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Abstract

PSR J0740+6620 has a gravitational mass of 2.08± 0.07Me, which is the highest reliably determined mass of any
neutron star. As a result, a measurement of its radius will provide unique insight into the properties of neutron star
core matter at high densities. Here we report a radius measurement based on fits of rotating hot spot patterns
to Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) X-ray
observations. We find that the equatorial circumferential radius of PSR J0740+6620 is -

+13.7 1.5
2.6 km (68%). We

apply our measurement, combined with the previous NICER mass and radius measurement of PSR J0030+0451,
the masses of two other ∼2Me pulsars, and the tidal deformability constraints from two gravitational wave events,
to three different frameworks for equation-of-state modeling, and find consistent results at ∼1.5–5 times nuclear
saturation density. For a given framework, when all measurements are included, the radius of a 1.4Me neutron star
is known to±4% (68% credibility) and the radius of a 2.08Me neutron star is known to±5%. The full radius
range that spans the±1σ credible intervals of all the radius estimates in the three frameworks is 12.45± 0.65 km
for a 1.4Me neutron star and 12.35± 0.75 km for a 2.08Me neutron star.

Unified Astronomy Thesaurus concepts: X-ray sources (1822); Millisecond pulsars (1062); Neutron stars (1108);
Neutron star cores (1107)

1. Introduction

Neutron stars are unique laboratories for the study of dense
matter. Their cores consist of matter that is believed to be
catalyzed to the ground state, at a few times nuclear saturation
density (a mass density ρs≈ 2.7–2.8× 1014 g cm−3, or a
baryonic number density ns≈ 0.16 fm−3). The combination
of high density and the expected large neutron–proton

asymmetry in neutron star cores cannot be duplicated in
laboratories. Hence, observations of neutron stars can provide
us with a valuable window into an otherwise inaccessible realm
of nuclear physics.
Over the last several years great strides have been made in

neutron star observations, and thus in our understanding of the
equation of state (EOS: pressure as a function of energy
density) of neutron star matter at high densities (see, e.g.,
Pavlov & Zavlin 1997; Bhattacharyya et al. 2005; Steiner et al.
2010; Miller 2013; Miller & Lamb 2016; Özel et al. 2016;
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Nättilä et al. 2017 for earlier perspectives). Three neutron
stars have a gravitational mass established to be M∼ 2Me:
PSR 1614–2230 with M= 1.908± 0.016 Me (the uncertain-
ties here and below are for the 68% credible region) (Demorest
et al. 2010; Fonseca et al. 2016; Arzoumanian et al. 2018);
PSR J0348+0432 with M= 2.01± 0.04Me (Antoniadis et al.
2013); and PSR J0740+6620 with M= 2.08± 0.07Me
(Cromartie et al. 2020; Fonseca et al. 2021). The existence of
such high-mass neutron stars indicates that the EOS of neutron
star matter is relatively hard, i.e., that it yields high pressures
at a few times ρs. The lack of a clear signature of tidal
deformation in gravitational wave observations of GW170817
(Abbott et al. 2017, 2018; De et al. 2018) and GW190425
(Abbott et al. 2020a) indicates that the EOS is not too hard. When
taken together, these high measured masses and the upper limits
on the tidal deformability derived from these gravitational wave
observations have already narrowed significantly the range of
allowed EOS models. The neutron star radius and mass
measurements made using data from the Neutron Star Interior
Composition Explorer (NICER) are potentially even more
informative.

The first simultaneous measurements of the mass and radius
of a neutron star made using NICER data were those of the
millisecond pulsar PSR J0030+0451, which was determined to
have a gravitational mass of M≈ 1.44± 0.15Me and an
equatorial circumferential radius of Re≈ 13± 1 km (Miller
et al. 2019; Riley et al. 2019; compare with the 11.9± 1.4 km
radius inferred for the two ∼1.4Me neutron stars in the
gravitational wave event GW170817; Abbott et al. 2018; De
et al. 2018). Assuming that systematic errors in the NICER
measurements are unimportant, and hence that the fractional
uncertainty of each of these measurements decreases as the
inverse square root of the observing time devoted to each
pulsar, we expect these uncertainties to become ∼30%–40%
smaller within the next few years. A precision this high will
improve significantly our understanding of neutron star matter.
It is also important to determine whether the masses and radii,
and the EOS of neutron star matter, determined using NICER
observations of other neutron stars are consistent with those
determined using NICER observations of PSR J0030+0451.

In particular, it is valuable to measure the radii of higher-
mass neutron stars. Such stars have higher central densities
than a ∼1.4Me star, which means that a radius measurement
will probe the EOS in a higher-density regime. For example,
whereas the measurement of the radius of a 1.4Me star has its
greatest impact on our understanding of matter at 1.6 times
nuclear saturation density, the measurement of the radius of a
2.0Me star tells us primarily about matter at 2.2 times nuclear
saturation density (see Section IV.D of Drischler et al. 2021;
see also Xie & Li 2020 for additional perspectives on the
importance of radius measurements for high-mass neutron
stars). As pointed out in the context of the ∼1.9Me pulsar
PSR J1614−2230, even a low-precision radius measurement of
a high-mass pulsar, or indeed even a solid lower limit to the
radius, will be useful in the construction of more accurate EOS
for dense matter (Miller 2016).

Here we report our analysis of X-ray data for the ∼2.1Me
pulsar PSR J0740+6620, which has a rotational frequency of
346.53 Hz (Cromartie et al. 2020). In contrast to PSR J0030
+0451, which is an isolated neutron star, PSR J0740+6620 is
in a binary and therefore we have independent measurements of
the mass and orbital inclination. This improves the precision of

the fits. The challenge presented by PSR J0740+6620 is that its
NICER count rate is only ∼5% that of PSR J0030+0451. As a
result, counts in NICER data from PSR J0740+6620 are
dominated by sources unassociated with the pulsar, to a far
greater degree than is true for PSR J0030+0451. This
significantly reduces the modulation fraction and harmonic
structure in the X-ray pulse waveform, which in turn reduces
the information we have about the emitting regions (which we
henceforth call “spots”) and the mass and radius of the star. If
we had precise and reliable information about the background
in NICER observations we could use this to improve our mass
and radius estimates, but at present we need to turn to other
sources of information.
In this Letter we therefore present an analysis of PSR J0740

+6620 based on both NICER and X-ray Multi-Mirror (XMM-
Newton) data. The NICER data provide information about the
modulated emission from the star, which is produced from hot
spots on the star as the star rotates. The XMM-Newton data
have a far smaller rate of background counts than the NICER
data and are therefore informative about the total flux from the
star. Combined, the NICER and XMM-Newton data sets thus
yield an improved measurement of the modulation fraction and
the harmonic structure from PSR J0740+6620, and hence
improve the precision with which we can measure the radius. In
particular, stronger gravitational lensing allows more of the star
to be visible, which lowers the modulation of the signal. Since
gravitational lensing depends on the ratio of mass to radius, for
fixed mass, an increase in the pulsed fraction means that a
larger radius will be inferred if all other parameters are fixed.
In Section 2 we describe the selection of the NICER and

XMM-Newton data, including blank-sky XMM-Newton data
that have been accumulated over the duration of its mission and
that help us refine further our estimate of the stellar flux. In
Section 3 we discuss our analysis methods. These are based on
the approaches described in previous NICER papers (Bogda-
nov et al. 2019, 2021; Miller et al. 2019), but are augmented
here by the extra data sets and our inclusion of background
information from the XMM-Newton blank-sky observations. In
Section 4 we present our analysis results including tests of the
adequacy of our models; we find that the radius of PSR J0740
+6620 is = -

+R 13.7e 1.5
2.6 km at 68% credibility. We also

describe several differences between our analysis and that in
the parallel paper Riley et al. (2021), in Section 4.6. In
Section 5 we present the implications of our PSR J0740+6620
analysis, combined with our previous results on PSR J0030
+0451 and other data, for the EOS of cold dense matter. Our
conclusions are in Section 6. We present our full corner plots
and tables of posteriors in the appendices. Samples from our
full posterior probability distributions are available at https://
zenodo.org/record/4670689.

2. Observations

2.1. Data Used

We base our analysis of PSR J0740+6620 on NICER event
data that included individual event times, event energies, and
event pulsation phase. Our observing strategy and data
reduction resulted in a data set with very low noise properties,
as was necessary because of the faintness of this pulsar.
Our analysis of the X-ray data on PSR J0740+6620 comes

from a series of 215 observations obtained with NICER XTI
collected between 2018 September 21 and 2020 April 17, with
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a net exposure time of 1602.68 ks (after all filtering was
applied, as described below). The final event data were
obtained using the following filtering criteria: (i) we only
included ObsIDs when all 52 NICER detectors were active; (ii)
we excluded events with energies outside the range 0.3–3.0
keV; (iii) we excluded events from DetID 34 (which frequently
exhibits elevated count rates compared to the average); (iv) we
only considered time intervals when PSR J0740+6620 was
situated at least 80° from the Sun to minimize optical loading
and scattered solar X-ray background photons; and (v) we
rejected data obtained at low cut-off rigidities (COR_SAX< 5)
to minimize particle background contamination. The filtered
events were assigned pulse phases using the PSR J0740+6620
ephemeris from Fonseca et al. (2021). This event list ultimately
consisted of 7334 separate good time intervals (GTIs). We then
searched this event list for the pulsar signal. If the events in a
particular GTI did not increase the pulsar signal to noise we
rejected that GTI. The pulsar detection significance was highest
in the energy range 0.31 to 1.18 keV. Ultimately, after all
filtering and other exclusions were finished, we ended up with
521,004 NICERXTI events. The details of the NICER
observations and pulse detection for PSR J0740+6620 can be
found in Wolff et al. (2021).30

We use the latest available calibration products, namely the
nixtiref20170601v002 redistribution matrix file and the nixtia-
veonaxis20170601v004 ancillary response file (ARF). For the
latter, the effective areas per energy channel were corrected by
a factor of 51/52 to account for the removal of all events from
DetID 34. The response properties of NICER incorporated in
these calibration products represented the best effort by the
instrument modeling team that were available in August 2020
when the analysis presented here was begun.

PSR J0740+6620 was also targeted with XMM-Newton
on three separate occasions: 2019 October 26 (ObsID
0851181601), 2019 October 28 (ObsID 0851181401), and
2019 November 1 (ObsID 0851181501) as part of a Director’s
Discretionary Time program. All three European Photon
Imaging Camera (EPIC) instruments (pn, MOS1, and MOS2)
were operated in “Full Frame” imaging mode with the “Thin”
filters in the optical path. Due to the long detector read-out
times (73.4 ms for EPIC-pn and 2.6 s for EPIC-MOS1/2), the
data do not permit a pulse-phase-resolved analysis. Data
summed over phase are used in the analysis that follows. The
XMM-Newton data were processed with the Science Analysis
Software (SAS31) using the recommended procedures. We
employed the recommended event grade PATTERN and
FLAG values that ensured only real photon events recorded
by the instruments were included in our analysis (�12 for
MOS1/2 and �4 for pn). All three of these XMM-Newton
observations were obtained while the satellite was in a part of
its orbit that suffered from intense particle flaring effects. Only
6.8 ks of the total 20.8 ks of EPIC-pn exposure had sufficiently
low background to be used in our analysis, and only 18.0/18.7
ks of the total 26.7/34.3 ks of MOS1/2 exposures could
be utilized. A circular extraction region of radius 25″ centered
on the radio timing position of PSR J0740+6620 was used
to produce clean source event lists. The XMM-Newton

instrument response files specific to the PSR J0740+6620
observations were then generated using the rmfgen and arfgen
tools in SAS.
Under normal observing circumstances, one uses regions

near the target source in the instrument image plane from the
same observations to estimate the observational background. In
our case, however, due to the short durations of these
observations, very few background counts were available to
estimate the background. As an alternative, we obtained
representative background estimates with longer exposures
from the blank-sky event files provided by the XMM-Newton
Science Operations Centre. The blank-sky images were filtered
in the same manner as the PSR J0740+6620 images and the
background was extracted from the same location on the
detector image plane as the pulsar. The resulting background
spectrum was then rescaled so that the exposure times and
pixel-area factors matched those of the PSR J0740+6620
exposures.

2.2. Calibration of the Instruments

The effective area of the NICER XTI is determined primarily
using observations of the Crab pulsar and nebula. The energy-
dependent residuals in the fits to the Crab spectrum are
typically at the level of 2%.32 The calibration accuracies for
the XMM-Newton EPIC-MOS and EPIC-pn cameras are
determined to better than 3% and 2% (at 1σ), respectively.33

However, in the absence of a suitable absolute calibration
source, the uncertainties in the absolute energy-independent
effective areas that we use for the NICER XTI and the three
XMM-Newton detectors are estimated to be no more than±10%
(e.g., Figure C2 in Ricci et al. 2021; see Section 3.7 for further
discussion).

3. Methods

Our approach to modeling the X-ray data is largely the same
as it was in Miller et al. (2019), except that for our analysis of
PSR J0740+6620 we used both NICER and XMM-Newton
data, and we used blank-sky observations to estimate the non-
source counts in the XMM-Newton data. In Section 3.1
through Section 3.3, we summarize briefly the approaches used
in Miller et al. (2019), and refer the reader to that paper for
details and tests of our procedures. In Section 3.4 we discuss
the new aspects of our fitting procedure, which include
analyzing multiple data sets and incorporating independent
estimates of the background made using the XMM-Newton
data. We conclude this section with short discussions of our
parameter estimation procedure in Section 3.5 (which is the
same as was described in Miller et al. 2019), our choice of
energy channels in Section 3.6 (which is different from the
choice made in Miller et al. 2019 because we are using an
updated energy calibration for NICER and because we also use
XMM-Newton data in our analysis), and the effects of a
possible difference in the absolute calibration of NICER and
XMM-Newton in Section 3.7.

30 See https://heasarc.gsfc.nasa.gov/docs/nicer/mission_guide/ for the stan-
dard definitions of the observational terms used in this section.
31 The XMM-Newton SAS is developed and maintained by the Science
Operations Centre at the European Space Astronomy Centre and the Survey
Science Centre at the University of Leicester.

32 See https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/nicer/docs/xti/
NICER-xti20200722-Release-Notesb.pdf for further details.
33 See in particular Table 1 in https://xmmweb.esac.esa.int/docs/documents/
CAL-TN-0018.pdf.
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3.1. Modeling the Emission from the Stellar Surface

The soft X-ray emission from old, non-accreting pulsars
such as PSR J0740+6620 is believed to be generated when
particles with large (?100) Lorentz factors are produced in
pair cascades and deposit their energy deep in the atmosphere
of the neutron star (Tsai 1974; Harding & Muslimov
2001, 2002; Bogdanov et al. 2007; see Bauböck et al. 2019
and Salmi et al. 2020 for explorations of the consequences for
the beaming pattern of emission from the stellar surface if
significant energy is in particles with lower Lorentz factors).
The specific intensity as a function of the angle between the
photon propagation direction and the local surface normal
depends on the assumed composition, the ionization state, and
the strength (and potentially the orientation) of the surface
magnetic field at the point of emission.

We follow Miller et al. (2019) in assuming that the
atmosphere is pure hydrogen and that the magnetic field can
be neglected. We now discuss this in more detail.

Composition of the upper atmosphere. The surface gravity of
a neutron star is great enough that the lightest element present
is expected to float to the top within seconds to minutes (based
on extrapolations of the calculations in Alcock & Illarionov
1980). As hydrogen is also the most abundant element in the
universe and PSR J0740+6620 likely underwent prolonged
accretion to reach its current rotational frequency, it is probable
that the atmosphere is pure hydrogen (Blaes et al. 1992;
Wijngaarden et al. 2019, 2020). Note that there are some
accreting neutron star binaries in which the transferred matter is
thought to have little to no hydrogen (such as 4U 1820−30;
see, e.g., Strohmayer & Brown 2002), but such binaries have
extremely short orbital periods (e.g., Stella et al. 1987 find that
the orbital period of 4U 1820−30 is just 685 s). Thus the binary
is very compact and as a result the hydrogen envelope is
believed to have been completely stripped off. In contrast, the
binary containing PSR J0740+6620 has an orbital period of
4.77 days (Cromartie et al. 2020) and the companion could
therefore have had a significant hydrogen envelope. Even if the
accreted elements were primarily heavier than hydrogen,
spallation might create enough hydrogen to dominate the
atmosphere (Bildsten et al. 1992; Randhawa et al. 2019).

Ionization fraction. The hot spots on PSR J0030+0451 were
inferred to have effective temperatures (i.e., the temperature of
a blackbody that would produce a bolometric photon flux equal
to the bolometric photon flux produced by the model
atmosphere we are considering, which is not a blackbody)
kTeff> 0.1 keV (Miller et al. 2019; Riley et al. 2019), which
implies that essentially all atmospheric hydrogen is completely
ionized. The fits we find for PSR J0740+6620 have effective
temperatures kTeff 0.08 keV for both spots, which also
implies nearly full ionization. However, the atmospheric
densities are high enough that some neutral atoms may be
present. We therefore performed fits using the NSX code for
model atmospheres assuming full ionization (Ho & Lai 2001)
and also with partial ionization (Ho & Heinke 2009; see
Badnell et al. 2005 for the relevant opacity tables). We find no
significant difference in the inferred mass and radius between
the results obtained using our two different ionization
assumptions. This is consistent with previous work (Lo et al.
2013; Miller & Lamb 2015), which finds that in analyses of
phase-channel X-ray data such as is collected using NICER,
even if the assumptions used in the fit deviate from the
properties of the star there is no significant bias in the mass and

radius if the fit appears to be statistically good (as measured by,
e.g., χ2/dof or other standard statistics). Here we report only
on runs that allow for the possibility of partial ionization.
Effect of the magnetic field on the soft X-ray emission from

the stellar surface. Using Equation (12) of Contopoulos &
Spitkovsky (2006), assuming a magnetic field inclination of
π/2 and α= 0 for the magnetic field configuration, the period
P= 0.00289 s and period derivative = ´ -P 1.219 10 20 of
PSR J0740+6620 (Cromartie et al. 2020) imply that for a
centered dipole the polar magnetic field at the surface is
B≈ 3× 108 G. The electron cyclotron energy at that field
strength is ≈3 eV, which has a small effect on atomic structure
(Lai 2001; Potekhin 2014) and is ∼100 times lower than the
lowest energies we consider in our fits. The spot configuration
resulting from our analysis is close enough to a centered dipole
that it is plausible that the effects of the field on radiative
transfer are negligible. For example, in our best fit the two
spots are separated by ≈2 radians on the surface. The chord
length is therefore ≈sin(1)≈ 0.84 times smaller than a
diameter, so if the magnetic field is a dipole centered between
the two spots then the field strength at the surface is
≈1/0.843≈ 1.7 times larger than it would be if the field were
centered at the center of the star. Thus in this example the
surface magnetic field at the spots would increase only to
≈5× 108 G. We follow Miller et al. (2019) in noting that if the
field is strong enough to change significantly the spectrum and
beaming pattern, then fits assuming a negligible field would
likely be statistically poor and/or would yield unreasonable
parameter values. Therefore the good quality of our fits could
be considered an argument in favor of our assumption that the
field can be neglected. However, this conclusion is not certain
and a rigorous resolution of this question would require the
construction, and use in fits, of atmospheric models with a fine
grid of magnetic field strengths and orientations to the local
surface normal. Such models are challenging to compute at the
required B∼ 109–1010 G because at those field strengths
Coulomb and magnetic effects are comparable to each other.

3.2. Our Approach to Modeling the Soft X-Ray Waveform

Our modeling of the NICER pulse waveform of PSR J0740
+6620 builds on the modeling of the waveform of PSR J0030
+0451 discussed in Miller et al. (2019); see Bogdanov et al.
(2019, 2021) for detailed descriptions of how we computed
pulse waveforms and tested their accuracy. The waveform of
PSR J0740+6620 has two clear peaks and therefore cannot be
modeled using a star with a single circular hot spot. Unlike for
PSR J0030+0451, and possibly related to the faintness of PSR
J0740+6620 and hence the much smaller number of counts in
its pulse waveform, we find that a model with two uniform
circular hot spots produces a waveform that adequately fits the
data, and that adding complexity to the temperature pattern on
the stellar surface does not improve the fit. For example, adding
a third hot spot to the model or allowing the spots to be oval
rather than circular did not improve the fit. We therefore fit the
NICER and XMM-Newton data for PSR J0740+6620 using a
pulse waveform produced by two uniform-temperature circular
spots.
Once the number of spots to be considered and their allowed

shapes (e.g., oval or circular) are specified, our spot modeling
algorithm automatically explores the full parameter space, to
find the configurations with the highest likelihoods (see Miller
et al. 2019). The algorithm not only considers configurations in
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which the spots are disjoint or in contact, but also configura-
tions in which they partially or completely overlap. This allows
the algorithm to model approximately spots with temperature
gradients, if these are favored by the data, by allowing spots
with different temperatures to partially or completely overlap.
This is done by assigning a number to each of the spots. For
example, for the two-spot model used here, the spots are
labeled 1 and 2. Points on the stellar surface that are covered by
both spots are assumed to emit with the effective temperature
of the lower-numbered spot. This labeling, and the precedence
given to the emission by the lower-numbered spot, is not
related to any other property of the spot. For example, the
effective temperature of spot 1 could be either higher or lower
than the effective temperature of spot 2. This approach is
highly flexible, and can be generalized to any number of spots
(see Miller et al. 2019 for details). For example, in addition to
the best-fit solution we feature in this work, our algorithm also
found a lower-likelihood solution with a large, crescent-shaped
emitting region that it modeled using a spot with a temperature
so low that it is essentially dark lying on top of a hotter spot.
This solution is disfavored by a Bayes factor greater than 3000
as measured by MultiNest (see Section 3.5), so we have set it
aside for the purposes of this work.

Section 4 of Miller et al. (2019) reported the results of an
analysis of synthetic NICER pulse waveform data constructed
assuming two, uniform-temperature, circular hot spots, and
separately, an analysis of synthetic data assuming two,
uniform-temperature, oval hot spots. In both cases, the values
of the model parameters inferred from the analysis was
consistent with those assumed in constructing the synthetic
pulse waveform data. As another test of our analysis algorithm,
in Section 4.1 we report a joint analysis of synthetic NICER
and XMM-Newton pulse waveform data sets that were
generated using the hot-spot model that we found provides a
good description of the actual NICER and XMM-Newton data
on PSR J0740+6620. This analysis includes analyses of four
separate data sets, each with a realistic background.

3.3. Waveform Models

The parameters used in the pulse waveform modeling we
report here are listed and defined in Table 1, with their assumed

priors. We assume that the effective temperature is uniform
over a given spot.
Because PSR J0740+6620 is in a binary system, we have

additional information on some of the parameters, beyond that
provided by the NICER and XMM-Newton data. In particular,
Fonseca et al. (2021) find that at 68% credibility the mass is

= -
+M M2.08 0.069

0.072
, the distance is -

+1.136 0.152
0.174 kpc, and our

line of sight makes an angle of 87°.5± 0°.17 to the orbital axis
of the system.
We caution that other lines of evidence imply that

PSR J0740+6620 has a lower mass. Prominent among these
is that there is an observationally established correlation
between the white dwarf mass and the orbital period in white
dwarf binaries (Tauris & Savonije 1999; Tauris & van den
Heuvel 2014), which would suggest a strong upper limit of
2Me to the mass of PSR J0740+6620. If the mass is indeed
less than our current best estimate, the main effect will be to
decrease our estimate of the radius. Although it is not generally
true that the compactness GM/(Rc2) is measured to better
fractional precision than the radius (see Section 4 of Bogdanov
et al. 2021), this is true for PSR J0740+6620 because, as we
discuss in more detail below, the most important information
about the radius comes from the modulation fraction. A star
that is more compact will deflect light rays coming from its
surface by a larger angle, allowing a given observer to see more
of the surface, which reduces the modulation fraction the
observer sees. As a result, this estimate of the radius of PSR
J0740+6620 is roughly proportional to its mass. Because the
fractional uncertainty in the compactness of PSR J0740+6620
is large, even an estimated mass of (for example) 1.8Me would
produce a radius posterior that largely overlaps the posterior we
report here. For example, if the centroid of the mass prior were
1.8Me rather than 2.08Me, and the fractional prior mass
uncertainties were the same as for our standard mass priors,
then our ±1σ radius range would be 10.6–14.1 km rather than
12.2–16.3 km.
We use the radio observations of Fonseca et al. (2021) to

impose a Gaussian prior on the mass of M= 2.08± 0.09Me,
where we have linearly added an estimated systematic error of
0.02Me to the mass estimate from Fonseca et al. (2021;
E. Fonseca, personal communication), and an asymmetric
Gaussian prior probability distribution (see Table 1 for the

Table 1
Primary Parameters of the Pulse Waveform Models Considered in This Work

Parameter Definition Assumed Prior

c2Re/(GM) Inverse of stellar compactness 3.2–8.0
M Gravitational mass - -M M Mexp 2.08 2 0.092 2[ ( ) ( ) ] 

θc1 Colatitude of spot 1 center 0 to π radians
Δθ1 Spot 1 radius 0–3 radians
kTeff,1 Spot 1 effective temperature 0.011–0.5 keV
Δf2 Spot 2 longitude difference 0–1 cycles
θc2 Colatitude of spot 2 center 0 to π radians
Δθ2 Spot 2 radius 0–3 radians
kTeff,2 Spot 2 effective temperature 0.011–0.5 keV
θobs Observer inclination 1.44–1.62 radians
NH Neutral H column density 0–20 × 1020 cm−2

d Distance - -dexp 1.136 kpc 2 0.2 kpc2 2[ ( ) ( ) ], d � 1.136 kpc
- -dexp 1.136 kpc 2 0.18 kpc2 2[ ( ) ( ) ], d � 1.136 kpc

AXMM XMM-Newton effective area
divided by nominal area 0.9–1.1

Note. Except where noted, the prior is flat over the given range.
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functional form) centered at d= 1.136 kpc with 68% cumula-
tive probability points at d= 0.956 kpc and d= 1.336 kpc,
where we have placed the 68% cumulative probability points
0.03 kpc further from the central value than the quoted
statistical uncertainty, to reflect the 0.03 kpc estimated
systematic error (E. Fonseca, personal communication).

Our analysis depends on the inclination of our line of sight to
the pulsar’s rotational axis. Millisecond pulsars such as
PSR J0740+6620 are believed to be recycled by accreting
matter from their companion stars (see, e.g., Bhattacharya &
van den Heuvel 1991). Consequently, the orientation of their
rotational axis is thought to be determined by the angular
momentum of the matter accreted from the companion;
accretion of this matter is expected to gradually align the
pulsar’s rotational axis with the orbital axis of the system.
However, this alignment is not expected to be perfect, and the
current rotational axis of the pulsar may therefore be tilted by a
few degrees relative to the orbital axis of the binary system. For
the analyses reported here, we have adopted a prior on the
angle between the observer’s line of sight and the pulsars
rotation axis that is flat within 5° of the best estimate of the
system’s orbital inclination, which is 87°.5, and zero outside
this range. We find that the inferred mass and radius of
PSR J0740+6620 are insensitive to the precise value of the
orbital inclination with this range (see the corner plots in the
Appendices and the discussion in Section 4.4).

3.4. Our Waveform Modeling Procedure

For PSR J0030+0451 we had only NICER data to analyze.
In contrast, for PSR J0740+6620 we also had XMM-Newton
imaging data from pn, MOS1, and MOS2. We therefore need
to model all four data sets jointly. Once we have full models
including backgrounds for all four data sets, then the log
likelihood of the data given the model is simply the sum of the
log likelihoods of each of the individual data sets. Thus

= +
+ +

-

- -

  
 

ln ln ln

ln ln . 1
tot NICER XMM pn

XMM MOS1 XMM MOS2 ( )

In writing the total log likelihood this way, we are assuming
that the data sets are uncorrelated with each other. This
assumption is clearly justified for the independent NICER and
XMM-Newton data. It is also reasonable for the three XMM-
Newton data sets because the pn, MOS1, and MOS2 cameras
are all separately mounted and read out on XMM-Newton;
there is no plausible mechanism that would link counts in one
detector with counts in another detector.

For each individual data set we compute the log likelihood
by summing the log Poisson likelihood of the data given the
model in all of the phase bins and energy channels, neglecting
the log factorial term that is common to all models. That is, if
we have broken the data into bins fi in rotational phase, and
energy channels Ej, and in each phase-channel bin the model
predicts mij counts (a positive real number) and dij counts are
observed (a non-negative integer) then the Poisson likelihood
of the data given the model in that phase-channel bin is

-m d eij
d

ij
mij ij[ !] . However, the factor 1/dij! is common to all

models and hence can be neglected in both parameter
estimation and model comparison. The log likelihood we use

is therefore

åå= -
f

 d m mln ln , 2
E

ij ij ij

i j

( ) ( )

where there is an implied sum over all four instruments. The
NICER data have 32 phase bins. In contrast, for each of the
three XMM-Newton data sets, we have only one bin in the
rotational phase because the timing resolution is insufficient to
divide the data further.
We now discuss the two components of the calculation of mij

for each phase-channel bin in each data set: the computation of
the model counts from the spots for each of the four
instruments, which is straightforward, and the incorporation
of phase-independent background counts, which is more
involved and requires different treatments for the NICER and
for the XMM-Newton data.

3.4.1. Calculation of the Model Counts from the Spots

Suppose that we are considering a particular parameter
combination, i.e., we have some combination ofM, Re, θobs,K,
to assess. Given the specified observation time, this gives us a
spots-only waveform that is unique up to an arbitrary definition
of the time corresponding to phase 0. As described in
Section 3.4 of Miller et al. (2019), once we have a candidate
waveform that includes both the contribution from the spots
and the contribution from the phase-independent background,
we marginalize over the overall phase by assuming that near
the peak the likelihood as a function of phase, f( ), can be
approximated by a Gaussian in the phase.34 We only need to
carry out this process for the NICER data, because the XMM-
Newton data have only one phase.

3.4.2. Inclusion of Unmodulated Background

By “background” we mean any X-ray counts that are not
contributed by the spots. This could include space weather,
optical loading, resolved or unresolved background or fore-
ground sources, the instruments themselves, or, in the case of a
binary such as PSR J0740+6620, the companion star (e.g.,
interactions of the neutron star particle wind with the
companion star could produce X-rays). What these have in
common is that those X-rays are not modulated at the rotational
frequency of the star and hence with enough exposure time
they contribute equally at all rotational phases.
Miller et al. (2019) therefore treated all non-stellar X-rays

with a single approach, which we adopt here for the NICER
data: for each energy channel independently we allow there to
be a phase-independent component of any magnitude. We
therefore do not assume any particular spectral form for the
non-stellar emission, but in practice this results in an estimated
background that varies smoothly with energy channel. The
assumption of independence between channels means that, as
with the phase, we fit a Gaussian to the likelihood of each
energy channel as a function of added background, and can
then analytically integrate the likelihood to marginalize over
the background. See Miller et al. (2019) for more details. We
also note (see Section 4.2 for a more thorough discussion) that
future analyses may be able to incorporate estimates of the

34 This is equivalent to fitting a parabola to fln ( ) near the peak of the log
likelihood. Note that the likelihood for a given phase need not be Gaussian for
this approximation to be useful.
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NICER background rather than letting the background be
completely free.

The XMM-Newton data must be treated differently, because
there is only one phase bin, in contrast to the 32 rotational phase
bins that we use for the NICER data. To understand why,
suppose that we treat the XMM-Newton background, for
any instrument, in the same way that we treat the NICER
background: each energy channel (with its single phase) can have
added to it any number of background counts. Then the best
model for the XMM-Newton data would have zero counts from
the spots, and the background would equal the observed number
of counts. This would automatically maximize the log likelihood.
The NICER data are not driven to this pathological fit because
there is clear modulation in the data; a phase-independent,
background-only fit cannot reproduce this modulation.

Therefore, we instead assume that the blank-sky background
is a Poisson realization of the full XMM-Newton background.
Each of the XMM-Newton instruments has had, throughout the
course of the mission, significant exposure to portions of the
sky with no known X-ray sources (see Section 2). The total
blank-sky count rate in the XMM-Newton energy channels of
interest is ∼20%–30% of the count rate in our XMM-Newton
observations of PSR J0740+6620, so incorporation of this
background is expected to make a meaningful difference to our
analysis. We note that there are other possible contributions
than the blank sky to the phase-independent background. For
example, as mentioned above, the interaction of the pulsar
wind with the binary companion could produce X-rays.
Because the total count rate is fixed, if the background is
larger then the estimated total count rate from the neutron star
is reduced. As a result, the modulation fraction is increased
because the modulated count rate is fixed by the NICER
observations. In turn, this would increase the inferred radius for
PSR J0740+6620. In our treatment we effectively assume that
these other contributions can be neglected.

Even with hundreds of thousands of seconds of total
exposure time, the total number of counts from the blank-sky
observations is too small in many of the energy channels to use
Gaussian statistics. Therefore we need to use Poisson statistics.
Our approach to the pn, MOS1, and MOS2 backgrounds is as
follows.

Consider some particular XMM-Newton energy channel n
for one of the three instruments. Suppose that the blank-sky
observation had duration Tback and yielded bback counts. If the
prior on the background counts is flat, then the Poisson
probability distribution for the time-averaged number of counts
bavg for an interval Tback is

= -P b db b b b db1 exp . 3b
avg avg back avg avg avg

back( ) ( !) ( ) ( )

Now suppose that for the XMM-Newton instrument under
consideration the PSR J0740+6620 observation has a duration
of Tobs. Then a given bavg implies an expected number of
counts bobs= bavg(Tobs/Tback) counts in that observation. Then
because bavg= (Tback/Tobs)bobs, Equation (3) implies that the
normalized probability distribution for bobs is

=
´ -

P b db b b T T

b T T T T db

1 exp
. 4

b
obs obs back obs back obs

obs back obs back obs obs

back( ) ( !)[ ( )]
[ ( )]( ) ( )

If the energy channel had d observed counts in our
PSR J0740+6620 observation, then the probability of

obtaining that in a model with m expected counts is

= -p d m m d mexp . 5d( ∣ ) ! ( ) ( )

If in our model we have s expected counts from the spots, then
given a background b we expect a total number of counts
m= s+ b. Setting b= bobs as above, we find that the final
likelihood of the data d given the spot counts s and the
distribution P(bobs)dbobs is

ò= +

´ - +

¥
p d s s b d

s b P b db

, back exp

. 6

d

0
obs

obs obs obs

( ∣ ) [( ) !]

[ ( )] ( ) ( )

/

We find that we achieve sufficient precision for this integral
by (1) setting a scale for bobs that is Tobs/Tback if bback= 0, or
bback(Tobs/Tback) otherwise, and (2) performing a Simpson’s
rule integration from 0 to 6.8 times that scale, in intervals of
0.1 times that scale.

3.5. Parameter Estimation and Model Evaluation

As in Miller et al. (2019), we began our sampling of
parameter space using the publicly available nested sampler
MultiNest (Feroz et al. 2009), typically with 1000 live points, a
target efficiency of 0.01 (with variable efficiency), and a
tolerance of 0.1. The inverse of the efficiency parameter
determines the factor by which the bounding hyperellipsoids
constructed by MultiNest are expanded before samples are
drawn from within them (see Section 5.2 of Feroz et al. 2009).
Lower efficiency means more thorough sampling, and better
accommodation of isolikelihood surfaces that are not well-
described by ellipsoids. We chose an efficiency of 0.01, which
is more than an order of magnitude below the standard
recommendation, because we found in early tests that when we
fixed the number of live points to 1000 and used efficiencies of
0.1 and 0.03 the ±1σ credible regions for the radius were,
respectively, 45% and 22% narrower than for our
efficiency= 0.01 runs, and thus that the sampling at these
higher efficiencies with 1000 live points was incomplete.
MultiNest is designed to estimate the Bayesian evidence for

a model, and can also provide a quick characterization of
parameter space. However, the purpose of nested samplers such
as MultiNest is to compute the evidence; convergence of that
calculation does not guarantee convergence of the posteriors of
the parameters. Studies have shown that nested samplers of this
type can give incorrectly small credible regions if isolikelihood
surfaces cannot be well-represented by overlapping hyperel-
lipsoids (Buchner 2014, 2021; Nelson et al. 2020). This
appears be the case for our PSR J0740+6620 parameter
estimation; we found that the parameter space was not
completely explored even at the lowest efficiencies and largest
number of live points that we employed. As one example, when
we used MultiNest to analyze just the NICER data with 1000
live points, a target efficiency of 0.01, and a tolerance of 0.1,
the±1 standard deviation range in the radius posterior had 67%
of the width we obtained using parallel-tempered emcee (see
the next paragraph). When we used 3000 live points, a target
efficiency of 0.01, and a tolerance of 0.1 the width increased,
but only to 79% of the emcee width.
We therefore use a kernel density estimate of the MultiNest

posteriors to produce the initial positions of the walkers, which
we find expedites convergence, especially for multi-modal
posteriors, in the parallel-tempered Markov chain Monte Carlo
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(MCMC) sampler PT-emcee that is included in the publicly
available emcee package, version 2.2.1 (Foreman-Mackey et al.
2013). Because MCMC samplers are designed to satisfy
detailed balance, there is a theoretical expectation that the
samples will represent the posterior. For the PT-emcee runs we
had 1000 walkers per parallel-tempering temperature rung;
exploratory runs with 2000 walkers per rung produced results
that were consistent with what we report here. We started with
five temperature rungs, but found that the number of rungs
was not critical and reduced the number to two later in the
sampling.

3.6. Choice of Energy Channels

In their analysis of the PSR J0030+0451 data, Miller et al.
(2019) used only NICER energy channels 40 and above, because
they found that inclusion of lower-energy channels biased the
inferred distance. For our analysis of the PSR J0740+6620 data we
use the updated 2020 July NICER response (see https://heasarc.
gsfc.nasa.gov/docs/heasarc/caldb/nicer/). With this response
there does not appear to be any bias in distance or other quantities
when we use data down to energy channel 30. Analysis of the
NICER data showed that the detection significance is optimized
when we use channels up to 118 (see Section 2.1), but there is also
an excess of counts relative to the background up to channel∼150.
We used a range between these (channels 30 through 123
inclusive), but exploratory runs including channels up to 150 did
not produce palpably different results. Given that the width of the
NICER channels is 0.001 keV, our energy channel choice
corresponds approximately to photon energies between 0.3 keV
and 1.23 keV. For the XMM-Newton data, we used channels
57−299 inclusive for pn, channels 20−99 inclusive for MOS1, and
channels 20−99 inclusive for MOS2.

3.7. Relative Normalization of NICER and XMM-Newton

In addition to the uncertainty in the energy-dependent
response of an instrument, there is inevitably some uncertainty
in the overall response. That is, the overall normalization of the
response is not known perfectly. A conservative upper limit on
the fractional uncertainty of the relative normalization between
NICER and the three XMM-Newton instruments is ∼10%.35

The three XMM-Newton instruments are thought to have the
same overall normalization to ∼2–3%, which are differences
small enough to be neglected. Errors in the overall normal-
ization of NICER are absorbed in the >15% half-width of our
prior on the distance. However, there is still a question of
whether the overall normalizations of NICER and XMM-
Newton could affect our fits.

To explore this, we report in Section 4.2 an additional fit in
which we add one more parameter: AXMM, which is a single
number that multiplies the ARFs of all three XMM-Newton
instruments that we consider. We explore the consequences of
allowing AXMM to be between 0.9 and 1.1, i.e., the largest
possible range. We therefore account for a possible inaccuracy
in the ARF of NICER by the freedom in the fit to the distance
to the source, and for an additional independent inaccuracy of
the ARF of the XMM-Newton instruments using AXMM. We

find that introduction of the parameter AXMM does not produce
a significant change in the posteriors of any of our parameters
(for example, the radius limits are changed by at most 0.1 km)
and the value of AXMM that we infer is consistent with 1.

4. Results of the Analysis of the NICER and XMM-Newton
Pulse Waveform Data

Our joint fit of our two-circular-spot model to the NICER
and XMM-Newton data yields an equatorial circumferential
radius of = -

+R 13.7e 1.5
2.6 km at 68% credibility for PSR J0740

+6620. In this section we describe how we reach this
conclusion. In Section 4.1 we demonstrate that our method
produces statistically expected results when we fit our model to
a synthetic data set that is drawn from a good fit to the
PSR J0740+6620 data including backgrounds, and is therefore
realistic. In Section 4.2 we present our fits to just the NICER
data on PSR J0740+6620, and to the NICER and XMM-
Newton data combined. We show that although the radius
posteriors in the two analyses have significant overlap,
inclusion of the XMM-Newton data favors larger radii. In
Section 4.3 we show that our sampling of the parameter space
has converged. In Section 4.4 we address the effects of priors,
and show that other choices for the upper limit of the radius and
the allowed range of the observer inclination have little effect
on the −1σ radius, which is particularly important in EOS
inference (see Section 5). In Section 4.5 we address the
adequacy of our model. We show that our model provides
acceptable fits to the phase-channel NICER data, the
bolometric NICER data, and the XMM-Newton data from all
three cameras. There is therefore no indication that our model
for the PSR J0740+6620 data is deficient. Finally, in
Section 4.6 we note some differences between our analysis
method and that of Riley et al. (2021), and suggest which of
those differences could be important in producing different
radius posteriors between the two groups.
In this section we consider values of Reqc

2/(GM) up to 8.0,
which corresponds to a radius ∼24 km at M∼ 2Me. We find
that the radius posterior does not have significant probability
near this boundary, and thus that this boundary does not bias
our radius estimates. When we explore the implications of
results for the EOS in Section 5, we include information from
nuclear theory and previous measurements.

4.1. Fits to Synthetic NICER and XMM-Newton Data

Joint analyses of NICER and XMM-Newton data have not
previously been performed in the context of neutron star mass
and radius estimation. It is therefore important to demonstrate
that our method yields the expected results when similar
synthetic data are analyzed, because for synthetic data we know
the parameter values used to construct the data and can
therefore judge the quality of the fit.
To generate the data we started from a good model of the

PSR J0740+6620 NICER and XMM-Newton data, including
all backgrounds. We then produced the synthetic data by
drawing integer numbers of counts from our (in general non-
integer) model expectation in each phase-channel bin for
NICER, and in each energy channel for each of the three
XMM-Newton cameras. We emphasize that this leads to
synthetic data with fully realistic backgrounds; previous
synthetic data analyses (e.g., Lo et al. 2013; Miller & Lamb
2015; Miller et al. 2019; Bogdanov et al. 2021) have instead

35 For the cross-calibration as of December 2018 see the lower panel of Figure C2
in Ricci et al. (2021). For the cross-calibration as of November 2020 see slide 7
of http://iachec.org/wp-content/presentations/2020/NICER-CrossCal-IACHEC-
Markwardt-2020b.pdf and note in particular that in the energy range relevant to our
analyses, 0.3–1 keV, the flux inferred from 3C 273 agrees between NICER and
XMM-Newton to better than 4%.
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typically used power-law backgrounds. This is therefore the
most realistic synthetic data test that has been performed in the
radius estimation context.

The results of our analysis of the synthetic data are
summarized in Table 2, and more detail on our PT-emcee
analysis is shown in Table 5 and Figure 14 in Appendix A. We
see that the PT-emcee sampling yields results that are entirely
consistent with statistical expectations. In contrast, MultiNest
sampling with Nlive= 1000 and an efficiency of 0.01 is not
adequate; for example, three of the 12 parameters have ±3σ
credible regions that exclude the parameter value used to
construct the data. The MultiNest sampling with Nlive= 2000
and an efficiency of 0.01 is better but the credible regions are
still too narrow: one of the 12 true parameter values is excluded
at >3σ, and four of the 12 are excluded at >2σ. It is possible
that, with more live points and/or lower efficiency, MultiNest
analysis of our synthetic data would lead to the statistically
expected outcomes, but results such as these form part of
our motivation to use PT-emcee to determine posterior
probabilities.

In summary, even with realistic backgrounds and even when
analyzing jointly the NICER and XMM-Newton synthetic data,
our analysis method yields statistically acceptable results.

4.2. The Mass and Radius of PSR J0740+6620

In this section we present fits to (1) just the NICER data (see
Table 6 and Figure 15 in Appendix B for the best fit and
uncertainties, the left-hand panels of Figure 1 for the mass and
radius posteriors), (2) the NICER data and the data from the
three XMM-Newton instruments, assuming the nominal
calibration for XMM-Newton (see Table 7 and Figure 16 in
Appendix C for the best fit and uncertainties, and the right-hand
panels of Figure 1 for the mass and radius posteriors), and
(3) the NICER data and the data from the three XMM-Newton
instruments, with an additional energy-independent factor
0.9< AXMM< 1.1 that multiplies the effective area of the
XMM-Newton instruments (see Table 8 and Figure 17 in
Appendix D for the best fit and uncertainties). The Appendices
have the full corner plots for each of the three fits. In all cases
we use atmosphere tables for pure hydrogen that accommodate
partial ionization.

Figure 2 shows a representative spot pattern. We note that
because the observer inclination is very close to the rotational
equator, there is a near-symmetry between spots in the northern
hemisphere (which we define to be the hemisphere of the
observer) and the southern hemisphere. In addition, because the
spots do not overlap, their labeling (i.e., which is spot 1 and
which is spot 2) can be swapped without affecting the solution,
unlike what would be the case if the spots overlapped. Thus
there is an approximate four-fold degeneracy in the solution.
The inclusion of XMM-Newton data increases the radius

estimates: for example, with the NICER data alone the ±1σ
range in radius is 10.382 km to 13.380 km, whereas when we
add the XMM-Newton data the range becomes 12.209 km to
16.326 km. This is because the prime source of information
about the compactness is the modulation fraction (see
Miller 2016). The NICER data are dominated by background
counts, which means that from that data set alone it could be
that the modulation fraction is low. If other parameters such as
the observer inclination and spot locations are fixed, then
because light deflection increases with increasing compactness
GM/(Rec

2), for a more compact star the light from spots is
spread out more and thus the modulation fraction is reduced.
As a result, the NICER data alone can be fit with very compact
stars. But when the XMM-Newton data are included, we have a
measure of the total flux from the star. This total flux is
significantly less than that in the NICER data, because those
data include significant background. Thus, the modulation
fraction is higher than it appears to be from the NICER data
alone, and hence the compactness of the star must be lower.
Because the mass is known with some precision, a lower
compactness implies a larger radius.
We also note that, for the same reason, if reliable

information about the non-spot NICER flux were included
in the NICER data then the inferred radius would increase.
That is, any information that places an upper limit on the flux
from the spots, whether it comes from observations of the
source (in our case, using XMM-Newton) or a model of some
part of the the non-spot flux (which we would obtain with a
background model), increases the inferred modulation frac-
tion and thus increases the inferred radius. Hence analysis
of only the NICER data on PSR J0740+6620, if augmented
with NICER background data that (critically) have reliable
estimates of the field-to-field variance as well as statistical
uncertainties, is likely to result in an inferred radius that is
close to the radius inferred when we also use XMM-Newton
data. The 3C50 NICER background model of Remillard et al.
(2021) is a good step in this direction, but the variance
between the background in different sky pointings is not well
understood.
We stress that, despite the clear shift of the radius posterior

distribution to larger radii when the XMM-Newton data are
included, this distribution is still broadly consistent with that
obtained using the NICER data alone, even without back-
ground information. One indication of this is that there is a
substantial overlap between the two ±1σ ranges. To quantify
this overlap we can compute, e.g., the Bhattacharyya
coefficient (Bhattacharyya 1943)

ò=BC p q p x q x dx, 7( ) ( ) ( ) ( )

for two normalized probability distributions p(x) and q(x).
BC= 1 for identical distributions, whereas BC= 0 for

Table 2
Verification of Fits to Synthetic NICER and XMM-Newton Data

Sampler
±1σ

(68.3%)
±2σ

(95.4%)
±3

σ (99.7%)

PT-emcee 6 11 12
MultiNest 4 7 9
(Nlive = 1000,

efficiency = 0.01)
MultiNest 4 8 11
(Nlive = 2000,

efficiency = 0.01)

Note. Results of fits to synthetic J0740-like NICER and XMM-Newton data
using parallel-tempered emcee and two different settings of MultiNest. The
right three columns show the number of parameters, out of 12, for which the
values assumed in constructing the synthetic data are within the ±1σ, ±2σ, and
±3σ credible regions. The PT-emcee results are consistent with statistical
expectations (see Appendix A for the full posteriors). In contrast, the credible
regions for both MultiNest runs are too narrow, although with more live points
the sampling is more thorough.
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distributions with zero overlap. In our case, BC= 0.77 when p
is the radius posterior using only the NICER data and q is the
radius posterior when the XMM-Newton data are also
included, and when we represent those distributions using
histograms with bin widths of 0.1 km. For context, BC= 0.77
for two unit-variance Gaussians whose centers are separated by
roughly 1.5 times their standard deviations. This indicates that
there is a significant overlap between the two distributions.

4.3. Convergence of Sampling

As we discussed in Section 3.5, we started our PT-emcee
sampling of the posterior using an initial distribution of points
that had previously been obtained by using MultiNest (with
Nlive= 1000 and efficiency= 0.01) to sample the posterior; as
usual, MultiNest had run until the evidence estimate converged.

The left panel of Figure 3 shows the evolution of the −1σ,
median, and +1σ values of the radius posterior as our PT-
emcee sampling of the NICER+XMM-Newton data using the
nominal calibration progressed, starting with the initial
parameter distribution provided by MultiNest. Each point in
this plot indicates the estimates of these three radii given by a
single set of 20,000 samples; the individual sets are contiguous
and non-overlapping. The evolution shown was computed
using approximately 1700 such sample sets; we show another
view of the progressive mass–radius sampling in Figure 4. The
left panel in Figure 3 shows that as the sampling by PT-emcee
proceeded, the values of all three characteristic radii increased
rapidly at first, indicating that the sampling achieved by
MultiNest was insufficient and that the estimated values of the
parameters it provided were inaccurate. Eventually the values
of the three parameters ceased increasing and begin wandering
up and down stochastically by small amounts, indicating that
the PT-emcee estimates of the three radii had converged.
The dashed vertical line indicates the beginning of the

sample sets that we used to construct our final posterior
distributions (a total of 107 samples). The effective number of
independent samples can be estimated by dividing the total
number of samples by the average integrated autocorrelation
time. Using typical methods for calculating the autocorrelation
time for each walker (e.g., Sokal 1997) yields an estimate of
∼4 iterations, suggesting a total of ∼2.5× 106 independent
samples. From sample set to sample set in the converged part of
the evolution, the median, ±1σ, and ±2σ radii vary with a
standard deviation of only a few hundredths of a kilometer.
The right panel of Figure 3 shows the evolution of the three

radii in our PT-emcee sampling of the model for the NICER
+XMM-Newton data when a calibration parameter is included.
Again we show the three radius values computed using

Figure 1. Comparison of the M−Re corner plots obtained using two circular spots, fit to only the NICER data (left panels) and to both the NICER and the XMM-
Newton data with the nominal XMM-Newton calibration (right panels). All of the results that we present use pure hydrogen model atmospheres that allow for the
possibility of partial ionization. The mass prior is represented by the dashed line in each of the one-dimensional mass posterior plots. In the mass–radius plots, brighter
colors indicate higher posterior probability densities; the inner contour in these plots contains 68.3% of the posterior probability whereas the outer contour contains
95.4%. In the NICER+XMM-Newton one-dimensional radius posterior plot, the dotted line shows the posterior obtained using only the NICER data. The two radius
posteriors have substantial overlap, but the effect of including the XMM-Newton data is to increase the favored radius by roughly 2 km.

Figure 2. Spot locations for a representative fit, in an equal-area Mollweide
projection. The horizontal bar indicates the colatitude of the observer. Because
we observe from close to the rotational equator, and because the spots do not
overlap, there is an approximate four-fold degeneracy in solutions.
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contiguous and non-overlapping sets of 20,000 samples. This
sampling was initiated using kernel density estimation based on
10% of the final posterior samples from the PT-emcee analysis
of NICER+XMM-Newton data performed using the nominal
XMM-Newton calibration. As a result, the initial values of the
three radii did not match perfectly the final values of the three
radii in the left panel, indicating that the initial posterior
distribution in the right panel does not quite match the final
posterior distribution from the run shown in the left panel.
However, as Figure 3 shows, these three radius estimates
rapidly approached the values they had at the end of the run
shown in the left panel, indicating that as the PT-emcee

sampling progressed, the posterior distribution converged
quickly to the final posterior distribution in the run shown in
the left panel.
We note that both our MultiNest and our PT-emcee analyses

of only the NICER data, and of the NICER+XMM-Newton
data that were performed using the nominal XMM-Newton
calibration, assumed a mass prior of 2.11± 0.09Me, consistent
with a preliminary radio-based mass measurement. The
posterior function that was sampled to produce the three radius
values plotted in the left panel of Figure 3 was computed
assuming this prior. However, the posterior function that was
sampled to produce the three radius values plotted in the right
panel assumed a different mass prior of 2.08± 0.09Me,
consistent with the current radio-based mass measurement. As
a result, the radius values plotted in the right panel of the figure
differ by about 1.5% from the radius values plotted in the left
panel. The numbers in the tables and figures that summarize the
posteriors produced by our analyses of the NICER-only and the
NICER+XMM-Newton data assuming the nominal calibration
have been re-weighted using the updated mass.

4.4. Effect of Priors

As summarized in Table 3, our posteriors are robust against
several different choices of priors. In Table 3 we compare the
±1σ and median radii when we analyze the NICER and XMM-
Newton data using our standard priors with the ±1σ and
median radii when we (1) include a parameter AXMM that
models the relative calibration of NICER and XMM-Newton
(as discussed before, our flat prior 0.9� AXMM� 1.1 is broader
that the expected uncertainty around AXMM= 1 by a factor
∼2), and (2) restrict our inclination prior to being flat within
±0°.5 of the radio measurement, rather than our standard ±5°.
In each case the −1σ radius (which has especially important
implications for the EOS; see Section 5) is close to our standard
value. For comparison we also show in this table the ±1σ radii

Figure 3. Evolution of the −1σ, median, and +1σ values of the radius posterior as our PT-emcee sampling of the NICER+XMM-Newton data progressed. Each point
in the plots indicates the estimated values of these three radii given by a single set of 20,000 contiguous, non-overlapping samples. The number of sets included in
each estimate is shown by the numbers on the horizontal axis. Left: evolution of these three radii as sampling proceeds, starting from the final posterior distribution
provided by MultiNest, and assuming the nominal ratio of the NICER overall effective area relative to that of XMM-Newton. As sampling proceeded, all three radii
increased rapidly and then converged to values that are larger, with a broader spread, than was obtained from the MultiNest sampling. The sample sets to the right of
the dashed vertical line were used to construct the final posterior distribution from this run (a total of 107 samples), which is what we used in our parameter estimation.
Right: evolution of the three radii as sampling proceeds, starting with a kernel density estimate of the posterior distribution obtained at the end of the previous run, but
now including the overall effective area AXMM of XMM-Newton as a parameter in the fit. The change in the treatment of the effective area produced a small shift in the
values of these three radii relative to their final values in the left panel. As sampling progressed, the three radii rapidly approached the values they had at the end of the
run shown in the left panel. The 107 samples to the right of the dashed vertical line were used to construct the posterior distribution for this run. See the main text for
more details.

Figure 4. Another view of the evolution of the sampling in our analysis of the
NICER and XMM-Newton data on PSR J0740+6620. The top panel shows the
positions of the walkers in mass–radius space during the first 200 iterations of
our PT-emcee sampling; these points were drawn from the posterior of an
Nlive = 1000, efficiency = 0.01 MultiNest run, using a kernel density
estimate. The bottom panel shows the positions of the walkers during the
final 200 iterations, after the PT-emcee sampling had converged. These panels
correspond to the beginning and end of the left panel of Figure 3, and
demonstrate the difference in the sampling between the two stages.
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when we use only the NICER data, with no assumed
knowledge of the NICER background.

4.5. Adequacy of the Models

As in Miller et al. (2019), we performed χ2 tests to assess the
adequacy of our models in describing the data. This is a one-
way test: if χ2∼ dof for dof degrees of freedom this does not
guarantee that the model is correct, but if χ2 is sufficiently
larger than dof that the probability is very low, it indicates that
the model is deficient. We focus on the results of the joint fit to
the NICER and XMM-Newton data using the nominal XMM-
Newton calibration, given that the XMM-Newton data refine
the solution substantially and that allowance for a shift in the
effective area of XMM-Newton does not make a significant
difference to the posterior credible regions.

In Figure 5 we show the value of χ over each of the NICER
phase-channel bins we used in our analysis, for our best fit to
the NICER+XMM-Newton data. There are no obvious
patterns, and the χ2/dof is 2912.37/2901 for the NICER data
alone, which has a probability of 0.437 if the model is correct.
In Figure 6 we compare to the data our bolometric model
waveform for our best fit, and also display the residuals. Here
χ2/dof= 21.85/18 (probability of 0.239) for the NICER data
alone.

Our final comparison to the NICER data is in Figure 7,
which compares the non-spot background in our best model
(black line) with the blank-sky NICER background inferred
using the 3C50 model of Remillard et al. (2021). Because the
3C50 model is for a blank sky, i.e., directions where there are
no known sources, it should provide a lower limit to the
background in the direction of a particular source such as
PSR J0740+6620. Indeed, we see that our estimated back-
ground counts, while consistent with the 3C50 model at energy
channels ≈80 and higher, are above the model at lower energy
channels. This is likely to be due to particular sources within
the NICER field of view that can be identified in the XMM-
Newton image of the field (see Wolff et al. 2021).

Our model is therefore a good fit to the NICER data.
In Figure 8 we compare our best NICER+XMM-Newton

model with the XMM-Newton data. Because there are few
counts per energy channel, we evaluated the quality of our fit
by generating 105 synthetic data sets by performing Poisson
draws using our best model (including the blank-sky counts) in
every energy channel in all three instruments. We then
compared our model to the J0740 data, and placed that in the
context of the comparison of our model to the synthetic data
sets, in two ways.

1. We computed the total log likelihood of all three XMM-
Newton data sets for PSR J0740+6620 given our model.
We also computed the distribution of the total log
likelihoods of each synthetic data set given our model.
The total log likelihood of the real data is at the 75th
percentile of the log likelihoods from the synthetic set
(98th percentile for the pn data alone, 17th percentile for
the MOS1 data alone, and 12th percentile for the MOS2
data alone).

2. We also calculated the Kolmogorov–Smirnov (K-S)
probability that the cumulative counts in our model, as
a function of the energy channel, are drawn from the
same distribution as the PSR J0740+6620 data. We then
calculated the distribution of the K-S probabilities for the
synthetic data set. We found that the K-S probability for
the XMM-Newton pn data on PSR J0740+6620 is at the
10th percentile of the corresponding probabilities for the
synthetic data sets, the K-S probability for the MOS1 data
on PSR J0740+6620 is at the 50th percentile, and the
K-S probability for the MOS2 data on PSR J0740+6620
is at the 31st percentile.

As a final check, we note that the XMM-Newton DDT data
have 94 counts in the pn camera in the energy range we
investigate, 59 counts in the MOS1 camera, and 67 counts in
the MOS2 camera. In our best fit, we have respectively 114.88
counts (1.95 standard deviations high), 49.85 counts (1.30
standard deviations low), and 59.78 counts (0.93 standard
deviations low). Neither the total count numbers nor the
comparisons with synthetic data indicate a problem. Thus, at
least based on these tests, our model is fully consistent with all
three XMM-Newton data sets.

Table 3
Summary of Inferred Radii Using Different Priors

Prior −1σ (km) Median (km) +1σ (km)

NICER+XMM-Newton (featured result) 12.209 13.713 16.326
NICER+XMM-Newton, AXMM 12.153 13.705 16.298
NICER+XMM-Newton, θobs = radio 12.236 13.750 16.416
NICER only 10.382 11.512 13.380

Note. Comparison of the −1σ, median, and +1σ radii inferred using different priors on the NICER+XMM-Newton data sets, and for the NICER-only analysis. See
the text for details and note that the top, boldfaced numbers are from the analysis that we use in Section 5 for our EOS inference. When the NICER and XMM-Newton
data sets are analyzed jointly the −1σ radius, which is particularly important for EOS analysis (see Section 5), is robust against different priors.

Figure 5. Value of χ in each of the 3008 NICER phase-energy bins (32 phase
bins and 94 energy channels), for the best fit of our energy-resolved waveform
model to the NICER+XMM-Newton data. As is expected for a good fit, no
patterns in the values of χ are evident as a function of phase or energy. The χ2/
dof is 2912.37/2901, which has a probability of 0.437 if the model is correct.

12

The Astrophysical Journal Letters, 918:L28 (31pp), 2021 September 10 Miller et al.



4.6. Potentially Important Differences between Our Analysis
and That of Riley et al. (2021)

The parallel analysis of the NICER and XMM-Newton data
by Riley et al. (2021) finds a smaller credible interval for the
radius estimate and, most important for the inferred constraints
on the EOS, a value for the radius at the −1σ contour that is
≈0.8 km smaller than the value we report here. There are a
number of differences between their analysis procedure and
ours. For example, Riley et al. (2021) assume that the
inclination of the observer’s line of sight to the pulsar’s

rotational axis is identical to the measured inclination of the
observer’s line of sight to the orbital axis of the binary system,
whereas we allow the inclination of the observer’s line of sight
to the pulsar’s rotational axis to differ by as much as ±5° from
the measured inclination of the observer’s line of sight to the
orbital axis. However, as we have discussed in Section 4.4, this
difference between the priors on the inclination of the
observer’s line of sight to the pulsar’s rotational axis used in
the two analyses does not produce a significant difference in
the value of the radius at the −1σ credibility contour. Another
unimportant difference is the ionization fraction of our
hydrogen atmospheres: we use tables that allow for the
possibility of partial ionization, whereas Riley et al. (2021)
used atmospheres with fully ionized hydrogen. As we indicate
in Section 3.1, we found negligible changes in the radius
posteriors when we used fully ionized hydrogen atmospheres.
There appear to be four differences in the analysis

procedures used by the two groups that could contribute to
the difference of ≈0.8 km in the values of the radius at the −1σ
credibility contour that the two groups report in their headline
results (R= 12.2 km at −1σ reported here and R= 11.4 km at
−1σ reported by Riley et al. 2021).

1. We allow the relative calibration between NICER and
XMM-Newton to deviate by up to±10% from its
nominal value, a deviation that is a factor ∼2 times
larger than the measured deviation (again see slide
7 of http://iachec.org/wp-content/presentations/2020/
NICER-CrossCal-IACHEC-Markwardt-2020b.pdf and
focus in particular on the energy range 0.3–1 keV that is
relevant for the present analysis; here the deviation is
<4%). In contrast, Riley et al. (2021) allow the relative
calibration to deviate by several tens of percent, which
is many times larger than the measured deviation; for
example, in their best fit, AXMM is effectively equal to
0.574. Elsewhere in their paper, Riley et al. show that when
they restrict the relative calibration to a range consistent

Figure 6. Top: comparison of the 32-phase bolometric waveform constructed using the NICER data on PSR J0740+6620 with the bolometric waveform model that
best fits the NICER+XMM-Newton data. The dashed blue line shows the unmodulated background that was added to the counts produced by the two hot spots as part
of the fitting procedure (see Section 3.4.2). Bottom: resulting value of χ as a function of phase. The χ2/dof is 21.85/18, which has a probability of 0.239 if the model
is correct.

Figure 7. Inferred non-spot counts as a function of NICER energy channel in
our best model (black line) compared with the ±1σ range of the 3C50
background model (pink band) of Remillard et al. (2021). For comparison, we
also show the total NICER counts per channel (blue line). Above channel 80
our inferred background is consistent with the 3C50 model. The excess in our
inferred background at lower energies is likely due to the presence of other
sources in the NICER field, which can be seen in XMM-Newton images.
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with the measured range, they find R= 11.75 km at the−1σ
contour. Thus, when they require the relative calibration
between NICER and XMM-Newton to have a value
consistent with the measured values, the difference between
their value of the radius estimate at the −1σ contour and our
value is reduced by almost a factor of two.

2. When estimating the radius of PSR J0740+6620, we
allowed Reqc

2/(GM) to be as large as 8.0 (corresponding
to Req≈ 24.5 km at M= 2.08Me) and found that the
posterior radius probability density is negligible near this
boundary. Hence, this choice for the boundary of our
search volume did not affect our estimate of the radius of
PSR J0740+6620. In contrast, when Riley et al. esti-
mated the radius of PSR J0740+6620, they sampled the
radius parameter space only at radius values <16 km. To
investigate the results we would have found if we had
sampled the radius parameter space only at R< 16 km as
they did, we required R< 16 km in a test analysis and
found R= 12.06 km, 13.28 km, and 14.82 km at the −1σ
contour, the median value, and the +1σ contour. Even
when we imposed R< 16 km and also allowed the
relative calibration factor AXMM to vary freely in the
range 0.9< AXMM< 1.1, a factor >2 deviation larger
than its measured value, we found that this had only a
very small effect on the position and width of the credible
interval of the radius, which changed only slightly to
R= 12.00 km, 13.28 km, and 14.80 km at the −1σ
contour, the median value, and the +1σ contour. Thus,
these two differences between our analysis procedure and
the analysis procedure used by Riley et al. (the different

breadths of the allowed deviation of the relative
calibration of the NICER and XMM-Newton instruments
and artificially limiting or not limiting the sampling of the
radius parameter volume) account for ≈0.55 km of
the 0.8 km difference between the value of the radius at
the −1σ contour reported by Riley et al. and the value
of the radius at the −1σ contour that we found.

3. We used PT-emcee to thoroughly sample the multi-
dimensional posterior, using MultiNest only to create an
initial rough sample that we then used to speed up the
sampling using PT-emcee. In our analysis of synthetic
pulse waveform data constructed to mimic the actual
NICER and XMM-Newton data (see Section 4.1), we
found that when we used only MultiNest, even with
values of the MultiNest parameters chosen to try to
achieve thorough sampling, the credible regions it
generated were too small, i.e., they too often failed to
include the values of the pulse waveform parameters that
had been used to generate the synthetic pulse waveform
data. In contrast, when we used PT-emcee we found
credible regions that were consistent with the values of
the parameters chosen when generating the synthetic data
(see Table 2 for more details). Figure 3 shows the detailed
evolution of the −1σ, median, and +1σ radii throughout
the course of our PT-emcee sampling. Riley et al. used
only MultiNest for all of their analyses and found that
their posteriors continued to broaden with more thorough
sampling for all of the live point numbers that they
explored.

Figure 8. Comparison of the data from the three XMM-Newton cameras (labeled at the top of each plot) with our best NICER+XMM-Newton model. In each plot the
black histogram is the data, the dotted blue line is the blank-sky background scaled to the duration of the observations, and the red line is the best model including the
background. In each case the energy channel range is the range we use in our analysis. As described in the text, our model provides a good fit to the data.
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4. We treated the distribution of the blank-sky counts in
each energy channel as a realization of a Poisson
distribution for the observed number of counts. Riley
et al. instead assumed a flat prior for the distribution of
the blank-sky counts in each energy channel, centered on
the flux implied by the observed number of counts with a
variety of widths equal to various multiples of the
standard deviation of the observed number of counts.

5. Implications for the EOS

Our aim is to combine multiple lines of data relevant to the
properties of cold, catalyzed, dense matter, using a Bayesian
procedure that is both statistically rigorous and computationally
practical. In this section we divide our approach into two
subtasks: (1) likelihood computation and parameter estimation
for a given EOS family (Section 5.1), and (2) different
approaches to generating candidate EOSs (Section 5.2).
Finally, we show in Section 5.3 that with the inclusion of the
mass and radius estimates for PSR J0030+0451 and PSR J0740
+6620, the constraints on the EOS depend relatively weakly on
the EOS parameterization assumed in the analysis, up to a few
times nuclear saturation density.

5.1. Statistical Method

There is a growing number of papers on EOS inference from
astronomical and/or laboratory data (e.g., Agathos et al. 2015;
Lackey & Wade 2015; Alvarez-Castillo et al. 2016; Margalit &
Metzger 2017; Annala et al. 2018; Most et al. 2018; Radice
et al. 2018; Rezzolla et al. 2018; Riley et al. 2018; Tews et al.
2018; Greif et al. 2019; Kiuchi et al. 2019; Landry &
Essick 2019; Shibata et al. 2019; Capano et al. 2020; Cierniak
& Blaschke 2020; Dietrich et al. 2020; Landry et al. 2020; Li &
Magno 2020; Raaijmakers et al. 2020; Pang et al. 2020; Zhang
& Li 2020; Essick et al. 2020b; Xie & Li 2021). Here we
follow the procedure described in Miller et al. (2020). Their
procedure is fast and flexible enough to incorporate multiple
types of data.

To elaborate, suppose that we have i different types of
measurements, which might include laboratory experiments, or
the measurement of a high mass from a pulsar, or the
measurement of a tidal deformability, a radius, a moment of
inertia, and so on. Suppose also that for measurement type i we
have j= 1, 2, K, j(i) independent measurements of that type;
these could be different measurements of the same source, or
measurements of different sources.36 We wish to evaluate a set
k of EOSs; in the next section we discuss the selection of k. If
the likelihood of data set (i,j) given EOS k is  i j,k( ), then the
likelihood of all of the data sets given EOS k is simply the
product of the likelihoods:

 =
=

  i j, . 8k
i j

j i

k
1

[ ( )] ( )
( )

Note that in some cases one may need to marginalize over extra
parameters. As discussed in Section 2 of Miller et al. (2020),

there are some parameters that are expected to be the same for
all neutron stars (such as the parameters that describe the EOS
beyond nuclear saturation density, given that we expect the
EOS to be unique at such densities), some that can differ
between neutron stars but are the same for any observation of a
given neutron star (such as the distance, observer inclination,
stellar mass and radius, and central density), and some that
could vary between different observations of a given neutron
star (such as the absorbing column if the star is in a binary and
there is a significant wind). It would be incorrect to marginalize
over parameters separately for different data sets that share
those parameters; we do not perform such marginalizations in
Equation (8). In contrast, marginalization can be performed for
a likelihood applying to a given data set, over parameters that
apply only to that data set. For example, to compute the
likelihood of a NICER posterior in mass and radius for a given
neutron star it is necessary to integrate over the prior for the
central density, which applies to that star and is not the same
for all EOSs because different EOSs have different maximum
stable central densities.
Given the calculation of the likelihood k of the full set of

data assuming a specific EOS k (see Miller et al. 2020 for more
details), then as usual in a Bayesian analysis the posterior
probability Pk of the EOS is proportional to the prior
probability qk of the EOS times the likelihood:

µ P q . 9k k k ( )

We could use this procedure to compare individual EOSs from
the literature. However, our primary goal is to produce a
posterior probability distribution for, say, the pressure P as a
function of the total energy density ò or of the number density n
of baryons. To do this, we simply calculate the pressure at
specified ò or n for each EOS k, weight it by k, and then sum
over all k to find the final distribution of P at a given ò or n.
For each specific EOS selected from a given EOS family we

need to compute the likelihood of all relevant data sets for that
EOS. We largely follow the procedure of Miller et al. (2019) in
our treatment of our data sets. In particular, we apply kernel
density estimation (other methods exist, e.g., random forest
regressors; see Hernandez Vivanco et al. 2019) to produce an
estimated continuous probability distribution from our discrete
samples. When we do so, we use the standard bandwidth from
Silverman (1986) for our samples in mass and tidal deform-
ability, but multiply this bandwidth by 0.1 for our mass–radius
samples because we found previously that the standard
bandwidth significantly broadened the radius posterior (see
Miller et al. 2019 for more details, and Essick et al. 2020a for a
more detailed approach to selecting the bandwidth). We modify
the procedure of Miller et al. (2020) in two ways.

1. In Miller et al. (2019, 2020) the prior on the central
density was flat between the density that produces a 1Me
star and the density that produces the maximum-mass
non-rotating neutron star for the EOS under considera-
tion. Because the central density changes rapidly near the
maximum mass, this gives relatively greater prior weight
to higher-mass stars. Here our prior on the central density
is instead quadratic in the central density between the
1Me density, ρmin and the maximum-mass density ρmax.
That is, we select uniformly in 0� x� 1, where the
central density is ρc= ρmin+ x2(ρmax− ρmin). This

36 For example, here we present our radius measurements, which are based on
X-ray data, using a prior on the mass given by radio observations. This prior,
however, is obtained by starting with a flat mass prior and then updating the
mass distribution using the radio data. Thus our procedure is equivalent to
starting with a flat mass prior and then computing the joint likelihood of the
radio and X-ray data given candidate masses and radii.
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produces a more even prior distribution on the masses.
However, we assign zero prior weight to any densities
between ρmin and ρmax that produce unstable stars; in this
way we explicitly treat EOSs that have two stable ranges
of central density separated by an unstable range of
central density (these are sometimes called “twin stars”),
when they arise. In practice, the different prior distribu-
tion for the central density does not change the EOS
posteriors significantly compared with the approach in
Miller et al. (2019).

2. Because we include the high-mass binary merger
GW190425 (Abbott et al. 2020a) in our analysis, and
the total mass of the binary is high enough that one of the
compact objects might have been a black hole, we treat
tidal deformabilities differently than in Miller et al.
(2019, 2020) (although we also note that the large
distance to and high mass of GW190425 mean that it
adds only a small amount of information). Our approach
is to select the central density of the lower-mass star, up
to the central density such that the implied mass of the
other star equals that of the lower-mass star. Given the
mass of the lower-mass star, and given that the chirp mass
(equal to +m m m m1 2

3 5
1 2

1 5( ) ( ) for stellar masses m1

and m2 in a binary) is known with high precision, we
know the mass of the higher-mass object to the precision
that we know the chirp mass. We marginalize over the
chirp mass as in Equation (15) of Miller et al. (2020). If
for the EOS and central density under consideration the
higher-mass object is a neutron star, then we compute the
tidal deformabilities of both stars, using the same EOS,
following the prescription of Hinderer (2008; see the
erratum at Hinderer 2009). If instead for the EOS and
central density under consideration the higher-mass
object is a black hole, then we assume that its tidal
deformability is zero (Binnington & Poisson 2009;
Damour & Nagar 2009). Note that for rotating black
holes the tidal deformability may not be exactly zero (see
Chia 2020; Le Tiec & Casals 2021; Le Tiec et al. 2021
for an ongoing discussion), but it is small enough that the
difference from zero is not important for our calculations.

To implement our analysis, we need a mechanism to select a
set of EOSs. We now discuss our three different approaches to
this selection.

5.2. EOS Models

There exist many different nuclear physics computations of
the EOS of cold, catalyzed matter both below and above
nuclear saturation density. It is usually agreed that our
understanding of matter below saturation density is fairly
good, based on the idea that we can perform laboratory
experiments that probe this density regime. One caveat is in
order: the matter that can be examined in laboratories has
roughly equal numbers of neutrons and protons (the most
asymmetric stable nuclei, such as 208Pb, have roughly 50%
more neutrons than protons). In contrast, neutron star matter in
the vicinity of saturation density is more than 90% neutrons.
Thus although from the standpoint of density the regime is
familiar, theoretical arguments not directly supported by
experiment are necessary to extrapolate to very asymmetric
matter.

Nonetheless, we will follow standard procedure and assume
that we know the EOS up to a threshold density, which we take
to be half of saturation density because this is approximately
the crust–core transition density (Hebeler et al. 2013). Note that
some calculations suggest that different treatments of the
crustal EOS could introduce radius uncertainties as large as
0.3 km (Fortin et al. 2016; Gamba et al. 2020). Below half of
nuclear saturation density we use the QHC19 EOS (Baym et al.
2019). Above half of nuclear saturation density, we then need
to model the EOS, where there are well motivated and carefully
constructed models, but where these models have not been
validated by laboratory measurements.
A necessary output of our EOS analysis is an understanding

of how strongly our conclusions depend on the type of EOS
model that we employ. Therefore, in the rest of this section we
discuss the three EOS model families that we use in our
analysis. First we present two parameterizations which have
been widely used in the literature. We then turn our attention to
a newer method using Gaussian processes (GPs) that was
introduced in this context by Landry & Essick (2019).

5.2.1. Parametric Models

The most common approach to EOS inference has used
parameterized models. That is, we assume that there is some set
of parameters α that completely describe the EOS at high
densities. Given priors on α, we can generate a large number of
sample EOSs for which we then compute the likelihood of the
assembled data. As discussed above, this allows us to compute
posteriors for P(ò) or P(n). The two parameterizations we use
are as follows.
Piecewise polytrope. In this model, above a number density

n= ns/2 the pressure is given by a series of polytropes:
P=K1n

Γ1 for ns/2� n� n2, = GP K n2 2 for n2� n� n3, and so
on, where the coefficients Ki are chosen to ensure continuity of
pressure between density segments. Variants of this model
differ in the number of segments, the priors on the polytropic
indices Γi, and whether the transition densities n1, n2, Kare
fixed or can vary. We use the following assumptions (compare
with Miller et al. 2019, which used the same assumptions
except for restricting the first polytropic index to the range [2,
3]): the polytropic index from ns/2 to n2ä [3/4, 5/4]ns is
Γ1ä [0, 5]; from n2 to n3ä [3/2, 5/2]ns is Γ2ä [0, 5]; from n3
to n4ä [3, 5]ns is Γ3ä [0, 5]; from n4 to n5ä [6, 10]ns is
Γ4ä [0, 5]; and from n5 to∞ is Γ4ä [0, 5] (all priors are
uniform in the listed range). When Γ is close to zero, the
pressure is nearly independent of the density, which is what one
expects near a phase transition and which can produce the twin
stars discussed earlier. If at some density below n5 the implied
adiabatic sound speed = >c dP d cs

1 2( ) , the speed of light,
then we set dP/dò= c2 at that density.
Spectral parameterization. A different parameterization was

introduced by Lindblom (2010, 2018). In this approach, the
polytropic index is a continuous function of the pressure, Γ(P):

å gG =P xexp . 10
i

i
i

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

Here ºx P Plog 0( ) and P0 is the pressure at ns/2. We follow
Abbott et al. (2018), Carney et al. (2018), and Miller et al.
(2019) in expanding to O(x3), and in using uniform priors
γ0ä [0.2, 2], γ1ä [−1.6, 1.7], γ2ä [−0.6, 0.6], and γ3ä
[−0.02, 0.02]. As with the piecewise polytrope, if cs> c at
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some density then we set cs= c at that density. Unlike the
piecewise-polytropic parameterization, the spectral parameter-
ization with these ranges of γi cannot easily simulate a phase
transition. However, in other ways it is more flexible, with
fewer parameters, than the piecewise-polytropic model.

5.2.2. Models Using Gaussian Processes

A newer approach to EOS modeling using GPs was
introduced in Landry & Essick (2019) (see also the subsequent
work in Landry et al. 2020; Essick et al. 2020a, 2020b).
Because this method is currently less commonly used in the
community than the parametric approach, we will summarize it
in more detail.

The essence of GP estimation of a function f (see Rasmussen
& Williams 2006 for an excellent introduction) is that we
would like to have the outcome of our analysis be the joint
probability density for the function values f (x) at inputs x
(which we can represent as xi), which we assume to be a
multivariate Gaussian distribution with means μ= μi and
covariance matrix Σ=Σij. That is, we would ultimately like to
obtain

m~ Sxf , , 11( ) ( ) ( )

where  indicates a normal distribution.
A key assumption made in GP estimation is that correlations

between the function values fi, fj at inputs xi, xj can be
represented using a covariance kernel K that is a function of xi
and xj. That is, if our joint distribution is

~ á ñ Sf x f f f, , , 12i i i i j∣ ( ( )) ( )

where 〈fi〉 is the expectation value for f at xi and Σ( fi, fj) is the
covariance matrix, then we assume we can write Σ( fi,
fj)=K(xi, xj).

It is reasonable to assume that when xi and xj are closer to
each other, K is larger. Given that covariance matrices are
symmetric, it also must be that K(xi, xj)= K(xj, xi) for any xi
and xj. A common and much more drastic simplification is to
assume that K depends on only the distance between the points:
K(xi, xj)= K(|xi− xj|). We use a Gaussian kernel, which in this
context is called a “squared-exponential kernel”:

s¢ = -
- ¢

K x x
x x

ℓ
, exp

2
, 13se

2
2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

which has the properties listed above. Here the hyperparameter
σ determines the strength of the overall correlation and the
hyperparameter ℓ gives the correlation length scale. For
example, ℓ→ 0 would mean that all of the points are
independent of each other, and σ→ 0 would mean that there
is negligible variance.

Transformation of dependent variable. There is one addi-
tional important qualitative aspect of the analysis of EOS using
GPs. A true Gaussian has a domain of−∞ to+∞ . However,
if we think about an EOS as ò(P), then because ò is non-
negative it cannot range from−∞ to+∞ . We could instead
use log( ) as a function of Plog( ), because if we express ò in
some units, e.g., cgs units, log( ) can range from−∞ to+∞ .
However, this approach is also sub-optimal because it could
lead to unstable (dp/dò< 0) or acausal (dp/dò> c2) EOS. In
principle one could simply discard such EOSs when they are
drawn from the GP, but this would be inefficient.

Therefore, we follow Lindblom (2010) and Landry & Essick
(2019) in defining a new variable:

f º -


c
d

dP
ln 1 . 142⎛

⎝
⎞
⎠

( )

Because the adiabatic speed of sound cs is given by =cs
2

dP d , at the boundary of thermodynamic stability ( c 0s
2 ),

f→+∞ , and at the boundary of causality ( c cs
2 2), f→

−∞ . Thus if we construct a GP in f Plog( ), all values of f
correspond to stable and causal EOSs.
The next choice we need to make is how closely we wish to

follow tabulated EOSs in our function f Plog( ). Landry &
Essick (2019) define two approximate limits: the “model-
informed” EOS prior, in which the GP is strongly conditioned
on a set of EOSs proposed in the literature, and the “model-
agnostic” EOS prior, in which the GP is only loosely related to
existing EOS proposals. The model-agnostic approach is much
less computationally demanding and is less biased by existing
EOSs, so it is the path that we follow.
We then need to choose the parameters that describe our GP.

Landry & Essick (2019) note that it is advantageous to look for
approximate trends in the function we wish to model (here
f Plog( )) and then to produce a GP for the residuals. We find
from sets of tabulated EOS (e.g., those at the CompOSE
website https://compose.obspm.fr/table/families/3/) that in
the log pressure range of interest (log10P (erg cm−3)∼ 32–36)
the trend is roughly linear. We use f = - -P5.5 2.0 log0 10(
32.7) as our approximate trend, but construction of the GP does
not require an exact fit. For our kernel, we use the squared-
exponential kernel of Equation (13) and, based on the spread
between the EOS above in the ~-Plog erg cm 32 3610

3( ) –
range, we choose σ= 1 and ℓ= 1.
We note that the GP framework allows for substantial

flexibility beyond our particular choice (see, e.g., Essick et al.
2020a). For example, although σ= 1 and ℓ= 1 matches well
most existing EOSs in the density range that has a discernible
impact on the maximum mass, radius, and tidal deformability
of neutron stars, when combined with our f = -5.50

-P2.0 log 32.710( ) trend it leads to sound speeds approaching
the speed of light at densities several times nuclear saturation
density. A different choice of hyperparameters, e.g., a larger σ,
would not necessarily require such high sound speeds; see for
example Figure 2 of Landry et al. (2020).

5.3. EOS Results

The constraints we obtain on the EOS at different densities
depend both on the EOS model and priors and on the data sets
that we include. Here we present the EOS constraints for each
of our three models, with progressive incorporation of more
data. We also plot the distributions of mass versus radius and
the maximum mass for non-rotating neutron stars for different
amounts of data and using the GP model. For a given EOS and
central density, we solve the Tolman–Oppenheimer–Volkoff
equation (Oppenheimer & Volkoff 1939; Tolman 1939) to
obtain the mass and radius. Thus for the purpose of calculating
stellar structure we implicitly treat the star as non-rotating. This
is an excellent approximation at the 346.53 Hz rotation
frequency of this pulsar (Cromartie et al. 2020), because this
is only ∼20% of the mass-shedding frequency and thus the
expected deviation from the structure of a non-rotating star is
much smaller than our measurement precision (e.g., see
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Figure 13 of Miller et al. 2019; at this mass and rotation
frequency, the radius increase is at most 0.2 km compared with
a non-rotating star).

In Figure 9 we show, for each EOS model, the middle 90%
range for the pressure as a function of number density when we
incorporate successively more constraining measurements. The
upper left panel shows the results using the piecewise-
polytropic model, the upper right panel shows the results using
the spectral model, and the lower left panel shows the results
using the GP model. Our first constraints (dotted lines) use only
the prior for each EOS model. The next constraints include a
Gaussian prior of S= 32± 2MeV for the symmetry energy at
nuclear saturation density (see Tsang et al. 2012),37 the
existence of three high-mass pulsars (Antoniadis et al. 2013;
Arzoumanian et al. 2018; Cromartie et al. 2020), and the tidal
deformability posteriors from gravitational wave observations

of GW170817 (Abbott et al. 2017, 2018; De et al. 2018) and
GW190425 (Abbott et al. 2020a). Other constraints on the
symmetry energy are possible; for example, Drischler et al.
(2020) find a tighter range for the symmetry energy of
S= 31.7± 1.1 MeV and analyses of PREX-II data (Adhikari
et al. 2021; Reed et al. 2021; Yue et al. 2021) suggest a higher
symmetry energy of S≈ 38± 4MeV. The third set of
constraints also includes the mass–radius posteriors from the
Miller et al. (2019) analysis of NICER data on PSR J0030
+0451. Finally, the last set of constraints also includes our
mass–radius posteriors for PSR J0740+6620. The lower right
panel collects the final set of constraints for all three EOS
models. In each case, we only display the results for our fit to
both the NICER and the XMM-Newton data using the nominal
XMM-Newton calibration. When we include our mass–radius
posteriors for PSR J0740+6620, we use only the masses of
PSR 1614–2230 and PSR J0348+0432 in our high-pulsar-mass
data, i.e., we do not double-count the high mass of
PSR J0740+6620.
Several trends are evident in this figure.

1. The 5%–95% pressure range at densities » -n n1.5 5 s( ) ,
after incorporation of all measurements, has been tightened
substantially compared with the prior range and now
depends relatively weakly on the EOS model. For example,

Figure 9. Comparison of the pressure ranges as a function of number density for the three EOS models described in the text, as a function of the data sets included in
the analysis. For each line type and color in each panel, the lower line shows the 5th percentile, and the upper line shows the 95th percentile, of the pressure as a
function of density. Colors indicate the EOS model used in the analysis: black for a piecewise-polytrope model (see the first part of Section 5.2.1), blue for the spectral
model (see the second part of Section 5.2.1), and red for a model based on Gaussian processes (see Section 5.2.2). We show the results for our priors (dotted lines in
each panel); our priors plus symmetry energy measurements, the existence of three high-mass pulsars, and two tidal deformability upper limits (dashed–dotted lines in
each panel); those plus the mass–radius posteriors on PSR J0030+0451 from Miller et al. (2019) (dashed lines in each panel); and finally all of those plus the mass–
radius measurement of PSR J0740+6620 that we report here (solid lines in each panel). The lower right panel shows the full set of constraints, including our
PSR J0740+6620 radius measurement, for each of our three EOS families. Inclusion of the masses and radii of PSR J0030+0451 and PSR J0740+6620 tightens
significantly the EOS models in the vicinity of n/ns ∼ 1.5–5 [log10 (n/ns) ∼ 0.2–0.7]. This indicates that with the NICER and XMM-Newton data added, in this
density range the posterior is now dominated by the data rather than by the priors.

37 The symmetry energy S is the difference between the total energy per
nucleon of pure neutron matter and Esym, the energy per nucleon of symmetric
nuclear matter. Here we approximate S using ò/n − mnc

2. Given that the matter
at nuclear saturation density is not pure neutrons, ò/n − mnc

2 could be a few
percent different from S (see Lattimer & Prakash 2016 for a discussion).
However, the inclusion of an S constraint has only a minor effect; for example,
with our constraint, the full ±1σ range of radii at M = 1.4 Me over all three
EOS frameworks is 11.8–13.1 km, whereas without any S constraint the range
is 11.6–13.0 km.
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using the priors the maximum difference in the 5th
percentile of the log pressure in this density range, among
all three EOS frameworks, is 0.61; after incorporation of all
data, the maximum difference has dropped to 0.34. For the
95th percentile, the maximum difference in the log pressure
among all our EOS frameworks in this density range has
dropped from 0.86 to 0.21. This is encouraging, because it
means that for this density range the posterior is now
dominated by the data rather than by the priors.

2. This convergence of constraints requires the NICER data
on PSR J0030+0451 and the NICER+XMM-Newton data
on PSR J0740+6620. Without these data, the pressure
ranges differ significantly among the three models.

3. As expected, there is much less convergence at higher
densities (5ns) and at lower densities (1.5 ns). This is
because low and high densities contribute less to the
radius, mass, and tidal deformability of neutron stars. See
Lattimer & Prakash (2007, 2016), Xie & Li (2020), and
Drischler et al. (2021) for the detailed theoretical context.

4. Finally, we note that the constraining power of our
measurement of PSR J0740+6620 comes entirely from
the strong lower limit on its radius. Other measurements,
particularly the non-detection of tidal deformability from
GW170817, already strongly exclude radii as large as
even our +1σ value of >16 km. However, the evidence
that the −1σ radius is 12 km, and that the −2σ radius is
11 km, adds significantly to our understanding of dense
matter.

In Figure 10 we present another view of the EOS, after all
measurements are incorporated. Here we show the pressure
versus the baryon chemical potential μ= (ò+ P)/n (including
the baryon rest mass-energy) for all three of our EOS models.

In Figure 11 we present the 5th to 95th percentile range, and
the 25th to 75th percentile range, of the radius as a function of

mass, using our GP model, for the same set of measurements
as in Figure 9. In this figure we also plot (faint lines)
representative mass–radius relations drawn from our set of
EOSs, where in each panel the probability of drawing an
individual EOS is proportional to its statistical weight given the
measurements considered in that panel. Here we only plot
masses below the 95th percentile of the maximum gravitational
mass of a non-rotating neutron star, given the measurements
being considered. The radius and mass of PSR J0030+0451,
and our current measurement of the radius of PSR J0740
+6620, tighten the allowed radius significantly at all neutron
star masses greater than 1.0Me. See Table 4 for details. In
particular, the ±1σ radius range at M= 1.4Me, spanning all
three EOS frameworks, is just 11.79–13.11 km, or±5.3%. In
addition, although the direct measurement that we report of the
radius of PSR J0740+6620 has a ±1σ range of ≈12.2–16.3 km,
when we include other measurements the ±1σ range, spanning
all three EOS frameworks, narrows to 11.60–13.11 km at
M= 2.08Me. This is dramatically improved compared with
the prior ±1σ range of 10.47–14.27 km over all of our EOS
frameworks.
In Figure 12 we see that the maximum mass range shifts

slightly to smaller values when we include our radius
measurement of PSR J0740+6620; see Table 4 for details.
As the table shows, the maximum mass range still has a
significant dependence on the EOS framework. In a given EOS
framework, there is a weak positive correlation between the
radius at M= 2.08Me and the maximum mass of a non-
rotating star; one reflection of this is that when our analysis of
the NICER and XMM-Newton data of PSR J0740+6620 is
included, the maximum mass decreases and the +1σ radius at
M= 2.08Me also decreases slightly in two of the three EOS
frameworks. As one implication of the slightly lowered
maximum mass, consider the lighter object in the gravitational
wave coalescence GW190814, which has a best mass estimate
of 2.59Me (Abbott et al. 2020b). Using our GP EOS model,
without our PSR J0740+6620 measurement, there is a 12.1%
probability that this object is a slowly rotating neutron star.
With our PSR J0740+6620 measurement, the probability drops
to 7.5%.
In Figure 13 we show the inferred 5th and 95th percentile

curves for the sound speed squared as a function of number
density, for our results including our PSR J0740+6620
analysis. For comparison we also show the results for our
particular GP EOS framework, using only our priors. This
figure shows that the sound speed cs is not very well
constrained compared to the pressure. This is expected, because

= c dP ds
2 and thus the sound speed is related to the slope of
the pressure. A comparison of the prior to the final posterior of
the sound speed for the GP EOS shows that the data are not
constraining beyond ∼4ns but do tighten the allowed range
significantly at lower densities. In particular, the increase in the
5th percentile of c cs

2 2, compared with the prior, at densities
∼2–4ns, is common to all three EOS frameworks.

6. Conclusions

NICER measurements of PSR J0030+0451 and PSR J0740
+6620, complemented with XMM-Newton measurements of
PSR J0740+6620, have reduced the uncertainty about the EOS
of high-density, cold catalyzed matter. This is especially true in
the density range n∼ 1.5–5ns. These two radius measurements

Figure 10. The 5th to 95th percentile range of the pressure as a function of the
baryon chemical potential, including the neutron rest mass-energy, for all three
of our models of the EOS: the red line is for the Gaussian process EOS, the
blue line is for the spectral EOS, and the black line is for the piecewise-
polytropic EOS. Here we include all measurements: symmetry energy, high-
mass pulsars, tidal deformability from gravitational wave measurements, and
measurements of the mass and radius of PSR J0030+0451 and
PSR J0740+6620.
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Figure 11. The 25th to 75th percentile range (blue shading) and the 5th to 95th percentile range (pink shading) of the radius as a function of mass, for non-rotating
neutron stars. The faint lines show the mass–radius relations of representative individual EOS (see the text for details). At each mass only EOSs that can reach that
mass contribute to the radius posterior; thus at high masses, which require hard EOSs, the radii become larger. We use the Gaussian process EOS model for the same
progression of measurements as in Figure 9, where S is the symmetry energy, M refers to the high masses of three pulsars, and Λ indicates the gravitational wave
measurements of tidal deformability for GW170817 and GW190425. In each panel, we only include masses below the 95th percentile of the maximum mass for non-
rotating neutron stars (see Figure 12 for a closer investigation of the maximum mass). See Table 4 for details of how our radius bounds change between EOS models
and when including different observations. The agreement between the methods, particularly at the ±1σ level, is another indication of improving convergence between
models.

Table 4
Summary of Maximum Mass and Radii at 1.4 Me and 2.08 Me

EOS Model Measurements M Mmax ( ) Re(1.4 Me), km Re(2.08 Me), km

−1σ Median +1σ −1σ Median +1σ −1σ Median +1σ
Gaussian S, M, Λ 2.12 2.27 2.52 10.92 12.23 12.93 10.80 11.97 12.86

+J0030 2.13 2.30 2.54 11.88 12.51 13.02 11.39 12.27 12.95
+J0740 2.08 2.23 2.47 12.17 12.63 13.11 11.60 12.28 12.88

Spectral S, M, Λ 2.28 2.55 2.88 10.41 11.43 12.40 10.79 11.81 12.97
+J0030 2.39 2.78 2.93 11.52 12.22 12.67 11.56 12.77 13.11
+J0740 2.23 2.74 2.92 11.79 12.30 12.84 11.83 12.78 13.11

Piecewise S, M, Λ 2.13 2.37 2.64 11.26 12.32 12.89 11.04 12.21 12.90
polytrope +J0030 2.14 2.41 2.65 11.95 12.47 12.94 11.42 12.35 12.94

+J0740 2.09 2.27 2.61 12.16 12.56 13.01 11.67 12.36 12.91

Note. Maximum gravitational masses and equatorial circumferential radii at M = 1.4 Me and M = 2.08 Me (the best estimate of the mass of PSR J0740+6620), all at
±1σ for nonrotating stars, inferred using our three EOS frameworks with three different sets of measurements. The S, M, Λ set includes constraints on the symmetry
energy, the high masses of three pulsars, and the two LIGO/Virgo tidal deformability measurements. The +J0030 set also includes the Miller et al. (2019)
measurement of the radius and mass of PSR J0030+0451. The +J0740 data add our measurement of the radius of PSR J0740+6620. We see that the radius estimates
tighten with addition of more data, and in particular that the final ±1σ radius range for a 2.08 Me star, spanning all three EOS frameworks (11.60–13.11 km), is very
similar to the final ±1σ radius range for a 1.4Me star, spanning all three EOS frameworks (11.79–13.11 km).
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also shift slightly the credible region for the maximum
gravitational mass of a non-rotating neutron star.

Most importantly, our new measurement narrows signifi-
cantly the inferred radius range for 1.4Me neutron stars. For
instance, prior to our measurement, when we used our GP EOS
model, inclusion of nuclear data, information about neutron
star tidal deformability from the gravitational wave event
GW170817, and our previous mass and radius measurement of
PSR J0030+0451 had constrained the radius to 11.2–13.3 km
at 90% credibility and 11.9–13.0 km at 68% credibility. When
we also include our PSR J0740+6620 measurement, these
ranges shrink to 11.8–13.4 km (90%) and 12.2–13.1 km (68%).
That is, as expected, the main effect of our PSR J0740+6620
measurement is to increase the lower limit to the radius. Indeed,
even when we consider the radius range spanned by all three of
our EOS models, the range is 11.8–13.1 km at 68% credibility,
for a fractional uncertainty of±5.3%. This is broadly consistent
with previous radius estimates based both on nuclear theory
and tidal deformabilities inferred from gravitational wave
observations (Abbott et al. 2017, 2020a; De et al. 2018) and on
the NICER mass and radius estimates for PSR J0030+0451
(Miller et al. 2019; Riley et al. 2019): the total radius range
spanned by all the computed ±1σ radius bounds, prior to our
measurement of the radius of PSR J0740+6620, for 1.4Me
neutron stars is ≈11–13.5 km (e.g., Alvarez-Castillo et al.
2000; Dietrich et al. 2020; Greif et al. 2020; Jiang et al. 2020;
Li et al. 2020, 2021; Zhao & Lattimer 2020; Essick et al.
2020b; Biswas et al. 2021; Han et al. 2021; Selva et al. 2021;
Sen & Guha 2021).

Data are still being taken actively; for example, it is likely
that by the end of the NICER mission the exposure times on
PSR J0030+0451 and PSR J0740+6620 will roughly double

compared with those used in current analyses, and an analysis
of NICER data on PSR J0437−4715 (which has the highest
X-ray flux of any non-accreting neutron star) is in progress.
This gives reason for optimism that future NICER observa-
tions, and in the coming years more gravitational-wave
observations of tidal deformability, will provide even clearer
insight into a realm of matter which cannot be explored in
laboratories.
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Figure 12. Posterior probability distribution for the maximum gravitational
mass of a non-rotating neutron star, normalized in each case so that the integral
of the probability density in the Mmax = 1.8–3.0Me range is 1. The highest
maximum mass allowed in our analysis was 3.0 Me. We use the Gaussian
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mass bounds change between EOS models and when including different
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Figure 13. The 5th to 95th percentile range of the sound speed squared (in
units of c2), for all three of our models of the EOS: the red line is for the
Gaussian process (GP) EOS, the blue line is for the spectral EOS, and the black
line is for the piecewise polytropic EOS. The solid lines show the results when
we include all measurements: symmetry energy, high-mass pulsars, tidal
deformability from gravitational wave measurements, and measurements of the
mass and radius of PSR J0030+0451 and PSR J0740+6620. The dotted line
shows our GP results using only our priors. Because = c dP ds

2 , the sound
speed is the slope of the pressure-density relation and is therefore not as well
constrained as the relation itself. We see from this plot that in our particular GP
EOS framework the sound speed automatically approaches the speed of light at
high densities; the prior dominates at densities 4ns (other choices of GP
hyperparameters need not lead to this behavior; see for example Figure 2 of
Landry et al. 2020). However, the rise in the 5th percentile of the sound speed,
compared with the prior, at densities ∼2–4ns, is common to all three EOS
frameworks.

21

The Astrophysical Journal Letters, 918:L28 (31pp), 2021 September 10 Miller et al.

http://hpcc.umd.edu


National Science Foundation award number 1430284. I.H.S. is
supported by an NSERC Discovery grant and by the Canadian
Institute for Advanced Research. Support for H.T.C. was
provided by NASA through the NASA Hubble Fellowship
Program grant #HST-HF2-51453.001 awarded by the Space
Telescope Science Institute, which is operated by the Associa-
tion of Universities for Research in Astronomy, Inc., for
NASA, under contract NAS5-26555. S.M.M. thanks the
Natural Sciences and Engineering Research Council of Canada
for funding. Portions of this work performed at NRL were
funded by NASA. The authors acknowledge the use of
NASA’s Astrophysics Data System (ADS) Bibliographic
Services and the arXiv.

Facility: NICER (Gendreau et al. 2016), XMM-Newton
(Strüder et al. 2001; Turner et al. 2001), Swift (Gehrels et al. 2004).

Software: emcee (Foreman-Mackey et al. 2013), MultiNest
(Feroz et al. 2009), Python and NumPy (Oliphant 2007),
Matplotlib (Hunter 2007), Cython (Behnel et al. 2011),
schwimmbad (Price-Whelan & Foreman-Mackey 2017), and
the XMM-Newton Scientific Analysis System (SAS, Gabriel
et al. 2004).

Appendix A
Posterior Distributions from Analysis of Synthetic J0740-

like NICER and XMM-Newton Data

Table 5 and Figure 14 show the best fit and uncertainties for
a two-circle fit to a synthetic NICER plus XMM-Newton data
set which mimics the actual data on PSR J0740+6620.

Table 5
Fits to Synthetic NICER and XMM-Newton Data

Parameter Median −1σ +1σ −2σ +2σ Assumed value

Re (km) 13.933 12.344 17.396 11.342 22.215 13.378
GM/c2Re 0.221 0.177 0.248 0.139 0.267 0.230
M (Me) 2.081 1.991 2.174 1.895 2.261 2.080
θc1 (rad) 1.618 0.892 2.341 0.583 2.602 1.820
Δθ1 (rad) 0.121 0.078 0.180 0.051 0.259 0.061
kTeff,1 (keV) 0.085 0.076 0.097 0.068 0.111 0.107
θc2 (rad) 1.574 0.881 2.313 0.586 2.604 2.280
Δθ2 (rad) 0.121 0.078 0.179 0.050 0.262 0.086
kTeff,2 (keV) 0.085 0.076 0.097 0.068 0.111 0.100
Δf2 (cycles) 0.554 0.422 0.578 0.409 0.592 0.422
θobs (rad) 1.526 1.467 1.585 1.444 1.610 1.463
NH (1020 cm−2) 3.067 1.377 4.389 0.302 4.915 0.226
d (kpc) 1.211 1.025 1.400 0.840 1.598 1.099

Note. The one-dimensional credible intervals for each of the parameters in a pulse waveform model with two possibly different uniform circular spots, obtained by
jointly fitting the model to synthetic NICER data (in channels 30–123) and synthetic XMM-Newton data that together mimic the actual NICER and XMM-Newton
data. The rightmost column lists the parameter values that were used to generate the synthetic data. These values were taken from a model that gives a good fit to the
actual PSR J0740+6620 data. The synthetic data were then generated by Poisson draws from the fluxes predicted by that model, including the background fluxes it
predicts. Consistent with statistical expectations, six of the 12 ±1σ credible intervals, 11 of the 12 ±2σ credible regions, and all (12 of 12) of the ±3σ credible regions
contain the values of the model parameters that were assumed in generating the synthetic data.
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Figure 14. Posterior probability density distributions for a model with two uniform circular spots that is fit jointly to the synthetic NICER and XMM-Newton data.
The dotted lines in the one-dimensional plots for gravitational mass and distance indicate the priors that we applied. The vertical dashed lines in the one-dimensional
plots indicate the value of the associated parameter that was assumed in the construction of the synthetic data. Similarly, the star symbols in the two-dimensional plots
show the assumed values of both parameters. In this and the other corner plots in the appendices, brighter colors in the two-dimensional plots indicate higher posterior
probability densities.
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Appendix B
Posterior Distributions from Analysis of Only NICER Data

Table 6 and Figure 15 show the best fit and uncertainties for
a two-circle fit to just the NICER data on PSR J0740+6620.

Table 6
Fits to Only NICER Data

Parameter Median −1σ +1σ −2σ +2σ Best fit

Re (km) 11.512 10.382 13.380 9.642 16.256 11.008
GM/c2Re 0.266 0.229 0.293 0.188 0.308 0.278
M (Me) 2.072 1.978 2.159 1.885 2.247 2.071
θc1 (rad) 1.655 0.667 2.541 0.292 2.858 0.494
Δθ1 (rad) 0.329 0.205 0.541 0.132 0.899 0.328
kTeff,1 (keV) 0.072 0.064 0.079 0.057 0.087 0.078
θc2 (rad) 1.582 0.641 2.510 0.310 2.847 1.803
Δθ2 (rad) 0.326 0.204 0.539 0.132 0.854 0.208
kTeff,2 (keV) 0.072 0.064 0.079 0.057 0.087 0.079
Δf2 (cycles) 0.527 0.441 0.560 0.422 0.578 0.550
θobs (rad) 1.528 1.468 1.586 1.444 1.610 1.535
NH (1020 cm−2) 1.833 0.599 3.414 0.094 4.667 0.858
d (kpc) 1.213 1.025 1.407 0.843 1.596 1.086

Note. One-dimensional credible regions, and best fit, obtained by fitting a model with two possibly different uniform circular spots to only the NICER data, using
energy channels 30–123. These credible regions may be compared with the regions in Table 7, where both NICER and XMM-Newton data are analyzed. The analysis
here was performed using a free background in each NICER energy channel; as discussed in Section 4.2, future incorporation of reliable background models for
NICER will likely increase the NICER-only radius to values more comparable to what we infer when we also use XMM-Newton data.
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Figure 15. Posterior probability density distributions for a model with two uniform circular spots that is fit to only the NICER data. Note that because the spots do not
overlap with each other, their roles can be swapped. Moreover, because the observer inclination is close to the equator, there is a near-degeneracy between spots in the
northern hemisphere and spots in the southern hemisphere. The dotted lines in the one-dimensional plots for gravitational mass and distance indicate the priors that we
applied.
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Appendix C
Posterior Distributions from Analysis of NICER and

XMM-Newton Data

Table 7 and Figure 16 show the best fit and uncertainties for
a two-circle fit to the NICER plus XMM-Newton data on PSR
J0740+6620.

Table 7
Fits to NICER and XMM-Newton data

Parameter Median −1σ +1σ −2σ +2σ Best fit

Re (km) 13.713 12.209 16.326 11.243 20.051 13.823
GM/c2Re 0.222 0.187 0.249 0.151 0.267 0.221
M (Me) 2.062 1.971 2.152 1.883 2.242 2.067
θc1 (rad) 1.600 0.900 2.319 0.586 2.631 0.834
Δθ1 (rad) 0.098 0.065 0.145 0.044 0.219 0.087
kTeff,1 (keV) 0.094 0.083 0.105 0.073 0.118 0.098
θc2 (rad) 1.612 0.917 2.297 0.572 2.618 1.223
Δθ2 (rad) 0.096 0.064 0.143 0.042 0.213 0.066
kTeff,2 (keV) 0.094 0.083 0.106 0.073 0.120 0.103
Δf2 (cycles) 0.558 0.422 0.579 0.409 0.592 0.577
θobs (rad) 1.527 1.467 1.586 1.444 1.610 1.561
NH (1020 cm−2) 1.137 0.315 2.549 0.043 4.174 0.006
d (kpc) 1.215 1.027 1.404 0.852 1.593 1.151

Note. One-dimensional credible regions, and best fit, obtained by jointly fitting a model with two possibly different uniform circular spots to channels 30–123 of the
NICER data and to the XMM-Newton data on PSR J0740+6620. This analysis used the nominal calibration of NICER and XMM-Newton. These credible regions
may be compared with the regions in Table 6, where only NICER data are analyzed.
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Figure 16. Posterior probability density distributions for a model with two uniform circular spots that is fit to the NICER and XMM-Newton data, using the nominal
calibration for NICER and XMM-Newton. The dotted lines in the one-dimensional plots for gravitational mass and distance indicate the priors that we applied.
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Appendix D
Posterior Distributions from Analysis of NICER and

XMM-Newton Data with an XMM-Newton Calibration
Parameter

Table 8 and Figure 17 show the best fit and uncertainties for
a two-circle fit to the NICER plus XMM-Newton data on PSR
J0740+6620, in which we have added a parameterized
normalization for the XMM-Newton calibration.

Table 8
Fits to NICER and XMM-Newton Data with a Parameterized Normalization for the XMM-Newton Calibration

Parameter Median −1σ +1σ −2σ +2σ Best fit

Re (km) 13.705 12.153 16.298 11.140 20.199 13.524
GM/c2Re 0.223 0.187 0.250 0.151 0.270 0.227
M (Me) 2.064 1.973 2.154 1.882 2.244 2.082
θc1 (rad) 1.635 0.895 2.324 0.575 2.634 2.399
Δθ1 (rad) 0.097 0.064 0.144 0.042 0.214 0.106
kTeff,1 (keV) 0.095 0.084 0.107 0.074 0.120 0.098
θc2 (rad) 1.647 0.910 2.327 0.573 2.632 1.876
Δθ2 (rad) 0.097 0.065 0.143 0.044 0.212 0.076
kTeff,2 (keV) 0.095 0.084 0.106 0.074 0.119 0.102
Δf2 (cycles) 0.551 0.422 0.578 0.409 0.591 0.571
θobs (rad) 1.525 1.467 1.586 1.444 1.610 1.536
NH (1020 cm−2) 1.081 0.293 2.489 0.040 4.116 0.033
d (kpc) 1.209 1.023 1.403 0.845 1.599 1.206
AXMM 0.969 0.919 1.043 0.902 1.090 0.917

Note. One-dimensional credible regions, and best fit, obtained by jointly fitting a model with two possibly different uniform circular spots to channels 30–123 of the
NICER data and to the XMM-Newton data on PSR J0740+6620. Here we add a parameter, AXMM, which is the energy-independent ratio of the XMM-Newton
effective area to its nominal value. These credible regions are nearly identical to those in Table 7, where we assumed the nominal effective area.
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