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ABSTRACT

Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for
some time, apparently conflicting formulae have been proposed for the dominant out-of-plane kick, each a good
fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more
than 500 km s−1 and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane
kick, we show that we can fit almost all existing data to better than 5%. This is good enough for any astrophysical
calculation and shows that the previous apparent conflict was only because the two data sets explored different
aspects of the kick parameter space.
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1. INTRODUCTION

When two black holes spiral together and merge, the gravi-
tational radiation they emit is usually asymmetric and thus the
remnant black hole acquires a linear velocity relative to the
original center of mass. The speed can reach over 3000 km s−1

(Dain et al. 2008), which would eject the remnant from any
galaxy in the universe (see Figure 2 of Merritt et al. 2004). As
discussed in Merritt et al. (2004), the kick magnitude and dis-
tribution are important for discussions of hierarchical merging,
supermassive black hole formation, galactic nuclear dynamics,
and the degree to which black holes influence galaxy forma-
tion. The community has converged on the formula for the kick
speed in the original orbital plane (Baker et al. 2007; Campanelli
et al. 2007b; Gonzalez et al. 2007), but apparently conflicting
dependences for the out-of-plane kick (which dominates the to-
tal kick for most configurations) have been proposed. Lousto
& Zlochower (2009) suggested that for a binary with compo-
nent masses m1 and m2 � m1, the kick scales as η2, where
η ≡ m1m2/(m1 + m2)2 is the symmetric mass ratio; however,
the data in Baker et al. (2008) were fit much better with an η3

dependence. The conflict is only apparent; however, because
there were no runs in common between the two data sets. This
suggests that an analysis might be performed with an ansatz that
can fit all of the existing data.

Here, we perform such a fit and demonstrate that there is
a single formula for the out-of-plane kick that fits almost all
existing data to better than 5% accuracy. This ansatz is similar
to one recently suggested by Lousto et al. (2010a, 2010b;
for which, however, a fit to all parameters was not given,
owing to lack of data). Its form is based straightforwardly
on the post-Newtonian (PN) approximation and includes both
the aforementioned η2 and η3 terms, as well as a slightly
more complicated spin-angle dependence. In Section 2, we
describe our new runs and we describe the ansatz in Section 3.
In Section 4, we list all 95 runs we have fit, from different
numerical relativity groups, and our fitting procedure and best-
fit parameters. In Section 5, we discuss the implications of our

results, and indicate the fraction of kicks above 500 km s−1 and
1000 km s−1 for representative spin and mass ratio distributions,
comparing it with previous results. The goodness of our fit to
the entire usable data set of out-of-plane kicks suggests that the
full three-dimensional kick is now modeled well enough that it
will not limit the accuracy of any astrophysical calculation.

2. NUMERICAL SIMULATIONS

We have performed new simulations representing 22 distinct
physical cases. Defining q ≡ m1/m2 and αi ≡ Si/m2

i , where
Si is the spin angular momentum of the ith black hole, we
used mass ratios of q = 0.674 or q = 0.515, and spins
initially within the orbital plane of α1 = α⊥

1 = 0.367 and
α2 = α⊥

1 = 0.177 or α2 = α⊥
1 = 0.236, where the ⊥

superscript indicates orthogonality to the orbital axis. For each
mass ratio, we used one of 11 different spin orientations (given
in Table 1), in order to probe the spin-angle dependence
of the final recoil. Initial parameters were informed by a
quasicircular PN approximation and initial data constructed
using the spectral solver TwoPunctures (Ansorg et al. 2004).
Evolutions were performed with the Einstein-solver Hahndol
(Imbiriba et al. 2004; van Meter et al. 2006; Baker et al. 2007),
with all finite differencing and interpolation at least fifth-order
accurate in computational grid spacing. Note for the purpose of
characterizing the simulations, it is convenient to use units in
which G = c = 1 and specify distance and time in terms of
M ≡ m1 +m2. The radiation field represented by the Weyl scalar
Ψ4 was interpolated to an extraction sphere at coordinate radius
r = 50 M and integrated to obtain the radiated momentum,
as in Schnittman et al. (2008), using the standard formula
(Campanelli & Lousto 1999):

Pi =
∫ t

−∞
dt

r2

16π

∫
dΩ

xi

r

∣∣∣∣
∫ t

−∞
dtΨ4

∣∣∣∣
2

. (1)

For each of the 22 cases we ran two resolutions, with fine-
grid spacings of hf = 3 M/160 and hf = M/64. To give some
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Table 1
Recoil Data From Lousto & Zlochower (2009, Set A), Baker et al. (2008, Set B), this Work (Set C), Dain et al. (2008, Set D), and Campanelli et al. (2007b, Set E)

Set q α⊥
1 α⊥

2 φ1 φ2 Num. V|| fit V|| 1 |ΔV/V | Fit V|| 2 |ΔV/V |
A 0.125 0.000 0.751 0.000 1.571 −113.3 −118.5 0.046 −118.8 0.049
A 0.125 0.000 0.756 0.000 1.640 −101.9 −95.9 0.058 −96.5 0.053
A 0.125 0.000 0.761 0.000 0.223 −349.1 −354.5 0.016 −350.1 0.003
A 0.125 0.000 0.747 0.000 4.665 131.6 133.4 0.014 133.4 0.014
A 0.125 0.000 0.772 0.000 3.128 338.7 339.6 0.003 335.0 0.011
A 0.167 0.000 0.777 0.000 1.571 530.6 524.7 0.011 517.0 0.026
A 0.167 0.000 0.739 0.000 2.688 348.8 369.1 0.058 368.6 0.057
A 0.167 0.000 0.786 0.000 0.947 320.3 327.1 0.021 318.9 0.004
A 0.167 0.000 0.773 0.000 −1.509 −529.0 −532.0 0.006 −524.6 0.008
A 0.167 0.000 0.778 0.000 3.721 −130.8 −140.4 0.074 −133.5 0.021
A 0.250 0.000 0.779 0.000 1.571 −909.9 −908.1 0.002 −898.0 0.013
A 0.250 0.000 0.788 0.000 1.203 −815.9 −811.8 0.005 −801.1 0.018
A 0.250 0.000 0.760 0.000 0.080 56.3 52.2 0.074 56.1 0.004
A 0.250 0.000 0.787 0.000 4.463 866.0 858.4 0.009 847.7 0.021
A 0.250 0.000 0.751 0.000 3.041 −209.9 −209.2 0.003 −211.3 0.007
A 0.333 0.000 0.794 0.000 1.571 −1145.2 −1123.8 0.019 −1109.6 0.031
A 0.333 0.000 0.794 0.000 1.164 −832.5 −833.6 0.001 −819.3 0.016
A 0.333 0.000 0.754 0.000 0.082 397.7 387.9 0.025 391.8 0.015
A 0.333 0.000 0.795 0.000 4.466 981.7 968.3 0.014 953.8 0.028
A 0.333 0.000 0.751 0.000 3.017 −611.4 −603.8 0.012 −604.9 0.011
A 0.400 0.000 0.793 0.000 1.571 −1414.7 −1399.6 0.011 −1386.6 0.020
A 0.400 0.000 0.798 0.000 1.054 −1180.6 −1170.4 0.009 −1155.3 0.021
A 0.400 0.000 0.767 0.000 0.017 91.7 83.9 0.084 91.3 0.004
A 0.400 0.000 0.798 0.000 4.426 1338.6 1319.5 0.014 1304.8 0.025
A 0.400 0.000 0.760 0.000 2.980 −328.3 −321.0 0.022 −326.0 0.007
A 0.500 0.000 0.771 0.000 1.571 34.0 26.6 0.217 34.0 0.000
A 0.500 0.000 0.777 0.000 0.642 1261.7 1249.7 0.010 1244.4 0.014
A 0.500 0.000 0.800 0.000 −0.323 1528.2 1493.9 0.022 1479.7 0.032
A 0.500 0.000 0.764 0.000 4.320 −622.6 −603.4 0.031 −605.6 0.027
A 0.500 0.000 0.800 0.000 2.674 −1439.4 −1401.8 0.026 −1387.2 0.036
A 0.666 0.000 0.772 0.000 1.571 895.2 872.5 0.025 865.9 0.033
A 0.666 0.000 0.802 0.000 0.506 1699.3 1672.6 0.016 1662.6 0.022
A 0.666 0.000 0.798 0.000 −0.356 1025.0 1000.5 0.024 995.7 0.029
A 0.666 0.000 0.784 0.000 4.325 −1362.7 −1339.9 0.017 −1330.8 0.023
A 0.666 0.000 0.795 0.000 2.654 −823.9 −813.3 0.013 −809.8 0.017
A 1.000 0.000 0.800 0.000 1.571 1422.3 1422.6 0.000 1421.0 0.001
A 1.000 0.000 0.803 0.000 0.428 1009.3 990.5 0.019 980.9 0.028
A 1.000 0.000 0.785 0.000 −0.461 −246.0 −237.4 0.035 −245.3 0.003
A 1.000 0.000 0.805 0.000 4.222 −1479.9 −1468.0 0.008 −1461.9 0.012
A 1.000 0.000 0.786 0.000 2.581 390.5 380.5 0.026 387.8 0.007
B 0.333 0.200 0.022 0.000 3.142 49.0 50.5 0.031 52.0 0.062
B 0.333 0.200 0.022 5.498 2.356 48.0 48.1 0.003 48.9 0.018
B 0.333 0.200 0.022 4.712 1.571 17.0 17.6 0.034 17.2 0.012
B 0.333 0.200 0.022 0.000 0.000 114.0 114.3 0.003 115.2 0.011
B 0.500 0.200 0.050 0.000 3.142 −37.0 −38.2 0.033 −36.7 0.008
B 0.500 0.200 0.050 5.498 2.356 111.0 111.2 0.002 114.1 0.028
B 0.500 0.200 0.050 4.712 1.571 193.0 195.5 0.013 198.0 0.026
B 0.500 0.200 0.050 5.498 1.571 75.0 73.2 0.023 76.4 0.019
B 0.500 0.200 0.050 0.000 1.571 −55.0 −56.7 0.031 −55.0 0.000
B 0.666 0.200 0.089 1.047 4.189 −381.0 −382.9 0.005 −384.5 0.009
B 0.666 0.200 0.089 0.000 3.142 −135.0 −132.1 0.022 −133.4 0.012
B 0.666 0.200 0.089 5.498 2.356 168.0 165.3 0.016 165.2 0.017
B 0.666 0.200 0.089 4.712 1.571 364.0 365.9 0.005 367.0 0.008
B 0.769 0.200 0.118 0.000 3.142 −386.0 −387.2 0.003 −388.1 0.005
B 0.769 0.200 0.118 5.498 2.356 −525.0 −521.7 0.006 −521.2 0.007
B 0.769 0.200 0.118 4.712 1.571 −348.0 −350.6 0.008 −349.0 0.003
B 0.909 0.200 0.165 0.000 3.142 −542.0 −542.8 0.001 −542.4 0.001
B 0.909 0.200 0.165 5.498 2.356 −657.0 −656.3 0.001 −655.2 0.003
B 0.909 0.200 0.165 4.712 1.571 −384.0 −385.3 0.003 −384.1 0.000
C 0.674 0.367 0.236 2.513 5.655 −973.7 −944.4 0.030 −941.0 0.034
C 0.674 0.367 0.236 2.094 4.189 −442.9 −435.8 0.016 −431.8 0.025
C 0.674 0.367 0.236 2.094 0.000 −988.5 −934.6 0.055 −934.4 0.055
C 0.674 0.367 0.236 1.257 4.398 −361.7 −344.3 0.048 −339.4 0.062
C 0.674 0.367 0.236 0.000 4.189 374.2 331.6 0.114 336.5 0.101
C 0.674 0.367 0.236 0.000 3.142 749.0 731.6 0.023 731.2 0.024
C 0.674 0.367 0.236 0.000 2.094 672.4 682.2 0.015 677.3 0.007
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Table 1
(Continued)

Set q α⊥
1 α⊥

2 φ1 φ2 Num. V|| fit V|| 1 |ΔV/V | Fit V|| 2 |ΔV/V |
C 0.674 0.367 0.236 5.027 1.885 826.1 796.5 0.036 791.4 0.042
C 0.674 0.367 0.236 4.189 2.094 619.7 603.0 0.027 597.9 0.035
C 0.674 0.367 0.236 4.189 0.000 −245.6 −246.4 0.003 −245.5 0.000
C 0.674 0.367 0.236 3.770 0.628 −237.7 −239.4 0.007 −242.1 0.019
C 0.515 0.367 0.177 2.513 5.655 −584.3 −578.0 0.011 −587.0 0.005
C 0.515 0.367 0.177 2.094 4.189 −123.0 −103.3 0.160 −118.1 0.040
C 0.515 0.367 0.177 2.094 0.000 −684.8 −683.1 0.002 −685.0 0.000
C 0.515 0.367 0.177 1.257 4.398 −16.9 1.0 1.059 −16.5 0.024
C 0.515 0.367 0.177 0.000 4.189 483.9 462.6 0.044 448.5 0.073
C 0.515 0.367 0.177 0.000 3.142 579.8 578.6 0.002 576.8 0.005
C 0.515 0.367 0.177 0.000 2.094 345.2 346.7 0.004 357.5 0.036
C 0.515 0.367 0.177 5.027 1.885 362.4 356.6 0.016 373.0 0.030
C 0.515 0.367 0.177 4.189 2.094 202.1 220.5 0.091 236.6 0.171
C 0.515 0.367 0.177 4.189 0.000 −231.1 −243.4 0.053 −239.4 0.036
C 0.515 0.367 0.177 3.770 0.628 −354.8 −358.2 0.010 −346.3 0.024
D 1.000 0.930 0.930 1.571 4.712 2372.0 2413.6 0.018 2423.7 0.022
D 1.000 0.930 0.930 1.833 4.974 2887.0 2972.2 0.030 2975.8 0.031
D 1.000 0.930 0.930 2.269 5.411 3254.0 3440.6 0.057 3432.8 0.055
D 1.000 0.930 0.930 3.176 0.035 2226.0 2390.4 0.074 2366.0 0.063
D 1.000 0.930 0.930 4.817 1.676 −2563.0 −2659.2 0.038 −2666.8 0.041
D 1.000 0.930 0.930 4.974 1.833 −2873.0 −2972.2 0.035 −2975.8 0.036
D 1.000 0.930 0.930 5.149 2.007 −3193.0 −3233.9 0.013 −3232.9 0.013
D 1.000 0.930 0.930 5.934 2.793 −2910.0 −3152.3 0.083 −3133.1 0.077
E 1.000 0.515 0.515 1.571 4.712 1833.0 1881.1 0.026 1875.6 0.023
E 1.000 0.515 0.515 0.785 3.927 1093.0 1079.6 0.012 1076.4 0.015
E 1.000 0.515 0.515 3.142 0.000 352.0 354.4 0.007 353.3 0.004
E 1.000 0.515 0.515 4.712 1.571 −1834.0 −1881.1 0.026 −1875.6 0.023
E 1.000 0.515 0.515 3.304 0.162 47.0 46.3 0.014 46.2 0.017
E 1.000 0.515 0.515 0.000 3.142 −351.0 −354.4 0.010 −353.3 0.007

Notes. The spin angles φ1 and φ2 are in radians, and the recoil velocities V|| are in km s−1. Column 8 shows the result of a fit intended
to minimize the error relative to the maximum recoil velocity per (q, α⊥

1 , α⊥
2 ) triplet and Column 9 shows the relative error from that fit.

Column 10 shows the result of a fit intended to minimize the conventional relative error and Column 11 shows the relative error from
that fit. In both cases, the vast majority of points agree to well within 10%.

indication of our numerical error, the total recoil from the two
resolutions for each of the q = 0.674 cases agreed to within
�6%, and for each of the q = 0.515 cases to within 1% (the
latter using a more optimal grid structure).

In these simulations, variation in the magnitude of the final
recoil within the x–y plane suggested non-negligible precession
of the orbital plane. Indeed the coordinate trajectories of the
black holes showed precession of up to ∼10◦. To calculate the
component of the recoil velocity parallel to the “final” orbital
axis, V||, we tried two different methods. In one method, we
simply took the dot product of the final, numerically computed
recoil velocity V with the normalized orbital angular momentum
L|L|−1 as calculated from the coordinate trajectories of the
black holes, just when the common apparent horizon was
found: V|| ≡ V · L|L|−1. In our second method, we assumed
that each black hole spin, which is initially orthogonal to the
orbital angular momentum, remained approximately orthogonal
throughout the simulation, i.e.,

L · S1 ≈ L · S2 ≈ 0. (2)

This assumption is consistent with PN calculations, to linear
order in spin (Racine 2008; Kidder 1995), and is also supported
numerically by the fact that the merger times in our simulations
were independent of the initial spin, to within Δt < 1 M . In this
case, the in-plane recoil should depend only on the mass ratio
(and not the spin), and we assume it is given by the formula
found by Gonzalez et al. (2007), with coefficient values given

by a previous fit (Baker et al. 2008). This implies

V|| ≡
√

V 2 − (
V

pred
⊥

)2 Vz

|Vz| , (3)

where we have further assumed that the sign of V|| should be
the same as that of Vz, given the modest amount of precession.

These two definitions for V|| were found to differ by a relative
error of �5% for all points except one for which V|| 	 V⊥.
Relative to the maximum V|| per mass ratio, they were found to
differ only by <2%. Note that this lends further support to our
assumption that the spins are orthogonal to the orbital angular
momentum to good approximation throughout these simulations
(Equation (2)). Even Vz was found to differ from the above
definitions for V|| by only �2%, relative to the maximum. We
will use Equation (3) to give our canonical V||, for the purpose
of analytic fits to the data.

An additional assumption we will make about our data,
important for fitting purposes, is that the amount of precession
undergone by the spins in the orbital plane, i.e., the difference
in spin angles, between the initial data and the merger, is
independent of the initial spin orientation. This assumption,
valid to linear order in spin according to the PN approximation
(Equation (2.4) of Kidder 1995), was previously found to
be the case through explicit computation of the spins in the
simulations presented in Baker et al. (2008). We have not
explicitly computed the spins in the new simulations presented
here but the independence of the merger time with respect
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to initial spin orientation is consistent with the assumption of
similar independence of spin precession.

For the purpose of constructing an accurate phenomenologi-
cal model, we added to this data set previously published data
representing out-of-plane kicks. Our criteria for selecting rele-
vant data are that the component of the final recoil parallel to the
orbital plane is given and at least three different in-plane spin
orientations are used. We arrived at a total of 95 data points:
the 22 new ones presented here plus 73 drawn from Baker
et al. (2008), Campanelli et al. (2007b), Dain et al. (2008), and
Lousto & Zlochower (2009). Note that for the cases in Lousto &
Zlochower (2009), we use the second version of their values
listed in their Table III, resulting from what they consider to be
their best calculation of the final orbital plane.

3. ANSATZ

An ansatz for the total recoil that was found to be very
consistent with numerical results has the form (Baker et al.
2007; Campanelli et al. 2007b; Gonzalez et al. 2007)


V = V⊥m e1 + V⊥s(cos ξ e1 + sin ξ e2) + V‖ e3, (4)

V⊥m = Aη2
√

1 − 4η(1 + Bη), (5)

V⊥s = H
η2

(1 + q)

(
α

‖
2 − qα

‖
1

)
, (6)

where e1 and e3 are unit vectors in the directions of separation
and the orbital axis just before merger, respectively, e2 ≡ e1×e3,
α

‖
1 and α

‖
2 represent the components of spins parallel to the

orbital axis, ξ,A,B, and H are constant fitting parameters, and
V‖ is to be discussed.

Every component of Equation (4) has been modeled to some
degree after PN expressions. Equation (5) for the in-plane, mass-
ratio-determined recoil, originally proposed by Gonzalez et al.
(2007), builds upon the leading order PN expression for the same
given by Fitchett (1983). In fact, this ansatz component can be
entirely obtained from the leading and next-to-leading order PN
terms (see, e.g., Equation (23) of Blanchet et al. 2005) simply by
replacing instances of the PN expansion parameter (in this case
frequency) with constant fitting parameters. Equation (6) for the
in-plane, spin-determined recoil, and its coupling with the mass-
ratio-determined recoil given in Equation (4), was generalized
by Baker et al. (2007) from the PN-based formula discussed by
Favata et al. (2004). And the first formula suggested for V‖, by
Campanelli et al. (2007a), used the leading order PN expression
given by Kidder (1995).

The use of such PN-based formulae has proven surprisingly
successful. For example, Gonzalez et al. (2007) obtained very
good agreement between Equation (5) and a large set of
numerical results. Le Tiec et al. (2010), who calculated the
recoil using a combination of the PN method with a perturbative
approximation of the ringdown, also found that Equation (5)
gave a good phenomenological fit to their analytic results.

Why such a prescription for generating an ansatz from the
PN approximation should apply so well to merger dynamics is
not perfectly understood. The effective replacement of powers
of the frequency with constants may be defensible because the
majority of the recoil is generated within a narrow time window
near the merger, perhaps within a narrow range of frequencies.
This is particularly evident for the out-of-plane recoil speed,
which rapidly and monotonically increases up to a constant

value around the merger. However, values of the constant
coefficients that appear in the PN expansion cannot be expected
to remain unchanged because, as the merger is approached,
high-order PN terms with the same functional dependence on
mass and spin as leading order terms can become comparable
in magnitude. So, it is just for this functional dependence that
we look to the PN approximation for guidance.

Following the prescription implied above, from the PN
expression for out-of-plane recoil given by Racine et al. (2009),
Equations (4.40–4.42) (neglecting spin–spin interaction), the
following can be straightforwardly obtained:

V|| = K2η
2 + K3η

3

q + 1

[
qα⊥

1 cos(φ1 − Φ1) − α⊥
2 cos(φ2 − Φ2)

]

+
KS(q − 1)η2

(q + 1)3

[
q2α⊥

1 cos(φ1 − Φ1) + α⊥
2 cos(φ2 − Φ2)

]
,

(7)

where K2, K3, and KS are constants, α⊥
i represents the magnitude

of the projection of the ith black hole’s spin (divided by the
square of the black hole’s mass) into the orbital plane, φi

represents the angle of the same projection, as measured at
some point before the merger, with respect to a reference angle
representing the direction of separation of the black holes,
and Φi represents the amount by which this angle precesses
before the merger, which depends on the mass ratio and the
initial separation. We have ignored terms quadratic in the spin
because we assume they are subleading. Note that this ansatz is
equivalent to one suggested by Lousto et al. (2010a, 2010b),
provided the angular parameters are suitably interpreted. In
terms of the notation of Racine et al. (2009),

(q + 1)−1
[
qα⊥

1 cos(φ1 − Φ1) − α⊥
2 cos(φ2 − Φ2)

]
= −M−1Δ · n = −M−1Δ⊥ cos(Θ), (8)

(q + 1)−2
[
q2α⊥

1 cos(φ1 − Φ1) + α⊥
2 cos(φ2 − Φ2)

]
= M−2S · n = M−2S⊥ cos(Ψ), (9)

where n is a unit separation vector, Δ ≡ S2/m2 − S1/m1,
S ≡ S1 + S2, Δ⊥ ≡ M(q + 1)−1|α⊥

2 − qα⊥
1 |, S⊥ ≡

M2(q + 1)−2|α⊥
2 +q2α⊥

1 |, Θ is the angle between Δ and n, and Ψ
is the angle between S and n, all measured, for our purposes, at
some point arbitrarily close to the merger. It may be interesting
to note that the expression multiplying KS takes into account
effects of orbital precession (because if it is non-vanishing then
the orbit precesses) and therefore represents physical phenom-
ena neglected by previous fits.

4. FITTING PROCEDURE AND RESULTS

The fitting of the out-of-plane recoil is in principle compli-
cated because in addition to the overall factors K2, K3, and KS
(which are the same for any mass ratio or spins), any particu-
lar set of runs with the same initial separation and mass ratio
(which we will term a “block”) has idiosyncratic values of Φ1
and Φ2 that, although not fundamentally interesting, need to be
fit to the data. Therefore, in the 17 blocks of data we fit, there
are formally 3 + 2 × 17 = 37 fit parameters. In the eight data
blocks for which α⊥

1 = 0, Φ1 never enters, and in the two for
which α⊥

1 = α⊥
2 , Φ1 = Φ2. Therefore, the actual number of

fitting parameters is 27, but this is still large enough that a mul-
tiparameter fit would be challenging. Fortunately, each (Φ1, Φ2)
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Figure 1. Graphical representation of Columns 7–11 from Table 1. Numerical results for out-of-plane kicks are plotted along with our predictions (top panel) and the
relative errors (bottom panel). The data points are in the same (arbitrary) order as in Table 1. All data are shown except for the error of fit 1 for one kick of relatively
small magnitude. As can be seen, most errors are less than 5%.

(A color version of this figure is available in the online journal.)

pair only affects a single data block. We can therefore speed up
the fitting and incidentally concentrate on only the interesting
parameters, if we (1) pick some values of K2, K3, and KS that
apply to all data blocks, then (2) for each data block, find the
values of Φ2 and possibly Φ1 that optimize the fit, repeating
this using new values of Φ1 and Φ2 for each block. This gives
an overall fit for the assumed values of K2, K3, and KS, having
optimized over the uninteresting Φ parameters.

The fit itself needs to be performed assuming uncertainties
on each of the numerical measurements of the kick. Each such
calculation is computationally expensive and systematic errors
are usually difficult to quantify, hence we do not have enough
information to do a true fit. As a substitute, we assume that for
each block of data, the uncertainty σ in each kick is either equal
to a fraction (fixed for all blocks) of the maximum magnitude
kick in the block, or to a fixed fraction of the individual kick
itself. The former may be justified because some sources of
error will be independent of the phase of the angles when the
holes merge, but we note that the fit performed with the latter
assumption (that the uncertainty equals a fractional error of each
kick) yields very similar values for the fitting factors. As we do
not know what the actual fractional error is, in either case we
adjust it so that for our best fit we get a reduced χ2 of roughly
unity (given our 95 data points and 27 fitting variables, this
means we need a total χ2 of about 68). We then evaluate every
(K2,K3, and KS) triplet using χ2 = ∑

(pred − kick)2/σ 2.
Minimizing χ2 as calculated with respect to the maximum

kick per block, we find that σ 2 = 0.0005 V 2
‖,max(block) gives

χ2/dof = 1.0. We note that this value for σ is comparable to
the numerical error as measured by the difference in kicks com-
puted at different resolutions, when available (e.g., for the new
simulations presented here, or the q = 0.25 case presented in
Table IV of Lousto & Zlochower 2009). It is also worth not-
ing that for the data from the new simulations, the uncertainty
due to orbital precession, discussed in Section 2, is less than
0.02 V‖,max < σ , and therefore cannot significantly affect the fit.
Our best fit is K2 = 30,540 km s−1, K3 = 115,800 km s−1, and
KS = 17,560 km s−1, with 1σ ranges 28,900–32,550 km s−1,

107,300–121,900 km s−1, and 15,900–19,000 km s−1, respec-
tively. We emphasize that all three coefficients are indispensable
in obtaining a good fit; e.g., using the same definition of χ2 as
above, if K3 = 0 then the best fit gives χ2/dof = 2.0, or if
KS = 0 then the best fit gives χ2/dof = 1.6.

Minimizing χ2 as calculated with respect to each individual
kick, we obtain similar results. In this case, σ 2 = 0.0016V 2

‖
gives χ2/dof = 1.0. Our best fit becomes K2 = 32,092 km s−1,
K3 =108,897 km s−1, and KS =15,375 km s−1, in agreement
with the above fit to within ∼5% for K2 and K3 and �12%
for KS.

In Table 1 and Figure 1, we compare the predicted out-of-
plane kicks with the measured ones for the entire data set. For
fit 1 minimizing the error with respect to the maximum kick per
block, of the 95 points, only 4 agree to worse than 10%, and
all of those occur for kicks with magnitudes much less than the
maximum in their data block. Therefore, these could represent
small phase errors rather than relatively large fractional velocity
errors. Only 15 of the 95 points agree to worse than 5%. Fit 2
minimizing the error with respect to individual kicks performs
even better in this regard, with only 10 points differing by more
than 5% and only 2 points differing by more than 10%. In either
case, the fits with the present ansatz are significantly better than
either the simpler η2 fit proposed by Lousto & Zlochower (2009)
or the η3 fit proposed by Baker et al. (2008).

5. EJECTION PROBABILITIES AND DISCUSSION

One of the most important outputs of kick calculations and
fits is the probability distribution of kicks given assumptions
about the mass ratio, spin magnitudes, and spin directions.
This distribution is critical to studies of hierarchical merging
in the early universe (e.g., Volonteri 2007) as well as to the
gas within galaxies (Devecchi et al. 2009) and an evaluation of
the prospects for growth of intermediate-mass black holes in
globular clusters (Holley-Bockelmann et al. 2008). In Table 2,
we show the results of our work (from fit 1), compared with the
proposed fit formula of Campanelli et al. (2007a). It is clear that
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Table 2
Fraction of Kick Speeds Above a Given Threshold, Compared With the Results of Campanelli et al. (2007a, CLZM)

Mass Ratio and Spin Speed Threshold CLZM This Work

1/10 � q � 1, α1 = α2 = 0.9 v > 500 km s−1 0.364 ± 0.0048 0.342526 ± 0.00019
v > 1000 km s−1 0.127 ± 0.0034 0.120974 ± 0.00011

1/4 � q � 1, α1 = α2 = 0.9 v > 500 km s−1 0.699 ± 0.0045 0.697818 ± 0.00026
v > 1000 km s−1 0.364 ± 0.0046 0.353393 ± 0.00019

1/4 � q � 1, 0 � α1, α2 � 1 v > 500 km s−1 0.428 ± 0.0045 0.415915 ± 0.00020
v > 1000 km s−1 0.142 ± 0.0034 0.134615 ± 0.00012

Note. In all cases, we assume an isotropic distribution of spin orientations.

our work gives distributions very close to those of Campanelli
et al. (2007a), with perhaps slightly smaller kicks because of the
η3 term we include.

In summary, we have demonstrated that a modified formula
fits all available out-of-plane kicks extremely well. The wide
range of mass ratios, spin magnitudes, and angles covers all of
the major aspects of parameter space for the out-of-plane kicks,
and thus we do not expect new results to deviate significantly
from our formula. The excellence of these fits suggests that the
kick distribution is known to an accuracy that is sufficient for
any astrophysical purpose.

New simulations used for this work were performed on
Jaguar at Oakridge National Laboratories. M.C.M acknowl-
edges partial support from the National Science Founda-
tion under grant AST 06-07428 and NASA ATP grant
NNX08AH29G. The work at Goddard was supported in part
by NASA grants 06-BEFS06-19 and 09-ATP09-0136. We also
wish to think S. McWilliams and A. Buonanno for helpful
discussions.
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