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SUMMARY

The X-ray spectra of neutron stars are expected to be determined by the opacities of
atoms with atomic number Z> 2 in strong magnetic fields. We calculate the energy
levels, wavefunctions and transition rates of hydrogen, helium, carbon, nitrogen and
silicon in the very strong (B>4.7 X 10°Z? G) magnetic fields expected in neutron
stars. The wavefunctions are represented in terms of Landau states, and are
calculated with a high-field multiconfigurational Hartree-Fock code. We compare our
results for hydrogen with previous work and use our wavefunctions to compute
bound-bound and bound-free oscillator strengths for heavier elements. The
accuracy of our method is sufficient for the applications we make of it in a companion
paper (Miller 1991), where we compute neutron star thermal X-ray spectra. The low
fluxes expected from such objects (< 107! erg cm~? s~ ! from thermal X-rays) imply
that the appropriate wavefunctions and energy levels need only be calculated with an
accuracy of a few per cent. There are other methods in the literature which give a
higher accuracy (which we do not need in the present context) for hydrogen.
However, unlike these other methods, our method can be readily extended, with
calibrated accuracy, to elements of higher Z, as we show in the present paper.

1 INTRODUCTION

The existence of sensitive, imaging X-ray satellites has made the detection of thermal flux from neutron stars a realistic
possibility. Recent research (see Tsuruta 1986 for a review) has indicated that the effective surface temperature of neutron stars
should remain above =105 K=10 eV for 10° yr, barring the presence of pion condensates or other exotic matter. The star
should remain a detectable X-ray source during that period. While white dwarfs have magnetic fields B small enough
(B<5x10% G) that energy levels may be computed by perturbation theory (Zeeman splittings) with errors of <2 per cent,
observed neutron stars typically have fields in the range of 10° to 5x 10'> G (Taylor & Stinebring 1986; Joss & Rappaport
1984), so that the magnetic interaction may no longer be treated as a perturbation, and atomic structure is drastically changed,
modifying the opacity. While the changes in the opacity will not change the total energy radiated (Hernquist 1985), they will
result in a redistribution of the emergent power among frequencies (see, e.g. Mihalas 1978). This redistribution affects the flux in
the bandpasses of different detectors differently, and may give rise to detectable spectral features. Work has been done (Romani
1987) on radiative transfer in neutron star atmospheres, but this work has used opacity tables computed for B=0.

A prerequisite to further work on predictions and interpretations of X-ray spectra of neutron stars is accurate atomic data for
atoms in strong magnetic fields. In recent years, much research has been done (Simola & Virtamo 1978; O’Connell 1979; Kara
& McDowell 1980; Wunner et al. 1981; Rosner et al. 1983; Rosner et al. 1984; Forster et al. 1984; Ruder et al. 1985; Wunner
1986; Wunner & Ruder 1987; Wunner, Geyer & Ruder 1987) on the properties of hydrogen in very large magnetic fields.
However, comparatively little has been done on helium or other elements, which could be important in determining the
spectrum. Current models of supernovae indicate that the mass cut should occur within the iron layer. However, it is possible
that significant amounts of nickel or other heavy elements could be produced by the shock wave from the supernova, and in the
event of an asymmetrical explosion, the neutron star could accrete large amounts of any of the elements in the fusion chain. An
optical depth of unity in X-rays occurs at a depth of only =1 cm, which at a density of 1 gcm~3is only =103 g =10-20 M,
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over the surface of the neutron star, so the very top layer of the atmosphere will dominate the opacity. Since the surface gravity is
so high, gravitational separation will be very rapid, on the order of ~1-100 s for a helium photosphere of typical temperature
and density (Alcock & Illarionov 1980), and the lightest element present will rise to the top. A similar situation occurs in white
dwarfs (Liebert 1980), where stars with virtually pure hydrogen and helium atmospheres have been detected. Another factor is
that if the column depth of, e.g., hydrogen becomes large enough, nuclear reactions may convert it to helium, and so on. For an
overview of these processes, see Shapiro & Teukolsky 1983 Chapter 3 Section 7.

The conclusion is that since the surface of observable neutron stars could have almost any composition (elements heavier than
helium being perhaps the most likely in isolated neutron stars), we should investigate many possibilities. Astrophysical
calculations ultimately need X-ray opacity tables similar to the zero-field tables in Saloman, Hubbell & Scofield 1988, but as a
function of B from 0 to 10'® Gauss. This paper is a first step in the production of such opacity tables. It is important to stress that
the only objects believed to have magnetic fields in the 10'°-10!3 G range are neutron stars, and that the thermal X-ray emission
from these objects has extremely low flux. Even the Crab pulsar, with a predicted surface temperature of = 10° K and a distance
of d21 kpc, would only be expected to produce <30 thermal photons per second observable by ROSAT (which has a
collecting area of = 1000 cm?), so detailed spectra will be difficult to establish. Furthermore, the magnetic field is expected to
have a large gradient over the surface of the star ( ~ factor of 2). As can be seen in detail in Sections 3 and 4, such a large change
in magnetic field can affect strongly the energies of spectral features; for example, the ground state binding energy of hydrogen
varies from roughly 160 eV at 10'?2 G to about 200 eV at 2 X 10'2 G. Another obstacle to detailed analysis of spectra is that our
knowledge of the neutron star equation of state is still fairly crude. Current equations of state predict surface gravitational
redshifts ranging between z=1.1 and 1.2, so there is a built-in uncertainty of = 10 per cent in photon energies. Since the most
optimistically envisaged X-ray satellites do not have energy resolutions exceeding a few per cent, it is unnecessary at this stage to
determine energies to many significant figures, and the accuracy of the energy calculations presented here (better than 5 per
cent) is more than adequate for the present purpose. Given sufficiently long integration time, it may be possible to determine
observationally oscillator strengths to high accuracy, but the multitude of theoretical uncertainties make accurate prediction
difficult. For the moment, about all that can be done is to get data for a first-pass calculation to see what transitions are
important, and for that purpose our computations (accurate to better than 20 per cent for oscillator strengths) are perfectly
acceptable. We use a multiconfigurational Hartree-Fock code as a general method for determining the energy levels and
wavefunctions of any atom in very high fields, and also compute the bound-bound and bound-free transition strengths for such
atoms. In Section 2, we discuss the physics of atoms in high magnetic fields and the Hartree-Fock method, and also derive the
bound-bound and bound—free cross sections in a high field. In Section 3, we describe the convergence tests of our program and
compare our results with previous results for hydrogen and helium. In Section 4 we present our new results for the energy levels
and transition probabilities for helium and carbon.

2 METHOD
2.1 Generation of the wavefunctions

In the following sections we will use the convention that the length scale will be the Landau scale

[n
o= e—;=2.5X10‘10B1"21/zcm, (1)

where B, = B/10!? G, and the magnetic field will be measured in terms of the reference field
By=—"——=47%10°G, (2)

which is the field at which the Coulomb and magnetic energies are equal for hydrogen.
The Hamiltonian of a neutral atom in a uniform magnetic field is

H=Hg+V,+V,

L 3)

1 e |’ « e 1
=2 pit- A +y— B-S,»—Zez Y=+e’ )
;i 2M c ; mc P F i<j by
where p, is the momentum of the ith electron; A is the vector potential of a constant magnetic field, A=3B X r; S is the spin; Z is
the atomic number; 7; is the position of the ith electron; r; is the separation between the ith and jth electrons; Hy is the single-
particle magnetic Hamiltonian; V,, is the electron-nucleus potential and V. is the electron—electron potential.
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Since we are dealing with very strong magnetic fields (B> Z2B,), a cylindrical expansion

W,(2,0,8)=2 fuml2) (0, §) (4)

will be used. The magnetic field is defined to be uniform and along the z axis, v, m and n are, respectively, the z, ¢ (azimuthal)
and p (radial) quantum numbers, and the ®,,,, are the Landau states

\/;! ( P )‘ml - p2/4p? |m|(102) - img¢
Qnm( ’ )= — € ° an P ) 5
O e B 2 ?

where L™ are the associated Laguerre polynomials. In this paper we will deal only with n =0 states, because n # 0 states have
much higher energy, on the order of the cyclotron energy #w,= fieB/Mc =~ 11.5 By, keV. Strictly speaking, this expansion is valid
only for B> Z2B,, but in practice (ROsner er al. 1984) accurate energy values may be generated for B/Z%B, = 1, though near the
critical field more terms (1> 0) need to be kept. At the critical field and below, a spherical expansion

W(r)=3 7 fir) Yin(6,9)

should be used, and the combination of the two regimes allows the structure of atoms to be calculated in arbitrary fields. For
additional comments on the validity of these methods, see Rosner ez al. 1984.

The technique that we have chosen for determining the wavefunctions in the Hartree-Fock method, which is equivalent to
solving the variational equation
g(cle%):Q )
ox \ (W|¥)

where  is the total wavefunction
x="¥|5),

| S,) is the spin wavefunction, and the wavefunction W is approximated by a one-particle Slater determinant.

In strong fields, the wavefunctions are approximately separable into components perpendicular to the B field (6, ¢) and the
component parallel to the field (Z), with the only unknowns being the one-dimensional functions f;,,,(z), so the Hartree-Fock
equations reduce to the one-dimensional coupled equations

5 (<w|H|W>)=O (7)

Ofoml2) \ (W|W)

For further details about the behaviour of the Hartree-Fock equations, see Froese Fischer 1977.

There has been a debate about whether a renormalization of the wavefunctions should be applied to compensate for
screening effects for B=0 and Z <55 (Pratt 1960; Pratt & Tseng 1972). This renormalization is done by replacing the nuclear
charge Z in the wavefunction with an effective charge Z, where Z ;= Z — S, and S is a screening parameter (e.g. S=0.3 for the
K shell, §=4.15 for the L shell). This procedure would most greatly affect the outer shells, and would typically alter the cross
section by less than 10 per cent. However, comparisons with experimental results (Saloman et al. 1988) indicate that the
unrenormalized wavefunctions give better agreement, so we do not attempt to correct for screening effects. Besides errors that
are due to truncation of the configuration space (which can be eliminated by using more powerful computers), most of the error
in zero-field Hartree-Fock calculations is caused by the symmetrization of the spatial wavefunction of electrons in a spin-singlet
state. In the full wavefunction, the electron—-electron repulsion causes a depletion of the wavefunction for small relative distances
(Coulomb hole); naive symmetrization of the orbitals causes the opposite effect. For electrons in a spin-triplet state, the
antisymmetrization of the spatial wavefunction creates a hole that imitates the Coulomb hole. In strong fields, the spins are all
aligned antiparallel to the field; all electron-pairs are in a spin-triplet state, and the Slater determinant reduces to a totally
antisymmetric spatial determinant. The error is therefore significantly smaller than the 1 per cent error associated with zero-field
calculations (Weissbluth 1978). In our program, the main source of untested error is the assumption that n = 0; for a comparison
with the multiterm expansion of Rdsner ez al., see Section 3.2.

In our calculations, we ignore effects associated with the finite mass of the nucleus. Inclusion of this adjustment introduces
small corrections to the strengths of interactions with Am=1 (see Section 3.2), but for the purpose of computing neutron star
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thermal spectra these corrections are insignificant. In the limit that the nucleus is infinitely massive, the expectation value of the
Hamiltonian is

E=(H)=(Hp)+(V,)+(V.), (8)

where

(Hg)=(H, >—J/IZJ|fm )Wdz  (V, >———ZJ 2)| frl2)? de

Z (JJ Dmm’(Z _Z/)l fmv(z)lzl fm'v’(zl)l2 _Emm'(z _Z/> fmv(z) fm’v’(zl) fr:'v'(z) f:,’(z’) dz dz,a (9)

‘o>|“’

with the nuclear, direct and exchange kernels

® 2 —p%2 _2m+1
Vm(z)=JLMpdp d¢=Je‘pdp
Jo7+z 2"mWp? +2

(¥ +p2 2m+1 12m 41
© o

Doz —z/)=J' £ dp do’
2

m+m w2
'

mim'(p—p') +(z~2)

—(p*+p'?)/2 m'+m+l_=ilm—m')g—g')
e e , dé d
E,nm'(Z”Z)=JJJJ (00 dp dp 9 ¢

2m+m'm!m’!J(p_p’)2+(Z_Z’)7 2n 27w

and we used the fact that for the n=0 orbitals, (H,)= —(H, ). The Hartree-Fock equation (6) for the ground-state orbitals are
equivalent to

SWIH|W)_  S(¥|%)
Ofmdz) " Ofmlz)’

(10)

where the Lagrange multipliers, (¢,,,), ensuring the orthogonality relations, are the single particle energies. It can be shown that
these equations are

n 4 ze e ¢
I:_mP_F Vm(z)+-loA_Km< ) fmv( )=; mV(z)’ <11)
where
Km(Z)E Z”J’Dmm’(z_z,)l fm’v' 12 dzl, va(Z)E Z' fm’v’(z)JEmm'(Z_z,> fr:’v’(zl> fmv(z') dZ/. (12)

The initial wavefunctions, taken from restricted variational studies (Flowers et al. 1977; Lee 1976), were of the form

fmyoczve_“mvhuﬁ. (13)

In this equation, the coefficients a,,,~ 1 (see Lee 1976 for a table of values), but the final solution is insensitive to wide variation
in the parameters. These wavefunctions are generated for all of the states of interest, then equation (11) is solved for the new
wavefunctions, which are orthonormalized, and the procedure is repeated until the total energy (8) converges. The ortho-
normalization property,

JJ'J’ lp:mv(z’ 0, ¢) lpn’m’v'(zy 12 ¢) 1% d,O d¢ dZ = 6nn’6mm’6w’9 (14>

is guaranteed for states of different n or m by the properties of the Landau function (5), while for states of different v the
Gram-Schmidt procedure is used.
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The program may be represented in algorithm form as follows.

i) Take a set of quantum numbers, {mv}, large enough to include those of all occupied states.
ii) Guess the wavefunctions, f, and guess which states are occupied.
iii) From (12) and the wavefunctions of the occupied states, obtain the integrals (K s I a)-

(iv) Calculate the total energy (8).

(v) Calculate the single particle energies by taking the scalar products of equation (11) with the wavefunctions f,,,. The Z
states with the lowest energy will be the occupied states.

(vi) With the kernels and the single-particle energies, solve (11) for the new wavefunctions. With K and J, the equations are
uncoupled and inhomogeneous; they are easily solved by the Green’s function method (Koonin 1986).

(vii) Orthonormalize the new wavefunctions.

(viii) Iterate (iii—vii) until the total energy converges.

(
(
(

This algorithm will produce the ground state of the atom; it is also possible to generate any excited state by specifying that
state as occupied.

In addition to the initial wavefunction, the program accepts as input the length of the integration box L (in units of 6) and the
number of integration points N.

The ground state orbitals are the Z states with the lowest energy, and as a general rule states with (m=0,...,Z—1;v= 0) will
be occupied. For example, for Bj,=1 and Z<12, there are no occupied states with ¥> 0, though for iron (Z=26), m=0
through m=5 and v=1 are all occupied. For B,,=5, and Z<19, v> 0 states are unoccupied, while for Z=26, m=0 and 1
with v =1 are occupied. We can understand this preference for v =0 states qualitatively by replacing the probability distribution
of the electrons with that of a long cylinder with radius 6 and length / (Ruderman 1971), so the energy is roughly

Pzt |1
Ezh———elog— (15)

and minimization with respect to [ yields

7~ ao/Zp A
=h Log(ao/zm]" el

for the ground state, where a, is the Bohr radius, a,=0.5 X 108 cm. For a state v> 0, the typical distance from the nucleus to
the electron is greater than [, so the binding energy is | E|< Ze?/l,. For a state with m>0, the dependence of E on p is
logarithmic, so the energy is almost unchanged and m>0 states have lower energy than v>0 states. Further details are
contained in Neuhauser (1986).

2.2 Transition strengths and cross sections

The radiative transitions of hydrogen have been treated in great detail in, e.g. Forster ez al. 1984, and a good discussion of the
fundamental quantum mechanics may be found in Clayton 1983. The bound-bound cross section as a function of frequency is

2

An’a
= Z (Cl) - wks)’ (20)

o(w) Mzwkx

(klexp(ig)c—"’ n~r) 7 gls)

where %w,, is the energy difference between the k and s states; s is the initial state; k is the final state; a is the fine structure
constant, a = 1/137; nis the unit vector in the propagation direction of the photon; 7 =p + (e/c) A} €is the polarization vector of
the photon, and . is the Lorentz profile,

I/2n

ZLlow-— = 21
o O =+ (T2F 2
where
2% wh,
r="—"% 22
3mc’ fis (22)

and f;, is the oscillator strength.
For the frequencies that dominate the opacities of cool neutron stars (T<106K), it is a good approximation to assume
exp|i(wy/c) n-r]= 1. For the hydrogen ground state at B/B,=1000, the frequency of a bound-bound transition is less than
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w=~250eV~13x10" cm~!, while the wavefunction has a length scale of r=156=17x10""cm, so that
expli(w,,/c) n-r]=e/%92) = 1, The dipole approximation will be worse for helium and carbon, since the frequencies involved are
higher, but even for carbon at B/B,= 1000, the exponent is only 0.05, so the dipole approximation is valid to within 5 per cent
over the entire range of parameters considered.

Substituting exp[i(w,,/c) n-r]=11in (20), using the identity

2 .
7 i
w=|— r|=- 23
[ZM ’] 7 (23)
and simplifying, we find that the integral of the cross section over the line width I" is

Jra(w)dw=47t2aw,q. > Kklr-gl|s)?y, (24)

i=+,-,z

where y; is the fraction of the light polarized in direction i.

To get an idea of the selection rules for polarization, we will look at the case of right circular polarization, ;=€ . Here we are
defining ‘right circular’ with respect to the magnetic field, not n. Thus, if the photon is propagating parallel to the field, the
convention is as usual, whereas if the two are antiparallel, the convention is opposite to the one normally used.

(m'v'| r‘e+|mV>=J I (25)
where
ig
I=J-£<I>0m(p,¢)¢§m'(p,¢)p dp d¢. (26)
2

Substituting in (5) and integrating, we find that
1= —\/Ed(m’+1—m),6, (27)

(6 is the Dirac delta) so that the right circular polarization gives transitions with Am= —1, Av=even. Similarly, the —(left
circular) polarization gives transitions with Am = + 1, Av=even and the z polarization has Am =0, Av=odd.
Therefore, the explicit expression for the bound-bound cross section is

2 2

J fmvﬁm+l)v’ dZ

+y_ L (et O €pinyy)(m+ 1)5°

0((())=4.7[2a(1) Z I:y+f(8mv+w—£(m—l)v’)mﬁ2 J'fmvﬁm—l)v’ dZ

mwy'

+y f(emv-,-w_smv')

Z

J' fmvfmv' zdz :|’ (28)

where ¢,,, is the energy of the mv orbital. The bound-free, or ionization, cross section is similar, except that the cross section is
An
olw)=4r%aw (k| r-g|s) NS (29)
)

where An is the number of eigenstates in a frequency interval Aw about the kinetic energy E, =#w — ¢,,,. For a particle in a one-
dimensional box of length L (appropriate for photon energies Aw < iw,, so the electron remains in the » =0 Landau state), we
have

An(E) =L—:£ (30)

or, using p=y2EM and dE =} dw, we get

ﬂ:l‘m (31)
Aw szE
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In this box the normalized free wavefunctions is g(p, z) /JZ, where g(p, z) is the (ree wavefunction for momentum p, determined
from the Schrodinger equation

2

h
- —V2g+Vg=Eg,
am > 8T ETES

where V is the atomic potential, E =p?/2M and g(p, z) = exp(ipz /#) at infinity. Therefore, the bound-free cross section becomes

2 2

T

o(w)=2maw 2. ®(w+emv)/£; [y, mp? J fmv8(P>2) dz +y-(m+1)ﬁ2H fmn8(P,2)dz J fm8(p,2) 2z dz ] (32)

mv

where O is the step function,
Ox)=0 for x<0,
=1 for x=0,

M is the mass of the electron, and E is the kinetic energy of the electron.

3 TESTS OF THE PROGRAM
3.1 Convergence

As indicated in Section 2.1, the program integrates using an integration box of length L and a number of grid points N. We have
tested the program to determine if the value of the energy converges in a small number of iterations; if in the limit of large N the
energy converges; and if in the limit of large L the energy converges. Fig. 1 shows that for hydrogen, given L and N, the energy
converges rapidly. In all of the cases tested, the energy varies by less than 0.01 eV after the third iteration. Next, in Fig. 2, the
dependence of final energy on N with L constant is shown. Because of systematic integration error, the magnitude of the energy
decreases with decreasing N for v=0 or 2, while for v=1 it increases with decreasing N. Finally, in Fig. 3, the energy as a
function of L with N constant is shown. Since for v # 0 the wavefunction can extend past L= 1000, there is significant error in
the v=1 and 2 energies, especially for high B. In all of the graphs, the ground state 000 is shown, since it is most perturbed by
the Coulomb attraction; the excited states converge even more rapidly.

3.2 Comparison with previous results

Using a highly accurate multiconfigurational Hartree-Fock code, Rosner et al. (1984) and Forster et al. (1984) produced
energies and transition strengths for hydrogen in arbitrary magnetic fields. The difference between the calculations in the above
papers and those in the present one is that while the former considered mixing of states with n> 0, we restricted 7 to be 0. We did
this in the interest of simplicity, as the inclusion of 7 # 0 states would considerably increase the difficulty of evaluating equation
(9) and prevents us from studying the astrophysically interesting elements with Z> 2. More accurate computations will, however,
have to take the mixing into account. Liu & Starace (1987) produced upper and lower bounds on the energy levels of hydrogen
using a single-configuration method. While this is an excellent method for estimating the energies of hydrogenic elements, it is
unfortunately difficult to generalize to Z> 1 because of the effects of electron—electron interactions. We emphasize that results
for hydrogen presented below were generated only for comparison purposes, to give an idea of the magnitude of errors expected
in our calculations for elements with Z> 1. Thus, our calculations for hydrogen are not as accurate as the most accurate previous
work, and for detailed computations involving hydrogen, the work of Rosner et al. and Forster et al. is to be preferred. Table 1
shows the comparison between the high-field energy values of Rosner ez al. 1984 and the values found in this paper. The largest
difference in E, 3.4 per cent, occurs for the 000 state at B/B,= 10, as might be expected, since the lower the field and the more
centrally condensed about the spherical nuclear potential the state, the less accurate is the (cylindrical) assumption that n=0. In
Table M1 (MN 253/1), the first table in the microfiche section t, we give the oscillator strengths for different transitions and
compare them to the values given in Forster et al. 1984. The accuracy of the strengths of the transitions in which Am =1 is less
than the accuracy of those for which Am =0, but even for Am =1 there are only two transitions for which the discrepancy in A
is greater than 20 per cent. As was shown in Wunner, Ruder & Herold 1980, transitions with Am =1 will be affected by finite
proton mass, which affects the energy levels of states with different m. However, since this effect is proportional to the cyclotron
frequency of the nucleus, it will be less important for helium and carbon. In Table 2, our results for the ground-state binding

1This defines the convention we follow throughout this paper: Tables Mn (n=1,2,...,20) are to be found in the microfiche section. All other
tables are included here in the main body of the paper. Table 5 in the main paper gives a summary of the contents of the microfiche tables.
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Figure 1. Convergence of hydrogen ground-state energy as a function of the number of iterations of the Hartree-Fock algorithm. The number
of grid points is N =2048, and the integration box extends out to L= 800,6. The magnetic field is in units of B,=4.7 X 10° G.

energies of helium in fields ranging from 2 X 10! to 5 x 10'® G are compared with those of Proschel ez al. (1982). Here again we
see a close correspondence, with by far the greatest difference (1.9 per cent) coming at B=5x 10!3 G. The reason for this
difference is that [as we can see from{16) combined with (1)], the higher B is, the greater /is in units of 4, so that the contribution
from the ends of the grid becomes more important. Table M2 (MN 253/1) shows the bound—free oscillator strengths A from the
ground state of hydrogen. It is apparent that the higher the field, the more important are bound—free transitions. This is because
as the field increases, the ground-state energy decreases logarithmically, while the energies of the other states stay roughly
constant, so that the bound-bound transition energies become more nearly equal to each other and to the ionization energy, and
as a result they become closer in transition strength as well. Therefore, transitions to highly excited states and bound-free

transitions become relatively more important. Another test is that the oscillator strengths should obey the Thomas—Rieche-
Kuhn sum rule. That is from a given initial state s of an electron,

2 fi=1, (36),

where the sum is over all final states. Therefore, for an atom with Z electrons, the sum of the oscillator strengths of one-electron
transitions will be Z. In Table M3 (MN 253/1) we list the sum of the bound-free and the first few bound-bound oscillator
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Figure 2. Final energy (after five iterations) of hydrogen ground state, with the number of grid points N varying and the size of the integration
box held constant at 4006. The magnetic field is in units of B,=4.7 X 10° G.
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strengths for hydrogen as a function of magnetic field. Clearly, while individual transition strengths to highly excited states might
be small, their contribution as a whole is important, especially for high fields.

3.3 Error analysis for Z> 1

We find empirically that most of the differences between our computations for hydrogen and helium and previous adiabatic
calculations can be removed by increasing the resolution and size of the grid. A determination of the scaling of these two types of
error with Z will allow us to predict the errors in helium, carbon, etc. from those in hydrogen. The errors that are due to grid

resolution can be estimated as follows. The integrations in (9) can be thought of as performed using Simpson’s rule, so that the
error in an integral of the form

Ja h(z) dz,
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Table 1. Energies for hydrogen in several magnetic fields, in units of eV. The states
are listed by their m and v quantum numbers, with #=0 assumed. The energies in
parentheses are from the much more accurate tables of Rosner et al. and are to be
preferred over ours for calculations requiring great precision. Our calculations are,
however, more than accurate enough for the computation of neutron star thermal
spectra. The number of grid points is N=2048, and the integration box extends out to

L=800p.
B/By
my 10 20 30 50 100 200 500 1000
00 58.2 74.3 85.5 1015 127.2 157.9 207.2 251.9
(60.26)  (76.19)  (87.18)  (103.0)  (1286)  (159.2)  (208.4)  (253.1)
01 11.24 11.93 12.27 12.61 12.96 13.18 13.34 13.35
(11.25)  (11.93)  (1227)  (1261)  (12.96) (13.21)  (13.40)  (13.48)
02 6.03 6.44 6.66 6.93 7.28 759 7.93 8.12
(6.09) (6.47) (6.70) (6.96)  (7.32)  (7.64) (8.05) (8.32)
10 39.5 51.3 59.5 71.4 90.8 1145 153.3 189.0
(39.7) (51.6) (59.8) (TL7)  (91.0)  (1147)  (153.4)  (189.1)
11 10.23 1111 11.56 12.04 12.55 12.91 13.18 13.26
(1023)  (11.12)  (11.56) (1205  (12.56)  (12.93)  (13.25)  (13.39)
12 5.39 5.83 6.07 6.37 6.74 7.09 7.48 7.69

(541)  (5.84) (6.09) (639)  (6.77) (7.14) (7.59)  (7.90)
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Table 2. Ground state energies
for helium. The values in paren-
theses are from Proschel et al.
1982. The number of grid points
is N=1024, and the integration
box extends out to L=8004. The
magnetic field is measured in
Gauss, and the energy is given in

electron volts.

B E

2 x 1010 137.42 (137.61)
5 x 101° 196.47 (196.74)
1x 101! 255.23 (255.59)
2 x 101! 328.97 (329.45)
5 x 1011 454.28 (455.05)
1x 1012 575.14 (575.30)
2 x 1012 719.27 (721.04)
5 x 1012 955.74 (958.80)
1x 103 1173.6 (1177.5)
2 x 1013 1433.0 (1433.4)
5 x 1013 1870.1 (1834.8)

with N steps, is

5 (b=

h(E),

where & is some value between a and b. In an atom with Z> 1, most of the error in energy will come from computing the energy
of the innermost electron, as for this electron the Coulomb force has greater effect and consequently, the wave function is most
concentrated at the origin and the effective grid resolution lowest. For this electron, the fourth derivative of the function A(z) is
of order

h(&)
(z/6)"

evaluated at a characteristic value of z, z= [, where [/ is given by (16). Therefore, the error depends only on the ratio //3, not Z.
Since for atomic number Z at magnetic field B this ratio is equal to that for hydrogen at magnetic field B/Z?, we may estimate the
error for higher atoms from the error for hydrogen at corresponding values of B /Z2. For instance, for hydrogen at 2.35 X 10!! G,
th ground-state energy estimate is 100.1 eV with 1024 grid points and an integration box of length 8006. With 2048 grid points
and the same integration box, the estimate is 101.5eV, for a difference of 1.4 per cent. For helium at
2.35% 10! x22=9.4x10'! G, the correspoding difference is 5.4 eV/561.4 eV, or about 1.0 per cent. As another example,
hydrogen at 1.41 x 10'"' G has a difference of 0.4 eV out of a total of 85.5 eV (or about 0.5 per cent) between N=20438,
L=280006 and N=4096, L=8000. Carbon at 1.41 X 10!' X 62=4.7 x 10'2 G has a difference of 10 eV/1712 eV=0.6 per cent
between calculations on those same grids. For excited states, the wavefunction is not as concentrated at the origin, so that it is not
as important to have a finely spaced grid. In addition, for a neutral atom, excited states are influenced by an effective charge of
Z.+=1 (because they are far away from the nucleus), so that excited state errors are roughly the same as the errors for the
equivalent hydrogen states at the same magnetic field. We conclude that the technique of scaling from hydrogen allows us to
make accurate estimates of the errors that are due to grid resolution for atoms with Z> 1. Exactly the same argument may be -
applied to transition probabilities.

The magnitude of the second type of error, truncation of the integration box, may be estimated from equation (9) by noting
that the size of the potential terms (which dominate over the kinetic term) is proportional to | f,,,(z)|>. We find from experience
that for states with v =0, it is necessary to extend the integration to L= 1006 for an accuracy of 0.1 per cent, while for excited
states (v>0), L=8004 may be required. This can necessitate a compromise, as in carbon in the (00, 10, 20, 30, 40, 51) state,
where it is necessary to have both an extended integration box and a fine grid at the origin. Perhaps in future calculations an
adaptive step size may take care of this problem.

The adiabatic calculations are exact only in the B~ o limit, so it is also important to estimate the error that is due to assuming
that n=0. This error is related to the ratio of Coulomb force to magnetic force, so that we may estimate the correction by
comparing an atom with Z> 1 at magnetic field B to the exact calculations of Rosner et al. for hydrogen at a field strength of B/
Z2. We have placed error estimates based on the above effects in the tables for helium and carbon. In general, the integration box
is large enough that truncation errors contribute a negligible amount to the total error, while below B/Z?B, =50, non-adiabatic
effects dominate and above B /Z2B,, = 50, grid resolution errors are the most important.
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Table 3. Energy values for helium. The magnitude of the total energy is listed, as
well as the energies of the individual orbitals, where E1 is the energy of the first
orbital listed and E2 is the energy of the second orbital. Energies are given in
electron volts. The estimated errors are in brackets, and are measured in eV. The
number of grid points is N=1024, and the integration box extends out to

L=2800p.

B/By myvy, maly Eot E, E,

50 00,10 343.0 [20] 173.4 [10] 95.69 [0.5]
00,11 258.8 [16] 225.7 [14] 11.40 [0.01]
00,12 254.1 [15] 236.0 [14] 6.64 0.01]
01,10 183.7 [0.9] 12.19 [0.01] 147.8 [0.7]
02,10 178.8 [0.9] 7.26 [0.01] 158.8 [0.8]
00,01 260.9 [16] 225.1 [14] 13.49 [0.01]
00,02 255.1 [15] 235.0 [14] 7,65 [0.01]
10,11 184.9 [1.0] 150.8 [0.8] 13.40 [0.01]
10,12 178.6 (0.9] 160.4 [0.8] 7.06 [0.01]

200 00,10 556.0 [16] 274.7 (8] 156.2 [0.6]
00,11 412.2 [12) 376.8 [11] 11.83 [0.01]
00,12 407.8 [13] 387.3 [12] 7.39 [0.01]
01,10 297.0 [1] 11.80 [0.01] 261.1 [1]
02,10 203.1 [1] 7.92 [0.01] 2710 [1]
00,01 4137 [12] 377.1 1] 13.34 [0.01]
00,02 4088 [13] 386.5 [12] 8.41 [0.01]
10,11 298.6 [1] 262.6 [1] 13.39 [0.01]
10,12 293.1 [1] 2725 (1] 7.87 [0.01])

1000 00,10 931.2 [19] 4473 (9] 264.5 [0.5]
00,11 680.4 [14] 643.9 [13] 11.97 [0.01]
00,12 676.5 [14] 653.6 [13] 8.04 [0.01]
01,10 503.5 [1.0] 11.65 [0.01] 467.6 [0.9]
02,10 500.4 [1.0] 851 [0.01] 476.1 [0.9]
00,01 681.5 [14] 644.7 [13] 13.08 [0.01]
00,02 677.5 [14] 653.0 [13] 9.05 [0.01]
1011 504.9 [10] 468.5 [9] 13.00 (0.01]
10,12 500.5 [11] 4774 10] 8.60(0.01]

4 RESULTS

The binding energies for a variety of states of helium in several field strengths are presented in Table 3. Also listed are the
binding energies for the first and second orbitals. It can be seen that while the v =0 orbitals of hydrogen and helium are quite
different in energy, the binding energies of the excited states are asymptotically equal (this is also true for the non-magnetic case,
since the farther the electron is from the nucleus, the more the nucleus and inner Z—1 electrons look like a point charge of
Z=1). Fig. 4 also illustrates this; when the state is tightly bound, the wavefunctions of hydrogen and helium differ significantly
near the nucleus, while for loosely bound orbitals the wavefunctions are essentially identical. Table M4 (MN 253/1) gives the
oscillator strengths from the helium ground state to several excited states. It can be seen that as with hydrogen, transitions to
highly excited states become relatively more important for higher B. In Table 4 we give the binding energies of orbitals for
carbon in magnetic fields of B=200B,, B=500B, and B=1000B,. In each case the ground-state energy of the whole atom is
listed, along with the binding energies of various states. For the excited (v # 0) states, all electrons other than the excited electron
are assumed to be in their ground states. Again we see (Fig. 5) that while for the ground state the binding energies of carbon and
hydrogen orbitals are radically different, for excited states they are very close. In Table M5 (MN 253/1) bound-bound oscillator
strengths are listed, and in Table M6 (MN 253/1) bound-free oscillator strengths are given. These tables demonstrate that while
bound-free transitions become weaker with increased field, the relative importance of the ionization process increases. In order
to estimate the magnitude of errors in these computations, we calculated a few of the energies and oscillator strengths for helium
and carbon with greater accuracy (i.e., more integration points). The result was that none of the energies changed by more than
~ 1 per cent, and none of the oscillator strengths changed by more than ~ 2 per cent.

In Tables M7 through M20 (MN 253/1), we give the energies and oscillator strengths of various ions of hydrogen, helium, car-
bon, nitrogen and silicon. To get a better quantitative idea of the magnitude of errors in these calculations, in the first part of
Table M7 (MN 253/1) we compare our results for the energies of the ground state and the first excited state of hydrogen-like
ions with the results of Rosner et al., scaled appropriately. This scaling is given by

Ey(B)=ZEy(B|Z?), (37)

where E,(B) is the energy of the hydrogenic atom with atomic number Z at magnetic field B and Eyy(B/Z?) is the energy of
hydrogen at magnetic field B/Z? (Rosner et al. 1984).In all cases the ground-state energies agree to within <10 per cent, and
the excited-state energies agree within <1 per cent. As emphasized in the introduction, this accuracy is more than adequate for
use in model atmosphere calculations for neutron stars, because the input parameters such as magnetic field and surface
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© NU=0

Figure 4. (a) Comparison of the z component of the wavefunction, f,,,(z), for hydrogen, helium and carbon in a magnetic field of
B=200B,=9.4x10"" G. The solid line represents hydrogen, the short dashes represent helium, and the long dashes represent carbon. The
graphs are labelled with the z quantum number, v. (b) Comparison of the z component of the wavefunction, fom(2), for hydrogen, helium and
carbon in a magnetic field of B=500B, =2.35 X 10'2 G. The solid line represents hydrogen, the short dashes represent helium, and the long
dashes represent carbon. The graphs are labelled with the z quantum number, v. (c) Comparison of the z component of the wavefunction,
f.n(2), for hydrogen, helium and carbon in a magnetic field of B=1000B,=4.7 X 10'? G. The solid line represents hydrogen, the short dashes
represent helium, and the long dashes represent carbon. The graphs are labelled with the z quantum number, ».

temperature are more than 10 per cent uncertain. In the second part of Table M7 (MN 253/1) we give the values of the
bound-free oscillator strengths from the ground states of hydrogenic ions and compare them with the extrapolation of our
calculations for hydrogen. From Rosner et al. (1984) this scaling is

f(B,Z2)=Z°f(B|Z%1). (38)

Table M7 (MN 253/1) shows that the scaled oscillator strengths and directly computed oscillator strengths are consistent to
within 20 per cent. As with the energies, this error is acceptable because it is overwhelmed by observational uncertainties and
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Figure 5. Energy levels and sample allowed transitions of carbon in a B=200B,=9.4 X 10'! G magnetic field. In this diagram, m and v are
taken to have the same meaning as in hydrogen, and where an excited state is drawn it is assumed that the other electrons are in their ground
state (i.e., v=0). The selection rule for transitions is that Am + Av must be odd.

Table 4. Energies for carbon. The magnetic field is measured in units of
B,=4.7x10° G, and when an excited state is listed, it is assumed that the other
electrons are in their ground state (i.e., ¥=0). The number of grid points is
N=1024, and the integration box extends out to L= 80020, except for the ground
state, which has N=1512 and L=1004. Energies are given in electron volts. The
estimated errors are in brackets, and are measured in eV.

B/B, = 200

ground 4087.2

m v=0 v=1 v=2 v=3

0 1011 [35] 11.522 [0.01] 8.047 [0.01] 3.101 [0.01]
1 499 [4] 10.575 [0.01] 7.652 [0.01] 2.945 [0.01]
2 331 (1] 10.361 [0.01] 7.414 [0.01] 2.907 [0.01]
3 247 (1] 10.316 [0.01} 7.236 [0.01] 2.897 [0.01]
4 193 [1] 10.290 [0.01] 7.074 [0.01] 2.891 [0.01]
5 144 [1) 10.089 [0.01] 6.858 [0.01] 2.854 [0.01]
B/B, = 500

ground 5783.7

m rv=0 v=1 v=2 v=3

0 1373 [40] 9.952 [0.01] 8.348 [0.01] 2.695 [0.01]
1 693 [3] 9.875 [0.01] 8.054 [0.01] 2.945 [0.01]
2 466 [1] 9.936 [0.01] 7.858 [0.01] 2.691 [0.01]
3 350 [1] 10.036 [0.01) 7.705 [0.01] 2.707 [0.01]
4 275 (1) 10.129 [0.01] 7.562 [0.01] 2.721 [0.01]
5 208 [1] 10.099 [0.01] 7.363 [0.01] 2.715 [0.01]
B/Bo = 1000

ground 7448.4

m v=0 v=1 v=2 v=3

0 1712 [35] 9.741 [0.01] 8.593 [0.01] 2.508 [0.01]
1 880 [3] 9.783 [0.01] 8.335 [0.01] 2.517 [0.01]
2 597 [1] 9.885 [0.01] 8.115 [0.01] 2.533 [0.01]
3 452 [1] 10.005 [0.01] 8.010 [0.01] 2.552 [0.01]
4 357 [1] 10.119 {0.01] 7.873 [0.01] 2.569 [0.01]
5 272 [1] 10.147 [0.01] 7.684 [0.01] 2.573 [0.01]

errors in the input parameters. In Tables M8 through M20 (MN 253/1), we present our results for ions with Z> 1. In these
tables, it is understood that the energy or oscillator strength given for an electron in a state (mv) is the energy or oscillator
strength that that electron has when all other electrons are in their ground state.

These values are a step toward the construction of realistic model atmospheres for neutron stars. As we have stressed, the
inevitable imprecision associated with observations of neutron star thermal spectra renders superfluous greater accuracy than is
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Table 5. Contents of microfiche tables. In the tables all energies are in eV, and the reference magnetic field is B,=4.7 X 10° G.

Table M1. Oscillator strengths for hydrogen. The values in parentheses are from Forster et al. 1984. In the columns, the initial state is on the
left and the final state is on the right.

Table M2. Bound-free oscillator strengths, f;, for hydrogen.

Table M3. Sum of oscillator strengths, X f, for hydrogen. This table lists the sum of the transition strengths from the ground state, 00, to the
excited states 01, 03, 10, 12 and the bound-free oscillator strength.

Table Md4. Oscillator strengths for helium. In each case, the transition is from the ground state (00, 10) to the state listed. The estimated errors
are in brackets.

Table M5. Bound-bound oscillator strengths for carbon. All transitions have their m value listed in Column 1, and the estimated errors are in
brackets.

Table M6. Bound-free oscillator strengths for carbon.

Table M7. Binding energies and bound-free oscillator strengths for hydrogenic ions. The energies in parentheses are the extrapolated values
of Rosner et al. 1984, and the oscillator strengths in parentheses are extrapolated from those of hydrogen as described in the text.

Tables M8-M20 list energies and bound-free oscillator strengths for atoms of atomic number Z in states with m =0 to z — 1, where z is the
number of electrons, and v=0, 1 for:

Table M8. Helium-like ions of Z=2,6, 7, 14 for B/B,=200, 500, 1000.
Table M9. Lithium-like ions of Z=6, 7, 14 for B/B,=200, 500, 1000.
Table M10. Beryllium-like ions of Z=6, 7, 14 for B/B,=200, 500, 1000.
Table M11. Boron-like ions of Z=6, 7, 14 for B/B,=200, 500, 1000.
Table M12. Carbon-like ions of Z=6, 7, 14 for B/B,=200, 500, 1000.
Table M13. Nitrogen for B/B,=200, 500, 1000 and nitrogen-like silicon (Z = 14) for B/B,=1000.
Table M14. Oxygen-like silicon for B/B,=1000.

Table M15. Fluorine-like silicon for B/B,, =1000.

Table M16. Neon-like silicon for B/B,=1000.

Table M17. Sodium-like silicon for B/B,=1000.

Table M18. Magnesium-like silicon for B/B,=1000.

Table M19. Aluminum-like silicon for B/B,=1000.

Table M20. Neutral silicon for B/B,=1000.

reported in this paper. Using the techniques in this paper, we have constructed opacity tables with various temperatures and
surface compositions, and following Romani (1987) we have used (e.g. Mihalas 1978) techniques to calculate model
atmospheres and spectra of emerging radiation. These computations are reported in a subsequent paper. We think that the accu-
racy of these calculations will be sufficient to make possible, for the first time, a reliable deduction of such essential parameters
of neutron stars as the magnetic field, the surface temperature and the surface composition from the results of X-ray observa-
tions of these stars.
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In the tables all energies are in eV, and the reference magnetic field is By =

4.7 x 109G.

Table M1. Oscillator strengths for hydrogen. The values in parentheses are
from Forster et al. 1984. In the columns, the initial state is on the left and the final

state is on the right.
Table M2. Bound-free oscillator strengths, fi,¢, for hydrogen.

Table M3. Sum of oscillator strengths, Y f, for hydrogen. This table lists the
sum of the transition strengths from the ground state, 00, to the excited states 01,

03, 10, 12 and the bound-free oscillator strength.

Table M4. Oscillator strengths for helium. In each case, the transition is from

the ground state (00,10) to the state listed. The estimated errors are in brackets.

Table M5. Bound-bound oscillator strengths for carbon. All transitions have

their m-value listed in Column 1, and the estimated errors are in brackets.
@

Table M6. Bound-free oscillator strengths for carbon.

Table M7. Binding energies and bound-free oscillator strengths for hydrogenic
ions. The energies in parentheses are the extrapolated values of Rosner et al. 1984,
and the oscillator strengths in parentheses are extrapolated from those of hydrogen

as describea in the text.
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Tables M8-M20 list energies and bound-free oscillator strengths for atoms of

atomic number Z in states with m = 0 to z — 1, where z is the number of electrons,

and v = 0,1 for:

Table M8:helium-like ions of Z = 2,6,7, 14 for B/ By = 200, 500, 1000.

Table M9:lithium-like ions of Z = 6,7, 14 for B/ By = 200, 500, 1000.

Table M10:beryllium-like ions of Z = 6,7, 14 for B/ By = 200, 500, 1000.
Table M11:boron-like ions of Z = 6,7, 14 for B/ By = 200, 500, 1000.

Table M12:carbon-like ions of Z = 6,7, 14 for B/Bg = 200, 500, 1000.

Table M13:nitrogen for B/ By = 200,500, 1000 and nitrogen-like silicon (Z =

14) for B/By=1000.

Table M14:oxygen-like silicon for B/ By = 1000.
Table M15:fluorine-like silicon for B/ By = 1000.
Tabie M16:neon-like silicon for B/By = 1000.
Table M17:sodium-like syc;n for B/Bg = 1000.
Table M18:magnesiumi-like silicon for B/By = 1000.
Table M 19:aluminum-like silicon for B/By = 1000.
Table M20:neutral silicon for B/By = 1000.
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B/ Rq
10

20

30

50
100
200
500
1000

00 — 01
0.553 (0.560)
0.488 (0.499)
0.449 (0.461)
0.402 (0.413)
0.340 (0.351)
0.284 (0.293)
0.219 (0.227)
0.179 (0.186)

Table M1

01 — 02

1.426 (1.477)
1.387 (1.435)
1.365 (1.409)
1.331 (1.376)
1.284 (1.327)
1.234 (1.274)
1.173 (1.201)
1.126 (1.144)

10— 00 12 — 00

6.706(—2) (6.876(~2)) 8.757(—4) (8.206(—4))
4.137(~2) (4.328(—2)) 4.132(—4) (4.010(—4))
3.123(—2) (3.284(~2)) 2.645(—4) (2.604(—4))
2.174(—2) (2.317(—2)) 1.491(—4) (1.496(—4))
1.318(—2) (1.444(—2)) 6.790(—5) (6.949(-5))
7.871(~3) (9.062(~3)) 3.052(—5) (3.196(—5))
3.919(~3) (5.055(—3)) 1.047(=5) (1.142(—5))
2.290(—3) (3.398(~3)) 4.613(—6) (5.295(~6))
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Table M2

fot
0.150

0.184
0.199
0.224
0.264
0.293
0.341
©0.374
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Table M3

2 /S
0.770

0.673
0.679
0.648
0.617
0.585
0.564
0.555
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Table M4
B/Bo 01,10 00,11 0310 00137 00,02 10,12
50 0.206[5(-3)] 0.381[1(-2)] 2.74(-2)[5(-4)1.27(-2)[8(-4)B.56(-4)[2(-5)]1.36(-3)[1(-4)]
200 0.113(3(-3)] 0.235[6(-3)] 1.51(-2)[4(-4)R.80(-2)([7(-4)]L.66(-4)[4(-6)R.94(-4)[1(-6)]
1000 5.58(-2)[2(-3)D.125[5(-3)]  1.07(-2)[3(-4)]1.99(-2)[6(-4)R.42(-5)[1(-6)}4.84(-5)[3(-6)]
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B/Bo = 200

ow,&wm»—-og

B/Bo = 500

CJ‘»&C»:M’-—‘OS

B/Bg = 1000

Ul-t‘awh:‘v-—-os

Table M5

m0 — ml
3.969(-2)[1(-3)]
5.672(-2)[2(-3)]
7.996(-2)[2(-3)]
0.10893[3(-3)]
0.14450(3(-3)]
0.19306[5(-3)]

mQ — ml
1.108(-2)[2(-

2.307(-2) [4(
3.804(-2)[8(-
5.646(-2)[1(-
7.943(-2)[2(-
0.11250{2(-3)]

4)]
4)]
4)]
3)]
3]

mQ —- ml
5.71(-3)[2(-4)]
1.353(-2)[3
2.362(-2
3.619(-

(-4)]
)[6(-4)]
2)[9(-4)]

5. 205( 2)[1(-3)]
(-2)[2(-3)]

m0Q — m3
6.19(-3)(2(-4)]
9.16(-3)[3(-4)]
1.283(-2)[4(-4)]
1.716(-2)[6(-4)]
2.216(-2)[7(-4)]
2.817(-2)[9(-4)]

m( — m3

1.79(-3)[6(-5)]
3.68(-3)[1(-4)]
5.97(-3)[2(-4)]
8. 68( 3)[3(-4)]

1.191(-2)[4(-4)]
1.622(-2)[6(-4)]

mQ — m3
8.9(-4)[4(-5)]
2.08(-3)[1(-4)]
3.56(- 3)[2( 4)]
5.36(-3)[3(-4)]
7.55(-3)[4(-4)]
1.061(-2)[5(-4)]

ml — m2

0.94295[0.03]
0.94519{0.03]
1.01724[0.03]
1.09588(0.03]
1.15936[0.04]
1.17476[0.04]

ml — m2

0.52859[0.02]
0.62992(0.02]
0.73442[0.02]
0.83148[0.03]
0.91552[0.03]
0.97148[0.03]

ml — m2

0.37876{0.01]
0.49172[0.02]
0.59544[0.02]
0.69025(0.02]
0.77605[0.03]
0.84587[0.03)
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Table M6
B/Bg = 200
my A
00 0.485
10 0.463
20 0.453
30 0.447
40 0.4g1
50 0.478
B/By = 500
my A
00 0.429
10 0.419
20 0.423
30 0.427
40 0.431
50 0.411
B/By = 1000
my A
00 0.399
10 0.400
20 0.399
30 0.397
40 0.403
50 0.405
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Table M7

Encrgics

B/B0=200
v=>0
158(159)
408(412)
1653(1773)
2050(2162)

B/RBR0=500
vr==0
208(208)
546(545)
2313(2393)
2871(2968)

R/R0=1000

ODOO3

cCooog

v=20
252(253)
876(670)
2850(3051)
3669(3754)
8714(9367)

Osecillator strengths

RB/B0=200
m v=>0
0 0.28(0.29)
0 0.19(0.22)
0 0.10
0 0.1

RB/B0=500

m v=>0

0 0.33(0.34)
0 0.25(0.27)
0 0.13(0.16)
0 0.13(0.15)

B/RB0=1000

m v=20

0 0.37(0.37)
0 0.30(0.30)
0 0.17(0.20)
0 0.14(0.18)
0 0.03

v=1
13(13)
52(50)
382(378)
496(494)

v=1
13(13)
52(52)
419(415)
552(552)

v=1
13(13)
53(53)
439(439)
586(535)
2060(2038)
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~3
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Energies

m v=90
0 271

1 156

0 1500
1 962

0 1870
1 1194
Energies

m v=20
0 365

1 212
0 2060
1 1366
0 2622
1 1701
Energies

m v =
0 447

1 265
0 2580
1 1300
0 3363
1 2202
0 8312
1 3570

Table M8
B/B0=200
Oscillator strengths
v=1 v=_0
12 0.49
12 0.37
290 0.12
246 0.09
380 0.13
338 0.09
B/B0=500
Oscillator strengths
v=1 v=20
12 0.47
13 0.37
290 0.20
275 0.12
420 0.16
382 g.12
B/B0=1000
Oscillator strengths
v=1 v=2_0
12 0.55
14 0.45
310 0.21
240 0.15
460 0.17
408 0.14
1200 0.03
1601 0.06
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Z
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Energies

m v=20
0 1335
1 838
2 637
0 1686
1 1073
2 816
Energies

m v=_0
0 1949
1 1182
2 509
0 2374
1 1517
2 1170
Energies

m V=
0 2400
1 1500
2 1150
0 3034
1 1954
2 1523
0 8022
1 5225
2 4200

Table M9

B/B0=200

v=1
200
170
157
290
260
232

B/B0=500

vr=>0
200
180
173
290
280
261

B/B0=1000

v=1
200
1890
180
310
290
278
1650
1350
1298

Oscillator strengths

v=>0
0.15
0.11
0.09
0.16
0.11
0.08

Oscillator strengths

v=>0
0.23
0.20
0.18
0.19
0.15
0.12

Oscillator strengths

v=>0
0.25
0.22
0.19
0.20
0.17
0.15
0.05
0.06
0.06
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ez
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N

14

Energies

vr=20
1287
715
534
425
1568
939
713
574-

o.:w»—-oww»—og

Energies

v=20
1637
1003
765
609
2176
1319
1020
827

wm»-noww»—‘oa

Energies

v=20
2005
1275
Y5
800
2757
1696
1316
1080
7601
5013
3979
3354

we\;»-aowm»«cwm»»cra

Table M10

B/B0=200

v=1
115
105
95
91
200
180
165
151
B/B0=500

v=1
105
105
105
98
200
180
180
168

B/B0=1000

v=1
105
105
105
100
200
180
180
173
1350
1250
1150
1065

Oscillator strengths

v=20
0.22
0.17
0.14
0.13
0.20
0.13
0.11
0.10

Oscillator strengths

v=_0
0.28
0.22
0.19
0.18
0.23
(.18
0.15
0.17

Oscillator strengths

v=>_0_
0.40
0.31
0.27
0.22
0.25
0.24
J.18
0.18
0.05
0.08
0.07
0.05
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~N

Fnergies

v=>0
1064
592
427
338
268
1442
810
RO5
485
397

B = O & WY = O3

Fnergies

v=>_0
1460
831
604
479
385
1987
1144
855
692
573

L 0 DO

Frnergies

v=_0
1850
1050
810
600
500
2503
1470
1106
847
749
7396
4707
3683
3178
2746

&ww—»c»wwuo&ww—-oa

Table M11

R/R0=200

v=1
53
45
44
44
42
125
105
95
95
89

B/B0=500

v =1
45
45
45
43
45
115
105
105.
08
97

B/R0=1000

43
43
42
42
40
105
105
105
95
99
1250
1050
950
950
872

Oscillator strengtha

Oscillator strengths

Oscillator strengths
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v=_0
0.30
0.26
0.26
0.21
0.20
0.20
0.20
0.17
0.14
0.13

v=20
0.36
0.33
0.34
0.28
0.27
0.29
0.26
0.22
0.1
0.23

v=20
0.49
0.4%
0.38
0.42
0.32
0.31
0.30
0.26
0.26
0.23
0.08
0.1
0.08
0.07
0.08
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~l

~N

=1

Fnergies

v=20
1011
499
331
247
193
144
1278
6897
490
386
316
256

;,-Ac,:w—-cm&uw—-og

Fnergies

v=20
1373
693
466
330
275
208
1760
977
695
349
434
371

O'ANM—'OQ‘#\WM—-‘OE

Fnergies

oxaww-‘oo-uww——owbuu—og
> 4]
[Sul
=3}

v =
12
11
10
10
10
10
60
30
45
43
42
41

v =
10
10
10
10
10
10
43
43
473
43
43
44

v =
10
10
10
10
10
10

43
42
42
43
43
43
1050
%70
730
TN
730
706

Table M12

n/N0=200

1

n/NR0=500

1

n/1R0=1000

1

Oscillator. strengths

Osecillator strengths

Oscillator strengths

nnw =0
0.42
0.48
0.60
0.46
0.44
0.44
0.28
0.24
0.25
0.23
0.23
0.19

v=_0
0.58
0.63
0.60
0.57
0.54
0.5t
0.34
0.40
0.32
0.33
6.30
0.2>

v=230
0.74
N.74
3.70
0.63
0.62
0.56
0.5
044
0.48
(.38
033
0.30
0 08
010
D40
0.0”
0.07
008
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Energies

v=_0
1190
603
398
295
232
186
142

@@AO&M»‘OS

Energies

v=20
1635
843
562
420
332
269
207

O')CJ'\.&C«D!\DHOE

Energiles

v=>0
2055
1075
724
543
433
352
273
6843
4188
3204
2703
2351
2115
1885

G}U‘&WMP‘OO’)@%@MWOB
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Table M13

B/B0=200

v=1
10
10
10
10
10
10
10

B/B0=500

v=1
10
10
10
10
10
10
10

B/B0=1000

v=1
10
10
10
10
10
10
10
870
720
660
650
610
600
564

Oscillator strengths

v=>0
0.45
0.43
0.46
.50
0.42
0.47
0.41

Oscillator strengths

v=2_0
0.48
0.53
0.66
0.62
0.51
0.57
0.59

Oscillator strengths

v=2=0
0.81
0.84
0.72
0.67
0.69
0.65
0.59
0.11
0.12
0.12
0.11
0.09
0.07
0.07
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Energies

B/B0=1000

Ground energy=30298

v=20
6629
3984
3006
2464
2155
1895
1727
1557

v=1
730
600
550
500
500
455
455
439

Oscillator strengths

B/B0=1000

v=>0
0.12
0.13
0.17
0.12
0.11
0.093
0.093
0.086
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Energies

B/B0=1000

Ground energy=31571

v=0
6381
3760
2791
2267
1949
1707
1540
1410
1273

v=1
550
455
420
390
380
350
340
340
330

Oscillator strengths

B/B0=1000

v=>0
0.12
0.16
0.14
0.15
0.13
0.13
0.14
0.12
0.098
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Energies

B/B0=1000

Ground energy=32595

v=20
6186
3568
2598
2070
1741
1531
1377
1238
1135
1024

v=1
420
340
310
280
260
260
260
240
240
236

Oscillator strengths

B/B0=1000

v=>20
0.16
0.20
0.18
0.20
0.16
0.17
0.16
0.15
0.14
0.12
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Table M16
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Energies

B/B0=1000

Ground energy=33396

v=20
5994
3372
2405
1882
1572
1351
1200
1085
991
893
801

v=1
29¢
220
200
180
180
170
170
170
170
155
155

Oscillator strengths

B/B0=1000

v=>0
0.17
0.20
0.23
0.30
0.28
0.20
0.18
0.20
0.19
0.18
0.17
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Table M17
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Table M18
Energies
B/B0=1000
Ground energy=33998
v=_0 v=1
5822 180
3198 125
2232 115
1715 105
1394 98
1180 95
1030 95
912 90
823 90
749 90
680 90
602 90
Oscillator strengths
B/B0=1000
vV =
0.17
0.28
0.30
0.31
0.32
0.31
0.28
0.25
0.42
0.31
0.24
0.22
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Table M19

Energies

B/B0=1000

Ground energy=234421

v=2>_0 v=1

5656 80

3037 51

2065 45

1549 43

1235 43

1019 39

869 39
- 757 39

672 39

603 39

544 39

488 39

423 39

Oscillator strengths

B/B0=1000

v=>90

0.28

0.28

0.38

0.43

0.40

0.40

0.43

0.37

0.47

0.40

0.39

0.35

0.37

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991MNRAS.253..107M&amp;db_key=AST

RAS, 2537 ~I07M)

B
!

(o]

CO(X)NO’:O‘AGOMHOS

QO(X;*!OEU‘-&‘ACOMNOB

o et pema e
o DD e OO

Table M 20

Energies
B/B0=1000
Ground energy=34683

v=20 v=1
5502 13
2885 10
1911
1397
1080
868
718
609
525
460
407
360
314
262

[{eli{o Ve BNo e ile Ve BN« BN e]

O«

Oscillator strengths
B/B0=1000

v =
0.28
0.45
0.44
0.71
0.53
0.73
0.74
0.85
0.66
0.81
0.69
0.60
0.69
0.60
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