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ABSTRACT

In a previous paper, we reported test particle calculations showing that the behavior of accretion flows
near uniformly emitting, nonrotating, relativistic stars is affected significantly by radiation forces if the
luminosity is greater than ~1% of the Eddington critical luminosity Ly. Here, using a numerical code
that can follow the motion of a test particle in any stationary axisymmetric spacetime, we investigate the
effects of nonuniform emission and of slow rotation of the gravitating mass and radiation source, when
their rotation axes are co-aligned. We find that for emission from a bright, thin ring, accreting particles
are braked sharply near the radiation source, which may be favorable for the development of shock
waves. We also show that if the particle orbit is prograde with respect to the rotation of the radiation
source, the rates at which energy and angular momentum are lost to the radiation field are less than the
rates for a nonrotating source. The diminished loss rates lead to a lower inward radial velocity, which
increases the infall time. Surprisingly, if the radiation flux is sufficiently small, the increase in the infall
time more than compensates for the decrease in the loss rates, so the total energy and angular momen-
tum transferred to the radiation field during particle inspiral are actually greater than for a nonrotating
radiation source. We also discuss some of the effects of radiation forces on accreting fluid. We show that
the angular, special relativistic, and general relativistic effects that augment radiation drag on test par-
ticles near radiating relativistic stars also increase the fraction of angular momentum and energy that
can be transferred from the accretion flow to the radiation field. This may affect the maximum rotation
rate of neutron stars and the prospects for observing gravitational radiation from rapidly rotating

neutron stars.

Subject headings: accretion, accretion disks — black hole physics — relativity — stars: neutron

1. INTRODUCTION

Most energetic astrophysical X-ray sources, such as
active galactic nuclei and low-mass X-ray binaries
(LMXBs), are powered by accretion. In many cases the
luminosity is a substantial fraction of the Eddington critical
luminosity Ly at which the outward radiation force bal-
ances gravity. Even if the luminosity is as low as 0.01Lg,
radiation drag can affect the behavior of the accretion flow
close to the central neutron star or black hole (Miller &
Lamb 1993, hereafter ML93). Thus neglect of radiation
forces in calculations of accretion flows near black holes
and relativistic stars (see, e.g., Kluzniak & Wagoner 1985;
Sunyaev & Shakura 1986; Hanawa 1989; Fu & Taam 1990;
Czerny, Czerny, & Grindlay 1986; Ebisawa, Mitsuda, &
Hanawa 1991; Kluzniak & Wilson 1991; Biehle & Bland-
ford 1993) is usually inappropriate. Previous calculations of
accretion flows near relativistic stars have generally also
assumed either Newtonian gravity or, if general relativistic,
the exterior Schwarzschild spacetime geometry; however, in
many cases the accreting object may have been spun up
before or during its accretion phase to rotation rates that
cause the spacetime geometry to deviate significantly from
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the Schwarzschild geometry. The appropriate, more general
spacetime geometry must then be considered.

We have developed a numerical code that incorporates
ray-tracing in a general, stationary, axisymmetric spacetime
and can treat the effects of radiation forces on equatorial
test particle motion around axisymmetric relativistic
objects such as neutron stars and black holes. In the test
particle approximation, the spacetime and radiation stress-
energy tensor are assumed fixed and unaffected by the ac-
creting particle. For simplicity, we assume that only
gravitational and radiation forces act on the particle.
Although many of the analytical and numerical results pre-
sented here are for slowly rotating objects, the code makes
no such approximation and can therefore be used to study
test particle motion around rapidly rotating relativistic
stars and black holes. The first applications of this code
were reported in ML93, where we studied the motion of test
particles near nonrotating neutron stars by calculating tra-
jectories in the presence of radiation in the Schwarzschild
spacetime. In that work we assumed that the radiation
source was a nonrotating, isotropically radiating sphere.
We found that near luminous sources, radiation forces
strongly affect the motion of accreting matter, the lumi-
nosity of any boundary layer at the steller surface, and the
specific angular momentum accreted by the star. We
showed that for luminosities L > 0.01Lg, radiation forces
are more important than general relativistic corrections to

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...470.1033M&amp;db_key=AST

J. - C4707 1033V

1ol
(54l
(01
&
h]

(o]

1034

Newtonian gravitational forces in determining the behavior
of the accretion flow.

In the present paper we develop a framework for com-
puting test particle motion in the presence of radiation in
stationary, axisymmetric spacetimes, such as those produc-
ed by rotating neutron stars and black holes. We then use
this framework to study test particle motion around slowly
rotating neutron stars with various radiation patterns. We
assume that the rotation axes of the gravitating mass and of
the radiating matter are co-aligned. The results presented
here are applicable to all neutron stars with measured rota-
tion rates. The analytical results obtained here provide a
check on the numerical results obtained with our more
general code. In subsequent papers we will report results
obtained by applying this framework to test particle motion
in the presence of radiation near black holes and rapidly
rotating neutron stars.

The computations presented here extend those reported
in ML93 by treating radiation from boundary layers with
half-widths ranging from 100% of the stellar radius (which
reproduces a spherically symmetric source) to 10% of the
radius. The smaller half-widths simulate the radiation
pattern expected if the star is accreting from a geometrically
thin disk and most of the radiation is emitted from a thin
band around the stellar equator.

The computations presented here also extend those
reported in ML93 by including rotation of the gravitating
mass and radiating matter, which introduces two distinct
effects. If the gravitating mass is rotating, the exterior
geometry deviates from the Schwarzschild geometry. If the
radiating matter has an azimuthal velocity v* (as measured
in the locally nonrotating frame [LNRF]; see Bardeen
1970; Bardeen, Press, & Teukolsky 1972), the resulting
Doppler shifts will cause the radiation field from even a
spherical radiating surface to be anisotropic. Both effects
alter the motion of particles near the star. A convenient
measure of the rotation rate of the gravitating mass is the
dimensionless angular momentum j = ¢J/(GM?), where J is
its angular momentum, M is its gravitational mass, G is the
gravitational constant, and ¢ is the speed of light. A simi-
larly convenient measure of the rotation rate of the radi-
ating matter is the dimensionless velocity v = {v*)/c, where
{v®) is the appropriate average of v* over the emitting
matter (see § 6). Most of the analytical results reported in
this paper assume slow rotation (j <1 and v < 1) and
retain only terms that are first-order in j and v. Keeping
only terms to first order in v is expected to be a good
approximation if the neutron star is slowly rotating (see
Lamb & Miller 1995, hereafter LM95), and we now argue
that for neutron stars with measured spin rates, retaining
only terms to first order in j is an excellent approximation.

The two fastest rotation-powered pulsars both have spin
frequencies v, ~ 600 Hz (see Taylor et al. 1995). For a
slowly rotating (and therefore approximately spherical),
uniform-density neutron star with angular frequency Q,
J =~ (2/5) MR*Q. Hence, a star of radius R ~ 10 km, mass
M ~ 14 M, and v, ~ 600 Hz has j = 0.2. Most rotation-
powered pulsars have much smaller values of j. The fastest
known accretion-powered pulsar has a spin frequency ~16
Hz (van Paradijs 1991) and hence j &~ 0.005. It is possible,
however, that there is a population of very rapidly spinning,
rotation-powered pulsars that are either too fast or too faint
to be detected by current surveys. It is also plausible that in
many neutron star LMXBs the stellar spin frequency is
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difficult to detect because of obscuring plasma. If the mag-
netic fields of some of these neutron stars are very weak,
accretion could spin them up to values of j large enough
that effects nonlinear in j are important. Thus, although a
first-order treatment of rotation encompasses all known
neutron star spin rates, rapidly rotating neutron stars may
be important; they will be treated in a future paper.

We find that for a particle in prograde orbit around
rotating, radiating matter, the rates at which the particle
loses energy and angular momentum to the radiation field
are smaller than they would be if the radiating matter were
not rotating (the rotation of the gravitating mass is much
less important). Nevertheless, for low enough radiation
fluxes, the rotal energy and angular momentum transferred
to the radiation during particle inspiral is larger. This sur-
prising result is caused by the increase in the infall time,
which more than compensates for the smaller energy and
angular momentum loss rates. We also find that for emis-
sion from a bright, thin ring, orbiting particles are sharply
braked near the radiation source, where the radiation flux
rises sharply.

The relativistic equation of motion and our numerical
method are described in § 2. In § 3 we summarize the main
results of ML93 and compare the analytical expressions
given there for the loss rates of energy and angular momen-
tum with the loss rates given by our numerical code. In § 4
we calculate the radiation stress-energy tensor produced by
rotating radiation sources in the exterior Schwarzschild
spacetime and compute the equilibrium angular momen-
tum as a function of radius. In § 5 we derive the equations
that describe free fall using a metric that is accurate to first
order in the rotation rate of the gravitating mass and
compare these analytical results with the trajectories given
by our numerical code, which does not assume slow rota-
tion. We also calculate exact free-fall trajectories in the Kerr
metric for a sequence of j values ranging up to j = 0.9 and
compare these trajectories with the trajectories given by our
numerical code. In § 6 we study analytically the radiation
field around slowly rotating radiating matter in the space-
time exterior to a slowly rotating gravitating mass and
derive formulae for the apparent angular shape of the star,
the photon frequency shifts caused by Doppler shifts and
frame-dragging, and the off-diagonal components of the
radiation stress-energy tensor. In § 7 we use our numerical
code to study the motion of test particles exposed to the
radiation produced by slowly rotating radiating matter in
the spacetime exterior to a slowly rotating gravitating mass.
We summarize our results and discuss their application to
X-ray burst sources, accreting neutron stars, and the
spin-up of neutron starsin § 8.

2. EQUATION OF MOTION AND NUMERICAL METHOD

All the calculations of particle motion in this paper are
performed in the test particle approximation, i.e., the space-
time and radiation stress-energy tensor are assumed fixed
and unaffected by the particles. The source of gravity is
assumed to be an axisymmetric, rotating, compact object.
The only nongravitational force we consider is that exerted
by the radiation. Test particles are assumed to scatter radi-
ation, with a momentum-transfer cross section that is inde-
pendent of photon energy and direction. The radiation force
on the scattering particle is therefore proportional to and in
the direction of the radiation flux in the comoving frame
(see LM95). The relevant properties of the test particle are
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its rest mass m and scattering cross section o, although in
applications of our results the “particle” need not be a
single object. For example, close to an accreting neutron
star, matter is likely to consist largely of fully ionized hydro-
gen at temperatures of a few keV. Under these conditions,
the electrons and protons are electrically coupled together,
and the plasma can therefore be treated as composed of
particles with rest mass m ~ m,, the proton mass, and
momentum-transfer cross section o = o, the electron
Thomson cross section (see LM95).

2.1. Equation of Motion

The relativistic equation of motion determines the orbits
of test particles. To derive this equation, we follow closely
the notation and approach of Abramowicz, Fllis, & Lanza
(1990, hereafter AEL), who studied radial particle motion in
the Schwarzschild geometry. We generalize their treatment
to arbitrary equatorial motion in an arbitrary axisymmetric
spacetime. Unlike AEL, we use the metric signature
—+ + +, so there are some sign differences between our
expressions and theirs. The exterior metric of a rapidly
rotating neutron star deviates significantly from the Kerr
metric (Friedman, Ipser, & Parker 1986; Cook, Shapiro, &
Teukolsky 1994), so we use the general axisymmetric metric
employed by Bardeen (1970) and Bardeen et al. (1972), i.e.,

ds* = g,z dx*dx*
= —e2dt? + e?(dp — wdt)* + e**dr* + e**2dh* . (1)

Here o = w(r, ) is the angular velocity of the LNRF, a
reference frame introduced by Bardeen in which the effects
of frame-dragging are minimized. Here and below we set
¢ = G = 1 except where noted and use the Einstein summa-
tion convention.

As usual, we denote tetrad quantities (i.e., quantities mea-
sured in a local orthonormal frame) by hats over the indices
(e.g., u” for the radial component of velocity) and quantities
measured in Boyer-Lindquist coordinates by unhatted
indices (e.g., »'). In most cases in this paper, the only tetrads
we consider are in the LNRF. We will frequently need to
transform between the LNRF and Boyer-Lindquist coordi-
nates. We denote the transformation tensor between these
coordinates by e} and ¢} so, for example, u* = ¢} u* . For
the metric (1), the nonzero components of the transform-
ation tensors are (Bardeen 1970)

d=e ", ef=we™, ef=e M, f=e""2,

s A A

P L1 0 _ Lu b _ v b — W
g=e", =2, &f=—we, ef=¢.

Of these, only ef and ef depend onj to first order.
The relativistic equation of motion is

at=f%m, €

where f* includes all of the nongravitational forces, m is the
rest mass of the test particle, and
d2 a
a* = I + I's, u'u’ 4
is the acceleration. In equation (4) u is the four-velocity (u,
is the specific angular momentum and —u, is the specific
energy), 7 is the proper time,

sz = %gaﬂ(gﬂu,v + gﬁv,u - guv,ﬁ) (5)
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are the connection coefficients, and commas denote partial
derivatives. With our choice of metric signature, the
squared four-velocity u? is zero for massless particles and
— 1 for massive particles.

If the only nongravitational force is that due to scattering
of radiation and the momentum-transfer cross section ¢ of
the particle is independent of the direction and frequency of
the radiation, then (see LM95)

f*=0oF" (6)

where F* is the radiative energy flux measured in the rest
frame of the particle and is given by

F* = h3 T, . )
Here T*# is the stress-energy tensor of the radiation and
h§ = — 065 — uuy (8)

is a tensor that projects orthogonally to the four-velocity.
Thus, to follow the motion of a test particle we need only
compute the relevant components of T** at the particle.

The components of the radiation stress-energy tensor at a
given event in the Boyer-Lindquist coordinate system are
related to the components in the LNRF tetrad by

T = ek ef ™ ©)

We define right-handed coordinate axes (7, §, ¢) (note that
AEL used left-handed axes) in the local sky of the observer
such that 7 is in the negative radial direction, ¢ is in the
positive ¢ direction, and 8 is along the posmve 0 direction.
Following AEL, we define local angles a and b such that an
element of solid angle is dQ = sin adadb. We also define a
unit spacelike vector n® = u?/u’. Then

sin dsin b .
(10)

The quantity b is defined so that b = /2 in the positive ¢
direction. With these definitions,

W=cosd, n®=sindcosh, and n®=

T = fl(r, 0, &, byn'nf did 1)

where I(r, 0, 4, b) is the frequency-integrated specific inten-
sity in the direction 4, b at the position (r, §) of the test
particle.

Since I/v* is conserved along ray paths, where v is the
frequency of a photon, the relation between the received
and the emitted frequency-integrated specific intensity is

4
I, = (”—) 1., (12)
ve

where v,.and v, are, respectively, the emitted and received
frequencies of a given photon. Calculation of the specific
intensity needed to evaluate the components of the stress-
energy tensor using equation (11) thus reduces to keeping
track of the change in the photon frequency along the ray
path from the source to the test particle. There can be
several sources of frequency shift. For a nonrotating, spher-
ical radiation source in Schwarzschild spacetime, only the
gravitational redshift is involved (see § 3). For a rotating
boundary layer in Schwarzschild spacetime, Doppler shifts
must also be included (see § 4). Finally, if the gravitating
mass is itself rotating, frame-dragging effects change the
frequency of the photon (see § 6). Although the specific
dependence of the frequency shift on the direction of the ray
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at the test particle depends on the details of the situa-
tion, the approach just described can always be used.

For simplicity, in calculating T® we assume that the
specific intensity I, at the source as measured in the rest
frame of the radiating matter is independent of the angle to
the normal (see LM95 for a discussion), but we allow I, to
depend on the colatitude 0 of the radiating matter (since the
program keeps track of the spatial location [r, 6] of the
points on the ray path, it is straightforward to consider an I
that depends on colatitude). We can, therefore, treat the
case of a bright equatorial band as well as the case of an
isotropically emitting spherical radiation source.

2.2. Numerical Method

If the source geometry is sufficiently simple, analytical
expressions can be derived for the stress-energy tensor, the
drag force, energy loss rates, the apparent shape of the radi-
ation source, and other important quantities. Some of these
analytical solutions are presented in the next four sections.
However, in general numerical methods must be used. Here
we describe our method. In subsequent sections we indicate
how well our numerical results agree with the correspond-
ing analytical results.

The full algorithm separates into two parts: we first cal-
culate the stress-energy tensor using ray tracing and then
use the components of the stress-energy tensor to determine
the particle motion. The metric is specified on an r, 6 grid
(for particle motion in the equatorial plane only 0 = x/2 is
relevant, but calculation of the luminosity requires compu-
tation of the radiation flux over the full range of 6 at large r).
A grid spacing of 0.2M in r gives satisfactory accuracy
everywhere. The number N, of angular zones depends on
the spacetime geometry (the Schwarzschild geometry is
independent of 6, but for a rapidly rotating star N, = 64
may be required). The derivatives of the metric components,
which are needed to compute the connection coefficients,
are calculated with a bicubic spline at the same grid points
at which the metric is specified. The transformation tensors
% are also calculated from the metric. Between grid points,
we use a bilinear interpolation to compute metric com-
ponents, derivatives of metric components, and transforma-
tion tensors. The simple interpolations and grid spacings we
use allow us to quickly explore parameter space with rela-
tively high accuracy, as shown by comparisons with our
analytical results.

We begin the calculation of T4 at the particle, where we
define the local angles @ and b as above. For a given local
direction (d, b) of a light ray, the Boyer-Lindquist velocity
components ", u?, and u’ of the photon are computed and
the null geodesic is traced backward along the ray path.
Initially the specific energy —u, is calculated using u*u, = 0,
but in the subsequent ray tracing the geodesic equation
a* = 0 is integrated independently for all four components,
so that the agreement of #*> with O provides a test of the
accuracy of the ray tracing. For all of the rays generated in
the tests reported here, u* < 0.02; typically u? < 0.01. The
time step used in ray tracing is 0.01M in proper time, and
the integration is performed using a trapezoidal rule.

A given ray is traced backward until either it intersects
the emitting surface or it can be demonstrated that the ray
did not originate from the radiation source. The exact cri-
teria by which these are decided depend on the nature of the
source. For example, if the source is a uniformly emitting,
nonrotating sphere of radius R > 3M, the ray intersects the
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source when r = R but will never intersect the source if
r > R and dr/dA > 0 where A is an affine parameter. Other
source geometries require more complex criteria.

Once the origin of the ray is determined, calculation of
T requires computation of the specific intensity of the ray
at the particle. If the ray does not intersect the radiation
source, I = 0. If the ray does intersect the source, the spe-
cific intensity at the particle is a function of both the specific
intensity I; at the source and the frequency shift from the
source to the test particle. o

As discussed above, the frequency shift from the source to
the LNRF at the particle may be computed by considering
separately the Doppler shift between the source and the
LNREF at the source, and the shift between the LNRF at the
source and the LNRF at the particle. The Doppler shift at
the source can be determined by computing the velocity v of
the source as seen by an observer in the LNRF at the source
and then using special relativity; the LNRF frequency shift

can be calculated from the metric. In general, an accreting
particle at r is not at rest in the LNRF there. Hence, after
computing T % in the LNRF at the particle, we transform
into the Boyer-Lindquist cordinate system and use the
equations of § 2.1 to compute the motion of the particle in
the Boyer-Lindquist coordinate system.

Since we are considering only particle motion in the
equatorial plane, near the source we only need to compute
the radiation stress-energy tensor at 6 = m/2. Since the
system is assumed to be axisymmetric, we do not need to
consider varlatlon of the stress-energy tensor with ¢. For
sunphclty, T® is calculated at the grid points where the
metric is specified. We find that a gr1d of approximately
2000 local angular zones (60 in b, 30 in @) suffices for all our
purposes, if the ranges of @ and b are chosen properly. For
example, if the radiation source is a slowly rotating sphere,
the maximum extent of @ can be estimated as a function of b
(see § 6 for details), allowing us to determine which ray
directions should be considered to efficiently sample the
entire radiation source.

Once the radiation stress-energy tensor has been com-
puted, the particle motion is calculated by numerical inte-
gration of the equation of motion (3). Initially, the particle’s
position and velocity are specified and the specific energy u,
is computed from u#® = —1. Again, in following the motion
of the particle all four components of its four-velocity are
calculated independently, so that agreement with #> = —1
is a test of the computational accuracy; this identity is
always satisfied to better than 2%. As with the ray tracing,
the time step is 0.01M in proper time, the integration is
performed with a trapezoidal rule, and all interpolations are
bilinear. The motion of the particle is followed until some
stopping condition is reached, e.g., the particle hits the
surface of the star. Tests of the accuracy of the numerical
algorithm for specific cases may be found in the next three
sections.

3. NONROTATING SPHERICAL RADIATION SOURCE IN
SCHWARZSCHILD SPACETIME

In ML93 we considered some of the effects of radiation
forces acting on test particles moving outside nonmagnetic,
spherical, nonrotating relativistic stars. We showed that the
radial and azimuthal velocities of infalling matter are
affected significantly by radiation stresses if the luminosity
of the star is greater than ~0.01Ly. For such luminosities,
radiation forces dominate general relativistic corrections to

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...470.1033M&amp;db_key=AST

J. - C4707 1033V

oL}
(=4
[l

1
S

(o]

No. 2, 1996

TABLE 1
DRAG RATES IN SCHWARZSCHILD SPACETIME

/L dl,x 10 dl, x 10> de, x 10°  de, x 10°

R=4M,r,=6M

0.05...... 0.39 039 0.96 091

02....... 1.50 1.46 2.86 2.85

05....... 3.36 3.30 3.48 347
R=4M, ro =9M

005...... 011 011 0.15 0.15

02....... 043 042 047 047

05....... 1.01 1.00 0.61 0.64
R=5M,r,=6M

005...... 045 045 1.07 1.06

02....... 171 1.70 3.30 331

05....... 3.86 3.83 3.95 4.04
R=5M,r,=9M

0.05...... 0.12 0.11 0.16 0.15

02....... 045 045 0.49 0.50

05....... 1.06 1.06 0.64 0.68

Note.—Comparison of the numerical and analytical estimates
for the characteristic rates of removal of energy and angular
momentum from test particles initially in circular orbits around a
nonrotating, spherically symmetric radiation source in the Sch-
warzschild spacetime. The test particle is at an initial radius of
either ry = 6M or r, = 9M. The radiation source has a radius of
either R =4M or R = 5M and a luminosity at infinity of L* =
0.05Lg, L* =0.2LY, or I* = 0.5LY. In this table, dl stands for
—(duy/dr)/uy, de stands for —(de/dr)/e (Where e =1 — E, is the
specific energy), the subscript » indicates the numerical estimate,
and the subscript a indicates the analytical estimate. In all cases the
estimates agree well, with a maximum deviation of ~ 5%.

Newtonian gravity, and hence there are no qualitative
changes in the character of the motion at the radius of the
innermost stable circular orbit.

For a uniformly emitting radiation source, the character-
istic rates of transfer of specific angular momentum and
specific binding energy to the radiation field from a particle
in an initially circular orbit are (see Appendix A)

1 dE, 1—E)\ MP (1-2M/R) (L
o/ (“0)( E, >3R2r2 (1 — 2M/r)? (Lg) (13)

and

Nll =y

d ~., M (1-2M/R) (I

7= @l — E)” o3 (1= 2M)r) <L;§°>‘ (14)
In both equations E, is the specific binding energy and [ is
the specific angular momentum of the particle, M is the
gravitational mass of the star, [ is the luminosity at infin-
ity, and f(ag) = (8 — 9 cos ay + cos® a,), where «, is the
apparent half-angle subtended by the radiation source and
the subscript 0 indicates that the star is nonrotating. The
Eddington critical luminosity

Ly = 4nmM /o (15)

is the luminosity of a spherically symmetric source such that
at infinity the outward force of radiation balances the
inward force of gravity (see LM95 for the conditions under
which L is a useful benchmark). Throughout this paper, R
and r denote respectively the Boyer-Lindquist radius of the
star and the radial position of the particle; for metrics that
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are not spherically symmetric these radii generally differ
from the corresponding circumferential radii. For stars not
more compact than the photon orbit (that is, with radii
R > 3M), a, is given implicitly by

" <R><1 —2M/r\?
=\ N1T"2MmpR)
Expression (14) includes three effects that are not present
in the Newtonian, point-source approximation. These are
discussed in detail in Appendix A. The first effect is the finite
angular size of the source, which is described by the factor
f(ag), exactly the same angular factor that appears in the
Newtonian approximation (Guess 1962). This effect can
increase the drag force by up to a factor of 8/3 (contrary to
the explanation given by Guess, much of the increase is due
not to Doppler shifts but to the increase in the radiation
energy density near a source of finite angular size). The
second effect is special relativistic beaming of the scattered
radiation, which can increase the drag force by up to a
factor of about 4/3. Finally, the effects of general relativity,
which include redshifts, frequency shifts, and angular defo-
cusing, can increase the drag force by up to a factor of 2.
These effects combine to increase dramatically the impor-
tance of radiation drag near a relativistic star. One measure
of the qualitative impact of radiation drag is the ratio of the
characteristic timescale for angular momentum loss to the
orbital timescale, allowing for the increase in the orbital
period caused by the radial component of the radiation
force. At distances ~300 km from the star, the angular
momentum of an orbiting particle is removed in less than
one orbital period only for L* 2 0.95LY (Fortner, Lamb, &
Miller 1989); close to the star this occurs for L = 0.2Lg.
We have used expressions (13) and (14) to check the accu-
racy of the rates of change of the energy and angular
momentum of a particle given by our numerical code. Table
1 compares our numerical and analytical results for the
characteristic rates of removal of energy and angular
momentum from test particles initially in circular orbits at
6M and 9M, for stars of radius 4M and SM. We consider
three values of the luminosity at infinity: L* = 0.05Lg,
0.2L¢, and 0.5Lg. The maximum difference is ~5%. Note
that the analytical derivatives are computed for perfectly
circular orbits, whereas the numerical derivatives can be
calculated only after there is a slight deviation from circu-
larity. The tabulated numerical results will thus agree only
approximately with these analytical results. We regard the
agreement evident in Table 1 as an adequate verification of
the accuracy of the code (had we used the analytical expres-
sions for noncircular orbits given in Appendix A, we expect
that the agreement would have been even better).

(16)

4. EQUILIBRIUM ANGULAR MOMENTUM NEAR ROTATING
RADIATION SOURCES

Even if the gravitating mass is nonrotating and spherical,
so that the geometry of spacetime is the Schwarzschild
geometry, it is possible that most of the radiation comes
from matter that has nonzero angular velocity. Then,
Doppler shifts and aberration must be taken into account.
We therefore consider now the effect on initially purely azi-
muthal particle motion of the radiation field produced by a
boundary layer rotating slowly and uniformly around a
spherical star. To account for the possibility that the
boundary layer may not cover the entire star, we examine

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...470.1033M&amp;db_key=AST

J. - C4707 1033V

gl
(=4
(01
&
it}

(o]

1038

both uniform emission from the whole stellar surface and
uniform emission from a band of finite thickness around the
equator. We concentrate on the properties of and asymp-
totic expressions for the equilibrium angular momentum u,,
which is the specific angular momentum of a particle in
circular motion at which the azimuthal radiation force in
the rest frame of the particle vanishes. This angular momen-
tum depends only weakly on the radial position of the parti-
cle, and because the radiation force causes the angular
momenta of inspiraling particles to tend to uy,, the equi-
librium angular momentum introduces new, potentially
observable, characteristic frequencies of motion near rela-
tivistic stars. In this section, we also show that one-
dimensional rings have degenerate mathematical properties
and therefore cannot be used to build up the pattern of
emission from a finite band.

For a test particle in circular equatorial motion, the ¢-
component of the radiation force is (see egs. [6]-[8])

1 u2\1/2 u -
f¢=a|:;<1+;f> <1+2;§)T"f>
Yy 7AW
- 1+r2 (T% + T%%) |. (17)

For T™ small, equation (17) implies that f¢ vanishes if u, is
equal to uy,, where
rTf$
Upo X T T

(18)

If the particle’s angular momentum u, is not initially equal
to uy, it tends to uyg; however, for slowly rotating radi-
ation sources the particle usually does not reach u,, before
hitting the stellar surface, though it may for rapldly rotating
sources. Note that u,, = 0 if T = 0. This is the case, for
example when the radiation source is nonrotating and
emission is forward-backward symmetric with respect to (b

We now compute the components of T® needed in
equation (17). Suppose that photons seen coming from the
direction (@, b) by an observer at radius r are emitted from
matter with azimuthal velocity v"’(a b) as seen by a static
observer at the emitting surface. If the local static observer
observes the ray emitted at angle ¥ relative to the direction
of motion of the surface, the frequency of the radiation seen
by the observer is

ve
"7 — v%@, B) cos y1°

where v, is the emitted frequency and y=(1— [v$(a,
IR s unity, to first order in v*(d, b). Since v || $, finding
cos Y for photons that arrive at radius r from the local
direction (4, b) amounts to finding the ¢ component of the
photon propagation direction at R, that is, n$. For an
observer at radiusr,

v,

19

>

(1/7')“¢
=T - 2M/)Py,
R (1L—2M/)"2
r (1 — 2M/R)"2 "
R (1L—2M/n*?
T ra—2M/R”2C

AU
n¢ —_
u'

os ¥ . (20)
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Since n? = sin d sin b, this means
_r(=2M/R)*"* . .
cosn//—R 1= 2M/n'P? sindsin b . 21)

In addition to the Doppler shift, the photon frequency is
also affected by the redshift from source to observer, which
multiplies the frequency by a factor (1 —2M/R)*?/
a- 2M/r)1/2 The frequency-integrated specific intensity
I oc v* and so to first order in v"’(a b),

(1 — 2M/R)
I, 4, b))~ 0= 2Mi?
[1+4¢( E)L%Sindsinﬁ]lw

22

where I, is the frequency-integrated specific intensity seen
by an observer comoving with the radiating matter. Here
and below we assume that I is independent of direction and
uniform over the surface of the source where there is emis-
sion and zero otherwise. Thus, for a finite ring, I, is a step
function of 6.

To compute the components of T8 required in equation
(17) using equation (11), we must determine the boundaries
of the source as seen at the accreting particle, for each
of these geometries. For a uniformly radiating, two-
dimensional source of arbitrary shape,

- 1_2MR2 2z ao(l;) Ao~
T" = I —((1—2]\/1//7'))2 J; J; [1+4v¢(a, b)

_ 1/2
; % sin @ sin b | sin adadb , (23)

T =1, (1 — 221‘1\44//1322 r" J o® [1 + 40%(a, b)

r (1—2M/R)"?
R (1 — 2M/r)"?

T =1, (1 - 221‘1\44//1:))22 J " J o0 [1 + 4v%a, )

sin d sin 5] sin? d sin bdadb ,
(24)

(1 — 2M/R)*"?

r
*R (U —2Mpm)?

sin 4 sin 5] sin® d sin? bdadb ,
(25

where ao(E) is the half-angle subtended by the source in the
direction b.

The Doppler shift of a photon that is seen coming from
the direction (&, b) by an observer at radius r depends on the
colatitude where the ray originated, so to evaluate v¢(a b)
we need to calculate 8(a, b). In the Schwarzschild spacetime
this leads to elliptical integrals that are best evaluated
numerically. Fortunately, the qualitative features intro-
duced by the rotation of the source are also present in
Minkowski (flat) spacetime. To provide analytical insight
into these features, we therefore simplify here to flat space-
time, and later treat the curved spacetime case numerically.
In flat spacetime, for a uniformly rotating source,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...470.1033M&amp;db_key=AST

J. - C4707 1033V

BAD

rt

No. 2, 1996

@, b) = 00{1 - [% cos i

2 1/27]2 11/2
— <1 - sin? &) ] sin” @ cos? b} ,» (26)

where v, is the locally measured equatorial velocity.

We now consider in turn the following types of sources: a
uniformly radiating sphere, a ring of finite width, and an
infinitesimal ring. For a sphere,

T — 49 % I, g (2 — 3 cos ay + cos® ag) 27

and

TH 4 T80 = ], g 8 — 9 cos g + cos> ag),  (28)
where in flat space sin ay = R/r. The average azimuthal
velocity

v = R{sin 0Q(0)> (29)

is defined implicitly by equations (24) and (27), where Q(6) is
the angular velocity of the star at colatitude 6 and the
average is over the emitting surface visible from the test
particle. Using equations (18), (27), and (28), we find
u,, >R asr—-R,
$0 0 (30)
ugo <voR forr>R.

For a radiation source consisting of a thin band around
the equator of a sphere of radius R, such that the projected
half-thickness of the band is €, numerical integration is
necessary. Figure la shows the equilibrium angular
momentum uy , as a function of the height & of the test
particle above a slowly rotating band with v, < 1 in flat
spacetime, for six values of e ranging from 0.01 to 1.0
(emission from the whole sphere). Note that

Y R, h—>0 and 0<e<1;
07 |4oR, h>oo and 0O<e<l1.

At large radii the equilibrium angular momentum becomes
constant because (see eqgs. [18], [27], and [28]) T ~
raar=® as r— oo whereas T% + T ~ a3 oc r~2 Thus
uy o =rTT" + T%) ™! - const.

The one-dimensionality of an infinitesimal ring leads to
results different from those for a finite ring, even if the finite
ring has € < 1. For an infinitesimal ring, the locally mea-
sured velocity of the radiating matter is always v, and the
integral is only over d (although it includes a term for b =
n/2 and one for b = —n/2, which cancel each other for
terms in the integrand that are odd functions of b). The
needed components of the stress-energy tensor are

(31

Tf$ = 20, —1% I(2aq — sin 2ay) (32)
and
Tff + TAGIA’ = %Is(6a0 — sin 2“0) N (33)
so that
4
— 5”0 R ’ h - 0 ;
o= {%UOR , h—>o0. 9
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F1G. 1—Equilibrium angular momentum u,, and velocity Q, as a func-
tion of height h above rotating radiation sources of radius R in flat and
Schwarzschild spacetimes. (@) 4, in units of Ry, in flat spacetime for
radiation sources with v, < 1. The curves are for equatorial radiation
sources with (top to bottom) half-widths € = 0.01, 0.1, 0.2, 0.5, 0.8, and 1.0.
Near the source u,, is independent of € and equal to Rv, whereas far from
the source u,, ranges from 0.91Ru, for a spherical source to (4/3)Rv, for a
very thin (but finite) radiating band. (b) u,, in units of Rv, in Schwarzschild
spacetime. The solid curves are for spherical (e = 1.0) radiation sources
with R = 6M and (top to bottom) v, = 0.5, 0.4, 0.3, and 0.1. The dashed
curve is for an equatorial radiating band with v, = 0.1 and half-width
€=0.1, and illustrates the increase in uy, at large r that occurs if the
radiating region is confined to the rotation equator. At h < R, uy, is
increased by the reduced horizon. At radial infinity, u,, is a factor of 3/2
larger in Schwarzschild spacetime than in flat spacetime because the
apparent solid angle subtended by the source is (1 — 2M/R) ™! times larger
in Schwarzschild spacetime. (c) Q, as measured at radial infinity in Sch-
warzschild spacetime, divided by the angular velocity vy/R of the radiating
matter and multiplied by (r/R)? to bring out details of the variation. The
solid and dashed curves show the same cases as in panel (b). Ath < 107 2R,
Q, is closely equal to the angular velocity of the radiating matter in all
these cases.,

Thus, the equilibrium angular momentum near an infinites-
imal radiating ring differs from that near a very thin but
finite ring. Hence, for this (and perhaps other) purposes,
rings of finite width cannot be considered to be composed of
infinitesimal rings; instead, one must perform two-
dimensional computations.

In the Schwarzschild spacetime, ray paths must be deter-
mined numerically. The apparent angular extent of the
source is greater than it is in flat spacetime; since the equi-
librium angular velocity far from a spherical source varies
as af (see eqs. [18], [27], and [28]), u,o(c0) in a Schwarzs-
child spacetime is two factors of the redshift greater than
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ugo(00) in flat spacetime. Moreover, the smaller horizon
increases uy, when h < R. The effects of curved spacetime
and large velocities are illustrated in Figure 1b, which shows
how u,, varies with h and v, for a test particle orbiting
around a uniformly rotating spherical radiation source in a
Schwarzschild spacetime, and in Figure 1¢, which compares
the equilibrium angular velocity to the angular velocity of
the radiating surface, as measured at infinity.

5. FREE FALL NEAR A ROTATING MASS

To evaluate the effects of radiation forces on particle
motion, we must compare particle trajectories in the pres-
ence of radiation forces to those in their absence, i.e., to
geodesics. Because we are most interested in infall of par-
ticles from initially prograde orbits that are close to circu-
lar, the geodesics of interest are those followed by particles
in equatorial free fall from circular prograde orbits at R,
the radius of the marginally stable orbit. If a particle in such
an orbit is perturbed infinitesimally inward, it will fall
inward because of gravity alone. We therefore use these
geodesic spirals as fiducial motions with which we can
compare particle motion in the presence of radiation forces.
In this section we first describe our procedure for calcu-
lating geodesic particle velocities in an arbitrary stationary,
axisymmetric metric. We then focus on the Kerr metric,
which allows us to obtain exact analytical expressions for
|jl <1 with which we can compare our numerical results.
Finally, we derive analytical expressions for particle veloci-
ties that are valid to first order in j for any arbitrary station-
ary, axisymmetric metric.

5.1. General Expressions for Velocities

To characterize the geodesic motion, we need to know
the velocities v* and v® of the particle as seen in the LNRF.
If the metric is stationary and axisymmetric but otherwise
arbitrary, then

AU uy etu
_w _ - % _
==t —2 7 (35)
wo —u  —éu,—efuy
and
N4 eiu,
v = == t—r¢— . (36)
u —du, —efuy,
Since u® = 0, u? = — 1 implies

= —g (1 +g"u + g*uj + 29%uuy),  (37)

so all quantities involved in the calculation of v? and o' can
be expressed in terms of the conserved quantities u, and u,.

In our code, we use equations (35)(37), the metric and
transformation tensors, and the specific angular momentum
and specific energy of the particle at the marginally stable
orbit to compute the locally measured radial and azimuthal
velocities for all radiir < R,,,q.

5.2. Geodesics in the Kerr Metric

Exact, analytical results are available for the radial and
azimuthal velocities of particles in free fall in Kerr space-
time for 0 < j < 1. We can therefore test our numerical code
by comparing the results it gives with these exact results.

In the Kerr metric, the radius of the marginally stable
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prograde equatorial orbit is (Bardeen et al. 1972)
Rys=M{3+Z,—[3—-Z)3+Z,+2Z,)]'?*}, (382)
where
Z,=1+A=-APIA+HP +A = )"]  (392)
and
Z, =3+ ZH12. (39b)

The specific angular momentum and energy of a particle in
a prograde circular orbit at radius r outside the radius
ron = 2M{1 + cos [ cos ™! (—j)]} of the photon orbit are
(Mr)Y12[r? — 2iM(M7r)'? + j2M?]
u, =
* 7 r[r® = 3Mr + 2jM(Mr)!?]12

(40)

and

= 12 — 2Mr + jM(Mr)*?
" r[r? — 3Mr + 2jM(Mr) ]2

Table 2 compares the results given by expressions (40)
and (41) with the numerical results given by our code for the
proper radial and azimuthal velocities of a particle falling
freely inward from the marginally stable circular orbit, for
10 values of j ranging from 0 to 0.9. Both the analytical and
numerical velocities are computed to all orders in j. All en-
tries start at R, and comparisons are made at (R, — 1)/
(R — 74) equal to 0, 0.2, 0.4, 0.6, and 0.8, where r, =
M(1 — j*)'2 is the radius of the horizon. The results listed in
Table 2 were generated using a grid spacing that becomes
finer close to the horizon, like the grid we use in our calcu-
lations of particle orbits with radiation drag around
neutron stars. At (R, — 1)/(R,,s — 7+) = 0.8, the numerical
and analytical velocities differ by at most 0.3%. As expected,
the percentage differences between the analytical and
numerical results for the radial velocity are larger near R,
where the radial velocity is small, whereas the analytical
and numerical results for the azimuthal velocity agree well
everywhere.

41

5.3. First-Order Expressions

The results just obtained for the Kerr spacetime cannot
be applied to rapidly rotating relativistic stars because the
spacetime around them deviates significantly from Kerr (see
Friedman et al. 1986; Cook et al. 1994). In contrast, the
spacetime around any slowly rotating gravitating mass
(that is, one with j < 1), whether a star or black hole,
depends only on M and j and is therefore independent of the
nature of the gravitating mass (Hartle & Thorne 1968).
Hence, by expanding equations (40) and (41) to first order in
j and solving them explicitly, we can obtain expressions for
the azimuthal and radial velocity of a particle falling onto
any slowly rotating star or black hole valid to this order.

To first order in j,

Ry & 6M[1 — (23], (42)
ud),ms ~ RV 12M[1 - %(%)3/2]] ’ (43)

and
Uy ms & —/3[1 — (2277 . (44)

Hence, for a particle that is initially in a circular orbit at R,
and is then displaced infinitesimally inward, the velocity
components measured in the LNRF atr < R, are
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TABLE 2
FREE-FALL VELOCITIES
r/M vf vf’ v o
j=0, R, = 6.0M, u, .., = 3.464M
6.000...... 0.500 0.500 0 0
5.200...... 0.554 0.555 —0.021 —0.022
4400...... 0.617 0.617 —0.078 —0.078
3.600...... 0.680 0.681 —0.192 —0.192
2.800...... 0.701 0.702 —0.432 —0.433
j=0.1, R, = 5.669M, u, .., = 3.36TM
5.669...... 0.511 0.511 0 0
4934...... 0.563 0.564 —0.021 —0.022
4.200...... 0.624 0.624 —0.076 —0.076
3.465...... 0.684 0.685 —0.188 —0.188
2.730...... 0.704 0.704 —0422 —0.422
j=02, R, =5329M, uy ., = 3.264M
5.329...... 0.522 0.522 0 0
4.660...... 0.573 0.573 —0.021 —0.023
3.990...... 0.631 0.631 —-0.075 —0.075
3.320...... 0.688 0.688 —0.185 —0.185
2.650...... 0.706 0.706 —0.413 —0413
j=03, R,,s =4.99M, u, ., = 3.154M
4979...... 0.534 0.534 0 0
4374...... 0.583 0.584 —0.021 —0.022
3.769...... 0.638 0.638 —0.074 —0.074
3.164...... 0.692 0.692 —0.181 —0.181
2.559...... 0.706 0.707 —0.405 —0.405
j=04, R, =4.164M, u, .. = 3.034M
4614...... 0.547 0.547 0 0
4.075...... 0.594 0.594 —0.020 —0.022
3.535...... 0.646 0.646 —0.073 —-0.073
299%...... 0.695 0.695 —0.178 —0.178
2456...... 0.706 0.707 —0.398 —0.398
j=05, Ry =4233M, uy . = 2.903M
4.233...... 0.562 0.562 0 0
3.760...... 0.606 0.606 —0.020 —0.021
3.286...... 0.654 0.654 —0.072 —0.072
2.813...... 0.698 0.698 —-0.175 —0.174
2339...... 0.705 0.705 —0.391 —0.391
j=0.6, Ry, = 3.829M, uy ., = 2.756M
3.829...... 0.577 0.577 0 0
3423...... 0.618 0.618 —0.020 —0.022
3.017...... 0.661 0.661 —-0.071 —0.072
2612...... 0.700 0.700 —0.172 —-0.172
2.206...... 0.701 0.701 —0.386 —0.386
j=0.7, Ry = 3.393M, uy ., = 2.586M
3.393...... 0.594 0.594 0 0
3.057...... 0.630 0.630 —0.020 =0.023
2.722...... 0.667 0.667 —0.070 —0.072
2.386...... 0.699 0.699 —0.170 —0.170
2.050...... 0.694 0.694 —0.382 —0.382
j=08, R, =2907M, uy . = 2.380M
2907...... 0.611 0.611 0 0
2.645...... 0.641 0.641 —0.020 —0.021
2.384...... 0.671 0.671 —0.069 —0.070
2123...... 0.695 0.695 —0.168 —0.168
1.861...... 0.681 0.681 —0.380 —0.380

TABLE 2—Continued

r/M v 4 o oh
J =09, Ryy = 2321M, u, p, = 2.100M
2.321...... 0.625 0.625 0 0
2.144...... 0.646 0.645 —0.020 —0.023
1.967...... 0.665 0.665 —0.069 —0.071
1.790...... 0.676 0.677 —0.168 —0.169
1.613...... 0.653 0.653 —0.381 —0.382

Note.—Comparison of the numerical and analytical
estimates for the radial velocity v" and azimuthal velocity
v® (as measured in the LNRF at the particle) for test
particles in equatorial free fall from the marginally stable
orbit, for 0 <j<09. For each value of j, we list the
Boyer-Lindquist radius R, of the marginally stable orbit
and the specific angular momentum u, , of a particle in a
circular orbit at R, We then compare the numerical
(denoted by the subscript n) and analytical (denoted by
the subscript a) estimates for the radial and azimuthal
velocities at radii r such that (R, —7)/(Rps —74+) =0,
0.2, 0.4, 0.6, and 0.8, where r, = M + M(1 — j*)'/* is the
Boyer-Lindquist radius of the horizon. The numerical and
analytical estimates are in excellent agreement, with a
maximum deviation of ~0.3% at (R, — 1)/(Rys —74) =
0.8. As expected, ', differs most from o, when +* is small,
near R, whereas the estimates for v* agree everywhere to
high precision.

s _ (g)”z (1 = 2M/r)/? [ L < 72 )(g)“]
=\ /M 16 20/MPN\3) 7
(45)
and

o (6= 1M\
"=\om

1 27 12 +r/M\[(2 3/2_ 1/2
x [1 +(§+<r/M)3‘ 6= /M )(5) J] - 48

The corresponding components in the static frame are

s (2T\Y? (1 —2M/pr)1/? 7 1 2\%2,
=) - m=)) )

@7
and
. 6 —r/M\3? 1 12+ r/M\/2\*? 1?2

W'=( 2r/z(4> [”(5_ 6—+r/§w)<§> ’] - @
Thus, at R,

o? = 41 + 33?1 (49)
and

wh = 41 + %3] . (50)

Expressions (45) and (47) for the azimuthal velocity are ac-
curate to first order in j for any r < R_. In contrast, expres-
sions (46) and (48) for the radial velocity are accurate only
if 6 —r/M > j. For example, if one expands the exact ex-
pressions for the velocity components in the Kerr metric
to higher order in j, one finds terms of order j*/(6M — r)*
and j3/(6M — r)3, which are comparable to or larger than
the O(j) term when 6 — r/M < j. The error made by ne-
glecting these terms is obviously large for r = R,,,. For
example, at R, expression (46) erroneously predicts v =
(—2)'2[(3)*?j/2]%? instead of 0. This seems not to have
been noticed by Kluzniak & Wagoner (1985), who give an
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expression for v near but inside R,,, that becomes imagin-
ary very close to R .

Another subtlety enters in the choice of the orthonormal
tetrad in which one makes velocity measurements. To first
order in j, the off-diagonal components of the transfor-
mation tensor from Boyer-Lindquist coordinates to the
LNRF are

2iM> s

4= A

More generally, one can define a family of reference frames

related to the Boyer-Lindquist coordinate system by the
transformation with off-diagonal components

2%M2A 2%iM(1 — 2)
o_ ML . IMAA-D)
“TR—2Mm T BT T Ba—2Mn’ (52)

where A is a nondimensional parameter that fixes the azi-
muthal velocity of the frame relative to the static frame, in
units of the azimuthal velocity of the LNRF as seen from
infinity (if A = 0, the frame is at rest as seen from infinity).
All of these frames are orthonormal to first order in j;
however, only the LNRF (4 = 1) is orthonormal to all
orders. Obviously, the choice of A affects the inferred
azimuthal velocity of accreting particles. Kluzniak &
Wagoner (1985) use the frame that corresponds to 4 = 1/2,
and find a first-order azimuthal velocity 1)4’ =
(1/2)[1 + (15/32)2/3)*?j]. This overestimates slightly the
angle at which a particle accreting onto a neutron star hits
the stellar surface, as seen by a static observer, since the
angle should instead be calculated using expression (50).

(1

6. RADIATION FIELD AROUND A SLOWLY ROTATING
MASS AND RADIATION SOURCE

The frequency shift from the stellar surface to the LNRF
at the radial position r of the test particle is just the Doppler
shift from the frame comoving with the stellar surface to the
LNRF there, plus the shift from the LNRF at the stellar
surface to the LNRF at r. We use the subscript e to denote
the value of a quantity measured by a comoving observer at
the emitting surface, the subscript [ for the value of the same
quantity measured by an observer in the LNRF at the emit-
ting surface, and the subscript r for the value of the same
quantity measured by an observer in the LNRF at the posi-
tion of the test particle.

The frequency of the radiation in the LNRF at the emit-
ting surface is given by the Doppler relation

ve
p(1 — v® cos ¥)’
where v? is the velocity of the emitting surface, i is the angle
between v and the ray path as measured in the LNRF, and

y = (1 — [v¥]%)~Y/2. The frequency in the LNRF at the test
particle is

V=

(53)

B [ef (1 + w,uy/u)"!

e’ (1 + o, ugfu)” 1:|v, ’ (54

where 2/ = —g,,.

In our numerical code we calculate the frequency shifts
exactly, but for analytical purposes we now compute the
first-order effects of the rotation of the gravitating mass on
the needed components of the radiation stress-energy
tensor. The first task is to determine the angular extent of
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the star as seen at the test particle. If the stellar radius R is
greater than the radius r,, of the photon orbit, then the limb
of the star corresponds to photons leaving the stellar surface
at a grazing angle. This gives the relation (see Bardeen et al.
1972)

VAR) =0 (55)
where, for the Kerr metric, the effective radial potential is
Vi(r) = [ufr® + j>M?) + jMu,]*

—(r* = 2Mr + PMP)[(uy + jMu,)* + q] . (56)
Here g = ug + cot? uj — j*M? cos® Ou} is Carter’s fourth
constant of motion; 0 is the colatitude of the particle.
Transforming from Boyer-Lindquist coordinates to the
LNRF at r and using the definitions of 4 and b, we find that

to first order in j the extent a of the limb in the angle a is
given as a function of b by

R (1 —2M/n'?
r (1 — 2M/R)1

M1 — R/rd)
[1-3 3G S
M*(1 - R¥r?)

R%(1 — 2M/R)*?

sin o0 =
sin 0 sin l;]

= sin cxo[l —2j

Thus, an observer at rest in the LNRF at radius r sces
frame-dragging that increases the apparent extent of the
backward limb while diminishing the apparent extent of the
forward limb by the same amount.

Consider next the Doppler shift caused by the rotation of
the radiation source. The magnitude of the shift of a photon
that is seen coming from the direction (g, b) depends on the
velocity v¢(a b) of the emitting surface at the point where it
onglnated To first order in v?, the frequency of the photon
as seen in the LNRF at the emitting surface is

5 (1 —2M/R)'?

_ 31— 2M/R)

v, [1 +v 1 —2MnP

The next task is to calculate the frequency shift from the

LNRF at the emitting surface to the LNRF at r. To first
order in j, the frequency in the LNRF at r is

_(1—2M/R)'” (M M
= a—an e |V AR TR

X M sin @ sin b [v
(1 — 2M/r)1? b
There are no factors involving the colatitude of the obser-
ver, because to first order in j the angular frequency of the
LNRF depends only on r, not 6. Combining equations (58)
and (59), we obtain the relation

_(1—2M/R)1 r/M (M M?
PR A 2 {1 T A= 2Mn? [2’<R3 - r3)

(1§/+/R)‘”] sin & sin E}ve , (60)

which is valid to first order in j and o?,

We now specialize to particles in the equatorial plane, i.e.,
0 = =/2. For such particles, comparison of the relative sizes
of the j and v* terms in equation (60) shows that the
Doppler shift is typically much more important than the

sin 0 sin 5] . (57

sin d sin I;]ve (58)

(59)

+ v%(a, b)
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change in the frequency of the LNRF with radius: if
R > 4M and the radiating surface moves with the gravi-
tating mass then the change in the LNRF frequency is at
most ~15% of the Doppler shift. That this is not accidental
can be seen by considering the relative angular frequencies
of the LNRF and star at the stellar surface. For example, for
a sphere of uniform density spinning with angular frequency

= (5/2)jM/R?, the LNRF frequency is, to first order,
o = 2jM?/R? and hence w/Q = 0.8M/R. Thus, for most
neutron stars, w/Q2 < 0.2. This means that the effects of
frame-dragging are generally small compared to the effects
of Doppler shifts. Therefore, for a slowly rotating mass and
radiation source, the expression for the frequency shift can
be simplifed by including only special relativistic terms and
ignoring frame dragging. In this approximation, the specific
intensity observed in the equatorial plane in the local direc-
tion 4, b is given by equation (22).

We can now compute the needed components of the radi-
ation stress-energy tensor. In general v¢(a b) depends on the
colatitude O(R) of the ray at the radiating surface, so 6(R)
must be calculated for each @ and b. Unfortunately, 8(R)
does not follow straightforwardly from conserved quantities
such as u,, so that ray tracing is required. To see this,
consider a photon propagating in the Schwarzschild space-
time that arrives at an equatorial observer with u, = uy, = 0.
Clearly, the photon had to originate from the stellar
equator. But since a radially directed photon emitted from
anywhere on the stellar surface has the same four-
momentum as this photon, the four-momentum does not
specify the initial 6 or ¢. The same is true when j is not zero.
From Bardeen et al. (1972), the equation to be solved is

do 4 (q — uj cot? 0/u?)!’?
ar — V)2

The solution of equation (61) is an elliptical integral that
does not give much insight into the problem. To make
further analytical progress we define (compare eq. [29])

v = R¢sin 0[Q(0) — »]) . (62)

Here Q(6) is the angular velocity of the star at colatitude 6
and w is the angular velocity of the LNRF at the stellar
surface, as measured by a static observer at radius R and
colatitude 0; dw/df is O(j®), so the dependence of w on
colatitude can be neglected. The average denoted by the
brackets is over the emitting surface visible from the test
particle.

Using expressions (57) and (22), we find (see Appendix B)
that the radial energy flux and the diagonal components of
the stress-energy tensor are unaffected to first order in the
rotation rates of the gravitating mass and radiation source.
The off-diagonal components are

(61)

a4 v
TY ~ 3 1,(r) o (cos® ag — 3 cos ag + 2)
2M\'7?
~ qol (1 - T) (7) asr— oo (63)
T ~ nlo(r)v sin® «,
M 1/2 R 3
~ nvls<1 — —) (—) asr—0, (64)
R r

where I(r) = I(1 — 2M/R)*/(1 — 2M/r)*> is the specific
intensity at the particle in a Schwarzschild spacetime (see,
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e.g, AEL) and we have assumed that the frequency-
integrated specific intensity I; seen by an observer co-
moving with the stellar surface is isotropic and independent
of the location on the surface.

7. PARTICLE ORBITS AROUND A SLOWLY ROTATING
MASS AND RADIATION SOURCE

Using the formalism developed in §§ 2 and 6 and the
numerical method described in § 2, we have followed the
inspiral of accreting particles acted on by radiation forces.
To examine the effects of nonuniform emission as well as
the effects of rotation of the gravitating mass and the radi-
ation source, we computed the stress-energy tensor of the
radiation produced by sources with equatorial radii of 4M,
widths € of 1.0, 0.5, and 0.1 (e was defined in § 4), and gravi-
tating masses with j = 0, 0.1, 0.2, and 0.3. For simplicity, the
computations were carried out in the Kerr spacetime
because, as noted above, photon and particle trajectories in
this spacetime are the same to first order as in any station-
ary axisymmetric spacetime. However, we emphasize again
that to higher order in j the exterior spacetime of rotating
stars deviates from the Kerr geometry.

In ML93 we assumed isotropic emission by a spherically
symmetric star in the Schwarzschild spacetime. For that
investigation it was convenient to parameterize the lumi-
nosity using the ratio of the total luminosity at infinity L* to
the Eddington critical luminosity at infinity Lg, which is
the luminosity at which the radial component of the radi-
ation force on a static particle at infinity exactly balances
gravity. In the present paper the anisotropic emission pat-
terns we consider make the total luminosity a less useful
quantity. Instead we define a critical specific intensity Iy at
the star such that the radiation force on a static particle in
the equatorial plane at infinity exactly balances gravity, and
use i = I(R)/I to characterize the intensity of the radiation
at the source. For € = 1.0 and j =0 (the case treated in
ML93), this definition reduces to the previous one.

The initial angular momentum of the test particle was
chosen to be that of a particle in a circular orbit, so that for
w=u"=0, du'/dt =0 at its initial radius r = 9M. We
solved for the initial value of u, to first order in j using the
radial force equation

a=—21m. (65)
m
If du"/dz = 0, then to first order in j,
M 3M 6M*u,u
r——__(1— Zo T et
T =0 ( r ) r3 + r (66)

The radiation flux T* was computed numerically. We chose
an initial radial velocity of 1% of the initial azimuthal veloc-
ity, to simulate the effect of a small viscosity in an accretion
disk. As was also true for the results reported in ML93, the
choice of the initial radial velocity has little effect on the
results reported here, so that choosing initial values of v’/v"’
of 1072 or 10~ ! would yield essentially the same velocity
curves and the same final specific energy and angular
momentum.

Table 3 lists selected results for the initial and final spe-
cific energies and angular momenta of particles that start in
a circular orbit at 9M and eventually accrete onto a star of
radius 4M. Displayed are the initial and final specific
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TABLE 3
INITIAL AND FINAL ENERGY AND ANGULAR MOMENTUM

I(R)/T € J Uy ugp  Uyp e s Aey
0.05...... 10 0 356 266 0 09484 0.8787 0.1716
01 351 267 0284 09476 08817 0.1719

02 347 267 0.574 09471 0.8837 0.1654

03 342 266 0.878 09462 0.8854 0.1524

05 0 360 273 0 09499 0.8808 0.1737

0.1 355 272 0284 09490 0.8826 0.1727

02 350 270 0574 09482 0.8833 0.1650

03 346 266 0.878 09477 0.8843 0.1510

01 0 366 302 0 09521 09004 0.1933

01 361 297 0284 09512 09002 0.1903

02 356 290 0574 09504 0.8990 0.1807

0.3 352 284 0878 09496 0.8979 0.1649

02....... 1.0 0 320 143 0 09360 0.7899 0.0818
0.1 316 155 0284 09356 0.7970 0.0871

02 311 1.65 0.574 09348 0.8040 0.0857

03 3.06 178 0.878 09340 0.8134 0.0804

05 0 337 162 0 0.9417 0.7948 0.0877

01 332 171 0.284 09409 0.8018 0.0919

02 327 180 0.574 09401 0.8085 0.0902

03 323 190 0.878 09396 0.8171 0.0841

01 0 360 233 0 09499 0.8348 0.1277

0.1 355 233 0.284 09490 0.8384 0.1285

02 351 232 0574 09485 0.8409 0.1226

0.3 346 232 0878 09477 0.8450 0.1120

05....... 1.0 0 235 024 O 09117 0.7186 0.0115
01 232 047 0284 09114 0.7228 0.0129

02 228 070 0.574 09110 0.7297 0.0114

03 223 095 0.878 09104 0.7413 0.0083

05 0 286 051 0 09254 0.7211 0.0140

0.1 282 063 0.284 09250 0.7262 0.0163

02 277 082 0.574 09242 0.7333 0.0150

03 273 1.04 0.878 09238 0.7446 0.0116

01 0 3499 142 0 09459 0.7612 0.0541

01 344 150 0.284 09451 0.7671 0.0572

02 340 154 0.574 09446 0.7719 0.0536

03 335 156 0878 09438 0.7758 0.0428

Note—Initial and final angular momentum and energy of test particles
in initially circular orbits around radiating stars in a Kerr spacetime. Here
the particle is initially at a Boyer-Lindquist radius of 9M, the star has a
Boyer-Lindquist radius of R = 4M, and the radiating surface is assumed
to rotate with the gravitating mass. The radiation comes from a band on
the surface with half-width €R, and the specific intensity I(R) at the surface
(assumed to be uniform over the band and isotropic in the outward
direction) is I(R)/Iz = 0.05, 0.2, or 0.5, where I is the specific intensity
such that the radial radiation force at infinity in the equatorial plane is
equal to the gravitational force at infinity. For a given I(R)/I,, €, and j,
Table 3 lists the initial specific angular momentum u,;, the specific
angular momentum u, , just before impact, the specific angular momen-
tum u,  of a particle moving with the stellar surface at the equator, the
initial specific energy e;, the specific energy e, just before impact, and the
difference Aey between e, and the specific energy of a particle moving with
the star at the equator. Thus, Aey is a measure of the amount of energy
released in a boundary layer at the stellar surface. Typically, rotation
decreases the effects of radiation drag, but (as discussed in the text) for very
small radiation energy densities the increased inspiral time for higher j
more than compensates for the decreased loss rates of energy and angular
momentum, and more energy and angular momentum can be transferred
to the radiation field for higher j.

angular momenta u,; and u, , and the initial and final
specific energies ¢; and e, for various combinations of i, €,
and j. In this case the “final ” values are those of the particle
just before impact. Also listed are u, g, the specific angular
momentum of a particle moving with the stellar surface at
the equator, and Aeg, the difference between the specific
energy of a particle just prior to impact and the specific
energy of a particle moving with the stellar surface. Thus
Aeg is a measure of how much energy is liberated in a
boundary layer at the surface.
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The introduction of rotation produces two competing
effects. First, because the resulting radiation field has
nonzero angular momentum, the energy and angular
momentum loss rates are decreased for prograde orbits.
Second, both the change in the spacetime caused by the
rotation of the gravitating mass and the radial component
of the radiation force increase the inspiral time compared to
the inspiral time for a particle near a nonrotating non-
luminous star. Since the total loss is the integral of the loss
rate over time; which effect wins depends on the values of i,
€, andj.

The overall behavior is fairly complex, but some general
trends are evident. The increase in the inspiral time appears
to be more important for lower radiation energy densities
(that is, for low i and/or low €), whereas the decrease in the
loss rate dominates for higher radiation energy densities.
For a given i and €, the final specific energy generally
increases with increasing j, even though the initial specific
energy decreases with increasing j. Thus the amount of
energy transferred from the particle to the radiation field
generally decreases with increasing j (of course, in the test
particle approximation the change in the radiation field is
neglected). The exception occurs when i = 0.05 and € = 0.1,
because the radiation energy density is very small and the
energy transferred to the radiation field is approximately
independent of j. Similarly, only when i = 0.05 and € = 0.1
is more angular momentum transferred to the radiation
field for higher j. Only for very small radiation energy den-
sities is the increase in inspiral time more important than
the decrease in loss rate. However, for any given value of i,
ug (j =03) —uy (j=0) decreases with decreasing €. The
same trend holds for the final energy e,. We also see that for
any intensity or width of the emitting region, Aey decreases
with increasing j for j > 0.1, showing the growing impor-
tance of increased inspiral time as the radiation energy
density decreases.

Figures 2, 3, and 4 show the radial and azimuthal velocity
components of an inspiraling particle as a function of
radius, as measured by an observer in the LNRF, for
e=0.1, 0.5 and 1.0, and several representative com-
binations of i and j. For a given j, the mean azimuthal
velocity decreases with increasing radiation flux, both
because the initial azimuthal velocity for a circular orbit is
smaller for larger flux and because more angular momen-
tum is removed at a given radius. Thus, for specified j and i,
dv®/de < 0 and for specified j and €, dv?/dI(R) < 0.

The radial velocity does not show such simple trends. For
any j and for i = 0.05 or 0.2, the radial velocity shortly after
the initial infall satisfies dv’/de > 0. The reason is that for
low to intermediate fluxes, the more angular momentum is
removed from the particle the less centrifugal support there
is against gravity, and the greater is the particle’s inward
velocity. However, for i = 0.5, the radial flux is so high that
for particles with significant radial velocities near the star,
the flux seen in the inertial frame momentarily comoving
with the particle exceeds the Eddington critical flux, causing
the radial velocity to decrease. This leads to complicated
crossover behavior, in which the radial velocity for € = 0.1
starts out small and increases more rapidly than for € = 0.5
or 1.0 but then reaches a peak, and finally decreases rapidly
as the distance from the star becomes less than eR.

The trends of the radial velocity with j emphasize the
importance of centrifugal support and of the previously
mentioned competition between decreased angular momen-
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F1G. 2.—Locally measured radial and azimuthal velocity components v* and o (in units of ¢) as functions of radius for particles spiraling inward from
r = 9M to the surface of a star with radius R = 4M and an equatorial emission region of half-width € = 0.1. Panels (a)—(d) display velocity profiles for stars
with angular momenta j = 0, 0.1, 0.2, and 0.3, respectively. Shown in each panel are profiles for i = 0.05 (solid curve), i = 0.2 (dotted curve), and i = 0.5 (dashed
curve), where i is the intensity at the surface of the star I(R) in units of the critical surface intensity I such that the radiation force on a static particle in the

equatorial plane at infinity would exactly balance gravity (see text).

tum and energy loss rates and increased inspiral time. For
all values of i and €, dv'/dj < 0, because the frame-dragging
caused by a rotating gravitating mass provides radial
support for the particle. For azimuthal velocities we find

Velocity

1 P
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[ ) PR PEUTS PN

Radius (M)

4 6 8 ? 8 9

Radius (M)
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that, if i and € are both small (so that the flux is low), then
dv®/dj <0, whereas if the flux is relatively high then
dv®/dj > 0. This is consistent with our findings concerning
the final energy and angular momentum. Thus again the

Velocity
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4 5 8 7 8 9

4 65 ] 7 8 9
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FiG. 3.—Locally measured radial and azimuthal velocity components (v$ and of in units of c) as functions of radius for the same conditions as in Fig. 2,

except € = 0.5.
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Fi1G. 4—Locally measured radial and azimuthal velocity components (v$ and o' in units of c) as functions of radius for the same conditions as in Fig. 2,

except € = 1.0.

increased inspiral time is more important for lower fluxes
whereas the decreased angular momentum loss rate is more
important for higher fluxes.

8. SUMMARY AND DISCUSSION

In this section we first summarize briefly our results for
test particle motion around slowly rotating sources and
gravitating masses and discuss the conditions under which
our results for test particles are applicable to accreting fluid
flows. We then consider the specific effects of radiation
forces on accretion flows near X-ray burst sources during a
burst and flows near accretion-powered neutron stars; in
both cases we analyze the differences between geometrically
thick and geometrically thin flows. Finally, we discuss the
effects of radiation forces on the long-term spin up of accret-
ing neutron stars. For definiteness, we assume that radi-
ation interacts with accreting matter only via scattering,
that the star accretes matter via an accretion disk, and that
the disk is optically thin in the vertical direction. We defer
treatment of optically thick flows to a future paper.

8.1. Summary of Results for Test Particles

In § 2 we described a numerical code that can follow the
motion of a test particle in the presence of radiation in any
stationary, axisymmetric spacetime. In the present paper we
have verified this code by comparing results obtained using
it with a variety of analytical results. We then used the code
to compute the motion of test particles orbiting around
slowly rotating radiation sources and gravitating masses. In
future papers we will report results obtained using this code
to analyze test particle motion around black holes and
rapidly rotating neutron stars.

We analyzed test particle motion around a nonrotating
radiation source and a spherical, nonrotating gravitating
mass in § 3. This case can be treated analytically (see
Appendix A and ML93). For particles in initially circular

orbits, our numerical code gives results for the character-
istic rates of loss of energy and angular momentum to the
radiation field that agree with the exact analytical results to
better than 5% (see Table 1).

In § 4 we considered test particle motion near rotating
radiation sources in Schwarzschild spacetime and showed
that if the velocity of the radiating matter is not too large
there is a unique “equilibrium” angular momentum u(r)
for a particle in circular orbit at radius r at which the azi-
muthal component of the radiation force vanishes. The
quantity u,,(r) is independent of the luminosity of the radi-
ation source and depends only weakly on the height & of the
particle above the source and the width € of the region that
is radiating, varying by a factor ~2 as h varies from zero to
infinity and as e varies from zero to one (see Figs. 1a and
1b). Thus Q,, the equilibrium angular frequency as seen at
radial infinity, varies approximately as r~2 at large r (see
Fig. 1c). Both uy, and Q, are larger for radiating rings of
smaller width. Surprisingly, the behavior of uy, and Q, as
h— 0 is qualitatively different for a radiating ring of any
finite thickness than for ring of infinitesimal thickness. Thus
in this sense (and perhaps in others) the two-dimensionality
of a finite ring is significant.

In § 5 we derived exact analytical expressions for free fall
in the Kerr metric and used them to verify the free-fall
trajectories given by our numerical code. Even for rapidly
rotating gravitating masses, particle trajectories computed
using our code accurately match the exact trajectories (see
Table 2).

We considered the effects of slow rotation of the radiation
source and the gravitating mass in § 6 and § 7. In § 6 we
obtained analytical expressions for the apparent angular
shape of the star, the changes in photon frequency caused
by frame-dragging and Doppler shifts, and the components
T and T* of the radiation stress-energy tensor, which are
the only nonzero off-diagonal components. We also showed
that Doppler shifts are typically much more important than
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frame-dragging. In § 7 we presented numerical results for
test-particle motion around a slowly rotating radiation
source and gravitating mass (see Figs. 2, 3, and 4). Just as in
the case of a static mass, which was treated in ML93, the
initial radial velocity has little effect on the trajectories or
the final specific energy and angular momentum, as long as
' < v®. The main new feature introduced by rotation is that
the drag on particles in prograde orbits is less than it would
be if the source were not rotating, because the radiation
field carries angular momentum. However, the inspiral time
is increased if the source is rotating, which offsets the lower
drag rate. We find that the inspiral time increases faster
than the drag decreases as the radiation energy density at
the particle becomes lower; for the lowest specific intensities
and narrowest radiation patterns we considered, the total
energy and angular momentum transferred from the test
particle to the radiation field are greater if the radiation
source is rotating. These results demonstrate that radiation
forces can be extremely important near accreting neutron
stars.

8.2. Application to Accretion Flows

Under what conditions can the results obtained here be
applied to accretion flows? The velocity of the accretion
flow will be the same as the velocity of the test particles
considered here if (1) the gravitational and radiation forces
acting on the flow dominate all other forces, i.e., magnetic,
pressure-gradient, and other forces are negligible, and (2)
the radiation field is not significantly affected by its inter-
action with the accretion flow, i.e., if the accretion flow is
optically thin (for a more complete discussion, see ML93
and LM95). If instead the accretion flow is optically thick,
radiation forces will change the structure of the accretion
flow, but the velocity will differ quantitatively from the
velocity of test particles. Henceforth we assume that the
gravitational and radiation forces acting on the flow domi-
nate all other forces, and investigate at what accretion rates
the accretion flow is optically thin in the radial direction.

Since we are restricting consideration to accretion flows
that are optically thin in the vertical direction, flows that are
geometrically thick in the vertical direction are necessarily
optically thin in the radial direction. Flows that are geo-
metrically thin may be optically thin or optically thick in
the radial direction, depending on the structure of the flow.
For a flow of half-thickness h, mass per particle m, and
inward radial velocity v,, the number density at radius r is

ne_Mm_
"~ 4ur(hfry,’

where M is the mass accretion rate. Let M, = (4nMm/c),
where o is the scattering cross section. Then the vertical

optical depth is
M (M) 1
T, = noh = m <T) ;; . (68)

For example, if v, =0.1 at r =6M, then 7, <1 if M <
0.6M,, which implies M < 107 g s~ for a fully ionized
hydrogen plasma. The radial optical depth from r; to r, is
M "2 (r\ dr
M| (£)E- 9
", <h> o’ ©

1

(67)

so, e.g., for h/r = const, v(r) = const. = 0.1, r; = 6M, and
r, = 12M,onehas 7, < 1if M < 1.2(h/r)M,,.
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Note that a flow may be optically thin in the vertical and
radial directions in the presence of radiation even if it would
be optically thick in the absence of such radiation, since
removal of angular momentum by the radiation increases
the radial velocity of the flow, thereby decreasing the optical
depth (“induced transparency”). This effect allows radi-
ation to penetrate further into the accretion flow and hence
to affect a larger region of the flow than one would estimate
from the velocity and density of the flow obtained by
neglecting radiation forces. If the radial velocity profile
computed using the test particle approximation gives 7, <
1, then this is the velocity profile of the accreting matter.
Our numerical computations (see ML93 and § 7) give radial
velocities near the star ~0.1-0.2 for intensities at the
surface of the star ~0.05-0.5 times the critical surface inten-
sity (see § 7). We therefore expect these velocity profiles to
be accurate for M < 2 x 10*7(h/r) g s~ ! and intensities in
this range.

8.3. Application to Nuclear-Powered Sources

Consider now a source with a high luminosity that is
produced, at least temporarily, by some process other than
accretion, such as nuclear burning in the outer layers of the
star. As an example, some type I X-ray burst sources have
burst luminosities ~ Lg for many minutes (see Lewin, van
Paradijs, & Taam 1993). During such a burst the inflow
time near the star is a millisecond or less, much shorter than
the duration of the burst. Hence interaction of the burst
radiation with the accretion flow will establish a quasi-
steady inflow near the star, and the velocity structure of the
inflow will therefore track gradual changes in the burst
luminosity.

From the discussion in § 8.2, we expect the velocity pro-
files presented in § 7 to be accurate when M is less than
~2 x 10'7(h/r) g s~!. At these mass accretion rates the
accreting fluid will transfer most of its energy and angular
momentum to the radiation field before hitting the stellar
surface and the inflow velocity will be greatly increased by
radiation drag (see Figs. 2, 3, and 4). As a result, the accre-
tion rate may increase temporarily (see Walker & Mészaros
1989; Walker 1992). On the other hand, if the luminosity
becomes greater than the local critical luminosity, the accre-
tion flow will be halted (see LM95). Hence the accretion rate
may either increase or decrease during the burst, depending
on the instantaneous luminosity.

8.4. Application to Accretion-Powered Sources

In sources in which the luminosity is produced primarily
by accretion, the specific angular momentum and energy of
the accreting matter at the stellar surface is determined by
the fraction of its energy and angular momentum that has
been transferred to the radiation field. Angular, special rela-
tivistic, and general relativistic effects influence this fraction
differently from the way they influence the rates of energy
and angular momentum loss. We illustrate this with the
following example.

Suppose there is a radius r, that characterizes the inter-
action of the radiation with the accretion flow, in the sense
that the angular momentum of the scattered radiation as
measured at infinity is equal to that calculated by assuming
that all photons scatter once, at ¥ = r,. This approximation
will be inappropriate if a large fraction of the photons
leaving the star eventually diffuse back to the stellar surface,
i.e., if back-heating is important. We expect back-heating to
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be unimportant if 7, < 1, since the first scattering will then
typically occur a large distance from the star and hence the
probability that the photon is scattered back to the stellar
surface will be small. We therefore again restrict consider-
ation to accretion rates M < 2 x 10*7(h/r) g s~ !, or equiva-
lently L < 0.1(h/r)Lg.

Consider first the effect of radiation interacting with
matter orbiting in flat spacetime near a fictional point
source of radiation with a luminosity equal to eMc?, where
€ is the “efficiency” with which the source produces radi-
ation. The specific angular momentum of matter orbiting at
ro is uy(ro) = 1o vy(ro). If a fraction f of the radiation coming
from the source interacts with the matter, then after scat-
tering the radiation carries an angular momentum flux

Jon & ro<£>|:&¥°~):| = feMrqvy(ro) = feJ,,,  (70)

c

where J,, is the flux of angular momentum carried inward
by the matter at r = r,. Thus, a fraction ~fe of the angular
momentum of the accreting matter is carried away by the
radiation, which is a fraction ~0.2-0.3 for f ~ 1 and typical
accretion efficiencies.

Near a radiating neutron star, the angular, special rela-
tivistic, and general relativistic effects discussed in § 2 and
Appendix A increase the ratio J ph/J',,, compared to the ratio
for a point source in the Newtonian approximation.
However, in contrast to the drag rate, which depends on
both the angular momentum transferred per scattering
event and the scattering rate, the fraction of the angular
momentum of the accreting matter that is transferred to the
radiation field does not depend on the scattering rate.
Therefore, only effects that increase the angular momentum
transferred per scattering event affect the fraction of the
angular momentum of the accreting matter that is carried
away by the radiation field.

For example, at the surface of the star, angular effects
increase the angular momentum loss rate by a factor of 8/3
compared to the loss rate near a point source: a factor of 2
from the increase in the photon number density (which
increases the rate of scattering) and a factor of 4/3 from the
increase in the angular momentum removed by each
photon. In contrast, angular effects increase the fraction of
the angular momentum of the matter that is lost to the
radiation field by 4/3.

General relativistic effects increase the angular momen-
tum loss rate by two factors of the redshift (see § 3) but
increase the fraction of the angular momentum that is lost
by only one factor of the redshift. To see this, note that
gravitational bending of light rays in the Schwarzschild
spacetime causes the impact parameter of escaping photons
to be one factor of the redshift greater at radial infinity than
in flat spacetime. Thus, for a given flux at radial infinity the
flux of angular momentum at infinity carried by a given
radiation energy flux is greater by just one factor of the
redshift. For matter at the surface of a star of radius 6M,
this increases the fractional loss by a factor (3/2)*/2. The
special relativistic forward beaming of scattered radiation
increases the fractional loss of angular momentum the same
as the loss rate, by a factor of up to ~4/3.

As a concrete example, the angular momentum loss rate
for a particle in Keplerian orbit at r =6M is (8/3) x (4/3)
x (3/2) ~ 5.3 times the loss rate near a point source in the
Newtonian approximation, whereas the fraction of the
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angular momentum lost from a fluid element in Keplerian
orbit at the surface of a star of radius R = 6M is (4/3) x
(4/3) x (3/2)1/? ~ 2.2 times the fraction lost near a point
source in flat spacetime. Thus, although the fractional loss
of angular momentum is not increased as much as the loss
rate, it can be more than twice as much as near a point
source in the Newtonian approximation.

The average velocity of matter in the boundary layer at
the surface of a slowly rotating neutron star is of order half
the velocity of matter in orbit just outside it. Hence, scat-
tering of radiation produced in the boundary layer, as well
as scattering of radiation coming from the stellar surface,
will brake the orbital motion of matter in the disk. If f ~ 1
and the accretion efficiency € is ~0.2-0.3, radiation can
carry away a fraction ~0.3-0.5 of the angular momentum
of the accreting fluid, significantly increasing the radial
velocity of the inflow (see Figs. 2, 3, and 4) and decreasing its
optical depth.

In sources in which the luminosity is produced primarily
by accretion, transfer of energy from the accretion flow to
the radiation field reduces the luminosity produced at or
near the stellar surface. As we have shown, radiation
emitted by a slowly rotating neutron star and scattered by
matter orbiting near the surface removes up to a factor 4/3
more angular momentum than is removed by radiation
emitted directly by the matter orbiting there. Thus the
decrease in the luminosity of the stellar surface caused by
transfer of energy from the accreting matter to the escaping
radiation diminishes slightly the effect of radiation on the
accretion flow near an accretion-powered star when com-
pared to the effect near a bursting star of the same lumi-
nosity. However, the main difference is that the luminosity
of a nuclear-powered star can be near-critical and can there-
fore have a very strong effect on the accretion flow, even if
the accretion rate is relatively low and is therefore optically
thin.

8.5. Implications for Spin-Up of Slowly Rotating
Neutron Stars

The gravitational potential energy per unit mass released
by accretion onto the surface of a neutron star is ~0.2c?,
whereas the energy per unit mass released by thermonuclear
fusion is only ~0.007c%. Hence the time-averaged lumi-
nosity of an accreting neutron star is dominated by the
gravitational energy release. The average rate at which
angular momentum is carried away by radiation (or a wind)
is therefore dominated by the rate of angular momentum
loss between any nuclear outbursts, and the average rate
of spin-up of an accreting neutron star is almost indepen-
dent of the details of any outbursts. Thus, in computing the
long-term spin evolution of neutron stars it is a good
approximation to assume that the neutron star is
always accretion-powered. The results of § 8.4 are therefore
relevant.

As mentioned above, the average velocity of matter in the
boundary layer at the surface of a slowly rotating neutron
star is of order half the velocity of the matter in orbit just
outside it. Therefore, scattering of radiation produced in the
boundary layer, as well as scattering of radiation coming
from the stellar surface, will remove angular momentum
from the matter in the disk outside the boundary layer. The
numerical computations summarized in § 7 indicate that
the radiation will carry away a fraction ~ 2fe of the angular
momentum of the accreting matter, thereby decreasing the
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spin-up rate by ~30%—-50% (if f ~ 1) compared to the rate
if radiation forces could be neglected.

An important question is, what fraction of the angular
momentum of matter accreting onto a rapidly rotating
neutron star is lost to radiation? Even if this fraction is
small, it will decrease the maximum rotation rate of neutron
star and may prevent emission of gravitational radiation
from neutron stars rotating near breakup; we will address
these and other questions related to fast rotation in a future

paper.
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APPENDIX A

EFFECTS CONTRIBUTING TO THE ANGULAR MOMENTUM LOSS RATE IN
SCHWARZSCHILD SPACETIME

From equation (3), the ¢-component of the relativistic equation of motion is

a?=f*/m,

where f? = oF?, F* = —(T"%u, + u®T"%u, uy) (see egs. [6] and [7]). In the Schwarzschild spacetime with u, = u’ = 0,

du?
a¢—7~+l"“’

The rate of change of angular momentum is
duy _ d) _
v~ dv

du®
r2

(A1)

du® 2
=T Tt (A2)
— + 2ruu’" = r?a® . (A3)

For particle motion in the ¢-r plane and radiation from a nonrotating star, the important nonzero components of the

radiation stress-energy tensor are T" = (1 —
F¢ = — T¢¢u¢ _

Fromuwu, = —1,wefinduj = r’[—1 + (1 — 2M/r)”

2MJr)~\T#, T =
ul (T} + 2T u,u, + T™u} + T%%u3) .

T = T% T = (1 — 2M/r)T%, and T* = (1/r*)T%%. Thus,

(A4)

u2 — (1 — 2M/r)u?]. Further manipulation of equation (A4) then yields

AN 2M 2M A 2M
F? = —T%u, + u?T% — u? ; 2 T8 4 2(1—— T" 1—22) 7l 5 + T —(1— T""" . (AS)
1—2M/r r Ju, r u; r u?

If the test particle at radius r has a total velocity § and moves at an angle lﬁ relative to the azimuthal direction as seen by a

local static observer, then v
have

= —f sin ¢ and u,/u, =

1

F= — 2, [ T + 28 sin y T# + (1 — B2 sin® )T + B2 sin® yT%] .

r¥(1 — 2M/r)
From equation (11),

T% = 27l(1 — cos ay) T# = nl sin? o, T7=

— o /(1 —2M/r) =

snl(1 —cos® ap),  and

B sin y/(1 — 2M/r). Since T*u, = u?T% we then

(A6)

T% = inl(cos® ay — 3 cos g + 2) .
(A7)

For a nonrotating spherical source of radius R in the Schwarzschild spacetime emitting radiation uniformly and isotropically
as seen by an observer on the surface of the source, the specific intensity depends only on the radius (see LM95) and is

(1—-2M/r) mM [L*
I(r) = = A8
O = T 2M)r? woR® \L7 (A8)
where Ly is defined in § 3. Collecting terms, and writing I = ugand 1 — E, = —u,, we have finally
1 dl M (1-2M/R) (¥
- — — = Al
o= /@ PO B s o 1) (%)
where
flo, ¥, B)=[8 — 9 cos « + cos® a + 3B sin Y sin® «(2 + B sin Y cos a)] . (A10)

Equation (13) can be derived similarly.
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Note that the angular factor f(a, ¥, ) is minimized for circular orbits (y = 0), so that for a given locally measured velocity
B, the characteristic angular momentum loss rate is greater for noncircular orbits than for circular orbits. However, this
correction is relatively small. For a particle with = 0.5 at the surface of a star of radius R = 6M, the angular factor fis 11 for
near-radial motion ( — ©/2) compared to 8 for purely azimuthal motion (f = 0). The factor fis 3 for circular motion around
a point source, so the loss rate is enhanced by as much as a factor of 8/3 for motion near the stellar surface. Our expression for
faty = Oisidentical to that derived by Guess (1962) for orbital motion in the flat-space, slow-particle motion approximation.
Guess attributed the factor 8/3 to a combination of Doppler shifts and aberration effects, implying that this enhancement
should also occur for a single scattering. However, our analysis shows that for a single scattering, the average enhancement
factor can be at most 4/3. The extra factor of 2 arises because, for a fixed flux or luminosity at infinity, the energy density (and
hence the number density of photons) at the surface of a source of radius R is twice that at radius R from a point source. The
reason is that photons from a point source are all traveling radially, whereas many of the photons from an extended source
are traveling obliquely to the radial direction so that for the same flux there are more photons. Thus, interactions happen
twice as often and each interaction removes, on average, 4/3 times as much angular momentum as for a point source.

The second factor that increases the loss rate and loss per scattenng compared to the losses for a Newtonian point source is
relativistic beaming. In Schwarzschild spacetune u?/(1 — 2M/r) = y%, as may be verified using the definitions of local radial
and azimuthal velocities and the identity u*u, —1 Relativistic beamlng increases both the loss rate and the angular
momentum lost in a single scattering by the same factor y?; for example, a particle moving in a circular orbit () = 0) in a
vacuum at the surface of a nonradiating star with radius R = 6M has B = 0.5, s0 y* = 4/3.

The last effect to enhance losses is the gravitational bending of light rays. A photon scattered by a particle at a finite radius r
is afterward deflected by the gravitational field, so that its impact parameter at infinity (and hence its specific angular
momentum) is greater than at r by one factor of the redshift, (1 — 2M/r)~ /2. Thus, for a fixed luminosity or photon energy at
infinity, the ratio of the angular momentum loss to the angular momentum of the particle (and thus the loss in a single
scattering) is larger by one factor of the redshift. By contrast, the loss rate is enhanced by two factors of the redshift, because
the scattering frequency is also increased by one redshift factor.

To summarize, the loss rate near the surface of a relativistic star is greater than the loss rate near a point source in the
Newtonian approximation by up to a factor ~ 5 (8/3 from the finite angular size of the star, 4/3 from relativistic beaming, and
~1.2-2 from two factors of the redshift), whereas the angular momentum loss per scattering is only greater by up to a factor
~2 (4/3 from the finite angular size of the star, 4/3 from relativistic beaming, and ~ 1.2-1.5 from one factor of the redshift).

APPENDIX B

ABSENCE OF FIRST-ORDER ROTATION EFFECTS

Under what circumstances are the radial component of the radiation flux and the diagonal components of the stress-energy
tensor at radius r in the equatorial plane unchanged to first order in the rotation rates of the gravitating mass and radiation
source? Here we show that if the emitted radiation is front-back symmetric with respect to the directions of motion of the
radiating matter as seen by a comoving local observer and the radiation source is axisymmetric, | then changing the direction
of rotation of both the gravitating mass and radiation source does not affect T#, T% T%, T"" or T%¢

First we show that if the ray defined by the angles (&, b) in the local orthonormal frame at radius r (see eq. [10]) propagating
in a spacetime with rotational parameter j originates from the stellar surface at (O[R], ¢[R]), then the ray with local angles
(@, —b) in a spacetime with rotational parameter —j originates at (O[R], —$[R]).

_From equation (10), holding 4 constant while changing the sign of b keeps o /ut and u"/u constant but changes the sign of
u"’/u The specific angular momentum of a photon is

j_ Y _ euy B :dﬁ u® ()

u,  dup+eluy  —eul +efut el — efut/ul)

(B1)

Since to first order eﬁ and ¢ are independent of j whereas ef oc j, equation (B1) shows that | - — when j > —j and b » —b.
To 0(j), the change in the angular position of a photon with radius is given by (Bardeen et al. 1972)

do _ 4 (q — 2 cot? 9)/2

N (7 ®2

and

dp  —jM + lcsc? 0 4 jM/(1 — 2M/r) B3)
r (V,JuD)'’? ’
where V, is defined in equation (56). Equations (B2) and (B3) show that when j > —j and [ - —1, 6 is unchanged whereas ¢
changes sign, so that (R) — 8(R) and ¢(R) - — ¢(R).
A reversal of this argument shows that the converse is also true: when 6(R) — 6(R), ¢(R) —» — ¢(R), and j — —j, the direction
of the ray as seen by an LNRF observer at r changcs from (@, b) to (@, —b). Thus, e.g., if the source is an axisymmetric ring at
some fixed 6, the angular extent of the ring in b is reversed by changing the sign of j, so that if the ring originally appeared to
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extend from b, to b,, after j — —j the ring will appear to extend from —b, to —b,. The range in d is unchanged, so if at a
given angle b, the ring originally extended from & to & + Aa, after j — —j the ring will extend from é to G + Ad at — b,.
Consider now the radial component of the radiation flux from an axisymmetric ring at constant 6 but varying ¢. We

suppose the thickness of the ring is small but finite. Let the apparent angular range in b be from b, to b,, and for a given b let
the range in a be from d(b) to a(b) + Ad(b). Then

" b2 (a(B)+Aa(b) . .
T"(orig) = J: f~ I(r, @, b) sin d cos adadb , (B4)
by Ja(b)

where the notation (orig) indicates that the gravitating mass and radiation source are rotating in their original directions,
which could be opposite to one another.

For rotation in the opposite directions, the signs of j and the velocity v of the radiating matter seen by an observer in the
LNRF at the stellar surface change; if the sign of j/v is unchanged, then from equation (60) the magnitude of the frequency
shift is unchanged. Thus, the transformations (j>0,v>0-(j<0,v<0)and (j<O0, v > 0)—=(j >0, v <0) leave the

magnitude of the frequency shift unchanged, whereas (j>0,v<0)>(j> 0, v> 0) does not. The radial component of the
radiation flux T"(rev) is

R —b1 [ad)+Aab) 5 5

Ti(rev) = f 5 f I, G, B) sin @ cos adads | (BS)
—b2 Jad)

Making the change b — — b and using a(b) = a(—b) gives

N by (atb)+ i) . -
T"(rev) = f J I(r, @, —b) sin a cos adadb , (B6)
b1 Jad)

so T¥(rev) = TH(orig) if I(r, &, B) = I(r, &, —b). 3 )

From equation (58), the @(j) term in the Doppler shift is proportional to v sin . Since both v and sin b change sign when
Jj— —jand v - —v, the Doppler shift has the same value after rotation as it did before. Similarly, from equation (59), the 0(j)
term in the LNRF frequency shift is proportional to J sin b, which also is unchanged by rotation. Thus, from equation (60),

Ir,a,b) IR, ¢,a[R], B[R]
I(r,a, —b) IR, 6, —¢, a[R], —b[R])’

where I(R, 0, ¢, a[R], l;[R]) is the specific intensity seen in the direction (a[R1, B[R]) by an observer in the LNRF at the
position (6, ¢) on the stellar surface. If the radiation, as seen by an observer comoving with the emitting surface, is back-front
symmetric about the (r, 6) plane, then I(R, 0, ¢,a[R], b[R]) = I(R, 6, —¢@,d[R], —b[R]) and hence T"(orig) = T"(rev). This
symmetry holds in part because n'n” = cos 4 is even in b (see €qs.[10] and [11]). Likewise, n®n? is even in b for o = t,r,0,or ¢,
so T** is unchanged by changing the sign of both j and p if the source is axisymmetric and emission is locally front-back
symmetric. By contrast, n'n® = sin dsin b is odd in b, so T changes sign under reversal of both rotations.

Because j and v are signed quantities, dependence of a quantity on odd orders of Jj and v implies a change in that quantity
when j - —jand v —» —v. Thus, if a quantity is unchanged when j — —j and v — —, it does not depend on odd orders of j
and v, and in particular does not have first-order corrections in j and v. The argument given here therefore proves that if a
source is axisymmetric and front-back symmetric, then T# ATf‘A, %, Ta", T$$, Tfa, and T™ do not depend on j and ¢ to first
order, whereas there are first-order terms in T, T, and T4,

(B7)
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