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ABSTRACT

The discovery of high-amplitude brightness oscillations during type I X-ray bursts from six low-mass
X-ray binaries has provided a powerful new tool to study the properties of matter at supranuclear den-
sities, the effects of strong gravity, and the propagation of thermonuclear burning. There is substantial
evidence that these brightness oscillations are produced by spin modulation of one or two localized hot
spots confined to the stellar surface. It is therefore important to calculate the expected light curves pro-
duced by such hot spots under various physical assumptions, so that comparison with the observed light
curves may most sensitively yield information about the underlying physical quantities. In this paper we
make general relativistic calculations of the light curves and oscillation amplitudes produced by a rotat-
ing neutron star with one or two hot spots as a function of spot size, stellar compactness, rotational
velocity at the stellar surface, spot location, orientation of the line of sight of the observer, and the
angular dependence of the surface specific intensity. For the case of two emitting spots we also investi-
gate the effects of having spot separations less than 180° and the effects of having asymmetries in the
brightness of the two spots. We find that stellar rotation and beaming of the emission tend to increase
the observed oscillation amplitudes whereas greater compactness and larger spot size tend to decrease
them. We also show that when two emitting spots are either nonantipodal or asymmetric in brightness,
significant power at the first harmonic is generated. By applying these results to 4U 1636 —536, the two
emitting spots of which produce power at the first harmonic, we place strong constraints on the neutron
star’s magnetic field geometry. We also show that the data on the phase lags between photons of differ-
ent energies in the persistent pulsations in SAX J1808 — 58 can be fitted well with a model in which the

observed hard leads are due to Doppler beaming.

Subject headings: equation of state — gravitation — relativity — stars: neutron — X-rays: bursts

1. INTRODUCTION

The study of neutron stars is attractive in part because of
the fundamental issues of physics that can be addressed.
These include the behavior of spacetime in strong gravity,
the equation of state of matter at supranuclear densities,
and the propagation of thermonuclear burning in degener-
ate matter, an issue which has relevance to many astro-
physical events including classical novae and Type la
supernovae.

The discovery with the Rossi X-Ray Timing Explorer
(RXTE) of highly coherent brightness oscillations during
type I (thermonuclear) X-ray bursts from six low-mass
X-ray binaries (LMXBs) (for reviews see, e.g., Strohmayer,
Zhang, & Swank 1997b; Smith, Morgan, & Bradt 1997,
Zhang et al. 1996; Strohmayer et al. 1997c) has provided a
potentially sensitive new tool to understand these funda-
mental issues. The burst oscillations are thought to be pro-
duced by spin modulation of one or two localized
thermonuclear hot spots that are brighter than the sur-
rounding surface. The existence of the oscillations, as well as
some of the reported behavior of their amplitudes (see, e.g.,
Strohmayer et al. 1997b), seems to confirm the preexisting
theoretical expectation that X-ray bursts on neutron stars
are caused by ignition at a point followed by thermonuclear
propagation around the surface (e.g., Fryxell & Woosley
1982; Nozakura et al. 1984; Bildsten 1995). The observed

1098

waveforms of these oscillations, and their dependence on
time and photon energy, can in principle be used to con-
strain the mass and radius of the star and the velocity and
type of thermonuclear propagation. Such information can
only be extracted by detailed comparison of theoretical
waveforms with the data.

Here we conduct the most complete existing survey of the
properties of the light curves and resultant oscillation
amplitudes for one or two expanding hot spots. We calcu-
late light curves and oscillation amplitudes as a function of
stellar compactness, rotational velocity at the stellar
surface, spot size and location, orientation of the line of
sight, angular dependence of the specific intensity, and spot
asymmetries. Our calculations follow a procedure similar to
that of Pechenick, Ftaclas, & Cohen (1983), Strohmayer
(1992), and Miller & Lamb (1998), but our survey is more
comprehensive than these previous treatments in that we
fully investigate the effects of an expanding spot size on the
light curves and oscillation amplitudes, while also exploring
the effects of gravity, stellar rotation, viewing geometries,
and anisotropic emission. In addition, we present the first
calculations of the effects of having two nonantipodal spots
as well as the effects of asymmetries in spot brightness.

In § 2 we describe our assumptions and the calculational
method. In § 3 we present our results. We show that for
small spot sizes the oscillation amplitude has only a weak
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dependence on spot size, but that as the spot grows the
dependence becomes very strong. We also show that stellar
rotation, beaming functions, and spot asymmetries all tend
to increase the observed oscillation amplitudes, whereas
greater compactness and larger spot sizes tend to decrease
the amplitudes. In § 4 we exhibit applications of these
results to data on the amplitudes of two harmonics in
4U 1636 —536 and on the phase lags versus energy for
SAX J1808 —3658. We discuss our results and present our
conclusions in § 5.

2. CALCULATIONAL METHOD
We make the following assumptions in our calculations:

1. The observed radiation comes from one or two emitting
spots on the surface—The sources with strong bursts tend
to have persistent accretion rates a factor of ~10-100 less
than the Eddington critical luminosity Ly at which the
radial radiation force balances gravity, whereas the peak
luminosity of the bursts is typically close to Lg. The flux
from the burning regions therefore greatly exceeds the flux
from the quiescent regions, so for much of the burst this is a
plausible approximation. Consideration of two spots is
strongly motivated by analysis of 4U 1636 —536, which
shows that the strongest harmonic is the first overtone of
the spin frequency, and hence that there are two nearly
antipodal hot spots on the surface (Miller 1999). Other
burst oscillation sources, such as KS 1731 —260, may also
have two emitting spots (see van der Klis 2000 for a review
of the properties of burst oscillation sources).

2. The radiation is homogeneous and emitted isotropically
unless noted otherwise—This assumption is made for sim-
plicity, as at present there is no physical evidence that sug-
gests whether or not the photon emission from the hot spots
is isotropic and homogeneous.

3. If there are two spots, they are identical and both grow
at the same velocity unless noted otherwise—This assump-
tion is also made for simplicity. Although the geometry of
the two magnetic poles is unlikely to be identical, not
enough is known about their structure to realistically model
nonidentical spots.

4. The exterior spacetime of the neutron star is the
Schwarzschild spacetime—We neglect the effect of frame
dragging due to stellar rotation because it only generates
small second-order effects for the rotation rates of interest
(see Lamb & Miller 1995 and Miller & Lamb 1996). We do,
however, include the first-order effects due to Doppler
shifts; the net error in pulsed amplitude compared to a
calculation that also includes frame dragging is at most
10%—-15% for the ~300 Hz spin frequencies considered
here (see Braje, Romani, & Rauch 2000).

We compute the waveform of the oscillation as seen at
infinity using the procedure of Pechenick et al. (1983; see
also Page 1995 for a description of lensing in the Schwarzs-
child geometry). Figure 1 shows our coordinate system and
angle definitions. The photons emitted from the star travel
along null geodesics which, for a Schwarzschild geometry,
satisfy the equation (Misner, Thorne, & Wheeler 1973)

1dr\*> (1=-2M/r\ 1
i

where r and ¢ are spherical coordinates, M is the gravita-
tional mass of the star, and b is the impact parameter of the

\

Fi1G. 1.—Angle definitions used in this paper. The hot spot is fixed on
the star and rotates with it; the center of the hot spot is an angle § from the
rotation axis, and the angular radius of the hot spot is a. The observer at
infinity is at an angle y from the rotation axis. This figure is based on a
similar figure in Strohmayer (1992).

photon orbit. Both in the above equation and throughout,
we use geometrized units in which G = ¢ = 1. If the photon
is initially at a global azimuthal angle ¢ = 0, then the global
azimuthal angle at infinity follows from equation (1) and is
(eq. [2.12] in Pechenick et al. 1983)

Gons = f - a,

where u, = M/b. Note that not all of this angle is due to
light deflection: for example, a photon emitted tangent to
the radial vector in flat spacetime will have an angle ¢, =
n/2 at infinity. For R > 3M, which is the relevant domain
for neutron stars, the maximum angle occurs when b =
Bmax = R(1 — 2M/R)™ ' and is given by (eq. [2.13] in
Pechenick et al. 1983)

¢max = LM/R |:<1 - 2%)(%)2 - (1 - 2u)u2:|_1/2 du . (3)

The observer at infinity cannot see the spot if the observer’s
azimuthal angle exceeds ¢, .

For each phase of rotation we compute the projected
area of many small elements of a given finite-size spot. We
then build up the light curve of the entire spot by super-
posing the light curve of all the small elements. We chose a
grid resolution such that the effect of having a finite number
of small elements produces a fractional error less than 104
in the computed oscillation amplitudes. For isotropic emis-
sion the intensity of radiation at a given rotational phase as
seen by an observer at infinity is directly proportional to the
projected area of the spot. To investigate the effect of aniso-
tropic emission we include a flux distribution function in
the intensity, (), where J is the angle between the surface
normal and the photon propagation direction. The inten-
sity is then proportional to the product of the projected
area of the spot (which is proportional to cos d) and f(d).
We consider two types of anisotropic emission: cosine
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(“ pencil ) beaming, in which f(d) = cos , and sine (“fan”)
beaming, in which f(6) = sin 9.

The intensity distribution of an emitting spot is aberrated
by the rotation of the star, and the photon frequency is
Doppler shifted by the factor 1/[y(1 — v cos {)]. Here v is
the velocity at the stellar equator, y = (1 — v?)~ /2, and { is
the angle between the direction of photon propagation and
the local direction of rotation. The inferred spin frequencies
of these neutron stars are ~300 Hz, implying surface
velocities v ~ 0.1c for stellar radii R ~ 10 km.

After computing the oscillation waveform using the
above approach, we Fourier-analyze the resulting light
curve to determine the oscillation amplitudes and phases as
a function of photon energy at different harmonics.

3. RESULTS

As discussed in the introduction, the basic quantities of
interest include the mass and radius of the neutron stars in
bursting sources and the nature and speed of thermonuclear
propagation on the stellar surface. We therefore need to
relate these fundamental quantities to the observables, such
as the oscillation waveform as a function of time and
photon energy. We do this by computing theoretical wave-
forms using different assumptions about the compactness of
the star, the angular size of the burning region, the angular
location of the observer and magnetic pole relative to the
stellar rotation axis, the surface rotation velocity of the star,
and the angular distribution of the specific intensity at the
surface. In this section we consider each of these effects
separately, to isolate the effect they have on the waveform
and to facilitate interpretation of the data. Here we always
quote the fractional rms amplitude of brightness oscil-
lations. We also quote only bolometric amplitudes in this
section; as shown by Miller & Lamb (1998), oscillations in
the energy spectrum of the source may yield substantially
higher amplitudes in the count-rate spectrum measured by
bandpass-limited instruments such as RX TE.

3.1. Waveforms

The decrease in oscillation amplitude as the bursts in
some sources progress (Strohmayer et al. 1997b) may
suggest an initially localized emission spot that expands via
relatively slow (~10° cm s~ 1) thermonuclear propagation.
If so, we would expect that the waveforms from burst oscil-
lations would reflect a variety of spot sizes. We therefore
consider spots that range from pointlike to those with an
angular radius of 180°. Also, physical conditions existing in
the region of emitting spots may alter photon emission as in
the case of some radio pulsars. Accordingly, we consider the
effects of including cosine and sine beaming functions in the
calculations of the waveforms.

Figure 2 shows the waveforms from a single emitting spot
(left-hand column) and two emitting spots (right-hand
column) for various spot sizes. As expected, the amplitude of
the intensity oscillations decreases as the spot size increases.
Furthermore, in the case of a single emitting spot there is a
critical spot size (¢ ~ 50° for the case of R/M = 5.0) at
which the spot is never completely out of view and hence
the intensity remains greater than zero for the entire rota-
tional phase. As the waveforms illustrate, the cosine
beaming function, which enhances emission along the mag-
netic field axis, tends to narrow the width of the waveform
peaks. The sine beaming function enhances emission near
the tangential plane and will produce a four-peaked wave-

Vol. 546

form for the case of a small single emitting spot (see Peche-
nick et al. 1983).

3.2. Effects of Spot Size and Light Deflection

We are also interested in the effect of the compactness of
the star on the observed amplitudes. Figure 3a shows the
fractional rms amplitudes at the first two harmonics as a
function of spot size and stellar compactness for one emit-
ting spot centered at § =y = 90° (i.e., for an observer and
spot both in the rotational equator). The curves for the first
harmonic illustrate the general shape of most of the first
harmonic curves. Initially, the amplitude depends only
weakly on spot size. However, once the spot grows to ~40°,
there is a steep decline in the oscillation amplitude which
flattens out only near the tail of the expansion. Figure 3b
shows the fractional rms amplitude at the second harmonic
under the same assumptions but for two identical, antipodal
emitting spots. The range in spot size here is 0°-90° since
two antipodal spots of 90° radii cover the entire stellar
surface. Note that in this situation there is no first harmo-
nic.

These curves illustrate two interesting features of the two-
spot configuration. First, the strength of the strongest oscil-
lation amplitude in the two-spot case is ~90% weaker than
the strength of the strongest oscillation amplitude in the
one-spot case considered above. Furthermore, the curve of
the second harmonic does not exhibit the same sharp falloff
seen in the first harmonic curve. Thus, the detection of a
particularly large fractional rms amplitude with a steep
amplitude decline can verify that what is being observed is a
first harmonic (i.e., power generated at the stellar spin
frequency) rather than any higher harmonics (see Miller &
Lamb 1998). The second interesting feature is that the curve
of the second harmonic in Figure 3b is nearly identical in
both magnitude and shape to the first 90° of the curve of the
second harmonic for the case of one spot shown in Figure
3a. Thus, for this geometry, the introduction of a second
emitting spot antipodal to the first tends to destroy the first
harmonic while leaving the second harmonic unaffected.
This result obtains whenever (1) the physical assumptions
(e.g., compactness, rotational velocity, flux distribution
function) made for both the one- and two-spot configu-
rations are the same, and (2) the viewing geometry for both
configurationsis § =y = 90°.

In this figure we also display the effect gravity has on the
oscillation amplitudes. From equation (3) we know that
more compact stars have a larger ¢,,,,, and hence a larger
fraction of their surface is visible to observers. As a result,
oscillation amplitudes for more compact neutron stars are
smaller. An exception occurs at the second harmonic of very
compact stars (R/M < 4.0), in which case gravitational light
deflection focuses the emitted radiation enough to raise the
oscillation amplitude (see Pechenick et al. 1983 and Miller
& Lamb 1998). Note that the stellar compactness affects the
amplitude at the second harmonic far more than the ampli-
tude at the first harmonic.

3.3. Effects of Viewing Angle and Magnetic Inclination

Figure 4a shows the oscillation amplitude as a function of
B =y = x (i.e., for the observer and the center of the spot at
the same rotational latitude) for a single emitting spot with
o = 15° and R/M = 5.0. As x increases, the width of the
peaks in the light curve decrease (see Pechenick et al. 1983)
and hence the oscillation amplitudes increase. The inter-
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Fic. 2—Relative intensity as a function of rotational phase wt and spot size a, for a single emitting spot (left) and two emitting spots (right) with
R/M = 5.0 and B = y = 90°. Solid line is isotropic emission, dashed line is cosine beaming, and dotted line is sine beaming. As the spot sizes increase, the
amplitude of the intensity oscillations decrease. Cosine beaming narrows the width of the waveform peaks, and sine beaming produces four peaked
waveforms for small single emitting spots.

esting feature here is that the second harmonic has a signifi-
cant amplitude only for x > 60°. Since 50% of the time x
will be between 60° and 90° (assuming randomly distributed
observers), only half of all observers will detect a second
harmonic during a typical burst involving one spot. In
Figure 4b we make the same assumptions as in Figure 4a

but for two emitting spots rather than one. If we had
assumed flat spacetime and an infinitesimal spot size,
then the second emitting spot would become visible only
for 2x = 180° — ¢ = 180° — 90° = 90°. Therefore, for
X < 45° only one spot would be observable. For R/M = 5.0,
Pmax = 128°, and therefore a second, infinitesimal, spot
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F16. 3.—(a) rms amplitude as a function of spot size « and stellar compactness at the first harmonic (upper curves) and the second harmonic (lower curves)
from a single emitting spot. Numbers denote the value of R/M used for each curve (where we use geometrized units in which G = ¢ = 1), and in each case we
assume f = y = 90°, i.e., that both the observer and the center of the spot are in the rotational equator. (b) rms amplitude as a function of spot size and stellar
compactness at the second harmonic from two antipodal emitting spots. Note that the vertical scale is different than in (a). As before, numbers denote R/M
and we assume f = y = 90°. These figures show that the amplitude remains relatively unchanged as the spot size increases until « ~ 40°, at which point the
amplitude drops sharply. It is therefore expected that, if thermonuclear propagation proceeds at a constant and slow speed, the amplitude vs. time curve
should initially exhibit negative curvature. These figures also show that the bolometric amplitude at the second harmonic is much more strongly affected by
the stellar compactness than is the amplitude at the first harmonic.

would begin to be visible at x = 26°. Since in Figure 4 the 3.4. Effects of Anisotropies from Doppler Shifts and Beaming
calculation was done with a = 15°, the spot begins to

become visible at x = 26° — (15/2)° ~ 20°, explaining the In Figure 5 we include the effects of Doppler shifts and
appearance of the second harmonic at this x value. Note aberrations on the qscillation amplitl_ldes. We assume a
that in the two-spot case the first harmonic generates sig- surface rotatlon.velomty of v = 0.1¢, which corr.esponds toa
nificant power for a wide range of x. This occurs because for neutron star with radius R =10 km and spin frequency
x # 90° one spot is more directly aligned with the observer’s v~ 400 Hz. As can be seen, the amplitude of the second
line of sight, and as a result the intensity maxima of the two harmonic is increased significantly more than the amplitude
spots are unequal. In general, whenever an asymmetry of the first harmonic as a result of rotation. The tendency to
exists between the two emitting spots such that the intensity generate more power at the higher harmonics than at the
maxima of the two spots are unequal, power is generated at spin frequency is a general property of the rotation (see
the first harmonic. Miller & Lamb 1998 for a discussion of this effect).
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FIG. 4—rms amplitude as a function of f =y = X (i.e., for an observer at the same angular distance from the rotation as the hot spot is). (a) Single-
emitting spot with R/M = 5.0 and « = 15°. The solid line plots the amplitude of the first harmonic, and the dashed line plots the amplitude of the second
harmonic. This panel demonstrates that if there is only one spot, the presence of a second harmonic means that the line of sight of the observer cannot be
close to face-on. (b) Two antipodal emitting spots, where again R/M = 5.0 and « = 15°, and the amplitudes of both the first harmonic (solid line) and second
harmonic (dashed line) are plotted. This panel shows that as the line of sight and location of the hot spot move from the rotational axis to the rotational
equator, the power in the first harmonic is gradually transferred to the second harmonic.
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Fic. 5—Effect of surface rotational velocities on different harmonics.
Here we plot rms amplitude vs. spot angular radius « at the first harmonic
(upper curves) and the second harmonic (lower curves) from a single emit-
ting spot with a surface velocity measured at infinity of v = 0.1c (solid lines)
and v = 0.0c (dashed lines), R/M = 5.0, and B = y = 90° (i.e., observer and
hot spot both in the rotational equator). The increase in amplitude due to
nonzero rotational velocities is much greater for overtones than it is for the
fundamental of the stellar spin frequency.

Physical conditions in the region of emitting spots might
cause anisotropic emission of radiation. The results of
including a cosine beaming function and a sine beaming
function for the case of one spot are shown in Figure 6 and
for two antipodal spots in Figure 6b. As is apparent from
Figure 2, the enhanced emission along the magnetic axis for
the cosine beaming tends to narrow peaks in the light
curves (see Pechenick et al. 1983 for a discussion of the light
curves for beamed emission) and hence raise the oscillation
amplitudes. For the sine beaming the peaks in the light
curve are broadened, tending to lower the amplitude at the
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first harmonic. Both beaming functions do, however, gener-
ate substantial additional power at the higher harmonics.

4. APPLICATION TO DATA

4.1. Relative Amplitudes of Harmonics in 4U 1636 —536

Recent work by Miller (1999) gives evidence for the pres-
ence of power at the stellar spin frequency for a source
(4U 1636 —536) consisting of two emitting spots. Earlier we
saw that one possible mechanism for generating significant
power at the stellar spin frequency for the case of two emit-
ting spots is to vary the viewing geometry. Another possible
mechanism is to have the spots be nonantipodal. This can
occur, for instance, if the star’s dipolar magnetic field has its
axis slightly displaced from its center. In the left panel of
Figure 7 we show the oscillation amplitude as a function of
spot separation for the case of two emitting spots with
a=30°% B=y=090° and R/M = 5.0. The spots are per-
fectly antipodal at a spot separation of 180°. As the figure
shows, the oscillation amplitude at the second harmonic is
relatively constant, while the oscillation amplitude at the
first harmonic is a linear function of spot separation. At a
spot separation of ~170° the fractional rms amplitudes of
the first and second harmonic are equal. Another way to
produce power at the spin frequency is to have differences in
brightness between the two spots. Such an asymmetry can
occur, for example, if the strength of the magnetic field at
the location of the two spots is different, thereby pooling
different amounts of nuclear fuel onto the hot spot regions.
In the right panel of Figure 7 we show the oscillation ampli-
tude as a function of the percent difference between the
brightness of the two spots. As in the case of the non-
antipodal spots, the amplitude at the second harmonic is
essentially constant, while the amplitude at the first harmo-
nic increases linearly with increasing percent difference in
spot brightness.

4.2. Phase Lagsin SAX J1808—3658

Doppler model of phase lags—The hard X-ray spectrum
of low-mass X-ray binaries is well fitted by a Com-

0 30 60 90
a (degrees)

Fic. 6.—Effect of different beaming functions on the first and second harmonics. (a) rms amplitude vs. « at the first harmonic (upper three curves) and the
second harmonic (lower three curves) from a single emitting spot with R/M = 5.0, = y = 90°. Dashed line is cosine beaming, solid line is isotropic emission,
and dotted line is sine beaming. (b) rms amplitude vs. o at the second harmonic from two emitting spots with R/M = 5.0, f = y = 90°. Again, dashed line is
cosine beaming, solid line is isotropic emission, and dotted line is sine beaming. Both of the anisotropic emission patterns enhance tremendously the

amplitude at the second harmonic, by a factor of at least 4.
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Fi1c. 7.—Effect of nonantipodal separation of spots and differences in spot brightness on the relative amplitudes at the first and second harmonics. () rms
amplitude vs. spot separation at the first harmonic (solid line) and the second harmonic (dashed line) for two emitting spots with R/M = 5.0, o = 30°,
B =7 =90 (b) rms amplitude vs. percent difference in spot brightness at the first harmonic (solid line) and the second harmonic (dashed line) for two
antipodal emitting spots with R/M = 5.0, « = 30°, f = y = 90°. The analysis of RXTE data from 4U 1636 —536 by Miller 1999 indicates that the average
ratio of amplitudes of the second to first harmonic is 2.3. This figure therefore places strong constraints on the spot separation and possible differences in spot
brightness: the spot separation in 4U 1636 — 536 must be within 4° of antipodal, and the spot brightnesses must be within 7% of each other, or else the
amplitude at the fundamental of the spin frequency would be larger than observed relative to the overtone.

ptonization model, in which the central neutron star is sur-
rounded by a hot corona of electrons and the photons
injected into this corona are relatively soft. It was therefore
expected that the observed hard photons, having scattered
more often than the soft photons and thus having a longer
path length before escape, would lag the soft photons.
Instead, in several sources a hard lead was discovered. One
suggestion for the source of this lead was made by Ford
(1999). He proposed that Doppler shifting of photons
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FIG. 8a

emitted from rotating hot spots, as in thermonuclear burst
oscillations, would tend to produce a hard lead because the
approaching edge of the spot would precede the trailing
edge. He compared a simplified calculation of this effect
with burst data for Aql X—1 and showed that an adequate
fit was possible (Ford 1999).

The millisecond X-ray pulsar SAX J1808 — 3658 provides
a stronger test of this hypothesis. This source has strong
oscillations (~5% rms) at ~401 Hz, which as usual are
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F1G. 8.—Time lags vs. photon energy, as a function of stellar gravitational mass (left panel) and of surface temperature (right panel). The lags are relative to
the photons at 2.5 keV, and their negative value indicates a hard lead. In both cases we assume a stellar spin frequency of 401 Hz to correspond to the spin
frequency of SAX J1808 —3658. We also assume a stellar compactness of R/M = 5.1, and assume that the surface emission has the pattern appropriate for a
gray atmosphere. In the left panel the curves are labeled by the gravitational mass, and we assume a surface effective temperature of kT = 0.7 keV as
measured at infinity. In the right panel the curves are labeled by the surface effective temperature (as measured at infinity) in units of keV, and we assume

M=16M,.
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Fi16. 9.—Comparison of model time lags with the lags reported by Cui
et al. (1998) for SAX J1808 —3658. The vertical axis is the time lag in
microseconds relative to the average in the 2-3 keV band, and the horizon-
tal axis is the observed photon energy in keV. The crosses are the data: the
horizontal bars indicate the extent of each energy bin, whereas the vertical
bars indicate the uncertainty in the time lag. The model time lags are
shown with the filled boxes, and are computed via the procedure described
in the text. In this fit, the neutron star gravitational mass is M = 2.2 M,
R = 10 km, the surface temperature measured at infinity is kT = 1.1 keV,
and we assumed an isothermal atmosphere. The total x> was 38.6 for six
degrees of freedom. The reasonable quantitative fit to the data add support
to the Doppler shift hypothesis for the origin of the hard leads. The data
for SAX J1808 — 3658 were kindly provided by W. Cui.

attributed to rotational modulation of a hot spot on the
surface. Cui, Morgan, & Titarchuk (1998) obtained precise
measurements of the oscillation phase as a function of
energy and found that in this source as well there is a hard
lead.

Figure 8 shows sample calculations of the time lag as a
function of energy. In the left panel we focus on the depen-
dence of the lag on mass, and in the right panel we concen-
trate on the effect of changing the surface temperature. In
both cases the surface emission pattern is the pattern for a
gray atmosphere, and we assume R/M = 5.1 and a stellar
spin frequency of 401 Hz, which is the spin frequency of
SAX J1808 —3658. In panel (a) we assume a surface effective
temperature of kT = 0.7 keV as measured at infinity. In
panel (b) we assume a stellar gravitational mass of 1.6 M,
which gives a surface equatorial rotation velocity of 0.1c as
measured at infinity. From this figure it is clear that the
effect of increasing the mass is to increase the phase lead,
whereas the effect of increasing the temperature is to
increase the energy at which the curve starts to flatten.

Comparison with data—Comparing these models with
the data for SAX J1808 — 3658 introduces additional com-
plications. In order to improve statistics, Cui et al. (1998)
averaged the phase lags over the period from 1998 April 11
to 1998 April 29. The calculation of the phase leads by Cui
et al. (1998) also involves averaging the phase over energy
bins several keV in width. Examination of Figure 9 shows
that the phase changes rapidly over such an energy range,
implying that the measured phase lead depends sensitively
on the input spectrum. The effective area of RXTE also
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decreases rapidly below 4 keV, which strongly affects the
observed average phase in the 2-3 keV reference bin.
Finally, given that the observed spectrum is not a black-
body, but is instead approximately a power law of index
1.86 from ~3 keV to ~30 keV (Heindl & Smith 1998),
Compton reprocessing has taken place and the observed
phase lags are the result of a convolution between the
unscattered phase lags and the Compton redistribution
function.

Figure 9 plots the data along with a simplified model of
the phase lags taking some of these complications into
account. We ignore the changing effective area of RXTE
and assume a constant response with energy. Based on the
power-law nature of the spectrum, we approximate the
process of Comptonization by assuming that the energy of
the injected photons is much less than the observed photon
energies or the temperature of the electrons. We also
assume an isothermal atmosphere, in contrast to the gray
atmosphere we used for Figure 8, which gives too low a
hard lead. The best fit has kT = 1.1 keV as observed at
infinity, R = 10 km, and M = 2.2 M . The total yx? of the fit
is 38.6 for 6 degrees of freedom. Given the simplifications,
this is an encouragingly good fit and supports the Doppler
interpretation of the observed hard lead.

5. DISCUSSION

Relative amplitudes of harmonics—We have presented
calculations of the waveforms and amplitudes at different
harmonics of the spin frequency for one or two hot spots
and many realistic combinations of stellar compactness,
spot size and emission pattern, observation angle, and mag-
netic inclination. These calculations show that typically
either the fundamental or the first overtone has an ampli-
tude much larger than the amplitude of any other harmonic.
This corresponds well to the observations of the six sources
with burst brightness oscillations, in which there is a strong
oscillation at only one frequency. We also find that if the
first overtone is the dominant harmonic, there must be two
similar and nearly antipodal bright spots, because a single
spot always produces a much stronger oscillation at the
fundamental than at any overtone. In contrast, if the funda-
mental is much stronger than the overtone, this is consistent
with but does not require a single spot: if there are two
bright spots that are sufficiently dissimilar or far away from
antipodal, or if our line of sight is such that one of the spots
is hidden, then the oscillation at the fundamental will domi-
nate. This implies that the three sources with detectable
oscillations near ~ 300 Hz (4U 1728 —34 [Strohmayer et
al. 1996], 4U 1702 —43 [ Markwardt, Strohmayer, & Swank
1999], and 4U 1636 — 536 [Miller 1999; this source has a
strong oscillation at ~580 Hz but a detectable oscillation
at ~290 Hz]) have spin frequencies of ~ 300 Hz, whereas
the three sources with detectable oscillations only at ~ 500—
600 Hz (Aql X-1 [Zhang et al. 1998], MXB 1743 —29
[Strohmayer et al. 1997a], and KS 1731 —260 [Smith et al.
1997]) could have spin frequencies at either this frequency
or half of it. Therefore, all six burst oscillation sources are
consistent with having spin frequencies ~ 300 Hz.

Information content of waveforms.—Our results also show
clearly that power-density spectra, which contain informa-
tion only on the relative amplitudes of different harmonics,
are much less informative than the waveforms themselves.
Figure 10 shows three different waveforms that all have an
amplitude at the first overtone that is 2.3 times the ampli-



1106 WEINBERG, MILLER, & LAMB

0.4 —
. — = P=y=75 (A=180", equal brightness)
] :'.:-'.»_ — A=175" (B=y=90°, equal brightness) 4
= 10% difference in brightness (B=y=90°, A=180")

=]
W
T

Relative Intensity

180 270 360

0.25 ‘

ot (degrees)

Fi1G. 10.—Burst oscillation waveforms with a fixed ratio between the
amplitude at the first overtone and the amplitude at the fundamental of 2.3,
which was the ratio found by Miller 1999 for 4U 1636 —536. Solid line:
identical spots 175° apart. Dotted line: antipodal spots differing in bright-
ness by 10%. Dashed line: identical, antipodal spots 75° from the rotation
axis as seen by a distant observer 75° from the rotation axis. For all three
curves, R/M = 5 and the spot angular radius is 15°. This figure shows that
amplitude ratios, as are computed with a power density spectrum, are not
sufficient to distinguish between these various scenarios. Waveforms are to
be preferred.

tude at the fundamental, to correspond with the ratio found
by Miller (1999) for 4U 1636 —536. In all cases there are
two bright spots. The solid line shows the waveform for two
identical pointlike spots that are 175° apart, the dotted line
shows the waveform for two antipodal spots with bright-
nesses differing by 10%, and the dashed line shows the
waveform for two identical and antipodal spots that are 75°
from the rotational pole and observed from a line of sight
that is also 75° from the rotational pole. Although the
amplitude ratio is the same in each case, the waveforms are
quite different from each other, and the physical implica-
tions are also different. This underscores the importance of
calculating waveforms and not just power-density spectra,
both observationally and theoretically.

Searches for weak higher harmonics.—The amplitudes and
phases of higher harmonics potentially contain important

clues about the propagation of nuclear burning and about
the compactness of the star, but as yet there are no sources
in which a higher harmonic of a strong oscillation has been
observed. Our plots of amplitude versus spot size suggest
that it is best to look for weaker higher harmonics when the
dominant oscillation is strong. The reason is that, in
general, the ratio of the second to first harmonic drops with
increasing spot size, and therefore with decreasing ampli-
tude at the fundamental. Hence, a search of only the data
with strong oscillations may more sensitively reveal the
presence of higher harmonics.

Shape of amplitude decrease as a function of spot size—In
our calculations, as the spot size increases the amplitude
decreases slowly until the angular radius of the spot is
~40°, but the amplitude decreases quickly thereafter. This
apparently conflicts with the observations of 4U 1728 —34
reported in Strohmayer et al. (1997b), in which the error
bars are large, but it appears that the decrease in amplitude
is fast from the start and then slows down. Further quantifi-
cation of this result is important, but, if confirmed, it could
be caused by a number of effects. For example, the spot size
might never be small: if ignition were nearly simultaneous
over a large area, further spreading would already be in the
large-spot regime, and hence the amplitude would decrease
quickly. If the spreading velocity were initially high but then
decreased, this would have a similar effect on the ampli-
tudes. Alternately, if there is a corona with a nonnegligible
scattering optical depth around the star and the optical
depth increases as the burst approaches its peak flux, this
would also decrease the amplitude faster than expected
when the optical depth is zero.

Phase lags as a probe of surface rotation velocity—We
find that the hard lead observed in SAX J1808 —3658 is
fitted reasonably well by a model (see Ford 1999) in which
rotational Doppler shifts cause higher energy X-rays to lead
lower energy X-rays. This fit lends support to the model and
suggests that with better fitting and more data (especially
from a future high-area timing mission) it may be possible
to use phase lag versus energy data to help constraint the
mass M or the compactness R/M of the star.
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