But if we assume that the measurement has only
Gaussian statistical uncertainties, there is an ∼84% probability that
the mass of PSRJ0740+6620 is greater than 2.05Me. Thus, in
reality, the EOS with =M M2.14max  is considerably more
consistent with the data than the EOS with =M M2.05max .
Applying a lower bound is not a statistically appropriate approach.
The third reason that strict bounds should not be used is that

this approach does not allow the incorporation of information
from multiple stars. For example, at the moment, the only
published masses that pose significant constraints to the EOS
are = -

+M M2.14 0.09
0.10

 for PSRJ0740+6620, = M 2.01
M0.04  for PSRJ0348+0432, and = M M1.908 0.016 

for PSR1614–2230. An EOS with =M M1.8max  is disfavored
at the 3.8σ level for PSRJ0740+6620 alone, but at more than
9σ when the measurements of the masses of all three pulsars are

4
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included (using the simple assumption that the uncertainties are
exactly Gaussian, which is unlikely to be true at several standard
deviations). Thus, Mmax=1.8Me is excluded much more
strongly based on the data from all three stars than it would be
using just the most massive of the three. If a future star is
discovered with, say, a mass M=2.01±0.05Me, then using
the hard-bound method, it would not contribute at all to EOS
constraints, whereas in reality, it would make low-Mmax EOSs
significantly less probable.

4.2. Lack of Marginalization

It is common, although not universal, for post-GW170817
EOS constraint papers to use an estimate of the tidal
deformability parameter at 1.4Me over constraints, rather
than integrating in the full posterior space. Similarly, numerous
papers use only the maximum-likelihood or minimum-χ2 point
along the R(M) curve implied by a given EOS, whereas the
integration should instead be performed over the whole curve
(see, for example, Steiner et al. 2010; Özel et al. 2016).

4.3. Attempts to Invert Measurements to Obtain the EOS

Early papers on inference of the EOS from neutron-star
measurements often presented EOS determination as an
inversion of neutron-star measurements, sometimes using a
Jacobian formalism to map neutron-star observables into EOS
parameters. Such an approach misses the fact that this is
intrinsically a measurement problem, not a problem of
inverting a mathematical relation, and thus must be approached
statistically. Not approaching the analysis as a measurement
problem can lead to fundamental difficulties.

Even setting aside for the moment the fundamentally
statistical nature of the problem, in realistic situations, attempts
to invert observed quantities to determine EOS parameter values
fail because the inversion is singular. For example, if two M(R)
curves obtained from different equations of state cross, then the
inversion is clearly singular at the crossing point. Another
difficulty with this approach has been emphasized by Riley et al.
(2018) and Raaijmakers et al. (2018), in the context of EOS
models that have separately parameterized segments at different
densities, such as models that use a sequence of polytropes. They
point out that some neutron stars might not have a central density
large enough to reach the highest density in the EOS model. In
that case, the parameters describing higher densities have no
influence on the mass and radius of that star, and thus nothing
can be inferred about those parameters (Raaijmakers et al. 2018).
A further difficulty with approaching EOS parameter estimation
as a mathematical inversion problem rather than as statistical
inference is that a one-to-one mapping requires that the number
of EOS parameters be equal to the number of observables. Of
course, the hope is that there are many more observations than
model parameters!

For these reasons, most papers in the last decade have
approached this problem correctly, as a statistical inference
problem, rather than as a problem of inverting a map between
observations and model parameters.

5. Results

In this section, we present the 5%, 50%, and 95% credibility
quantiles for the pressure at a set of densities and for the
circumferential radii at a set of gravitational masses, obtained using
progressively more restrictive data. The densities start at half of

nuclear saturation density (i.e., at 0.08 baryons per fm3), where the
pressures of all of our EOS models agree by construction because
up to that density we use the SLy (Douchin & Haensel 2001) EOS.
We then construct the cumulative probability distribution for the
pressure at progressively higher densities. We also plot the M–R
curves that bound the region that makes up 90% of the total
probability. Currently, constraints on the EOS are relatively weak,
which means that a large fraction of our EOS parameter
combinations ends up with high likelihoods, and thus, we do not
need to perform sophisticated searches through parameter space.
Our method can be used with any parameterization of the

EOS. We assume that the pressure is a function only of the
density, i.e., that the EOS is barotropic. The pressure does not
depend explicitly on the temperature or the proton fraction,
because we assume that the matter is in beta equilibrium. For
our primary parameterization, we follow Abbott et al. (2018) in
using the spectral parameterization introduced by Lindblom
(Lindblom 2010, 2018), in which the free parameters are
spectral indices γk that represent the adiabatic index G =p( )
r r+ p p dp d[( ) ]( ) (where p is the pressure and ρ is the total

mass–energy density) using the expansion

å gG =p xexp , 18
k

k
k

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where ºx p plog 0( ) and p0 is the pressure at half of nuclear
saturation density. We also follow previous work (e.g., Abbott
et al. 2018; Carney et al. 2018) by using an expansion up
to x3 with the following uniform priors on the coefficients
γk: g Î 0.2, 20 [ ], g Î -1.6, 1.71 [ ], g Î -0.6, 0.62 [ ], and
g Î -0.02, 0.023 [ ]. We do not additionally require, as some
papers have, that G Îp 0.6, 4.5( ) [ ] at all densities. The
parameterization itself guarantees that Γ(p)>0, which is
needed to enforce thermodynamical stability. We also require
that the adiabatic speed of sound be less than the speed of light.
In Section 5.7, we display results using an alternative
parameterization, which has potentially different polytropic
indices at variable transition densities.
Once the EOS is chosen, then in the slow rotation limit, the

mass, and radius as functions of the central density, the
maximum stable mass, and the gravitational binding energy for
a given gravitational mass follow from the Tolman–Oppenhei-
mer–Volkoff (TOV) equation (Oppenheimer & Volkoff 1939;
Tolman 1939), and from the relation between baryonic mass
density and total mass–energy density discussed in Tooper
(1965). We compute the moment of inertia and spin quadrupole
moment following the approach in Hartle (1967), and the tidal
Love number using the development in Hinderer (2008; see
also the erratum at Hinderer 2009). We verified the accuracy of
our code by comparing our outputs with those listed in Table
III of Read et al. (2009; using their EOS rather than the spectral
parameterization). We also checked that our moments of
inertia, quadrupole moments, and tidal deformabilities follow
closely the I-Love-Q relations (Yagi & Yunes 2013 and
subsequent papers).
The order in which we add our measurements is (1)symmetry

energy (from laboratory measurements), (2)mass measurements,
(3)tidal deformability measurements, (4)hypothetical future
measurements of both radius and mass, (5)hypothetical future
measurements of moments of inertia, and finally (6)hypothetical
future measurements of the binding energy of stars with precisely
measured gravitational masses. That is, in the first section we
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present results assuming only measurements of (1) (with different
illustrative levels of precision for the symmetry energy). We then
present results assuming only measurements of (1) and (2) (with a
standard precision on the symmetry energy and different potential
measurements for the mass), and so on. This makes it possible to
see how additional measurements progressively improve the
precision of our understanding of the EOS and, as a consequence,
the neutron-star mass–radius relation. Note that when a new
measurement is incorporated, the new EOS constraints can shift
beyond the previous 5% or 95% quantile. For example, if a
neutron star is measured to have a high mass then soft equations
of state are disfavored, which then shifts the quantiles to higher
pressure at a given density.

Whereas in Section 2 we presented our general statistical
method, and in Section 3 we discussed how to apply our
method to particular types of measurements, here we use both
existing and potential future measurements to find credibility
regions in P(ρ) space. Thus we need to make choices about
which measurements to use. For example, after GW170817,
there have been many detailed simulations and comparisons
with electromagnetic information (especially the details of
the resulting kilonova) that have endeavored to constrain the
maximum mass of neutron stars, or to place lower limits on
the tidal deformability of neutron stars of particular masses. We
also need to specify the prior on the mass or the central density
for a given combination of EOS parameter values. In the results
we present here, we assume that the central density can with
equal probability be anywhere between the density that would
produce an M=1.0Me neutron star with that EOS, and the
density that produces the maximum mass possible for that
EOS. We stress that although we make particular choices, these
are only illustrative. Our focus is not to produce our own
version of the constraints, although given our assumptions, our
current constraints are in the top left panels of Figures 5 and 6.
Instead, we make these choices to demonstrate how our method
works in practice; other choices of measurements and even of
EOS families and the priors on their parameters could be used
straightforwardly with our method.

Our final note prior to presenting our results is a reminder
that all measurements and observations have to be interpreted
within a model framework, and this means that we rely on that
framework to obtain quantities of interest. For example,
virtually all neutron-star observations are interpreted under
the assumption that general relativity properly describes
extreme gravity. Many papers prior to the direct detection of
gravitational waves pointed out that the mass–radius relation
(and thus all other structural aspects of stars) could be modified
considerably in different theories of gravity (see DeDeo &
Psaltis 2003 and Orellana et al. 2013 for just two examples).
Careful analysis of gravitational-wave data has limited the
prospects for deviations from general relativity in stellar-mass
objects (see Yunes et al. 2016 for an excellent summary after
the first two events), but it is useful to keep an open mind.

5.1. Nuclear Symmetry Energy

Tsang et al. (2012) give the status of a number of different
laboratory measurements that could constrain the nuclear
symmetry energy. We treat the likelihood factor from the
symmetry energy as a Gaussian:

a
ps

= a s- - e
1

2
, 19S

S

S S
2 1 2

2 S0
2 2( )

( )
( )( ( ) )

where aS ( ) is the symmetry energy predicted using specified
values of the EOS parameters a. For our standard constraint,
we choose S0=32MeV and σS=2MeV from a rough
averaging of the various results presented in Tsang et al.
(2012). Non-Gaussian likelihoods are also straightforward to
include in our framework.
Figure 1 shows that more precise measurements of S would

strongly constrain the EOS below nuclear saturation density but
would have little effect above ns. Figure 2 shows that
knowledge of S has little impact on our knowledge of the
radius of stars with M>1.0Me.

5.2. Maximum Mass

A viable EOS must be able to support a maximum gravitational
mass M that is at least as great as the largest reliably measured
neutron-star mass. For masses, the gold standard is neutron stars
in relativistic binaries, for which it is possible to measure post-
Keplerian parameters such as the Shapiro delay, pericenter
precession, and orbital decay due to the emission of gravitational
radiation (see Freire 2009 for a good discussion of how these
parameters are measured and the governing equations).
The precision with which these masses can be measured, plus
the reliability of the underlying theory, makes inferred masses the
bedrock of astronomical constraints on the EOS of cold high-
density matter. Particularly notable are the mass measurements
M=1.908±0.016Me for PSRJ1614–2230 (original mass

Figure 1. Equation-of-state constraints based only on symmetry energy
measurements. In this figure, as in the P–ρ figures that follow, the bottom red
curve shows the 5% quantile in the pressure posterior at each density and the
top red curve shows the 95% quantile. The shaded region is between the 5%
and 95% quantiles. All figures also give the log10 of the effective number
density (which we define as the rest-mass density divided by the mass of a
neutron) in units of the number density at nuclear saturation (ns ≈ 0.16 fm−3)
and the log10 of the pressure in ergcm−3 on the left-hand axes and in
MeVfm−3 on the right-hand axes. The top left panel shows the constraints
when all values of the symmetry energy S are considered equally probable. It
therefore shows the 5%–95% range of the prior. The top right panel applies a
Gaussian likelihood to the symmetry energy, with mean Smean=32 MeV and
standard deviation σS=2 MeV; the bottom left panel uses a Gaussian
likelihood with Smean=32 MeV and σS=1 MeV; and the bottom right panel
uses a Gaussian likelihood with Smean=32 MeV and σS=0.5 MeV. As
expected, more precise symmetry energy measurements tighten the EOS at ns
and below, but have little impact on the EOS at higher densities.
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measurement in Demorest et al. (2010) and current mass
measurement in Arzoumanian et al. 2018), M=2.01±
0.04Me for PSRJ0348+0432 (Antoniadis et al. 2013), and

= -
+M M2.14 0.09

0.10
 for PSRJ0740+6620 (Cromartie et al.

2019).
There are intriguing suggestions of even higher-mass

neutron stars. For example, the “black widow” system
PSRB1757+20 has an estimated mass of 2.40±0.14Me

(van Kerkwijk et al. 2011), and another black widow system,
PSR1311–3430, has an estimated mass of 2.68±0.14Me

(Romani et al. 2012). However, these measurements are less
reliable than the relativistic binary masses because of potential
systematic errors and the residuals in the fits (van Kerkwijk
et al. 2011; Romani et al. 2012).

There are also arguments based on short gamma-ray bursts
(Bauswein et al. 2013; Fryer et al. 2015; Lawrence et al. 2015)
that were later applied to the double-neutron-star coalescence
event GW170817 (Margalit & Metzger 2017), which suggest a
relatively low maximum mass. For example, Margalit &
Metzger (2017) suggest that if the two neutron stars in
GW170817 formed a hypermassive neutron star that collapsed
within tens or hundreds of milliseconds to a black hole, then

M M2.17max , which is precisely consistent with the
predictions of Fryer et al. (2015) and Lawrence et al. (2015).
However, there is no direct evidence that there was a collapse
to a black hole. Similarly, there are various model-dependent
upper limits on Mmax that have been obtained via comparison
of simulations with the kilonova that followed GW170817
(e.g., Shibata et al. 2017; Coughlin et al. 2019; Rezzolla et al.
2018; Ruiz et al. 2018).

We adopt, as our standard maximum mass constraint, the
combination of three mass measurements: = -

+M M2.14 0.09
0.10



for PSRJ0740+6620, M=2.01±0.04Me for PSRJ0348
+0432 and M=1.908±0.016Me for PSRJ1614–2230. We
also explore the constraints we would obtain if there is a future
mass measurement of M=2.3±0.1Me, or a future mass
measurement of M=2.4±0.1Me, or a confirmed upper
limit of = M M2.2 0.05max . In all cases, we assume that
the masses or mass limits have Gaussian likelihoods.
Figure 3 shows the second level of constraints, in which we

consider that the probability distribution of the symmetry energy
is a Gaussian with a mean of 32MeV and a standard deviation
of 2MeV, and add the mass constraints described above. It is
clear from the figure that such measurements place important
constraints on the high-density EOS. Likewise, Figure 4 shows
the resulting mass–radius constraints. We see that, as expected,
lower limits on the maximum mass push radii to higher values,
whereas upper limits push them to lower values.

5.3. Tidal Deformability

The limits on L̃ from an event such as GW170817 depend
on the waveform model, with a spread of ∼10% among models
used thus far (Abbott et al. 2019b). Bearing this caveat in mind,
the middle 90% of the posterior credible range for L̃ has been
reported as (70, 720; Abbott et al. 2019b). Future improve-
ments in gravitational-wave sensitivity, plus the simple
accumulation of observing time, are expected to yield a rapidly
growing number of detected double-neutron-star coalescences,

Figure 2. Mass–radius curves following from the equation-of-state constraints.
In this figure, as in the M–R figures that follow, the left red curve and right red
curve are the lower and upper boundaries, respectively, of the envelope of
equation-of-state curves that make up 90% of the total probability in the
sample. The central densities for even the 1.0Me stars are well above nuclear
saturation density, so constraints on S have little impact on the radius of stars
with realistic masses.

Figure 3. Equation-of-state constraints based on symmetry energy and mass
measurements. Here, we assume that the probability distribution for the
symmetry energy is a Gaussian with mean 32MeV and standard deviation
2MeV, and the dotted lines show the 5% and 95% quantiles at each density
when only the symmetry energy is used as a constraint (with S = 32±2 MeV).
The top left panel shows the quantiles when we include constraints based on the
masses of PSRJ0740+6620 ( = -

+M M2.14 0.09
0.10

; see Cromartie et al. 2019),
PSRJ0348+0432 ( = M M2.01 0.04 ; see Antoniadis et al. 2013), and
PSRJ1614−2230 ( = M M1.908 0.016 ; see Fonseca et al. 2016). The top
right panel shows the effect of adding, to those two stars, a hypothetical star with
a mass measurement of M=2.3±0.1Me. The bottom left panel shows the
effect of instead adding a star with M=2.4±0.1Me. The bottom right panel
shows the effect of instead adding an upper limit of M=2.2±0.05Me to the
maximum mass, from arguments about short gamma-ray bursts and events such
as GW170817 (Bauswein et al. 2013; Fryer et al. 2015; Lawrence et al. 2015;
Margalit & Metzger 2017). Mass measurements constrain the EOS significantly
below ∼10ns.
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and potentially a few mergers between neutron stars and black
holes. These additional observations will improve the con-
straints on the tidal deformability, especially given the
anticipated improvements in high-frequency sensitivity due to
the use of squeezed light. It is, however, worth tempering
expectations for two reasons: (1)although tidal effects will be
more pronounced at higher frequencies and thus constraints
could in principle be improved substantially, waveform
families also diverge more at higher frequencies and thus the
role of systematic errors will be more prominent, and
(2)GW170817 was an exceptionally strong event (its signal
to noise was the largest of any event in the first two LIGO runs;
see Abbott et al. 2019a), which means that future events are
likely to be measured less precisely.

For GW170817, the full posterior over all model parameters
is available at https://dcc.ligo.org/LIGO-P1800061/public.
We use the ∼4000 samples at this site as input for a kernel
density estimate (see Rosenblatt 1956; Parzen 1962; Silverman
1986 for details) of the marginalized posterior in the primary
mass and binary tidal deformability, which we use in our
estimates of the constraints that we display in Figures 5
and 6. Here, we add to our standard S+Mmax constraints
information from tidal deformability measurements. We begin
with the single event GW170817, and then suppose that we
have a succession of identical events. From these figures, it is
clear that precise tidal deformability measurements will
contribute substantially to our understanding of the dense
matter EOS, and to our knowledge of the radius at a wide range
of masses. We also note that various groups have modeled the
electromagnetic emission and have proposed other limits on L̃
(e.g., Radice et al. 2018 find a lower limit L > 400˜ for
GW170817), but we have not included such limits in our
analysis (see Kiuchi et al. 2019 for cautionary remarks about
lower limits to L̃ obtained in this manner).

Thus far, we have used existing measurements, plus plausible
extrapolations. We will now explore the effect of adding
additional types of constraints that could be obtained in the future.

5.4. Radius Measurements

Reliable and precise radius measurements would be
extremely useful in constraining the properties of high-density
matter, and much effort has been devoted to the analysis of, in
particular, X-ray data from isolated and bursting neutron stars.
However, there are potentially large systematic errors in current
reports of neutron-star radii; for detailed discussions, see Miller
(2013) and Miller & Lamb (2016), and see additional caveats
related to our uncertainty about the EOS of the crust in Gamba
et al. (2019).
There is optimism that systematic errors might not be

significant for the results that will be obtained using NICER
measurements of the X-ray pulse waveforms of a few non-
accreting neutron stars that are pulsars. This optimism is based
on studies that have been performed of the method, which
involves fitting the energy-resolved X-ray waveforms to
models with thermally emitting spots that rotate with the
neutron star. Lo et al. (2013) and Miller & Lamb (2015)
generated synthetic waveforms using various geometries and
assumptions, and fit them with standard models that had
uniformly emitting circular spots. Although in many cases, the
generated spots were oval, or had temperature gradients, or had
spectra or beaming patterns different from those assumed in the
fitted model, in no case was there a statistically good fit that
was significantly biased in mass or radius. This stands in strong
contrast to alternative methods, for which an apparently
excellent fit with large bias is possible or even likely, meaning

Figure 4. Mass–radius constraints based on symmetry energy and mass
measurements. Panels correspond to those in Figure 3, and the dotted lines
show the S=32±2 MeV M–R curves from Figure 2.

Figure 5. Equation-of-state constraints based on symmetry energy, masses, and
tidal deformability. Here, we begin with the “standard” S+Mmax constraint from
Figure 3; the dotted lines show the 5% and 95% quantiles for that constraint. The
top left panel shows the quantiles when we include constraints based on the tidal
deformability of GW170817 (Abbott et al. 2019b). In order to determine how
additional comparable tidal deformability measurements would affect the EOS
constraints, in the top right panel, we show the consequences of having two events
with identical constraints; in the bottom left, we suppose we have three events; and
the bottom right we suppose we have four events. Tidal deformability
measurements improve our understanding of the EOS at a broad range of
densities above nuclear saturation density.
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that the fit quality alone does not give a hint that there are
potential problems.

Thus, our opinion is that although current radius measure-
ments may have significant systematic errors, future NICER
measurements are promising. In addition, as was pointed out by
Annala et al. (2018; see also De et al. 2018; Raithel et al. 2018,
and other papers), gravitational-wave measurements from
double-neutron-star mergers can place limits on neutron-star
radii, but because these are not independent from tidal
deformability estimates, we have not included them separately
in our constraints.

In this section, we suppose that a posterior in (M, R) has been
obtained for a given star. The posterior need not be a product of
independent posteriors in M and R, or independent posteriors in
M/R and M; the correlations, if any, depend on the details of
the system (see Lo et al. 2013; Miller & Lamb 2015). For the
purposes of illustration only, we suppose here that the posterior
in mass and radius is a product of independent Gaussians:

µ - - D - - D M R e e, , 20M M R1.4 2 12 km 2M R
2 2 2 2( ) ( )( ) ( )

where we explore the consequences of selecting ΔM and ΔR

equal to 20%, 10%, 5%, and 2% of the best values of the mass
and radius, respectively.

In Figure 7, we show the effect of adding radius plus mass
measurements as described in Equation (20). As can be seen in
Figure 7, a fractional precision of 5% for a single star is
necessary to add significantly to our information (although as
pointed out by Miller 2016 and Weih et al. 2019, in some mass
ranges, such as M> 2Me, less-precise measurements could
still be important). As a check of our method, we find in
Figure 8, as we must, that improved measurement precision of
mass and radius will dramatically tighten the mass–radius
relation.

5.5. Moment of Inertia for Neutron Star of Known Mass

Shortly after the discovery of the double pulsar
PSRJ0737–3039 (Burgay et al. 2003), it was pointed out
(Lattimer & Schutz 2005; Kramer & Wex 2009) that in principle,
spin–orbit coupling could be measured within a few years from
the resulting extra pericenter precession, and that this might yield
an interestingly precise moment of inertia for the more rapidly
rotating of the two pulsars, PSRJ0737–3039A (which has a
mass of = M M1.3381 0.0007 : Kramer et al. 2006). The
measurement has been far more challenging than originally
envisioned, but there is still hope that within about a decade, the
moment of inertia can be measured to within ∼10%. For our
illustrative constraint, we select = ´I 1.37 101.338

45 gcm2, with
Gaussian uncertainties, because this is consistent with the other
real and hypothetical constraints we are applying and because it is
consistent with the moment-of-inertia range found by Landry &
Kumar (2018).
We add our second hypothetical constraint in Figure 9:

moment-of-inertia measurements for the M=1.338Me neu-
tron star PSRJ0737–3039A. Measurements to the hoped-for
precision of ∼ΔI45 = 0.1 for this single star would add
significantly to the constraints, but less-precise measurements
would have little effect. In Figure 10, we see that better
moment-of-inertia measurements for an M=1.338Me star
would have little influence on estimates of the radii of stars
with masses around M=1.0Me, but would significantly
improve the estimates of the radii of M=1.8−2Me stars.

5.6. Binding Energy of Neutron Stars Formed in Electron-
capture Supernovae

If it were possible to know the baryonic rest mass (that is, the
sum of the masses of all of the constituent particles if separated

Figure 7. Equation-of-state constraints based on symmetry energy, masses,
tidal deformability, and illustrative future radius measurements. Here, we begin
with the “standard” S+Mmax+L constraint from Figure 5; the dotted lines show
the 5% and 95% quantiles for that constraint. The top left panel shows the
effect of adding a measurement of a single M=1.4Me, R=12km star, with
fractional Gaussian uncertainties of 20% for both the mass and radius (see
Equation (20)). The top right panel shows the effect if the fractional Gaussian
uncertainties are 10%, the bottom left assumes uncertainties of 5%, and the
bottom right assumes uncertainties of 2%.

Figure 6. Mass–radius constraints based on symmetry energy, masses, and
tidal deformability. Panels correspond to those in Figure 5, and the dotted lines
show the 5% and 95% quantiles from the “standard” S+MmaxM−R curve
from Figure 4. The relatively low tidal deformability from GW170817 suggests
relatively small radii, so if similar constraints are obtained for other events then
the preferred radius will decrease.
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to large distance at zero speed) as well as the gravitational
mass, for individual neutron stars to reasonable precision, then
the resulting knowledge of the binding energy for those stars

would provide another constraint on the EOS. It is not possible
to make a direct measurement of the baryonic rest mass of a
star, but there are suggestions that a particular type of core-
collapse supernova known as an electron-capture supernova
might occur when the core baryonic rest mass is in the narrow
range ~M M1.36 1.37bary –  (Nomoto 1984; Podsiadlowski
et al. 2004, 2005; Zha et al. 2019). If there is then neither
expulsion of mass nor additional fallback, and if neutron stars
formed via this mechanism can be identified and their
gravitational masses measured, then the constraint could be
applied. There are clearly several ways in which this
identification, or the estimate of the baryonic rest mass, could
fail. Moreover, some objects likely to be neutron stars are too
light to have formed from an electron-capture supernova, e.g.,
the M=1.174±0.004Me companion to PSRJ0453+1159
Martinez et al. 2015, so other mechanisms to produce low-mass
neutron stars (such as ultra-stripped supernovae; see Tauris et al.
2017) could be in play in this mass range. Notwithstanding those
caveats, Podsiadlowski et al. (2005) made the interesting
suggestion that the second pulsar in the double pulsar system,
PSRJ0737–3039B, originated from an electron-capture super-
nova, and that its gravitational mass ofM=1.2489±0.0007Me

should therefore be identified with =M M1.366 1.375bary – .
Thus, when we incorporate this hypothetical factor into our

analysis, we do so by assuming that the baryonic mass
corresponding to a gravitational mass M=1.2489Me is
1.37Me with a Gaussian likelihood.
In Figures 11 and 12, we show the effect of adding this

constraint. Fractional precision 0.5% would improve our
knowledge of the EOS below ∼few×ns and would also
tighten the range of radii of low-mass neutron stars.

Figure 9. Equation-of-state constraints based on symmetry energy, masses, tidal
deformability, and illustrative future radius and moment-of-inertia measurements.
Here, we begin with the 5% S+Mmax+L+R constraint from Figure 7; the dotted
lines show the 5% and 95% quantiles for that constraint. The top left panel shows
the effect of adding a measurement of the moment of inertia of anM=1.338Me

star, which has a Gaussian distribution centered on =I 10 g cm 1.3745 2 (the
value for an example equation of state with R= 12 km at M= 1.4Me) with a
standard deviation ofD =I 10 g cm 0.545 2 . The top right panel shows the effect
of the same measurement withD =I 10 g cm 0.245 2 , the bottom left panel shows
the effect when the uncertainty is 0.1, and the bottom right panel shows the effect
when the uncertainty is 0.05. Progressively more precise measurements would
strongly constrain the EOS at a few times nuclear density.

Figure 10. Mass–radius constraints based on symmetry energy, masses, tidal
deformability, and illustrative future radius and moment-of-inertia measure-
ments. Panels correspond to those in Figure 9. Improved moment-of-inertia
measurements have comparatively small influence on the mass–radius relation
at low masses, but their influence is significant at M>1.8Me and for the
I=1.37×1045 gcm2 that we chose for M=1.338Me, increased precision
also reduces the maximum mass.

Figure 8. Mass–radius constraints based on symmetry energy, masses, tidal
deformability, and illustrative future radius measurements. The panels
correspond to those in Figure 7. This figure is essentially a check of the
algorithm: as had to be the case, more precise measurements of mass and radius
strongly constrain the mass–radius relation.
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5.7. Selected Results for a Piecewise Polytropic
Parameterization of the Equation of State

One drawback of the spectral parameterization we use, with
the priors we adopt, is that this does not allow the pressure to
be nearly constant over a range of densities. That is, this
parameterization is poor at reproducing phase transitions.
Although we again stress that the main point of our paper is our
Bayesian inference framework rather than specific results, we
present for comparison results for a subset of the measurements
presented above, for a different EOS.

In this parameterization, we again enforce causality
(dP/dρ< c2) and stability (dP/dρ> 0) and use the SLy EOS
(Douchin & Haensel 2001) up to less than half of the nuclear
saturation density ρs. Above ρ0=ρs/2, we represent the EOS by a
sequence of polytropes with indices that can change at transition
densities that are also parameters: our priors are r rÎ 3 4, 5 4 s1 [ ] ,
r rÎ 3 2, 5 2 s2 [ ] , r rÎ 3, 5 s3 [ ] , and r rÎ 6, 10 s4 [ ] . Our priors
on the polytropic indices are G Î 2, 31 [ ] from ρ0 to ρ1,
G Î 0.1, 52 [ ] from ρ1 to ρ2, G Î 0.1, 53 [ ] from ρ2 to ρ3,
G Î 0.1, 54 [ ] from ρ3 to ρ4, and G Î 0.1, 55 [ ] for densities higher
than ρ4. All priors are flat in the bracketed range. The limited range
[2,3] for Γ1 is informed by the study of Hebeler et al. (2013).

The results of using this parameterization with a subset of
our measurements are shown in Figures 13 and 14. Here,
the progressive measurements are S=32±2MeV; the
measured masses of PSRJ0740+6620, PSRJ0348+0432, and
PSR1614–2230; the tidal deformability from GW170817; a
hypothetical measurement of =M R M, 1.4 , 12 km( ) ( ) with
5% precision; a hypothetical measurement of the moment

of inertia of an M=1.338Me star with ΔI45=0.1; and
hypothetical knowledge to within 0.005Me of the baryonic rest
mass of a star with a gravitational mass of M=1.2489Me. We
see that although the details of the resulting constraints are
somewhat different than for the spectral parameterization, the
trends are similar.

6. Conclusions

We have shown that diverse sources of both laboratory and
astronomical information about cold, dense, catalyzed matter
can be incorporated flexibly within a straightforward, rigorous,
and practical Bayesian framework. We treat carefully the
constraints that stem from the existing measurements of the
symmetry energy, large neutron-star masses, and tidal deform-
ability, the expected future measurements of neutron-star radii
and masses, and the possible future measurements of the
moments of inertia and gravitational binding energies of
neutron stars. We find that different types of measurements will
play significantly different roles in constraining the EOS in
different density ranges. For example, better symmetry energy
measurements will have a major influence on our under-
standing of matter somewhat below nuclear saturation density
but little influence above that density. In contrast, precise radius
measurements or multiple tidal deformability measurements of
the quality of those from GW170817 or better will improve our
knowledge of the EOS over a broader density range. Of course,
any of these analyses would have to be revisited if systematic
errors dominate; but overall, the prospects are good in the next
few years for a dramatically enhanced understanding of the
nature of dense matter.

Figure 12. Mass–radius constraints based on symmetry energy, masses, tidal
deformability, and illustrative future radius, moment of inertia, and binding
energy measurements. Panels correspond to those in Figure 11. The primary
influence of a precise binding energy measurement for a low gravitational mass
M=1.2489Me is on the radius at low masses.

Figure 11. Equation-of-state constraints based on symmetry energy, masses,
tidal deformability, and illustrative future radius, moment of inertia, and
binding energy measurements. Here, we begin with the 10% precision
S+Mmax+L+R+I constraint from Figure 9; the dotted lines show the 5% and
95% quantiles for that constraint. The top left panel shows the effect of
assuming that for a star with gravitational mass M=1.2489Me, the
probability distribution for the baryonic rest mass is a Gaussian centered on
1.37Me with a standard deviation of 0.2Me. The top right panel assumes a
standard deviation of 0.1Me, the bottom left 0.05Me, and the bottom right
0.02Me. Measurement of the baryonic mass with a precision of of ∼0.005Me
or better would contribute to our knowledge of the equation of state.
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Figure 13. Constraints on the equation of state using a parameterization employing a sequence of polytropes (see the text for details). The line and shading types mean
the same as they did for the constraints based on the spectral equation of state. Here, we use a subset of the real and hypothetical measurements that we discuss above.
We use, sequentially, S=32±2 MeV; the masses of the three most massive neutron stars; the tidal deformability of GW170817; a hypothetical (M,
R)=(1.4 Me,12 km) measurement to 5% precision; a hypothetical measurement of the moment of inertia of a 1.338Me star to 10% precision; and hypothetical
knowledge of the baryonic rest mass of a star to 0.005Me precision. The constraints are similar, although not identical, to those obtained for the spectral
parameterization of the equation of state.

Figure 14. Mass–radius constraints corresponding to the equation-of-state constraints shown in Figure 13. Again, the results are quite similar to those we found when
we used the spectral parameterization for the equation of state.
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