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SUMMARY

While the presence of an atmosphere on a neutron star will not significantly modify
its total thermal emission, it may change the emission in the sensitivity bands of
detectors such as Einstein or ROSAT so that the inferred surface temperature (from a
blackbody curve) may be quite different from the actual surface temperature. This in
turn may affect deduced cooling curves. Previous calculations of model atmospheres
of neutron stars have used atomic data calculated for zero magnetic field. However,
many neutron stars are expected to have extremely high magnetic fields, on the order
of B=10'? G, and it is important to take this into account. This paper uses atomic
data in high magnetic fields computed using a multiconfigurational Hartree-Fock
code, and the data were presented in Miller & Neuhauser. The effects of ionization
and polarization in strong magnetic fields are discussed, and the prospects for

observation by satellites are investigated.

1 INTRODUCTION

SN1987A is now nearly five years old, and as the expanding
gas shell that surrounds it becomes optically thin, there is the
possibility that a central neutron star will be observed.
Because of its youth, this object would have a relatively high
surface temperature, so that its thermal flux might be
observable. Satellites such as ROSAT and AXAF may be able
to detect such an object, and they have great enough sensi-
tivity that they may be able to detect thermal radiation from
other sources, such as the Crab or Vela pulsars. The determi-
nation of surface temperatures from X-ray observations will
set constraints on the cooling curves of neutron stars, and
thus will give valuable clues to the interior structure of these
objects (see e.g. Tsuruta 1986). Preliminary models of
neutron-star atmospheres (Romani 1987) indicate that even
more stringent limits may be placed on the cooling curves,
because the surface temperature inferred from the flux in the
Einstein sensitivity band is much greater than the actual
surface temperature. However, these models have not
included the effect of magnetic fields.

There is overwhelming evidence, both direct and indirect,
that many observable neutron stars have surface magnetic
fields in excess of 10'2 G. The indirect evidence includes
models of radio pulsar slowdown as due to magnetic inter-
actions [see Bhattacharya & van den Heuvel (1991) for a
recent review] and models of the relation between luminosity
and spin-rate behaviour for accretion-powered pulsars (Joss
& Rappaport 1984; Nagase 1989). More direct evidence

* Present address: High Energy Physics, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA.

comes from the observation of cyclotron features in some
X-ray sources (Kirk & Triimper 1983) and the recent
discovery of paired cyclotron lines in some gamma-ray
bursts (Murakami et al. 1988). Fields of this strength
dominate the physics of the surface, and in particular they
shift the energy levels of the atoms. A great deal of work has
been done to compute the wavefunctions, energy levels and
radiative cross-sections for hydrogen in high fields (e.g.
Simola & Virtamo 1978; O’Connel 1979; Kara & McDowell
1980; Wunner, Ruder & Herold 1980; Rosner et al. 1983,
1984, Forster et al. 1984; Ruder et al. 1985; Wunner 1986;
Wunner & Ruder 1987), and similar calculations have been
done for helium and carbon (Miller & Neuhauser 1991,
hereafter Paper I). The need to consider many different
compositions is due to the large variety of processes that can
contribute to the makeup of the surface. For example, iron
could be the dominant element because current models
predict that the mass cut of the supernova occurs in the iron
layer. Hydrogen could be important because it is the most
abundant element accreted once the neutron star starts inter-
acting with the interstellar medium. Other elements such as
helium or carbon could contribute, either because the
neutron star might accrete from the supernova shells or
because fusion may take place on the star’s surface. For the
purposes of this paper, what is important is the composition
of the X-ray photosphere, and the situation is somewhat
simplified because the lightest element present will dominate
the soft X-ray opacity. An optical depth of unity in X-rays
requires only about 10'* g of material (Romani 1987), and
the surface gravity is high enough that gravitational
separation will take place in only ~1-100s (Alcock &
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Illarionov 1980), so only pure-element photosphere compo-
sitions need be considered.

In this paper, we use cross-sections computed from the
wavefunctions of atoms and ions in high fields (2 102 G) to
construct model atmospheres for neutron stars. The
discovery of many old neutron stars with probable surface
fields B=10%-10'° G makes modelling such stars an attrac-
tive problem. However, the code which generated the atomic
data used in this paper assumes that the magnetic field
dominates Coulomb interactions, so the code is not accurate
at these intermediate field-strengths. We consider relatively
low temperatures, T=3 X 10° to 10° K, consistent with the
upper limits derived from X-ray observations. In Section 2,
we describe our method for producing local thermodynamic
equilibrium (LTE) models, including the Khersonskji (1987)
high-field modification of the Saha ionization equation. Since
the only source of opacity considered is bound-free, we
make an estimate of the effects of bound-bound opacity and
line broadening. We find that for 7's 3 x 10° K line broaden-
ing has a significant effect, so we concentrate on the upper
end of the temperature range, 7=10% K. In Section 3, we
produce spectra for several combinations of parameters and
discuss the effect on observable lines of the variation of the
magnetic field over the surface of the star, and in Section 4
we consider the effect of these results on colour tempera-
tures and cooling curves.

2 MODEL ATMOSPHERES
2.1 Iteration procedure and temperature correction

The calculation of our LTE model atmospheres follows the
standard treatment given by Mihalas (1978) for plane-
parallel atmospheres. The assumption that the atmosphere is
plane parallel is much better for neutron stars than for main-
sequence stars, because for soft X-rays at optical depth unity,
the atmosphere has a thickness <1 cm, small compared to
the neutron star radius of ~ 10% cm. The computation works
on a grid of 100 zones, arranged logarithmically in Rosse-
land optical depth from 1073 to 102 The iteration towards
the temperature profile starts with an initial guess, taken as
that of grey opacity,

T=Ty(ta +q)'", (1)

where 7y is the Rosseland optical depth and g=0.71044 to
ensure agreement with the exact grey solution at large depth.
The photon frequencies are also arranged logarithmically,
with 100 levels from 1 eV to 10 keV. Hydrostatic equi-
librium is imposed by

e @
dry  xg(TR)
where g, is the surface gravity, P is the pressure and xy is the
Rosseland opacity. The equation of state is used to deter-
mine the density from the pressure. It is demonstrated in
Section 2.3 below that, consistent with recent results from
Abrahams & Shapiro (1991) an ideal-gas equation of state

P=nkT (3)

should be accurate in the photosphere. Following Mihalas
(1978), the flux is computed at each level of the atmosphere

T

F(7)= 2r B[T(0)E,(t — ) dt —2J B,[T(1)E;(7~1) dt, (4)

T 0

where B[T({)] is the Planck function and E,(¢r—7) is the
second exponential function. Note that this assumes that the
source function is equal to the Planck function. This is
reasonably accurate, because in the frequency range con-
sidered, absorption dominates scattering.

The number density of neutral atoms, singly ionized
atoms, etc. in each level of the atmosphere is determined by
solving the ionization equation, and when the flux is
calculated, the Lucy-Unsold procedure is used to impose
flux constancy. This method estimates the temperature
correction at a given level by

AT( r)zT—(T—)——3 [ﬁ [3 J "F(”,) AF(7) de+2AF(0)|  (5)
160 (xp o Kr(T)

_ kg dAF(7)
kp dtg |

where xy, kg, kp and x; are the Rosseland, flux, Planck, and
absorption mean opacities, respectively. The approximation
x; = xp was found to give sufficient accuracy. After the new
temperature profile is found, hydrostatic equilibrium is re-
established, the ionization equations are solved again, a new
flux table is computed, and the process is iterated. Five
iterations are usually sufficient to produce flux constancy to
within <1 per cent throughout the atmosphere.

2.2 Line broadening in strong magnetic fields

In the high-density, high-temperature environment of a
neutron star’s atmosphere, spectral lines will be broadened
substantially. Because of the complexities involved in an
accurate calculation of broadening, this effect will be ignored
in this paper. However, in this section some rough estimates
are made to determine when line opacity is important.
Because the Rosseland mean opacity is weighted by the
derivative of the Planck function with respect to tempera-
ture, dB,/dT, the greatest weight is put on frequencies near
fiw=4kT We consider as an example transitions involving
the outer, hydrogen-like electron of a neutral atom. It was
demonstrated in Paper I that the energy levels of these outer
electrons are close to independent of the atomic number, so
this treatment should be representative of the effects of line
broadening on the opacity below =300 eV. The specific
transition considered is from the ground state to the first
excited state, so the line centre is at about 150 to 250 eV if
the magnetic field is between B=10'? and 5% 10'2 G. If the
temperature is between T=10° and 10°K, the greatest
weight is put on Aw=4kT~30 to 350 eV, which is, on
average, ~10-100 eV away from the centre of the line.
Whilst it is possible that, at a particular spot on the star’s
surface, the thermal peaks and line-centre wavelengths may
be coincident, the expected variation of magnetic-field
strength over the surface of the star and the dependence of
electron binding energies on the magnetic field indicate that,
over most of the surface, the centre of the line will be well
away from the thermal peak. For example, if a neutron star
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has a purely dipolar field with an equatorial strength of
2.35x 102 G, then the ground-state binding energy of
hydrogen would vary from 208 eV at the equator to 253 eV
at the poles (see Paper I). Thus, collisional broadening (which
is most important in line wings) is likely to dominate over
Doppler broadening (which has its largest effect on line
cores). The opacity at this frequency from bound-bound
transitions will be compared to the opacity from bound-free
transitions, so that an order-of-magnitude estimate of the
importance of bound-bound transitions may be made.

The assumption is made that the change in frequency that
is due to an encounter may be described by the Weisskopf
approximation

C
Aw=r—;,’, (6)

where ris the distance between the atom and perturber, and
for example p=2 is appropriate for the linear Stark effect,
whereas p=3 represents resonance broadening. It is
assumed that when the frequency is within some critical
frequency of the line centre,

Aw<Aw,, (7)
the cross-section has a Lorentz form,
1/2nt
oc— 8
O MwP (127 ®)

where 7 is the mean time between collisions. The critical
frequency Aw, is assumed to be the Weisskopf frequency

( vP )l/p
Aw,~Aw, = , 9)
* Cvy

where y, is a phase shift: y,=x, y;=2. Outside this
frequency, Aw > Aw,, it is assumed that statistical broaden-
ing theory is applicable. The frequency dependence is differ-
ent in a neutron star atmosphere than in laboratories,
because the strong magnetic field constrains the atoms, ions
and electrons to move in one dimension. It is therefore
necessary to rederive o(Aw) in one dimension, and this is
now done using the approximation that the nearest
neighbour is responsible for the frequency shift.

To correspond with the standard derivation for three
dimensions, a uniform particle density will be assumed. In
reality, there are probably repulsive terms present. However,
these are likely to be significant only when the size of the
atoms is comparable to the mean separation between atoms.
As is argued in Section 2.3, this density is unlikely to be
reached in the photosphere, so the assumption of uniform
particle density is adequate for the present purposes. Using
this assumption, the probability W(r) that the nearest
neighbour lies at a distance ris

W(r)=ne ™. (10)

Here n, is the linear number density of the perturbers along
the field line, so that if the number density is » cm ™2 and the
area of the magnetic flux tube is A cm?, then n, =nA cm™!.
Here A is roughly given by

A=mp2,
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where
i _
,a=(£)=2.5x10 P rgem (11)

is the radius of the first Landau level. Defining the normal
phase shift Aw, by

C

S
rp’

Aw, (12)

where r, is the mean interparticle distance r, =1/n,, we see
that

(Aw)l/p=ﬁ. (13)

Aw, r
Setting 8= Aw/Aw, and substituting, equation (10) becomes

a statement about the distribution of frequencies from an
initially sharp line:

w(p) dﬁ=11, B9 exp(— B717) d, (14)

This compares with the three-dimensional value of

W(p) dﬂ=% B exp(— B7) dp, (15)

so in the presence of a strong magnetic field, the line opacity
drops off less sharply. The cross-section integrated over all
frequencies is

< 2 2 2
J odo= T f (16)
mc

0

where the oscillator strength f=~1. Using this and the
assumptions above, the line cross-section for AE> 1 eV and
n, <1, where AE is the ‘distance’ from the line centre and
n,=10"n; cm™1!is:

Stark broadening;

0s=~3%x10 " n,cl? (%)_3/2 cm’, (17)
Resonance broadening;

0 ~8%x10 Y n,c}? (%})—M3 cm’. (18)

In these expressions, ¢, and c; are, respectively, the ratio of
the one-dimentional Stark constant to the three-dimensional
Stark constant, and the ratio of the one-dimensional
resonance constant to the three-dimensional resonance
constant. In three dimensions, the Stark constant is C, =1
cm? s~! and the resonance constant is C;=5x10710 cm3
s~ 1. The true values of ¢, and c¢; can only be determined by
experiment or a detailed quantum-mechanical calculation, so
it is impossible to determine a priori the magnitudes of ¢, and
¢;. However, the low powers of ¢, and ¢; in expressions (17)
and (18) diminish the impact of their potential differences
from unity.

To compare the bound-bound cross-section to the
bound-free cross-section, we take as an example hydrogen at
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B=10'? G. Here o, and oy are respectively the Stark and
resonance cross-sections of the transition (m=0, v=0) to
(m=0, v=1) at the frequency #iw = 4kT. This is compared to
the combined ionization cross-sections oy, from the (m=0,
v=0)and (m =0, v= 1) states. The densities that are used to
calculate oy and oy are the densities at unit Rosseland optical
depth, which were calculated without including the line
opacities. At B=10'2 G, the excitation energy of the (m =0,
v=1) state is 145 eV, so this state is assumed to have
e 145eV/kT of the population of the ground state, and
AE=|145 eV—4kT|. The bound-free cross-sections were
computed using code described in Paper I, which used a
formalism partially expressed by equations (47) and (49).
At T=10K=4kT=34.6¢V,

0=120gcm 3= n,=24, 05~ 6x107 % c}/2 cm?,

or=4x1072 ¢} em?, Oy =4 %1072 cm?

At T=3%x10°K=>4kT=104 ¢V,

0=04gcm 3= n,=0.008, 0= 9x 10723} cm?,

0g=4x10" B¢l em?, Oy~ 1x10"% cm?
At T=10°K=4kT=346 ¢V,

0=02gcm 3= n,=0.004, 03 =4 %1072 cl/? cm?,

or=3x107 %l cm?, Oy =4x10720 cm?.

From this, it is apparent that if ¢, and c; are close to unity
then lines may have a very significant effect at low tempera-
tures (because of the lack of other opacity sources), but that
at high temperatures they may be ignored. The high-tem-
perature result is almost rigorous, because the ratio of cross-
sections is so high; ¢, would have to be at least 108, and c,
would have to be at least 10'2, for line broadening to be
important. Because of the likely loss of accuracy at low tem-
peratures, the models in Sections 3 and 4 concentrate on
T>3%x10°K.

2.3 Equation of state in the atmosphere

In this paper the equation of state in the photosphere is
assumed to be that of an ideal gas. Recent work by
Abrahams & Shapiro (1991) has supported this approxima-
tion, and in this section this assumption is justified by show-
ing that in the photosphere the contributions to the pressure
from electron degeneracy and ion corrections are negligible.

For a degenerate electron gas in one dimension, the
number of states in a volume V and a range of z momenta
Ap, is given by

BVA
n=""2F: (19)
h'c

(Landau & Lifshitz 1977), so the density and pressure are
given by

eB |”
ne=h_zCJ fap, (20)
and

eB |©
P=E‘J' Pvfdpu (21)

and for complete degeneracy the occupation number fis

f=1for|p|<pg,  f=O0for|p|> pg, (22)

where pg is the Fermi momentum. Therefore,

2eB
ne="3_ Pr- (23)

The energies considered are much less than the electron rest
mass m, so v~ p/m and

_ 2eB
3k em

P pr=71%10"B1; ny, Nem™?, (24)

where B=10'?B,, G and n, = 10%"n,, cm~3. The pressure of
an ideal gas is

P=nkT~10'"n,, TN cm™2, (25)

where the temperature is 7=10° T; K, so the two are equal at
about n,;,=0.4 and degeneracy pressure may be ignored
when n3, <1.

The interactions between atoms become important when
the mean distance between atoms is comparable to the size
of the ions. The outer electron of a neutral atom of atomic
number Zin a strong magnetic field has an orbital radius of

p=\2Z-1)p

and a length along the field of (Miller & Neuhauser 1991)

- ao/lé .
= [ln(ao/m} 4 (26)

where a, is the Bohr radius, a;=5x107° cm. The average
distance between atoms is

r~— (27)

where A=mp?=m(2Z~1)p2 The condition r>/ then
yields ny; <5/(2Z—1). '

In order to determine whether these conditions are satis-
fied, it is necessary to estimate the number density in the
photosphere. This may be done from the equation of hydro-
static equilibrium (2), which can be written in the form

arP_ g

=& 28
dr  olu (28)
where ois some average cross-section and u is the mass of an
atom. This may be directly integrated, and if an ideal-gas
equation of state P=nkT is assumed, the number density is

__ &
n KTo/z T. (29)

For typical values g, =3x 10" cm s™2, T=10°K, =10~
cm? and u=10"23g, the number density at the lower
extreme of the atmosphere, T=100, is n=2x10% cm™3.
Therefore, the conditions above are satisfied, and to a good
approximation the equation of state is that of an ideal gas.
Fig. 1 compares the pressures given by various equations of
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Figure 1. A comparison of the pressures given by: an ideal gas; electron degeneracy at a magnetic field B=0; and electron degeneracy at a

magnetic field B=10'? G, as a function of electron density #..

state at a variety of values of the electron density. From this
diagram, it is evident that the strong magnetic field plays an
important part in the non-degeneracy of the atmosphere, and
if the magnetic field were to decay away, the pressure would
be dominated by electron degeneracy. Furthermore, at a
frequency which has very low cross-section (such as the
higher frequencies in our model, w ~ 10 keV), the density at
optical depth unity may be high enough that degenerate
pressure is important at the 10 per cent level.

2.4 High-field ionization

For a general multi-electron atom, it is necessary to
determine the number densities of all of the various ions of
the atom. Khersonskij (1987) derived a high-field ionization
equation to replace the Saha equation for hydrogen.

For a hydrogen atom, the neutral hydrogen density nyy at
temperature 7 and magnetic field B is determined by

ng 1 (2nh2)3/2 sinh 7, coth neeEa,ka (B.T) (30)
H > i)

nyh, "2 m.kT, 7, e

where n, is the proton density, 7, is the electron density, m,
is the mass of the electron, 7, = hwp/ZkVT, where w, is the
cyclotron frequency, w,=eB/m,c, n.=hw /2kT, E, is the
magnitude of the ground-state energy, and the partition

function fj is given by

+&,+
E,te+mhw ), (31)

fu(B, T)=§0 eXP(——kT~”—‘2

where ¢, is the energy of the sth excited state, £,<0, and
mhw, is the correction for finite proton mass, where m is the
azimuthal quantum number.

For Z> 1, the natural generalization (corresponding to the
Saha equation) is to replace m, with my, the mass of the
nucleus, and replace

- (32)
n, R,
with
o (33)
Ryy1 e

where n, is the number density of the r-times-ionized ion.
For hydrogen, one can calculate the ionized fraction,

xp=£l£=1—xH, (34)
n,
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where 7, is the total density of baryons, from

1 1 1
| [ ——— 35
* [4(Kn()2 Kn,] 2Kn, (35)
where
K=11
ny A,

For example, for B=10'2G and T=10°K, x,=0.058,
whereas for B=10"*G and T=10°K, x,=22X 107, all
assuming a total number density of n, = 10%! cm 3.

For an atom with atomic number Z, the ionization
equations are of the form

n,

=K, (36)

N,y ne

where K, is a constant given by the equations above. The
total number density is

n=ny+tn +..+ng,, (37)
and charge conservation gives
ne=n; +2n,+ ... +Zn,. (38)

These equations are solved by an iterative averaging method,
which provides convergence at a level of 10~ in less than 10
steps.

Numerically, it is found that for hydrogen at o=1 g cm ™3
(appropriate for 7z =1) and T<6x10°K, an increase in
magnetic field causes a decrease in ionization, while for
T>6x10° K, an increase in B causes an increase in ioniza-
tion. This is because as the field increases, the binding energy
increases but the phase space decreases, and at T~ 6 X 105 K
the two effects balance. However, for atoms with Z>1 at
T < 10°K, an increase in magnetic field causes a decrease in
ionization. Figs 2(a~d) show the fractions of neutral atoms at
various values of the magnetic field and temperature for
hydrogen, helium, carbon and nitrogen.

Therefore, for a given magnetic field, temperature, and
total number density, the number densities of the ions may
be calculated. For a given ion, it is assumed that the ground
state and excited states are distributed according to a
Boltzmann law,

noce ~EMT, (39)

3 SPECTRA

Model atmospheres have been calculated for surface com-
positions of pure hydrogen, pure helium, pure carbon and
pure nitrogen at equatorial magnetic fields of 9.4 X 10!!
2.35x10"*and 4.7 X 10'? G (these values for B are multiples
of the critical field at which magnetic effects dominate for the
ground state of hydrogen, 2.35X%10° G). Because the
magnetic field varies over the surface of the star, it is
important to account for this effect. It is also interesting to
investigate the importance of polarization; these effects are
considered in the following sections.

3.1 Interpolation of model atmospheres

If we assume that neutron stars have roughly dipolar
magnetic fields, then the strength of the field varies by a
factor of 2 from the magnetic equator to the magnetic pole.
The presence of higher multipoles would create an even
larger variation in the magnetic field. Since for our calcula-
tions we assume that the field is of such a strength that it
dominates the energetics of the atom, the energy levels of
atoms will be shifted dramatically between the equator and
the poles. In order to account for this, it would seem
reasonable to calculate cross-section-versus-frequency tables
for many intermediate field-strengths, then sum these over
the surface of the star, appropriately weighted by projected
area. However, the calculation of cross-section tables for a
given magnetic field B and atomic number Zis a process that
takes several hours, and would be computationally more
intensive than desirable. It is therefore worthwhile to search
for approximations at intermediate fields.

The approximation we will make is that the cross-sections
are shifted in frequency by the amount that the ground-state
energy level changes, and in magnitude such that the
integrated cross-section is constant;

J’ o(B,, v) dv=J (B, v) dv. (40)

Another way of saying this is that we assume that the oscilla-
tor strength of a given transition, f=(mc/me?)[odv, is
roughly constant with respect to magnetic field. For example,
the ground-state binding energy for hydrogen at
2.35%10' G is 208 eV, while at 4.7 x 102 G it is 253 eV.
Thus, we would assume that for hydrogen

2
o B=4.7><1012G,25—3v _208

==—0(B=235%x10"
208 2530(3 35x10°° G, v),

(41)

where o(B, v) is the cross-section as a function of magnetic
field and frequency. In order to make this approximation
relevant to ions with Z>1, we work from the Ruderman
scaling formula E ~ In%(B/Z?B,), where B, is the critical field,
B,=2.35%10° G in Ruderman’s derivation, but in our case
B, is determined from numerical simulations. Between
2.35x 10" and 4.7x10'2G, the best fit to hydrogen
ground-state energies is given by B,=2.8 X 10° G. There-
fore, the ratio of the binding energy at an intermediate field,

By, to the binding energy at the low field,
B, =2.35X%10'2 G, is given approximately by

E, _ In’[B,/(Z’B

Ew _ W[Bu/Z’Bo)] )

Elow lnz[Blow/(ZzBO)] ’

and our estimate for the cross-section at intermediate field is

U(Bim’ Eim V) = O(Blow9 'V). (43)
Elow

This approximation assumes that the scaling of energies is
hydrogenic. This is fairly accurate for the outer electron of
an atom, but breaks down for the inner electrons. However,
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Figure 2. The fraction of neutral atoms at a density of p=1 g cm™~? for (a) hydrogen, (b) helium, (c) carbon and (d) nitrogen at a variety of
temperatures and magnetic fields. The ionization fraction at B=0 is included for comparison.
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Figure 2 - continued
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this should not detract significantly from the computations
because the ionization energies of the inner electrons are in
the several hundred eV range, which is substantially higher
than the typical photon energy zw~10-100 eV from a
thermal bath at T~ 10°-10° K.

3.2 Effects of polarization

Calculations of radiative cross-sections in strong magnetic
fields, as might be found on the surface of a neutron star,
have used the implicit assumption that if the radiation field is
isotropic and unpolarized, then all polarization components
will make equal contributions to the cross-section. However,
as indicated below, for bound-free interactions the com-
ponent of polarization that is linear and parallel to the
magnetic-field axis (which we call the B polarization) is domi-
nant. In this section, we first give an estimate of the ratio of
the cross-sections due to B and circular polarizations (where
‘circular’ is defined with respect to the direction of the field,
not to propagation direction of the photon), then estimate the
impact of this ratio on the ionization process.

In a strong magnetic field, an atom is stretched along the:

field, with its length-scale across the field given by
6=25x10"10B;\2 cm, (44)

where B,=B/10'* G and its length-scale along the field
given by

- ao/Zp .
~[log(ao/zp>} o 43

where a, is the Bohr radius, ¢, =5x107° c¢m, and Z is the
atomic number of the atom. For example, for Z=1 and
B,=1, [=7p. Henceforth we will consider the hydrogen
atom, Z=1. We will use a cylindrical coordinate system,
where z is the coordinate for the cylindrical axis, p is the
radial coordinate, ® is the azimuthal coordinate, and v, n
and m are their respective quantum numbers. We assume
that the magnetic field is strong enough that all of the
electrons are in their lowest Landau level, n=0. This is a fine
approximation for neutron stars with B 10'2 G (see Paper I
for details), but for magnetic fields near the critical field
B=235x10° Z* G, mixing with n>0 states must be
considered. The atomic data used in this paper were
generated using a code which assumed n=0, so low-field
neutron stars cannot be treated accurately by the program
described in Paper 1. Given the large number of pulsars with
inferred surface fields B = 108-10'° G, it would be a worth-
while future project to account for the n> 0 states in models
of such objects.

It is intuitively reasonable that for bound-free absorption,
the B polarization should have a greater cross-section than
the circular polarization, because it is interacting with the
long axis of the atom. To get an idea of how great the
difference is, we will look at Coulomb wavefunctions in the
limit of low kinetic energy, E=p?2/2M. In a strong field, the
Schrodinger equation along the field is

Model atmospheres for neutron stars 137

Using the substitutions

ERE_ & fam
0 P Z, n P E’

this becomes

2

2

L § + (1——77
do o

)g=0,

where g(z) is the z-component of the wavefunction. This is
the differential equation for the Coulomb functions, and in
the limit p—0 and 5— — < this becomes (see e.g.
Abramowitz & Stegun 1972)

glz)~~ — (i) , (46)

where g(z) is the unbound wavefunction of the electron (this
approximation is valid for z < a,).
The circular cross-section is given by

2
g, x

(47)

ﬁJ_ fml2)8(2) dz

© 2
'(A)J’ e—lzull:—z_-’- (“z—) :| “
~ ag ag

p,\ © Z2 2
= e
— an

2

>

>

where f,,,(z) is the z-component of the bound wavefunction
of the electron. Only the ground state is considered,

fmv =f00ze'|z|//‘ (48)

Similarly, the B polarization cross-section is

0 2
05 J Zfml2) 8(2) dz
® z [z . ]
= J ze W [~—+ (—-) ]dz (49)
- ay aO
) 2 2
= J e A Z—dz .
o a,
Therefore, the ratio is
2
2 ("—) : (50)
o, yol

which has a value of about 400 for B=10'>G. This
compares to a numerically determined value of about 10 000
at the absorption edge, where the greater value is due to the
increased binding energy in a strong magnetic field. The
approximations used above are valid for

E<E, ound> (51)
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where E is the kinetic energy of the free electron and E,qnq
is the ground-state binding energy of the atom, about 160 eV
for B=10'2 G. In practice, the cross-section that is due to B
polarization remains much greater than that due to circular
polarization even at higher energies, so that, for example, at
B=47%x10"2G, E=1000 eV, 05;=54%x10"% cm? and
0, =2.4x%10"% cm? A similar ratio holds for ionization
from excited states, so that it is a good approximation to
assume that o> o, for all frequencies considered.

The total bound-free cross-section has the form

Ow~ Y40, tY_0_+Yyp0p (52)

where y,, y_ and yj are the fractions of the light polarized
in the right-circular, left-circular and magnetic-field direc-
tions, respectively. A calculation done for a dipolar field
indicates (see Appendix A) that in a strong field y = 0.4, and
since for 05> 0,

Out = VpOp;-

the total cross-section is about 20 per cent greater than if the
ys were equal.

It was determined that the surface gravity has a small
effect on the unredshifted spectrum, as was also true in the
non-magnetic case (Romani 1987). In Fig. 3 we see that the
emergent spectrum for helium is very similar for surface
gravities of 10'* and 10" c¢m, s™2 for B=4.7x10'2 G and
surface temperature of 3x 10° K. As in the non-magnetic

case, what change there is in the spectrum is probably due to
increased pressure ionization below the absorption edges in
the high-gravity case. In the other spectra presented below, a
surface gravity of 3 X 10'* cm s~ 2 is assumed.

Figs 4-7 show the unredshifted spectra from atmospheres
with varying compositions and magnetic fields at an effective
temperature of 7=10° K. Fig. 8 shows the temperature as a
function of Rosseland optical depth for carbon at T=10° K
with various magnetic fields, and the relationship between
temperature and optical depth is very similar for other
compositions. Fig. 9 shows the pressure as a function of
Rosseland optical depth for carbon at 7= 106 K with varying
magnetic fields, and other compositions give similar results.

4 COLOUR TEMPERATURES AND COOLING
CURVES

Table 1 lists the blackbody temperatures associated with the
various magnetic field values and surface compositions of the
model atmospheres. In this table, T is defined as the tempera-
ture of the blackbody curve which gives the same number of
counts as the model atmosphere in the sensitivity range of
the Einstein IPC (0.5 to 5.0 keV), while T, is defined
similarly for the ROSAT HRI (0.1 to 2.0 keV). Here the
response curve for the Einstein IPC is taken from Harnden et
al. (1984) and the response curve for the ROSAT HRI is
taken from the ROSAT Mission Description (1989), table 4.4.
We note that the ratio of blackbody temperature to effective

-2_ -t

logoF, (erg cm™s™'ev™)

logy, photon energy (eV)

Figure 3. A comparison of the unredshifted spectra of helium at surface gravities of 10'* and 10" c¢cm s=2 for B=4.7x10'> G and
T=3.0x 10° K. This figure demonstrates that the surface gravity does not have a significant effect on the unredshifted spectrum, and as a result
we have set g=3 x 10'* cm s~ 2 in the calculations listed in Table 1.
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Figure 4. The ratio of the unredshifted spectrum of hydrogen to the spectrum of a blackbody at Te;=1.0X% 10°K and B=9.4x10",

2.35%x10'2and 4.7x 102 G.
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Figure 5. The ratio of the unredshifted spectrum of helium to the spectrum of a blackbody at T =1.0 X 10° K and B=9.4x10'",2.35x 10"
and 4.7 %102 G.
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Figure 6. The ratio of the unredshifted spectrum of carbon to the spectrum of a blackbody at Tz =1.0 X 10° K and B=9.4 x10'!,2.35 x 10"?
and 4.7 %102 G.
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Figure 7. The ratio of the unredshifted spectrum of nitrogen to the spectrum of a blackbody at T,z =1.0x%10°K and B=9.4x10'1,
2.35%102and 4.7 x 10" G.
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Figure 8. Temperature versus Rosseland optical depth for carbon at an effective temperature of Tz = 10° K at equatorial magnetic field
strengths of B=9.4%10'",2.35x 10'? and 4.7 X 10'2 G. The relation of temperature to optical depth for other elements is almost identical to
that of carbon.
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Figure 9. Pressure versus Rosseland optical depth for carbon at an effective temperature of T, = 10° K, at equatorial magnetic field strengths
of B=9.4x10",2.35% 10!2and 4.7 X 10'2 G. The relation of pressure to optical depth for other elements is almost identical to that of carbon.
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Table 1. A list of the blackbody temperatures associated with the various magnetic field values and surface
compositions of the model atmospheres. In this table, T; is defined as the temperature of the blackbody curve
which gives the same number of counts in the sensitivity range of the Einstein IPC (0.5 to 5.0 keV) as the
spectrum does, while Ty, is defined similarly for the ROSAT HRI (0.1 to 2.0 keV).

Surface

B(Gauss) Tea(K) Composition T; T

9.4 x 101! 10° H 1.3 x 108 9.3 x 10°
He 8.7 x 106 1.1 x 106
C 7.8 x 10% 1.1 x 108
N 7.8 x 105 1.1 x 108

2.35 x 1012 108 H 1.3 x 108 1.0 x 10§
He 8.7 x 108 1.1 x 108
C 7.1 x 108 1.1 x 108
N 7.1 x 108 1.1 x 108

4.7 x 1013 108 H 1.0 x 108 1.1 x 108
He 8.3 x 105 1.1 x 108
C 7.4 x 108 1.1 x 108
N 7.6 x 108 1.1 x 10°

temperature is very close to 1, with a minimum of 0.71 and a
maximum of 1.3. This is in contrast to the results of Romani
(1987), who found that for B=0 the temperature of a black-
body with the same number of counts in the Einstein band as
the model atmosphere could be much higher than the effec-
tive temperature of the star. This is due to two effects which
increase the opacity. First, the presence of a magnetic field
shifts the energy levels of atoms upward so that the ioniza-
tion edge is closer to the observed frequencies, which means
that the opacity is higher. Second, in a strong field the
bound-free cross-section drops off as v~2, not ¥~ as in the
non-magnetic case. Since the opacity is higher, the levels of
the atmosphere which contribute to the spectrum are higher
up, and consequently are cooler. Therefore, the flux is much
closer to the blackbody flux at the frequencies of interest.

Except in a few cases, X-ray observations of pulsars have
provided only upper limits to their thermal flux. Exceptions
include RCW 103, with an estimated blackbody temperature
of 2.7x10°K (Tuohy & Garmire 1980); PSR 1929+ 10,
with Tgp =2.0 X 10° K (Helfand 1983); and PSR 0656 + 14,
with Tyg ~ 3 —6 % 10° K (Cordova et al. 1989). Non-magnetic
calculations indicated that the presence of an atmosphere
could significantly affect the resultant surface temperature of
these objects. In particular, if the surface temperature is
much less than the blackbody temperature the star will have
had to cool more quickly than is expected in the standard
cooling model [see Tsuruta (1986) for a review]. This may
mean that the interior of neutron stars is composed of exotic
states of matter such as pion condensates or quark matter, or
it may just mean that effects in the standard model such as
reheating of the star by differential superfluid rotation (see,
e.g. Shibazaki & Lamb 1989) or the importance of the direct
URCA process (Lattimer et al. 1991) have not been fully
taken into account.

Our results seem to indicate that the presence of an
atmosphere does not significantly modify the apparent black-
body temperature. This, combined with the new results in

the standard cooling picture (e.g. Shibazaki & Lamb 1989;
Lattimer et al. 1991), indicates that there is, as yet, no
evidence for the presence of exotic matter in neutron stars.
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APPENDIX A: CALCULATION OF THE
POLARIZATION COEFFICIENTS

Assuming that the source of radiation is initially isotropic
and unpolarized, what fraction of the light that reaches the
observer is right-circular, left-circular and B polarized after
interacting with the atom? Our coordinates are set up so that
the z-axis is along the line-of-sight, and the magnetic field is
in the y~z plane and makes an angle of y with the z-axis. We
assume that the initial ray comes from a direction that makes
an angle of 6 with the line-of-sight and ¢ with the x-axis.
Since the initial ray is unpolarized, it has equal components
along both directions perpendicular to the initial direction.
To determine the polarization coefficients y, y, and y_, we
integrate the projections of these components along the é, ,
and _ directions, multiplied by a weight function and
normalized.
If we assume that the magnetic field is given by

B=B,é,, (53)
where
é,=(0, sin y, cos ), (54)

then the polarization unit vectors are given by

éB = (09 sin 1/% Cos 1/’), (55)

a

e, =

(1, icos ¥, —isin y), (56)

Sl

(1, —icos v, isin ). (57)

-
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The initial direction of the ray is
é=(cos ¢sin 6, sin ¢sin 6, cos 6), (58)

so the initial polarization will be composed of

1

€,,=—/(sin ¢, —cos ¢, 0) (59)
2

and
1 . .

€,,=—/(cos fcos ¢, cos @sin ¢, —sin 6), (60)
2

so that

le |2 +]e P =1.

Following Collins (1988) we note that the electric field of the
incoming wave will cause the atom to oscillate, and this
motion coupled with the magnetic field will cause a
secondary oscillation. Thus, the atom may be considered to
have a dipole moment consisting of two parts,

D= D;+ Dy, (61)
where
Dy < E (62)
and
Dy x<xEXx, (63)
where
eB .
x= w=—28, (64)
myc w

and my is the mass of the nucleus. Since the gyrofrequency of
the nucleus, w,, is only =6 eV at B=10'2G (and we will
typically consider frequencies higher than that), we will
expand only to first order in x = | x|.

The new (unnormalized) components of polarization are

. 1 .

é,,=—[e. +x(e, Xép)] (65)
and

. 1 .

é,=—[e,+x(e,Xé). (66)

2

The normalization for both of these is roughly 1/J1+ X%,
which we will approximate as 1.
To get the polarization coefficients, we note that, e.g.,

2n [n
VB=J J(léﬂ'éillz+|é3’élzlz) (67)

0 0

X w(6, ¢, ¥)sin 6 d6 dg/N,

where N is the normalization factor and w(6, ¢, y) is a
weight factor [such as w(6, ¢, y)=1+cos? 6 for Thomson
scattering]. To check the validity of these assumptions, we
will first calculate the polarization coefficients for the
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isotropic case, w(0, ¢, y)=1:

Ye=75

2n [n
5 J J (cos® gsin® g +cos’ @sin® ¢ sin® y (68)

0 Jo

“+sin? 6 cos? 1 —2 sin O cos Gsin ¢ sin P cos )

1
X sin 0 dO d¢/4n=§+ﬁ(x2),

1 2n (n
ve=y J J [sin® ¢ +cos’ pcos” y+cos” Bcos’ g (69)
0

0
+cos? Osin? ¢ cos? y + sin? @ sin® ¢

+2 sin @ cos Osin ¢sin ycos Y+ & (x)]sin 6 d6 dg/4n
1 2

=—+ﬁ R
SO0

Y+ =V-, (70)

so the coefficients are all equal, as they should be. Note that
the terms of order x integrate to 0.

As indicated in the previous section, for bound-free
absorption the cross-section that is due to B polarization is
much greater than that due to circular polarization. This is
the case we will consider, but we note in passing that for
bound-bound absorption this assumption is decidedly
incorrect, since transition rules may forbid absorption that is
due to B polarization at certain frequencies. Thus, in a treat-
ment of radiative transfer that includes energies less than the
binding energy of the atom, the full formula for polarization
coefficients given below with > 0 must be used.

The differential cross-section for unpolarized light may be
determined by adding the differential cross-sections that are
due to the two polarization components (see e.g. Rybicki &
Lightman 1979, p. 90 and following):

do
—C

40 (1_é2u,z){(él1'é3)2+r[l_(éll‘éB)z]} (71)

+(1- ézlz,z){(élz'éfx)z"' r[1—(é,, é)?},
where r=0, /0oy and é |, is the z-component of the first
polarization vector. For an isotropic cross-section, r=1,

while for our case, r < 1. The weight function is

wlo, g, y) 52, (72)

and the normalization factor is

N=J'2ﬂan(0, @, ) sin 0.d6 dg = (73)

0 Jo

1—’; [36(1—r) sin? +8(1 — r) cos? g + 807].

The coefficients become

1 27 (n
y3=5J J [cos? ¢ sin? ¢ + cos? @sin® ¢ sin”
0 0

+sin® O cos? y — 2 sin O cos O sin ¢ sin

X cos Y)w(6, g, y) sin 0 d6 dp/N

_H1=r)+%1-r)sin® p + r(6 +sin’ Y)
2(1-r)+7(1-r)sin” p+20r

y+=y-=%(1—y3)- (75)

Notice that, miraculously, x only shows up in terms of order
x2 or higher.
For example, for =0 and r= 0, this gives

2

5
: T 76
T e Y (76)

and for y=m/2 and r=0,

26 37
== =y =" 77
63’ Ye=Y-=126 (77)

Vs
The average value for y over the surface of a neutron star
with a dipolar field and a rotation axis aligned with the
magnetic axis is about 0.40. The total bound-free cross-
section has the form

Opt " V+ 04 +y— o_ +yZ0z9 (78)

so the cross-sections are on average about 20 per cent
greater than in the isotropic case.

APPENDIX B: PROJECTED AREA OF THE
SURFACE ELEMENTS OF THE STAR

In order to calculate the thermal spectrum of a neutron star
properly, we need to figure out how much of the projected
surface area of the star has a magnetic field strength in a
range dB around B, calculate the spectrum from that area,
and integrate over the star. In this appendix, we use
Newtonian straight-line optics. For a real neutron star,
general relativity would have to be used, which would
increase the apparent area of the star. We work with
coordinates set up so that the z-axis is lined up with the
magnetic axis and the line-of-sight is defined to be in the x—z
plane. The projected area of a surface element at a direction
(6, ¢) is its real area times the dot product of its normal
vector with the vector of the line-of-sight. Let

F=(sin @ cos ¢, sin Osin ¢, cos 6) (79)
be the normal vector of the surface element, and
g=(sin 9,0, cos y) (80)

be the vector of the line-of-sight, where v is the angle
between the magnetic axis and the line-of-sight. Then the
contribution from the surface element is

F-g=sin @ cos ¢ sin ¥ +cos O cos . (81)
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To determine the projected area of the surface with a
given magnetic field, we first need to determine how much is
visible, since the star will block out its own back side. For a
given ¥ and 6 the range of observable ¢s is determined by
the solutions to 7+ §=0:

cos ¢ = —‘———C(.)S Oc?sw’ (82)
sin @sin ¥
so ¢ runs from — ¢, to ¢,, where
;| cos @cosy
= - 83
#1 = cos [ sinOSinw} (83)

When the expression in brackets is less than — 1, the allowed
angles run from —zx to &, whereas when the expression is
greater than + 1, there are no allowed angles. For a dipolar
field, the magnetic field strength is given by

| B| = B.J1+3 cos’ 6, (84)

where B, is the equatorial field. Thus, if the field varies in
strength from B, to B,, the angle varies from

1{B,\
6, = Y Bl Bt B _1’ 85
1 =cCos 3(Beq) (83)
to

1{B,\*
6,=cos”' [Z || -1
,=CO0S 3(Beq) (86)
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The band from n— 6, to n— 6, also encompasses these
fields, so the total projected area is

02 [$1
A(By, B2)=J [ (sin @ cos ¢ sin ¥ +cos 6 cos ) (87)

6 d -4
n—6, |7 ¢

X sin 6 d¢ d0+J J (sin @ cos gsin
=0, )¢~ 7

+ cos Bcos ) sin 6 d¢ db.

If #, and 6, are close together, we may approximate this
double integral by setting 6= (6, + 6,)/2, so that

A(B,, B,)=(6,— 6,) sin OU (sin @ cos ¢sin (88)
~ ¢
= $
+cos 6 cos P) dg+ (sin O cos ¢sin y
¢ —n

—cos fcos ) d¢)},

where the minus sign in the second integral is because
cos(m— @)= —cos 6. In our simulations we use 10 inter-
mediate fields to approximate the surface, though there was
almost no difference between using 10 and five.
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