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We construct effective-one-body waveform models suitable for data analysis with the Laser

Interferometer Space Antenna for extreme mass-ratio inspirals in quasicircular, equatorial orbits about

a spinning supermassive black hole. The accuracy of our model is established through comparisons

against frequency-domain, Teukolsky-based waveforms in the radiative approximation. The calibration of

eight high-order post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional

amplitude agreement of better than 1 rad and 1%, respectively, over a period between 2 and 6 months

depending on the system considered. This agreement translates into matches higher than 97% over a

period between 4 and 9 months, depending on the system. Better agreements can be obtained if a larger

number of calibration parameters are included. Higher-order mass-ratio terms in the effective-one-body

Hamiltonian and radiation reaction introduce phase corrections of at most 30 rad in a 1 yr evolution. These

corrections are usually 1 order of magnitude larger than those introduced by the spin of the small object in

a 1 yr evolution. These results suggest that the effective-one-body approach for extreme mass-ratio

inspirals is a good compromise between accuracy and computational price for Laser Interferometer Space

Antenna data-analysis purposes.
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I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) are one of the
most promising sources of gravitational waves (GWs)
expected to be detected with the proposed Laser
Interferometer Space Antenna (LISA) [1–4]. These
sources consist of a small compact object, such as a neu-
tron star or stellar-mass black hole (BH), in a close orbit
around a spinning, supermassive BH [5]. Gravitational
radiation losses cause the small object to spiral closer to
the supermassive BH and eventually merge with it. Hence,
the GW signal from such events encodes information about
strong gravity, allowing tests of general relativity [6] and of
the Kerr metric [7–17], as well as measurements of the
spins and masses of massive BHs [18].

Unfortunately, EMRIs are very weak sources of GWs at
their expected distances from us, and thus, they must be
observed over many cycles to be detectable [5]. For ex-
ample, a typical EMRI at a distance of 3 Gpc would
produce GWs with signal-to-noise ratios (SNRs) on the
order of 10–200 depending on the observation time.
Therefore, matched filtering is essential to extract EMRIs
from LISA noise and the foreground of unresolved GWs
from white dwarf binaries in our galaxy.

Matched filtering consists of cross-correlating the data
stream with a certain noise-weighted waveform template
[19]. If the latter is similar to a GW event hidden in the
data, then this cross-correlation filters it out of the noise. Of
course, for matched filtering to be effective, one must
construct accurate template filters. Otherwise, real events
can be missed, or if an event is detected, parameter esti-
mation can be strongly biased [20]. The construction of
accurate EMRI waveforms is extremely difficult due to the
long duration of the signal and the strong-field nature of the
orbits. A one-year EMRI signal contains millions of radi-
ans in phase information. To avoid significant dephasing,
its waveform modeling must be accurate to at least one part
in 105–106 [21].
Such an exquisite accuracy requirement is complicated

further by the strong-field nature of the orbit. An EMRI can
reach orbital velocities of two-thirds the speed of light and
orbital separations as small as a few times the mass of the
supermassive companion. This automatically implies that
standard, post-Newtonian (PN) Taylor-expanded wave-
forms fail to model such EMRI orbits [22]. PN theory
relies on the assumptions that all orbital velocities are
much smaller than the speed of light and that all objects
are at separations much larger than the total mass of the
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system [23]. A better approximation scheme to model
EMRIs is BH perturbation theory, where one only assumes
that the mass ratio of the system is much less than unity
[24]. This is clearly the case for EMRIs, as the mass ratio is
in the range 10�4–10�6. Perturbation theory, however, is
computationally and analytically expensive. Only recently
have generic orbits been computed around a nonspinning
BH to linear order in the mass ratio [25–27], and it is
unlikely that these will be directly used for EMRI data
analysis [4].

EMRIs involve complicated inspiral analysis, but unlike
comparable-mass coalescences, the merger and ringdown
phase can be completely neglected. To see this, note that
the instantaneous amplitude of the waves from a binary
scales as�, where� ¼ m1m2=M is the reduced mass,M is
the total mass and m1;2 are the component masses. The

inspiral lasts for a time �1=� and releases an energy flux
��2=���. In contrast, the merger and ringdown last for
a time�M (independent of�), and thus, release an energy
flux ��2. For an EMRI, � � M and the inspiral clearly
dominates the signal. Based on this argument, we neglect
the merger and ringdown, focusing on the inspiral for our
analysis.

A. Summary of previous work

The modeling of EMRIs has been attempted in the past
with various degrees of success. One approach is to com-
pute the self-field of the test particle to understand how it
modifies the orbital trajectory. This task, however, is quite
involved, both theoretically and computationally, as the
self-field contains a divergent piece that is difficult to
regularize (see, e.g., Ref. [28] for a recent review).
Recently, a breakthrough was achieved, with the full cal-
culation of the self-force for generic EMRIs about non-
spinning supermassive BHs [25,26]. Such calculations,
however, are computationally prohibitive if the goal is to
populate a waveform template space.

Another approach is to use more approximate methods
to model the EMRI trajectories. One such approach was
developed by Hughes [29,30], following the pioneering
work of Poisson [31]. In this radiative-adiabatic scheme,
the inspiral is treated as a sequence of adiabatically shrink-
ing geodesics. The degree of shrinkage is determined by
solving the Teukolsky equation on each individual geode-
sic. Its solution encodes how the constants of the motion
(the energy, angular momentum, and Carter constant)
change due to GW emission. By interpolating across such
sequence of geodesics, one then obtains a continuous in-
spiral and waveform. The calculation of a single wave-
form, however, is rather computationally expensive, as it
requires the mapping of the entire orbital phase space,
which for generic orbits is likely to be prohibitive. It is
also worth noting that the radiative approximation neglects
the impact of conservative effects which, especially for
eccentric orbits, are likely to be important [32].

Other, perhaps more rough approximations can also be
used to model EMRIs. The templates obtained through
these methods are sometimes called kludge waveforms to
emphasize their approximate nature. The goal of their
construction was never to provide sufficiently accurate
templates for real data analysis. Instead, kludge waveforms
were built to carry out descoping or parameter estimation
studies to determine roughly the accuracy to which
parameters could be extracted, given an EMRI detection
with LISA.
The first kludge waveforms were constructed by Barack

and Cutler [18]. These waveforms employ the quadrupole
formula to build templates as a function of the orbital
trajectories. The latter are simply Keplerian ellipses with
varying orbital elements. The variation of these is deter-
mined by low-order PN expressions, constructed from the
GW energy and angular momentum fluxes. An improve-
ment of these fluxes was developed by Gair and
Glampedakis [33], who fitted these low-order PN expres-
sion to more accurate fluxes constructed from solutions to
the Teukolsky equation. A further improvement was de-
veloped by Babak et al. [34], who modeled the waveforms
via a quadrupole-octopole formula and the orbital trajec-
tories via solutions to the geodesic equations, augmented
with PN–orbit-averaged evolution equations for the orbital
elements.
All of these improvements, however, do not mean that

kludge waveforms would be effectual or faithful for real-
istic data analysis with LISA. One cannot exactly quantify
this statement because exact EMRI waveforms are not
available and will not be in the near future. One can
nonetheless predict that these approaches will be insuffi-
cient because critical components of the fluxes are not
being taken into account. For example, GWs do not only
escape to infinity, but they are also absorbed by the super-
massive BH, contributing to the overall fluxes of energy
and angular momentum. This contribution is non-
negligible if one considers sufficiently long waveforms
(longer than a few weeks). In fact, as we shall show in
this paper, even the inclusion of such terms and very high-
order PN expressions in the fluxes is still insufficient
for accurate waveform models that last more than a couple
of months.

B. The effective-one-body approach

The effective-one-body (EOB) formalism was intro-
duced in Refs. [35,36] to model the inspiral, merger, and
ringdown of comparable-mass BH binaries. This scheme
was then extended to higher PN orders [37], spinning BHs
[38–41], small mass-ratio mergers [42–44], and improved
by resumming the radiation-reaction force and waveforms
[43,45–48]. In the comparable-mass case, phase and am-
plitude agreement was achieved between EOB and
numerical-relativity (NR) waveforms, after calibrating a
few parameters [49–51]. By calibrating the EOB model to
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the comparable-mass case, one can also improve the agree-
ment of the model with the self-force predictions [25,52].
The combination of EOB and BH perturbation theory tools
for LISA data-analysis purposes was first carried out in
Refs. [53,54]. In these papers, the EOB scheme was found
to be successful for the coherent modeling of EMRIs about
a nonspinning background for a 2 yr period. Here we
extend these results to nonprecessing EMRIs about a spin-
ning background.

As a first step toward the construction of accurate EMRI
waveforms, we concentrate on quasicircular, equatorial
EMRIs about a spinning, supermassive Kerr BH. The
modeling of such EMRIs is simpler than that of inclined
and eccentric ones, as only a single component of the
radiation-reaction force is nonvanishing and entirely con-
trolled by the GWenergy flux (the Carter constant vanishes
by symmetry). Moreover, such EMRIs are expected in at
least one astrophysical scenario [55]. In this setup, stellar-
mass compact objects are either created in the accretion
disk surrounding the supermassive BH or are captured by
the disk, and hence move with the disk. The accretion disk
is expected to be in the spin equatorial plane within a few
hundred gravitational radii of the supermassive BH [56].

We first calibrate the EOB energy flux to the energy flux
computed in BH perturbation theory through the solution
to the Teukolsky equation. This calibration is done in the
test-particle limit, i.e., by setting relative mass-ratio terms
to zero in the EOB flux function. This calibration is more
complicated than for nonspinning systems because it
must now be performed globally, i.e., as a function of
both spin and velocity. This increases the computational
cost of the calibration and the number of calibration pa-
rameters, as a bivariate series generically contains more
terms than a monovariate one. After calibrating 8 parame-
ters, we find that the fluxes agree to within one part in
103 for all spins [a=M ¼ ð�0:99; 0:99Þ] and velocities
[v ¼ ð0:01c; vISCOÞ] considered, where vISCO is the veloc-
ity at the innermost circular orbit (ISCO).

Once the energy flux has been calibrated, we evolve the
Hamilton equations in the adiabatic approximation and
compare the amplitude and phase evolution to that ob-
tained with an approximate BH perturbation theory, nu-
merical result. For the latter, we employ the so-called
radiative approximation [29,30], where one models the
EMRI as an adiabatic sequence of geodesics with varying
orbital elements, as prescribed by the solution to the
Teukolsky equation. We find that the EOB and
Teukolsky-based waveforms agree in phase and relative
amplitude to better than 1 rad and 1%, respectively, after 2
or 6 months of evolution, depending on the system consid-
ered. Better agreements can be obtained if a larger number
of calibration parameters were included.

Our EOB waveforms differ from previous kludge mod-
els on several fronts. First, the radiation-reaction force is
here computed differently than in the kludge approach.

In the latter this force is calculated from PN, Taylor-
expanded fluxes that encode the GWs that escape to infin-
ity only. These fluxes were then improved by fitting a very
large number of parameters to more accurate Teukolsky-
fluxes with a log-independent, power-series expansion for
the fitting functions [33]. In the EOB approach, the
radiation-reaction force is computed directly from the
factorized resummed waveforms [46,47]. These are en-
hanced through the addition of BH absorption terms and
then the calibration of eight high PN-order parameters to
Teukolsky fluxes with a log-dependent, power-series ex-
pansion for the fitting functions. Second, the conservative
dynamics is also treated here differently than in the kludge
approach. In the latter, the Hamiltonian is either a two-
body, Newtonian one [18] or the full test-particle limit one,
i.e., Schwarzschild or Kerr [34]. In the EOB approach, the
conservative dynamics not only encodes the exact test-
particle limit Hamiltonian, but also allows for the inclusion
of finite mass-ratio terms and of the spin of the small body.

C. Data-analysis implications

The waveforms computed here are thus suitable for
coherent data analysis over periods of several months.
This can be established by computing the overlap between
the EOB and Teukolsky-based waveforms, after maximiz-
ing over extrinsic parameters (an overall phase and time
shift). We find that, when eight calibration parameters are
used, the overlap remains higher than 97% over 4 to
9 months of evolution, depending on the system consid-
ered. This is to be compared with numerical kludge wave-
forms [34] whose overlap drops to 56% and 74% after 4
and 9 months, respectively, even when 45 calibration pa-
rameters are used to fit the flux [33]. Of course, one could
obtain higher overlaps by maximizing over intrinsic pa-
rameters, such as the chirp mass or the spin of the back-
ground, but this would naturally bias parameter estimation.
Also, when integrating over only two weeks, the overlap
increases, remaining higher than 0.999 99 at 1 Gpc regard-
less of the model used.
The benefit of coherently integrating over longer periods

of time is that the recovered SNR naturally increases, thus
allowing us to detect signals farther out and improving
parameter estimation. One can see this by simply noting
that the SNR scales with the square root of the time of
observation. For example, coherent integration over 4 or
9 months instead of two weeks increases the SNR at 1 Gpc
from 2.8 to 14 and from 6 to 18 for two prototypical
EMRIs. Such a large increase in SNR by coherently inte-
grating over long observation times brings EMRIs not only
to a confidently detectable range, but would also allow
interesting tests of GR.
We conclude the paper by studying the error introduced

in these waveforms due to neglecting second-order mass-
ratio terms in the radiation-reaction force (dissipative PN
self-force) and first-order in the mass-ratio terms in the
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Hamiltonian (conservative PN self-force). Such mass-
ratio dependent effects can easily be included in the
EOB prescription, as they are known in the PN/EOB
framework. Of course, since these are known to finite
PN order, we cannot include full second-order effects.
These effects should be considered estimates, since the
complete result may differ from the PN prediction. We
find that such PN radiation-reaction effects modify the
phase of the waveform by Oð10Þ radians in a 1 yr evolu-
tion, provided the EMRI samples the strong-gravity re-
gime close to the ISCO. In a two-month period, however,
the inclusion of finite mass-ratio effects increases the
mismatch from 2:9� 10�5 to 3:6� 10�5 at 1 Gpc. This
implies that such effects will only be seen if one coher-
ently integrates over a sufficiently long time of observa-
tion. We find a somewhat smaller final dephasing when
we allow the second body to be spinning and neglect any
self-force corrections. The relative importance of the
conservative or dissipative PN self-force terms and that
of the spin of the second body depends somewhat on the
EMRI considered. Generically, we find all such correc-
tions to be larger than 1 rad after a full year of integration,
while they are negligible over a two-month period.

This paper is organized as follows. Section II describes
how we model EMRIs analytically and numerically.
Section III discusses how the analytical EOB model is
calibrated to the Teukolsky energy flux. Section IV com-
pares EOB evolutions to Teukolsky ones, while Sec. V
discusses the data-analysis implications of such a compari-
son. Section VI estimates the effect of mass-ratio depen-
dent effects and Sec. VII concludes and points to future
research. Appendix A presents details on the transforma-
tion between spheroidal and spherical tensor harmonics.
Appendix B contains expressions for the GW energy flux
absorbed by BHs. Finally, in Appendix C we write the
EOB Hamiltonian derived in Ref. [41] when BHs carry
spins aligned or antialigned with the orbital angular mo-
mentum. We use geometric units, with G ¼ c ¼ 1, unless
otherwise noted.

II. EMRI MODELING

A. Analytical modeling: EOB-based waveforms

Consider a BH binary system with masses m1 and m2,
total mass M ¼ m1 þm2, reduced mass � ¼ m1m2=M,
and symmetric mass ratio � ¼ �=M. We assume that the
orbital angular momentum is coaligned or counter-aligned
with the individual BH spins SA ¼ aAmA ¼ qAm

2
A, where

aA ¼ SA=mA denotes the A-th BH’s spin parameter and
qA ¼ aA=mA denotes the dimensionless spin parameter.

We first discuss the case of a nonspinning BH (q2 ¼ 0)
with mass m2 orbiting a spinning BH with spin parameter
q1 and mass m1 � m2, to leading order in the mass ratio
m2=m1. Subleading terms in the mass ratio and terms
proportional to q2 introduce conservative corrections that
are not included in the Teukolsky waveforms, which we

shall use to calibrate our model, and we therefore neglect
them during the calibration. Eventually, however, we
shall turn these conservative terms on and estimate their
effect using the spin EOB Hamiltonian of Ref. [41] (see
Appendix C).
In the EOB framework, the orbital trajectories are ob-

tained by solving Hamilton’s equations, supplemented by a
radiation-reaction force describing the backreaction of GW
emission on the orbital dynamics. Neglecting conservative
corrections of order Oðm2=m1Þ and Oðq2Þ, the spin EOB
Hamiltonian reduces to the Hamiltonian of a nonspinning
test-particle in Kerr, HNS:

HEOB ¼ HNS½1þOðm2=m1Þ þOðq2Þ�; (1)

HNS ¼ �ipi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ �ijpipj

q
; (2)

where

� ¼ 1ffiffiffiffiffiffiffiffiffiffi�gtt
p ; (3)

�i ¼ gti

gtt
; (4)

�ij ¼ gij � gtigtj

gtt
; (5)

g�� being the Kerr metric. In Boyer-Lindquist coordinates

ðt; r; �; �Þ and restricting ourselves to the equatorial plane
� ¼ 0, the relevant metric components read

gtt ¼ � �

r2�
; (6a)

grr ¼ �

r2
; (6b)

g�� ¼ 1

�

�
� !2

fd

r2�
þ r2

�
; (6c)

gt� ¼ � !fd

r2�
; (6d)

where !fd ¼ 2q1m
2
1r, and the metric potentials are

� ¼ r2 þ q21m
2
1 � 2m1r; (7)

� ¼ ðr2 þ q21m
2
1Þ2 � q21m

2
1�: (8)

Although the EOB formalism includes possible nonadia-
baticities in the last stages of the inspiral and plunge, it is
not necessary to include nonadiabatic effects here.
Generically, for the systems that we consider, we find
that the inclusion of nonadiabatic corrections leads to small
phase corrections [of Oð1 radÞ after 1 yr of evolution]
[53,54]. The assumption of adiabaticity allows us to sim-
plify the evolution equations that are solved numerically.
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This in turn reduces the computational cost of producing
EOB waveforms: an adiabatic EOB evolution requires a
few CPU seconds, while a nonadiabatic one would require
CPU days or weeks (although this is estimated with a
nonoptimized MATHEMATICA implementation). The non-
adiabatic model is computationally more expensive be-
cause one needs to solve all of Hamilton’s equations,
with radiation-reaction source terms that are expensive to
evaluate.

The Hamiltonian of Eq. (2) simplifies drastically when
we consider circular, equatorial orbits (� ¼ �=2) with S1

coaligned or counter-aligned with the orbital angular mo-
mentum (see, e.g., [57]). Imposing pr ¼ 0, which is a
necessary condition for circular orbits, and inserting
Eqs. (6a)–(6d) in Eq. (2), a straightforward calculation
returns

HNS ¼ p�

!fd

�
þm2r

ffiffiffiffi
�

p ffiffiffiffi
Q

pffiffiffiffi
�

p ; (9)

where

Q ¼ 1þ p2
�r

2

m2
2�

; (10)

and p� � L is the conjugate momentum to the � Boyer-

Lindquist coordinate or simply the orbital angular momen-
tum. Imposing the condition _pr ¼ ð@HNS=@rÞpr¼0 ¼ 0,

which is also satisfied by circular orbits, we can solve for
L as a function of r and q1 [57]

L ¼ �m2m
1=2
1

r2 	 2q1m
3=2
1 r1=2 þ q21m

2
1

r3=4ðr3=2 � 3m1r
1=2 � 2q1m

3=2
1 Þ1=2 ; (11)

where � corresponds to prograde or retrograde orbits,
respectively. Inserting the above equation in Eq. (9) yields
an expression for the energy E � Hcirc

NS ðrÞ of circular orbits
in Kerr [57]

E ¼ m1 þm2

1� 2m1=r� q1m
3=2
1 =r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3m1=r� 2q1m
3=2
1 =r3=2

q : (12)

The above quantities can also be expressed in terms of the
orbital velocity !, once rð!Þ is derived for circular orbits.
Computing ! ¼ ð@HNS=@p�Þpr¼0, using Eq. (11), we

obtain

r ¼ ½1� q1ðm1!Þ�2=3
ðm1!Þ2=3 : (13)

We also define the parameter v � ðm1!Þ1=3.
In the adiabatic approximation, the orbital evolution is

fully determined by the frequency evolution through
Eq. (13). Assuming the motion follows an adiabatic se-
quence of quasicircular orbits, we can use the balance
equation _L ¼ _E=! ¼ �F =! to derive

_! ¼ � 1

!

�
dL

d!

��1
F ð!Þ; (14)

where F is the GW energy flux (see, e.g., Ref. [36]). The
multipolar-factorized form of this flux, proposed in
the nonspinning case in Refs. [43,46] and extended to the
spin case in Ref. [47], is given by

F ð!Þ � 1

8�

X8
‘¼2

X‘
m¼0

j _h‘mj2; (15)

which under the assumption of adiabaticity reduces to

F ð!Þ ¼ 1

8�

X8
‘¼2

X‘
m¼0

ðm!Þ2jh‘mj2; (16)

with

h‘mðvÞ ¼ h
Newt;	p
‘m S

	p
‘mT‘me

i
‘mð�‘mÞ‘; (17)

where 	p denotes the parity of the multipolar waveform

(i.e., 	p ¼ 0 if ‘þm is even, 	p ¼ 1 if ‘þm is odd), and

h
Newt;	p
‘m � m1

R
n
ð	pÞ
‘m c‘þ	pv

‘þ	pY‘�	p;�mð�=2; �Þ: (18)

When spin effects are present, the expressions for all the

terms in Eq. (17), namely, S
	p
‘mðvÞ, T‘mðvÞ, 
‘mðvÞ, and

�‘mðvÞ can be read in Ref. [47] [see Eqs. (24), (25), (26),
and (29) therein]. The functions Y‘;mð�;�Þ are the standard
spherical harmonics, while n

ð	pÞ
‘m and c‘þ	p are numerical

coefficients that depend on the mass ratio [see Eqs. (5)–(7)
in Ref. [46] ].
The solution to Eq. (14) requires that we prescribe initial

data. We here choose post-circular initial conditions, as
described in Ref. [36], to set up a mock evolution that starts
at a separation of 100m1 and ends at either the ISCO or
whenever the GW frequency reaches 0.01 Hz. This mock
evolution is then used to read initial data one year before
the end of the mock evolution. This approach leads to an
accurate initial data prescription, without any eccentricity
contamination. For example, the error in the initial fre-
quency induced by starting the mock evolution at 100m1,
instead of 200m1, is on the order of 10�9 Hz, which leads
to a difference in accumulated GW cycles of 0.03 rad after
a 1 yr evolution.
Finite mass-ratio corrections can be incorporated into

the EOB model by including subleading terms of
Oðm2=m1Þ andOðq2Þ in the Hamiltonian, angular momen-
tum, and rð!Þ relation. We shall first ignore such terms to
compare against Teukolsky-based waveforms. In Sec. VI,
we shall study how our results change when we include
such terms. To do so, we shall still assume circular, equa-
torial orbits and an adiabatic evolution, but employ the spin
EOB Hamiltonian of Refs. [41,58] (reviewed in
Appendix C), instead of the Kerr Hamiltonian of Eq. (9).
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Except for this change, the EOB waveform modeling
with finite mass-ratio corrections follows closely the deri-
vation presented above. First, we compute the angular
momentum associated with the Hamiltonian of Eq. (C22)
for circular, equatorial orbits, imposing _pr ¼
ð@HEOB=@rÞpr¼0 ¼ 0 and solving for L � p�. Then, we

derive the orbital frequency ! ¼ ð@HEOB=@p�Þpr¼0 to

relate r to !, and to express L in terms of !. When
mass-ratio corrections are present, however, the
Hamiltonian becomes much more involved, so solutions
for L as a function of r must be searched numerically. We
have checked that the discretization and interpolation used
to solve these equations numerically do not introduce an
error larger than 10�10 in the Hamiltonian (C22).

B. Numerical modeling: Teukolsky-based waveforms

Teukolsky-based waveforms is the name we give to
radiative models that use the Teukolsky equation to pre-
scribe the radiation-reaction force for an inspiral. We use
BH perturbation theory, considering a background space-
timewith massm1 and spin jS1j ¼ m2

1q (recall that the spin
parameter q1 ¼ a1=m1). The inspiraling object is a test
body with mass m2 � m1 and no spin (q2 ¼ 0). In prin-
ciple, the masses and spins used here should be the same as
those introduced in the EOB model.

The radiative approximation assumes that EMRIs can be
modeled as an adiabatic sequence of geodesics with slowly
varying constants of the motion. Consider the discretiza-
tion of the orbital phase space, each point of which repre-
sents a certain geodesic with a given set of constants of
motion (energy E, angular momentum L, and Carter con-
stant Q). For quasicircular, equatorial EMRIs, the Carter
constant vanishes, while the variation of the energy and
angular momentum are related via 
L ¼ ð
EÞ=!,! being
the orbital frequency. At each point in the orbital phase
space, the geodesic equations can be solved to obtain the
orbital trajectory of the small compact object, given any
spin of the background.

Once the geodesic trajectories are known, one can use
these to solve the linearized Einstein equations and obtain
the gravitational metric perturbation. This is best accom-
plished by rewriting the linearized Einstein equations in
terms of the Newman-Penrose curvature scalar c 4 to yield
the Teukolsky equation [59]. One can decompose c 4 into
spin-weight �2 spheroidal harmonics �2Sa!‘mð�Þ, using

Boyer-Lindquist coordinates ðt; r; �;�Þ, in the Fourier
domain:

c 4 ¼ 1

ðr� im1q1 cos�Þ4
Z 1

�1
d!

�X
‘m

R‘m!ðrÞ�2S
m1q1!
‘m ð�Þe�iðm��!tÞ: (19)

The radial functions R‘m!ðrÞ satisfy the radial Teukolsky
equation

�2 d

dr

�
1

�

dR‘m!

dr

�
� VðrÞR‘m! ¼ �T ‘m!; (20)

where � is given in Eq. (7) and the radial potential is

VðrÞ � �K2 þ 4iðr�m1ÞK
�

þ 8i!rþ �; (21)

withK� ðr2þm2
1q

2
1Þ!�mm1q1, �� E‘m � 2m1q1m!þ

m2
1q

2
1!, and E‘m the spheroidal harmonic eigenvalue. The

source function T ‘m! is given explicitly in Eq. (4.26) of
Ref. [29] and it depends on the stress-energy tensor for a
test particle in a geodesic trajectory.
The Teukolsky equation admits two asymptotic solu-

tions: one outgoing as r ! 1 and one ingoing as one
approaches the background’s event horizon. These two
solutions represent outgoing radiation at future null infinity
and ingoing radiation that falls into the BH through the
event horizon. Both types of radiation are critical in the
modeling of EMRIs; not including BH absorption can lead
to errors in the waveform of order 104 radians [30,60].
These solutions can then be used to reconstruct both the
GW radiated out to infinity, as well as the total energy flux
lost in GWs. The energy flux can then be related to the
temporal rate of change of the orbital elements, such as the
orbital radius.
Solving the Teukolsky equation for a geodesic orbit tells

us how that orbit tends to evolve due to the dissipative
action of GW emission. By doing so for each point in
orbital phase space, we endow this space with a set of
vectors that indicate how the binary flows from one orbit to
another. We compute these vectors at a large number of
points, and use cubic-spline interpolation to estimate the
rates of change of orbital constants between these points.
This allows us to compute the temporal evolution of all
relevant quantities, including the orbital trajectories and
gravitational waveforms.
We implemented this algorithm, discretizing the orbital

phase space from an initial separation of r ¼ 104m1 to the
Kerr ISCO

rISCO
m1

¼ 3þ Z2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
;

Z1 ¼ 1þ ð1� q21Þ1=3½ð1þ q1Þ1=3 þ ð1� q1Þ1=3� ;
Z2 ¼ ð3q21 þ Z2

1Þ1=2 ; (22)

in a 1000 point grid, equally spaced in

v � ðm1!Þ1=3 ¼
�
q1 � r3=2=m3=2

1

q21 � r3=m3
1

�
1=3

: (23)

We cannot evolve inside the Kerr ISCO with such a
frequency-domain code, as stable orbits do not exists
in this regime (and so such orbits do not have a well-
defined frequency spectrum). The code we use to construct
our waves is based on [29,30,61], updated to use the
spectral methods introduced by Fujita and Tagoshi
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[62,63]. A detailed presentation of this code and its results
is in preparation [64].

The dominant error in these Teukolsky-based wave-
forms is due to truncation of the sums over ‘ and m. In
particular, to compare with PN results, we must map this
spheroidal decomposition to a spherical one (see
Appendix A for more details). Such a mapping requires
one to include a buffer region of ‘ modes about the largest
mode computed. We have been careful to use a sufficiently
wide buffer and total number of ‘ modes such that the
energy fluxes are accurate to 10�10 for all velocities and
spins. In particular, this means that in the strong-field
region (close to the ISCO) up to 50 ‘modes were included.
Other sources of error are due to the intrinsic double
precision in the numerical solution to the Teukolsky equa-
tion, the discretization of the orbital phase space, and its
cubic-spline interpolation. All of these amount to errors of
order 10�14. All in all and in terms of the GW phase, the
Teukolsky-based waveforms are accurate to at least
10�2 rad during an entire year of evolution.

III. CALIBRATING THE TEST-PARTICLE
ENERGY FLUX

We consider here a calibrated EOB model that is built
from the h‘m functions in Eq. (17), but in which higher-
order PN terms are included in the functions �‘m and are
calibrated to the numerical results. In particular, we write

�22
Cal ¼ �22 þ ½að9;1Þ22 þ bð9;1Þ22 eulerlog2v

2� �qv9

þ ½að12;0Þ22 þ bð12;0Þ22 eulerlog2v
2�v12;

�33
Cal ¼ �33 þ ½að8;2Þ33 þ bð8;2Þ33 eulerlog3v

2� �q2v8

þ ½að10;0Þ33 þ bð10;0Þ33 eulerlog3v
2�v10; (24)

where ðaðN;MÞ
‘m ; bðN;MÞ

‘m Þ are eulerlog-independent and

eulerlog-dependent calibration coefficients that enter the
ð‘;mÞ mode at OðvNÞ and proportional to �qM. As in
Refs. [46,47] the eulerlog function is defined as

eulerlog mðxÞ ¼ �E þ logð2m ffiffiffi
x

p Þ; (25)

where �E ¼ 0:577 215 . . . is Euler’s constant. Notice that
we have introduced 4 calibration parameters in the non-
spinning sector of the flux and 4 in the spinning sector. The
spin parameter �q denotes here the spin of the background.
When we neglect mass-ratio terms, we choose �q ¼ q1.
However, when we switch on the mass-ratio terms we
have an ambiguity on the choice of �q. Following
Ref. [47] we choose �q ¼ q, where q is the deformed-
Kerr spin parameter defined in Appendix C. Note that
since q ¼ q1 þOðm2=m1Þ, these choices are identical in
the test-particle limit, which is when the energy flux is
calibrated.

The choice of calibrating function in Eq. (24) is rather
special and requires further discussion. We have chosen
this function so that leading-order corrections in the two
dominant GW modes, (2, 2) and (3, 3), are included.
Higher ð‘;mÞ modes contribute significantly less to the
GW and its associated flux. In each mode, we have in-
cluded the leading-order unknown terms that are both q
independent and q dependent. Since q-independent terms
in the energy flux are known to much higher order (5.5 PN)
than the q-dependent ones (4 PN) in the test-particle limit
[24,65,66], spin-independent calibration coefficients enter
at a much higher PN order. The spin dependence of the
calibration terms is inferred from known terms at lower PN
orders. We have investigated many functional forms for the
calibrating functions, with a varying number of degrees of
freedom, and found the one above to be optimal in the class
studied.
The introduction of 8 additional calibration terms might

seem like a lot. In Ref. [53], the knowledge of nonspinning
terms up to 5.5 PN order was found to be crucial to obtain a
sufficiently good agreement in the flux. Moreover, only 4
additional calibration terms (2 at 6 PN order in �22 and 2 at
5 PN order in �33) were needed to reach a phase agreement
of 1 rad after two years of evolution. Similarly here, we
expect that if the remaining 4.5, 5, and 5.5 PN-order terms
were calculated in the test-particle limit when the central
black carries a spin, then the flux would also improve,
requiring a smaller number of calibration parameters. It
is quite likely that those higher-order PN terms will be
computed in the near future, as they involve dramatically
less complicated calculations than PN terms in the
comparable-mass case.
Having in hand an improved GW energy flux carried

away to infinity, this must be enhanced with expressions
for the GWenergy flux that is absorbed by the background
BH. We do so here by simply adding the Taylor-expanded
form of the latter (see Appendix B) to the flux of Eq. (15).
The BH absorption terms in the GWenergy flux depend on
polygamma functions, which are computationally expen-
sive to evaluate. We have empirically found that expanding
this function in q � 1 to 30th order is a sufficiently good
approximation for our purposes. When performing com-
putationally expensive calculations (like the fits described
below) we shall employ such expansions, but when solving
for the orbital phase and when computing the waveforms
we shall return to the full polygamma expressions.
The resulting EOB energy flux, including BH absorption

terms, is then calibrated via a two-dimensional, least-
squares minimization relative to numerical data obtained
from Teukolsky-based calculations. The fitting routine is
two-dimensional because when considering EMRIs about
spinning backgrounds, the flux depends on two indepen-
dent variables: the orbital velocity (or frequency or sepa-
ration) and the spin of the background. This, in turn,
increases the number of points that need to be used by
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more than an order of magnitude to properly calibrate
Eq. (24). In all fits, we have assumed a data variance of
10�11 for all velocities and spins and we have required a
relative accuracy of one part in 108. Since the data is now
two-dimensional, one must search for a global minimum
in ðq; vÞ space. After doing so, we find the calibration
parameters

að9;1Þ22 ¼ �3:1092; bð9;1Þ22 ¼ �18:786; (26)

að12;0Þ22 ¼ 493:08; bð12;0Þ22 ¼ �247:89; (27)

að8;2Þ33 ¼ �17:310; bð8;2Þ33 ¼ 22:500; (28)

að10;0Þ33 ¼ �113:01; bð10;0Þ33 ¼ 28:125; (29)

The computational cost of the calibrations performed in
this paper is much larger than those carried out in
Ref. [53] for the following reasons. First, we consider
twice as many calibration parameters as in Ref. [53],
increasing the dimensionality of the fitting space.
Second, global minimization routines require nontrivial
algorithms that are numerically more expensive than
those employed in one-dimensional minimizations.
Third, the amount of data fitted increases by at least 1
order of magnitude, due to the intrinsic bi-dimensionality
of the problem. Combining all of this, the computational
cost of performing the calibration is now more than 100
times larger than in Ref. [53]. Even then, however, these
fits require Oð10Þ CPU minutes to complete. Once they
have been carried out, this calculation does not need to be
repeated again in the waveform modeling.

Figure 1 plots the fractional difference between the
analytical GW energy flux and that computed with
Teukolsky-based waveforms as a function of velocity,
from an initial value of v=c ¼ 0:01 to the velocity at
the ISCO, for five different spin values: q ¼
ð�0:9;�0:5; 0:0; 0:5; 0:9Þ. All comparisons are here nor-
malized to the Newtonian value of the flux FNewt ¼
32=5�2v10. The different curve styles differentiate be-
tween analytical models: the dotted curves use the total,
uncalibrated Taylor expansion; the dashed curves use the
uncalibrated �-resummed flux with BH absorption terms;
the solid curves use the calibrated �-resummed flux with
BH absorption terms. Notice that the calibrated model does
better than the other two by at least 2 orders of magnitude
near the ISCO for all spin values.

Several interesting conclusions can be drawn from
Fig. 1. First, as obtained in Ref. [47] the uncalibrated
�-resummed model is better than the Taylor-expanded
version of the flux by up to nearly an order of magnitude
at the ISCO for all spins. In turn, the calibrated model is
better than the uncalibrated one by 1 to 2 orders of magni-
tude near ISCO for all spins. One could also calibrate the

Taylor-expanded flux (not shown in Fig. 1), but this would
not produce such good agreement in the entire ðv; qÞ space.
This is clearly because the uncalibrated �-resummed
model is more accurate than the Taylor one, and thus the
calibration terms have to do less work to improve the
agreement. For the calibrated Taylor and �-resummed
models to become comparable in accuracy one would
have to include up to at least 16 calibration coefficients
in the Taylor model.
The inclusion of BH absorption coefficients is crucial to

obtain good agreement with the full Teukolsky-based flux,
a result that was not obvious for the case of nonspinning
EMRIs. Figure 2 plots the fractional difference between
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FIG. 1 (color online). Fractional difference between PN
and Teukolsky-based fluxes as a function of velocity for spins
q ¼ ð0:5; 0:9Þ (top) and q ¼ ð�0:9;�0:5; 0:0Þ (bottom). The
dotted curves employ the Taylor-expanded PN flux with BH
absorption terms, while the dashed and solid curves use the
uncalibrated and calibrated �-resummed fluxes with BH absorp-
tion terms, respectively.
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FIG. 2 (color online). Fractional difference between
�-resummed and Teukolsky-based fluxes as a function of veloc-
ity for spins q ¼ ð�0:9;�0:5; 0:0; 0:5; 0:9Þ. The dotted curves
do not include the Taylor-expanded BH absorption contributions,
while the solid lines do.
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the uncalibrated EOB GW energy flux and Teukolsky-
based one as a function of velocity for five different spin
values: q ¼ ð�0:9;�0:5; 0:0; 0:5; 0:9Þ, from an initial
value of v=c ¼ 0:01 at the ISCO, for five different spin
values: q ¼ ð�0:9;�0:5; 0:0; 0:5; 0:9Þ. For these cases, we
have vISCO ¼ ð0:343; 0:367; 0:408; 0:477; 0:609Þ. The solid
curves use the uncalibrated EOB model including the
Taylor-expanded BH absorption contributions, while the
dotted curves do not. For the nonspinning case, observe
that there is a very small difference (smaller than 10�2)
between adding the BH absorption terms or not.

For the spinning cases, however, this is not the case. For
rapidly spinning backgrounds, adding the BH absorption
terms improves the agreement by an order of magnitude.
Presumably, resumming these terms in a multipolar-
factorized manner would improve the agreement even
more. The BH absorption terms play a much larger role
in the spinning case because spin changes the PN order at
which absorption enters in the energy flux. These terms
enter at 4 PN order for Schwarzschild black holes, but at
2.5 PN order for nonzero spin. This change of order has a
very large and important impact on the system’s evolution.

The inclusion of calibration parameters to improve the
agreement of PN-inspired fluxes and Teukolsky-based ones
for EMRIs is certainly not new. In Ref. [33], a similar, PN-
inspired calibration was carried out for circular-inclined
orbits (and more generic ones). Before calibration, their
fluxes were Taylor expanded to 2 PN order and included
only the contribution that escapes to infinity (not the BH
absorption terms discussed above). Their fit was then done
with Teukolsky data produced by an older version of the
code used here, which was accurate only to one part in 106.
Moreover, the fit was done in the range r 2 ð5; 30ÞM [v 2
ð0:183; 0:436Þ], so the fitted function loses accuracy rapidly
outside this regime, particularly close to the ISCO. Inside
the fitting regime, the flux was fitted to an accuracy of
3� 10�2 using 45 calibration coefficients for an inclined,
but fixed orbit. The accuracy decreases to 0.1 for orbits
which get closer to the ISCO.

To fairly compare the results of Ref. [33] with our results
which are restricted to circular, equatorial orbits, we im-
plemented their model and recalibrated it considering only
circular, equatorial orbits. Using 45 coefficients, we found
an accuracy similar to ours at high velocities close to the
ISCO, but worse at low velocities. This is because their
fluxes before calibration are not as accurate as the one
employed here (by including up to 5.5 PN order terms
and BH absorption terms), particularly at low velocities.
It is important to emphasize that by calibrating 8 parame-
ters instead of 45 we here obtain better flux accuracies than
in Ref. [33] for circular, equatorial EMRIs. We could
obtain even better accuracy if we were using a larger
number of calibration coefficients, e.g., using 16 coeffi-
cients the agreement with the Teukolsky-based flux would
be of Oð10�5Þ.

IV. COMPARISON OF THE GW
PHASE AND AMPLITUDE

The comparison of EOB and Teukolsky evolutions re-
quires that we choose a specific EMRI. We shall here
follow Ref. [53] and choose system parameters that define
two classes of EMRIs:
(i) System I explores a region between orbital separa-

tions r=M 2 ð16; 26Þ, which spans orbital
velocities and GW frequencies in the range
v 2 ð0:2; 0:25Þ and fGW 2 ð0:005; 0:01Þ Hz, respec-
tively. Such an EMRI has masses m1 ¼ 105M
 and
m2 ¼ 10M
 for a mass ratio of 10�4 and it inspirals
for�ð6:3–6:7Þ � 105 rad of orbital phase depending
on the spin.

(ii) System II explores a region between orbital
separations r=M 2 ð11; rISCOÞ, which spans orbital
velocities and GW frequencies in the range
v 2 ð0:3; vISCOÞ and fGW 2 ð0:001; fISCOGW Þ Hz
respectively. Such an EMRI has masses
m1 ¼ 106M
 and m2 ¼ 10M
 for a mass ratio of
10�5 and it inspirals for �ð1:9–4:5Þ � 105 rad of
orbital phase depending on the spin.

The evolution of Sys. I is stopped around an orbital sepa-
ration of 16M, because this coincides with a GW frequency
of 0.01 Hz, which is close to the end of the LISA sensitivity
band. The evolution of Sys. II is usually stopped at the
orbital separation corresponding to the ISCO, or whenever
its GWs reach a frequency of 0.01 Hz. For each of these
systems, we shall investigate different background spin
parameters.
Before proceeding, notice that Sys. I and II should not be

compared on a one-to-one basis. One might be tempted to
do so, as Sys. I resembles a weak-field EMRI, which
inspirals at a larger orbital separation and with smaller
orbital velocities than Sys. II, a more strong-field EMRI.
Comparisons are not straightforward, however, as these
systems accumulate a different total number of GW cycles.
In fact, Sys. I usually accumulates almost twice as many
GW cycles as Sys. II. Therefore, even though one might
expect PN models of Sys. I to agree better with Teukolsky-
based evolutions, this need not be the case, as this system
has more time (as measured in GW cycles) to accumulate a
phase and amplitude difference than Sys. II.
We compare the EOB and the Teukolsky-based wave-

forms after aligning them in time and phase. Such an
alignment is done by minimizing the statistic in Eq. (23)
of Ref. [50], just as was done in Ref. [53]. This is equiva-
lent to maximizing the fitting factor over time and phase of
coalescence in a matched filtering calculation with white
noise [50]. The alignment is done in the low-frequency
regime, inside the time interval ð0; 64Þ�GW, where �GW is
the GW wavelength. This quantity depends on the spin of
the background, ranging from 386M (63M) to 415M
(121M) for Sys. I (Sys. II). This corresponds to aligning
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the initial phase and frequency inside a window of length in
the range (0.004, 0.01) months depending on the system
and spin of the background. We have checked that increas-
ing the size of the alignment window does not affect the
final phase and amplitude difference; for example, for a
spin of q ¼ 0:9 and Sys. I, increasing the alignment win-
dow by a factor of 2 changes the final phase difference by
0.002 rad and the relative, fractional amplitude agreement
by 0.0004%.

Figure 3 shows the absolute value of the dephasing and
relative, fractional amplitude difference of the dominant
ð‘;mÞ ¼ ð2; 2Þ mode for both systems and a variety of
background spins. For Sys. I, the calibrated EOB model
maintains a 1 rad phase accuracy over at least the first
6 months for all spin values, while for Sys. II the same
phase accuracy is maintained for up to only the first
2 months. The amplitude agreement is also excellent for
all spin values, with better agreement for Sys. I. As found
in Ref. [53] the GW phase agreement is primarily due to
the correct modeling of the orbital phase, as the former
tracks the latter extremely closely; we find that the differ-
ence between the orbital and GW phase over a 1 yr evolu-
tion is less than 0.1 rad.

The agreement in the phase as a function of background
spin follows closely the flux agreement shown in Fig. 1.
This is hard to see in Fig. 1, which is why Fig. 4 zooms into
the velocity region sampled by Sys. I and plots all back-
ground spin cases for the calibrated �-resummed system.
Observe that the q ¼ 0:0 case has the best flux agreement,
which explains why the phase and amplitude agreement
is so good for this case in Fig. 3. Observe also that the
q ¼ 0:9 and q ¼ �0:9 cases have the worst flux agree-
ment, which also explains why they disagree the most in
phase and amplitude in Fig. 3.

The accuracy of the calibrated EOB model is excellent
relative to Taylor-expanded PN models. If one were to use
an uncalibrated Taylor-expanded version of the flux, in-
stead of the calibrated �-resummed flux, one would find
a phase and amplitude disagreement of �101–102 rad
[� 103–104 rad] and �0:1% (� 10%) for Sys. I
(Sys. II) after a 1 yr evolution for different spin values.
The above results are consistent with the arguments in
Ref. [22], who concluded that 3.5 PN accurate GW phase
expressions could lead to phase errors around 103–104

radians over the last year of inspiral. That analysis reached
those conclusions by comparing 3 to 3.5 PN accurate,
analytic expressions for the GW phase. Here, we are
comparing full-numerical evolutions of the PN equations
of motion carried out to much higher order, and, of course,
we find that such conclusions depend sensitively on the
type of EMRI considered and the spin of the background.
The increase in accuracy of the calibrated �-resummed

model is due both to the calibration and to the h‘m factor-
ized resummation. This fact can be appreciated in Fig. 5,
where we plot the absolute value of the dephasing for the
dominant mode in different PN models and the Teukolsky-
based waveforms. Light curves (orange) correspond
to background spins of q ¼ 0:9, dark curves (red) to
q ¼ �0:9 and black curves to nonspinning backgrounds.
Dotted curves use the uncalibrated Taylor flux model,
dashed curves use the uncalibrated �-resummed model,
and solid curves use the calibrated version. For Sys. I, there
is a large gain in accuracy by switching from the uncali-
brated Taylor model to the uncalibrated �-resummed
model, but then the calibration itself does not appear to
improve the accuracy substantially. For Sys. II, on the other
hand, the calibration can increase the accuracy up to almost
2 orders of magnitude, as in the q ¼ 0:9 case.
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FIG. 3 (color online). Absolute value of the dephasing (left)
and relative, fractional amplitude difference (right) computed in
the calibrated EOB model and the Teukolsky-based waveforms
for the dominant ð‘;mÞ ¼ ð2; 2Þ mode. Different curves corre-
spond to different background spin values.
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FIG. 4 (color online). Fractional difference between the cali-
brated �-resummed and Teukolsky-based fluxes for spins
q ¼ ð�0:9;�0:5; 0:0; 0:5; 0:9Þ as a function of velocity. We
plot here only the range of velocities sampled by Sys. I.
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The agreement in the phase and amplitude is not only
present in the dominant mode, but also in higher ð‘;mÞ
ones, as shown in Fig. 6. We here plot the absolute value of
the dephasing and the relative, fractional amplitude differ-
ence between the calibrated EOB model and Teukolsky-
based waveforms for the dominant mode, as well as the
(3, 3) and (4, 4) modes. We have here shifted the higher
ð‘;mÞmodes using the best frequency shift that maximizes
the agreement for the dominant mode. This agreement is
simply a manifestation of the agreement in the orbital

phase. In fact, we find that�GW �m�orb, with differences
that are always less than 1 rad for all systems considered.
Higher-‘ modes contribute significantly less to the SNR

than the dominant (2, 2) mode. Figure 7 plots the relative
fraction between the squared of the SNR computed with
only the h‘m component of the waveform and that com-
puted by summing over all modes. This figure uses data
corresponding to Systems I and II, both with spin q ¼ 0:9
(results for other spin values are almost identical). Clearly,
the (2, 2) mode is dominant, followed by the (3, 3) and
(4, 4) modes. Because of this feature of quasicircular
inspirals, obtaining agreement for the (2, 2) mode implies
one can recover over 97% of the SNR.

V. DATA-ANALYSIS IMPLICATIONS

Although the phase agreement presented in the previous
section is a good indicator of the validity of the EOB
model, one is really interested in computing more realistic
data-analysis measures. In this section we compute the
mismatch between the Teukolsky and the EOB model,
maximized over extrinsic parameters and as a function of
observation time.
Let us first introduce some basic terminology. Given any

time series aðtÞ and bðtÞ, we can define the following inner
product in signal space:

ðajbÞ ¼ 4Re
Z 1

0

~aðfÞ~b?ðfÞ
SnðfÞ ; (30)

where the overhead tildes stand for the Fourier transform
and the star stands for complex conjugation. The quantity
SnðfÞ is the spectral noise density curve, where here we
follow [67,68]. Notice that we use the sky-averaged
version of this noise curve here, which is larger than the
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non–sky-averaged version by a factor of 20=3. In particu-
lar, this means that our SNRs are smaller than those one
would obtain with a non–sky-averaged noise curve by a

factor of ð20=3Þ1=2 � 2:6. Also notice that we compute the
SNRs from the sky-averaged Fourier transform of the
response function, and not from the Fourier transform of
the (2, 2) mode.

Given this inner product, we can now define some useful
measures. The SNR of signal a is simply

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðajaÞ

q
; (31)

while the overlap between signals a and b is simply

M ¼ max
ðajbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp ; (32)

with the mismatchMM ¼ 1�M. The max label here is to
remind us that this statistic must be maximized over a time
shift and a phase shift (see, e.g., Appendix B of [45] for a
more detailed discussion).

The data-analysis measures introduced above (� and
MM) depend on the length of the time-series, i.e., the
observation time. Figure 8 plots the mismatch between
the Teukolsky-based waveforms and a variety of models
for both Sys. I and II and a background spin of q ¼ 0:9 as a
function of observation time. The vertical lines correspond
to observation times of 2 weeks, 2 months, 6 months,
9 months, and 11.5 months, together with their associated
SNRs at 1 Gpc. The mismatches are computed with differ-
ent analytical models: black crosses stand for the calibrated
� model with 8 calibration coefficients; red circles to the
uncalibrated � model; blue squares to the uncalibrated
Taylor model; green circles to that EOB evolution using
the original flux of Ref. [33] which has 45 calibration
coefficients (denoted GG in the figure). For comparison,
we also include the amount of dephasing (numbers next to
data points in Fig. 8) at 2 weeks, 2 months, 6 months,

9 months, and 11.5 months. Observe that the calibrated
� model maintains an overlap higher than 97% over 9 and
4 months for Sys. I and II, respectively. The uncalibrated
�model performs comparably to the EOB model using the
flux of Ref. [33] which has 45 calibration coefficients, both
of which have an overlap higher than 97% over 6 and
1 month for Sys. I and II, respectively. In the case of
Sys. II the calibrated flux of Ref. [33] performs better
than the uncalibrated �‘m model. Also observe that the
uncalibrated Taylor model is simply inadequate to model
EMRIs for any observation time.
We then see that the use of the calibrated EOB model

allows us to integrate over longer observation times, com-
pared to a 2-week period or to other models. In turn, this
allows us to recover a higher SNR than we would other-
wise. The increase in SNR scales as the square root of the
observation time, as expected. For example, since the
calibrated EOB model is accurate over 9 months, one
would be able to coherently recover an SNR of 14 at
1 Gpc for Sys. I, to be compared with an SNR of 11
obtained after 6 months of coherent integration if using,
for example, the fluxes of Ref. [33]. In general, an integra-
tion over a period longer than two weeks gains us a large
increase in SNR. Such gains in SNR are important because
they allow us to see EMRIs farther out. Since the
SNR scales as ��D�1

L , where DL is the luminosity dis-
tance, even an SNR increase in a factor of 3 increases
our accessible volume by a factor of 27, since the latter
scales as D3

L.

VI. HIGHER-ORDER EFFECTS

Let us now discuss how finite mass-ratio higher-order
effects affect the GW phase and amplitude. Those effects
are encoded in the � terms present in the radiation-reaction
force and in the Hamiltonian. The former are second-order
effects in the dissipative dynamics, while the latter are
first-order effects in the conservative dynamics. We have
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NICOLÁS YUNES et al. PHYSICAL REVIEW D 83, 044044 (2011)

044044-12



analytic control over the PN version of such effects within
the EOB formalism, but until now we had set both of these
to zero when comparing to Teukolsky evolutions, as the
latter do not account for such effects. In the EOB model,
however, it is straightforward to include such terms, as PN
expansion are formally known for all mass ratios at some
given order in v. The inclusion of conservative � terms is
achieved by using the spin EOB Hamiltonian of Ref. [41]
reviewed in Appendix C. The inclusion of dissipative �
terms is achieved by including relative � terms in the
multipolarly decomposed waveform h‘m and flux F .

Whether such mass-ratio effects matter depends on the
EMRI considered. In Ref. [53], it was found that such
effects increase the dephasing between EOB and
Teukolsky models by 1 order of magnitude after a 2 yr
evolution for nonspinning EMRIs, a result consistent with
Ref. [69]. This effect is greatly amplified when considering
spinning EMRIs. Table I compares the effect that the
inclusion of relative � terms in the EOB Hamiltonian and
the radiation-reaction force has on the final dephasing after
a 1 yr evolution. In order to read out the effect of such finite
mass-ratio terms in the phasing, one must compare rows
two, three, and four to the baseline given in the first row of
Table I. For example, the effect of the � terms in the
Hamiltonian are such as to increase the dephasing by
27:20� 10:04 ¼ 17:16 radians. Observe that the conser-
vative and dissipative � terms usually push the dephasing
in different directions, partially canceling out when both of
them are present. Even then though, the generic effect of
high-order � terms is to increase the rate of dephasing by
several tens of radians are a 1 yr evolution. Notice further-
more that the magnitude of the effect is here not very large
because we are considering circular equatorial orbits.

Finite mass-ratio effects are clearly suppressed when
dealing with circular orbits. This is because, for such orbits
outside the ISCO, the effect of the conservative self-force is
simply to shift the waveform from one orbital frequency to
another. Thus, from an observational standpoint, such an
effect is unmeasurable. Even though the conservative self-
force shifts the ISCO, this effect is still degenerate with a
shift of the system’s mass parameters. This discussion,
however, neglects radiation reaction, which is crucial to

model a true inspiral waveform. One can think of the
radiation-reaction force as defining a trajectory through
the sequence of orbital energies that an orbit follows.
There is gauge-invariant information in this sequence, in
the sense that the mapping between energies and orbital
frequencies depends on the details of the orbit at each
energy level. For a given radiation-reaction force, the se-
quence of geodesic orbits (and hence the sequence of
frequencies) depends on whether the conservative self-
force is included or not.
As is clear from this discussion, the real (gauge-

invariant) effect of the conservative self-force on quasicir-
cular inspiral waveforms can be rather subtle. A robust
effect, however, does arise if the self-force acts on a more
generic orbit, such as an eccentric one. In that case, this
force will act separately on the radial and the azimuthal
orbital frequencies, which can leave a potentially strong
imprint in the waveform. In principle, even for an inclined
circular orbit there could be a strong imprint. In practice,
however, the azimuthal and polar orbital frequencies are
quite similar, which suggests that perhaps, even in this
case, the self-force effects will be small.
With all of this in mind, let us discuss the results pre-

sented in Table I in more detail. Our study suggests that the
overall effect of � terms in both H and F leads to only 5.2
and 2.5 additional radians of phase for nonspinning, Sys. I
and II, respectively. This is in fact consistent with the
results presented in Ref. [53], except that there one consid-
ered 2 yr long evolutions. One might wonder whether using
the nonspinning Hamiltonian of Ref. [50] (where the
deformed-Schwarzschild potential are Padè resummed in-
stead of being given by Eqs. (C18) and (C8)) has an effect
on this dephasing. We have investigated this question and
found that the additional contribution to the phase is
0.05 (0.03) and 1.06 (1.33) rad for Sys. I and II, respec-
tively, over the entire year of inspiral using the 3 PN (4 PN)
Padè form of the deformed potentials. (We notice [70] that
the 4PN Padè potentials of Ref. [50] reproduce very closely
the ISCO shift of Ref. [25].) This implies that the
nonspinning Hamiltonian [50] at 3 PN and 4 PN order
is sufficiently close to the Hamiltonian presented in
Appendix B for the data analysis of nonspinning EMRIs.
One can also compare the results in Table I to the recent

study of Huerta and Gair [71], who investigated the effect
of �2 corrections in the determination of parameters, given
an EMRI signal. Their Table I presents the number of
cycles accumulated for a variety of mass ratios. Their
last column happens to correspond to our Sys. II with no
spin, for which they get a total dephasing of 2.3 rad and
3.8 rad after the last year of inspiral when including only
conservative and all second-order corrections. This is to be
compared to our results: 1.86 rad in and 2.6 rad after the
last year of inspiral when including only conservative and
all second-order corrections. These numbers are in excel-
lent agreement, allowing for differences in the modeling.

TABLE I. Absolute value of the total dephasing after
11.5 months of evolution. The first row includes no relative �
contributions in the Hamiltonian or the radiation-reaction force.
The second row includes relative � terms in the Hamiltonian,
while the third row includes such terms in the radiation-reaction
force.

System I I I II II II

q1 �0:9 0.0 0.9 �0:9 0.0 0.9

No rel. � 10.04 1.60 9.36 7.63 42.21 48.39

� in H 30.38 0.083 18.96 4.38 40.35 47.13

� in _E 19.99 5.31 4.49 7.24 41.50 46.55

� in H and _E 40.32 6.83 14.08 3.98 39.64 45.29
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Their analysis suggests that such small differences will not
affect parameter estimation for EMRIs similar to Sys II.
For Sys I, however, the dephasing is much larger as the
mass ratio is less extreme by 1 order of magnitude; thus,
parameter estimation might be affected in this case.

Another high-order effect that one can study is the
inclusion of the small object’s spin in the evolution of the
binary. Since the spin angular momentum of the small
body scales with its mass, its contribution to the orbital
evolution is one order in � suppressed. We can model this
effect by allowing q2 � 0 in the EOB Hamiltonian of
Ref. [41] and letting � � 0. Doing so for Sys. I (Sys. II)
with q1 ¼ 0:9 and q2 ¼ 0:75, we find that the total dephas-
ing now becomes 17.26 (45.49 rad), as shown in Table II.
This is to be compared to the case when q2 ¼ 0, which
returns a dephasing of 14.08 rad (45.29 rad). Thus, the
effect of the second spin contributes roughly 3.3 rad in this
case. We can also compare these results to those estimated
by Barack and Cutler [18]. In their Appendix C, they
estimate that for quasicircular inspirals similar to our
Sys. II, the spin of the second body should induce a
dephasing of roughly 1–10 rad. This is in good agreement
with the results corresponding to Sys. II in our Table II. Our
results are also in good agreement with the results of Wen-
Biao [72], who estimated a dephasing of Oð�=10Þ for our
System II. Finally, these results are also in agreement with
an upcoming and independent investigation of spin effects
in the PN phasing [73].

Finally, taking into account the results of including finite
mass-ratio effects, we can conclude that unless these are
precisely modeled, it is not worth requiring an agreement
better than 10–30 rad when calibrating the phase of the
test-particle EOB waveforms against the Teukolsky-based
waveforms.

VII. CONCLUSIONS

We have constructed an EOB model for EMRIs in qua-
sicircular, equatorial orbits about spinning backgrounds. In
the test-particle limit, this model consists of adiabatically
evolving a test particle in the Kerr spacetime using
the factorized energy flux of Refs. [46,47], augmented by
8 calibration coefficients. The latter are determined by

comparing the factorized energy flux to a Teukolsky-based
flux, built from solutions to the Teukolsky equation in the
radiative approximation. In the adiabatic approximation,
the EOB waveforms can be constructed in CPU seconds at
a very low computational cost. When finite mass-ratio
effects and the small object’s spin are included, we build
the EOB model by numerically solving the Hamilton equa-
tions with the spin EOB Hamiltonian of Ref. [18] and the
Teukolsky-calibrated factorized energy flux augmented by
finite mass-ratio effects [47].
For both EMRI systems considered, we find excellent

phase and amplitude agreement, with dephasing less than
1 rad, over periods of months. The exact length of the
agreement depends on how relativistic the EMRI system is.
We also calculated the overlap between EOB and
Teukolsky-based waveforms to find it higher than 97%
over 4 to 9 months, depending on the EMRI system
considered.
The EOBwaveforms built here have higher overlaps and

better phase agreements than all currently known EMRI
models for spinning, equatorial systems, while requiring
much fewer calibration parameters. In particular, the EOB
model with 8 calibration coefficients outperforms by al-
most an order of magnitude the numerical kludge wave-
forms with the calibrated fluxes of Ref. [33] which use 45
calibration coefficients. This implies that EOB waveforms
with 8 calibration coefficients can be used for longer
coherent integrations, allowing us to obtain a 50% increase
in SNR. In turn, this implies that EOB waveforms can see
EMRIs that are farther out, increasing the accessible vol-
ume by at least a factor of 2 relative to numerical kludge
waveforms. Furthermore, if we were using 16 calibration
coefficients, we could improve the dephasing from 0.91 rad
(8.7 rad) to 0.85 rad (4.2 rad) for System I (System II) after
6 months of evolution. In turn, this would decrease the
mismatch from 0.2% (12%) to 0.19% (3.9%) for System I
and II after 6 months of evolution.
Another possible avenue for future research is the cal-

culation of high PN-order terms in the energy flux and
waveforms. Our EOB model relies on the use of accurate
fluxes, but for spinning systems, the flux to infinity is only
known up to 4 PN order in the test-particle limit. This is in
contrast to the nonspinning terms that are known to 5.5 PN
order or the BH absorption terms that are known to 6.5 PN
order. The calculation of the spin-dependent terms in the
flux to infinity to 4.5, 5, and 5.5 PN order terms in the test-
particle limit is not quixotic and would be invaluable. Once
these coefficients are known, then presumably the EOB
waveforms would be more accurate and might require less
adjustable parameters.
Of course, the EOB waveforms we constructed here are

less powerful than kludge waveforms [18,33,34] in their
generality. Our waveforms cannot yet model inclined
or eccentric inspirals. The inclusion of inclined orbit
should be relatively straightforward, but the addition of

TABLE II. Absolute value of the total dephasing in rad after
11.5 months of evolution. The second row sets the second BH’s
spin to zero, while the second row sets it to q2 ¼ 0:75. In both
cases, the spin of the background is set to q1 ¼ 0:9 and � � 0 in
both the Hamiltonian and the radiation-reaction force.

System I I I II II II

q1 �0:9 0.0 0.9 �0:9 0.0 0.9

q2 ¼ �0:75 36.34 3.96 16.03 4.41 40.41 47.04

q2 ¼ 0:00 40.32 6.83 14.08 3.98 39.64 45.29

q2 ¼ 0:75 44.31 9.70 12.14 3.56 38.88 43.54
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eccentricity might require some revamping of the EOB
framework. Future work in this direction would be defi-
nitely worthwhile.

Ultimately, one would like to obtain a waveform model
that is sufficiently fast, efficient, and accurate to do realistic
EMRI data analysis for LISA. Such a model would need to
include the correct self-force contributions to the conser-
vative dynamics, the appropriate second-order terms in the
radiation-reaction force and the correct terms that describe
the small object’s spin. The EOBmodel we developed here
does agreewith all known PN self-force calculation to date.
However, since full self-force calculations are not yet
completed, we do not have a way of assessing the error
of including the currently known EOB finite ratio effects.
In fact, so far the only comparisons between the PN/EOB
and self-force results have been concerned with the non-
spinning case, and have been limited to the ISCO shift
[25,52] and other gauge-invariant quantities [74,75]. Quite
interestingly, the calibration of the EOB model to
comparable-mass numerical-relativity simulations im-
proves the agreement of the model to self-force results
[52,70]. Thus, we hope that future calibrations of the spin
EOBHamiltonian to comparable-mass simulations of spin-
ning BHs will allow us to build an EOB model which
includes finite mass-ratio effects in a more accurate way.

All that said, we have found that the presence of PN self-
force terms in the spin EOB model of Ref. [41] leads to
dephasing of 10–30 rad over 1 yr depending on the EMRI
system and the spin of the background. By contrast, the
inclusion of the small object’s spin introduces dephasing
on the order of a few radians. Taking into account those
results, we can conclude that unless those finite ratio
effects are precisely modeled, currently, it is not worth
requiring an agreement better than 10–30 rad when cali-
brating the phase of the test-particle EOB waveforms
against the Teukolsky-based waveforms. This in turn im-
plies that calibrating 16 parameters instead of 8 to an EOB
model is overkill as other systematics (induced by neglect-
ing self-force effects) will be dominant.
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APPENDIX A:MAPPING BETWEEN SPHEROIDAL
AND SPHERICAL HARMONICS

1. Quantities at spatial infinity

Let us first consider the GW fluxes that describe radia-
tion escaping to infinity, and later discuss the radiation
absorbed by the BH. Frequency-domain Teukolsky equa-
tion codes expand the curvature scalar c 4 as

c 4 ¼ 1

r

X
‘m

ZH
‘mS

�
‘mð�;�Þe�i!mt: (A1)

We have here incorporated the eim� dependence into the
spin-weighted spheroidal harmonics S�‘m. These harmonics

depend on the value of m1q1!m, and the minus superscript
is a reminder that we consider here harmonics of spin-
weight�2. Throughout this appendix, the index ‘ refers to
the spheroidal harmonic index, while l refers to the spheri-
cal harmonic index.

From c 4, we compute waveforms via c 4 ¼
ð €hþ � i €h�Þ=2, and hence, for a frequency-domain
application,

hþ � ih� ¼ � 2

r

X
‘m

ZH
‘m

!2
m

S�‘mð�;�Þe�i!mt: (A2)

We have implicitly assumed that !m is time independent,
or at least that its time dependence is subleading. A better
expansion is to reexpress things in terms of the accumu-

lated phase, i.e., the integral of the frequency !m � _�m,
namely,

c 4 ¼ 1

r

X
‘m

ZH
‘mS

�
‘mð�;�Þe�i�m; (A3)

h � hþ � ih� ¼ � 2

r

X
‘m

ZH
‘m

!2
m

S�‘mð�;�Þe�i�m : (A4)

The EOB and numerical-relativity communities like to
project these quantities onto a basis of spin-weighted
spherical harmonics. For c 4, they define Clmðt; rÞ via

c 4 ¼ 1

r

X
lm

Clmðt; rÞY�
lmð�;�Þ; (A5)

and the harmonically decomposed waveforms hlmðt; rÞ via

h ¼ 1

r

X
lm

hlmðt; rÞY�
lmð�;�Þ: (A6)

The minus superscript again denotes spin-weight �2.
Defining the inner product

hY�
lmjfi ¼

Z
d�Y�;�

lm ð�;�Þf; (A7)

the extraction of the Clm and hlm is simple:

Clmðt; rÞ ¼ rhY�
lmjc 4i; hlmðt; rÞ ¼ rhY�

lmjhi: (A8)
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Let us now take the Schwarzschild limit to see whether
these expressions simplify. In that limit

S�‘mð�;�Þ ¼ Y�
‘mð�;�Þ; (A9)

and thus, performing the necessary projections and taking
advantage of the orthonormality of spherical harmonics,
we find

Clmðt; rÞ ¼ ZH
lme

�i�m ; (A10)

hlmðt; rÞ ¼ � 2ZH
lm

!2
m

e�i�m : (A11)

In spinning backgrounds, however, the mapping is more
complicated. We can use the fact that spheroidal harmonics
can be expressed as a sum of spherical harmonics via

S�‘mð�;�Þ ¼ X
j

b‘jY
�
jmð�;�Þ: (A12)

The dependence on m1q1!m enters through the expansion
coefficients b‘j (see, e.g., Ref. [60]). Inserting this expan-

sion into Eq. (A1) and using the inner-product definition,
Eq. (A8), we find

Cjm ¼ e�i�m

X
‘

b‘jZ
H
‘m; (A13)

hjm ¼ � 2e�i�m

!2
m

X
‘

b‘jZ
H
‘m ¼ � 2Cjm

!2
m

: (A14)

In the Schwarzschild limit, b‘j ¼ 
‘j, so that Kerr simply

limits as it should.
From the definition of the Isaacson stress-energy tensor,

one can easily show that

d2E1

dtd�
¼ X

‘m

S�‘mð�;�Þ2 jZ
H
‘mj2

4�!2
m

; (A15)

¼ X
lm

Y�
lmð�;�Þ2 jC

H
lmj2

4�!2
m

: (A16)

We have here used the orthonormality of both the spheroi-
dal and spherical harmonics to simplify the sums, as well
as the fact that the time dependence of the CH

lm disappears

when its modulus is computed. Performing the angular
integrals leaves us with familiar formulas:

_E1 ¼ X
‘m

jZH
‘mj2

4�!2
m

¼ X
lm

jCH
lmj2

4�!2
m

: (A17)

This breaks down nicely enough that it is useful and
sensible to define the modal contributions _E‘m.

2. Quantities at event horizons

As a general principle, computing quantities that are
related to an event horizon are usually more complicated

than computing the same quantities at spatial infinity. For
the fluxes, for example, this is because there is no simple
generalization of the Isaacson tensor on the horizon.
Instead, one must examine the shear of the horizon’s gen-
erators, look at how this shear generates entropy, and then
apply the area theorem to compute fluxes [76]. The rele-
vant quantities at the horizon depend on the Newman-
Penrose scalar c 0, instead of c 4, the former of which is
a quantity of spin-weight þ2, rather than �2.
The GWenergy flux per unit solid angle at the horizon is

given by

d2EH

dtd�
¼ !mm1rþ

2�pm

j
HHj2; (A18)

where pm ¼ !m �m!þ, and where !þ ¼ q1=ð2rþÞ is
the angular velocity of observers corotating with the event
horizon. The quantity 
HH is the shear to the horizon’s
generators as found by Ref. [77]. This quantity is fairly
simply related to c 0, so let us introduce an expansion of
c 0 in spin-weight þ2 spheroidal harmonics

c 0 ¼ ��2
X
‘m

W1
‘mðrÞSþlmð�;�Þe�i�m ; (A19)

where � is given in Eq. (7). Notice that this quantity
diverges on the event horizon rþ because the Kinnersley
tetrad, which is used to define the projection for c 0, is ill-
behaved as r ! rþ. This can be corrected for by convert-
ing to 
HH for any given ð‘;mÞ mode [76]


HH
‘m ¼ �2�mc 0;‘m ¼ X

‘m

�mW
1
‘mS

þ
lmð�;�Þe�i�m: (A20)

The complex number �m is given by �m ¼ �½4ðipm þ
2	Þð2m1rþÞ2��1, where 	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 �m2
1q

2
1

q
=ð4m1rþÞ.

With this in hand, the GW energy flux at the horizon
becomes

d2EH

dtd�
¼ X

‘m

!mm1rþ
2�pm

j�mj2jW1
‘mj2ðSþ‘mÞ2;

¼ X
‘m

ðSþ‘mÞ2
!3

m

16pmðp2
m þ 4	2Þð2m1rþÞ3

jW1
‘mj2

4�!2
m

;

(A21)

which integrates to

_EH ¼ X
‘m

!3
m

16pmðp2
m þ 4	2Þð2m1rþÞ3

jW1
lmj2

4�!2
m

: (A22)

Implementing this equation is difficult because it requires
that one computes both c 0 and c 4 when solving the
Teukolsky equation. Since these quantities have different
angular dependence and a different source function, this
would be a nontrivial undertaking.
Instead, one can take advantage of a remarkable sim-

plification, the so-called Starobinsky identities [78], that
relates c 4 to c 0 and vice-versa via an algebraic relation.
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We can use this to relate the coefficients W1
‘m to the

coefficients Z1
‘m, namely,

W1
‘m ¼ �‘mZ

1
‘m; (A23)

where

�‘m¼64ð2m1rþÞ4ipmðp2
mþ4	2Þð�ipmþ4	Þ
c‘m

Z1
‘m;

jc‘mj2¼½ð�þ2Þ2þ4q1m1!m�4q21m
2
1!

2
m�

�ð�2þ36mq1m1!m�36q21m
2
1!

2
mÞ

þð2�þ3Þð96q21m2
1!

2
m�48mq1m1!mÞ

þ144!2
mm

2
1ð1�q21Þ;

Imc‘m¼12m1!; Rec‘m¼þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc‘mj2�144m2

1!
2

q
;

�¼E‘m�2q1m1m!þq21m
2
1!

2�sðsþ1Þ; (A24)

and E‘m is the eigenvalue of S�‘mð�;�Þ.
We can then finally write the energy flux formula as

_EH ¼ X
‘m

�‘m

jZ1
‘mj2

4�!2
m

; (A25)

where the coefficient �‘m, given explicitly in Ref. [60],
agglomerates the factors �, � into one big expression. This
expression reorganizes terms slightly in order for its struc-
ture to resemble the expression for the flux to infinity as
much as possible. Using this, it is simple to write the modal
contribution as decomposed into a spheroidal harmonic
basis: _EH

‘m ¼ �‘mjZ1
‘mj2=ð4�!2

mÞ.
Decomposing the horizon energy flux formula into a

spherical harmonic basis is slightly more difficult. The
key confusing issue is that there are now two spherical
harmonic bases to worry about: one for each spin weight.
With respect to these two bases, we can define two sphe-
roidal harmonic expansions:

S�‘mð�;�Þ ¼ X
j

b‘jY
�
jmð�;�Þ; (A26)

Sþ‘mð�;�Þ ¼ X
j

d‘jY
þ
jmð�;�Þ: (A27)

(The coefficients d‘j expand theþ2 spin-weight spheroidal

harmonic in þ2 spin-weight spherical harmonics, just as
the coefficients b‘j do so for the�2 harmonics.) It is worth

emphasizing that the different spherical harmonics are not
simply related to one another.

The two quantities which can be put into a spherical
harmonic basis are c 0 and c 4, both evaluated in the
vicinity of the horizon:

c 0 ¼ ��2
X
‘jm

W1
‘md

‘
jY

þ
jmð�;�Þe�i�m ; (A28)

¼ ��2
X
jm

U1
jmY

þ
jmð�;�Þ; (A29)

U1
jm ¼ X

‘

W1
‘md

‘
je

�i�m ; (A30)

and

c 4¼ �2

ðr� iq1m1 cos�Þ4
X
‘jm

Z1
‘mb

‘
jY

�
jmð�;�Þe�i�m ; (A31)

¼ �2

ðr� iq1m1 cos�Þ4
X
jm

C1
jmY

�
jmð�;�Þ; (A32)

C1
jm ¼ X

‘

Z1
‘mb

‘
je

�i�m: (A33)

Using the results presented in this appendix, one can easily
find an expression for _EH in terms of the þ2 harmonic
coefficients U1

lm:

_EH ¼ X
lm

!3
m

16pmðp2
m þ 4	2Þð2m1rþÞ3

jU1
lmj2

4�!2
m

: (A34)

Unfortunately, this is not that useful, as it requires knowl-
edge of the c 0 expansion coefficients W1

‘m.

Taking advantage of the Starobinsky identity again, we
can combine Eqs. (A23) and (A30) to find

U1
jm ¼ X

‘

�‘mZ
1
‘md

‘
je

�i�m : (A35)

It is then straightforward to insert this into Eq. (A34) to
obtain the down-horizon flux expanded into modes of þ2
spherical harmonics.

3. Truncation issues

We have so far been rather schematic regarding the
limits on all sums. In principle, all these sums should be
carried out from some lower limit lmin to infinity, where the
former is given by lmin ¼ minðjsj; jmjÞ. In a numerical
application, the upper limit must be truncated at some finite
value lmax. We typically find that the magnitude of terms
falls off as a power of l. When decomposing into spheroi-
dal harmonics, it is thus typically sufficient to pick some
cutoff value and apply it uniformly.
Applying such a cutoff is slightly more complicated

when we convert to spherical harmonics. The reason is
that a given spheroidal harmonic ‘ has contributions from
spherical harmonics at index j > ‘. Consider, as a concrete
example, the spheroidal harmonic S�54 for a=m1 ¼ 0:99,
! ¼ 0:1: the expansion coefficients for this harmonic are
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b53 ¼ �0:011 065 7; b54 ¼ 0:999 87;

b55 ¼ 0:011 736 8; b56 ¼ 0:000 123 221;

b57 ¼ 9:4336� 10�7; b58 ¼ 6:4276� 10�8;

b59 ¼ 3:70511� 10�11; b510 ¼ 1:933 17� 10�13;

b511 ¼ 8:975 58� 10�16: (A36)

Coefficients beyond b511 are small enough that our code

does not compute them in this case. Notice that as we move
away from the j ¼ ‘ term (whose value is close to unity)
the coefficients fall off by roughly powers of 	 ’ 0:01. This
behavior is typical, although the value of 	 depends
strongly on q1 and ! (e.g., 	 ’ 10�3 for q1 ¼ 0:1,
! ¼ 0:1, but 	 ’ 0:4 for q1 ¼ 0:999, ! ¼ 5).

When one converts from ZH
‘m to Cjm, this behavior

forces us to include a buffer of ‘ values beyond the maxi-
mum spherical harmonic that we want to compute. The
size of the buffer depends (rather strongly) on the values of
q1 and !. In the weak field, where q1m1! � 1 even for
large m, it is enough to include a buffer of 2 (i.e., such that
‘max ¼ jmax þ 2). For the results used in this paper, we
have chosen a uniform buffer region of size 8.

APPENDIX B: GW ENERGYABSORPTION

The N=2-th order Taylor expansion of the flux in PN
theory is given by the series [19]

F ðNÞ
Tay: ¼ F Newt:

XN
n¼0

½anð�Þ þ bnð�Þ logðvÞ�vn; (B1)

where F Newt � 32=5�2v10 is the leading-order
(Newtonian) piece of the flux, v is the circular orbital
frequency, log stands for the natural logarithm while an
and bn are PN parameters, with bn<6 ¼ 0.

The PN parameters can be classified according to their
physical origin and whether they include spin contributions
or not. The flux pieces that account for GW emission to
infinity are well known and, for example, are given in
Ref. [79,80]. Those that correspond to radiation in-falling
into the horizon will be labeled ðaHorn ; bHorn Þ, with a super-
script S (NS) if they are further spin dependent (spin
independent).

The coefficients associated with BH absorption can only
be formally obtained employing BH perturbation theory,
as PN theory treats BHs as effective test particles. The
logarithm-independent terms associated with nonspinning
contributions to the radiation flux through the horizon are

aHor;NS8 ¼ 1; aHor;NS9 ¼ 0; (B2)

aHor;NS10 ¼ 4; aHor;NS11 ¼ 0; (B3)

aHor;NS12 ¼ 172
7 ; aHor;NS13 ¼ 0; (B4)

where aHor;NS<8 ¼ 0. All logarithm-dependent terms identi-

cally vanish here: bHor;NSn ¼ 0. Similarly, the logarithm-

independent terms associated with spinning contributions
to the radiation flux through the horizon are

aHor;S5 ¼ � �q

4
� 3 �q3

4
; (B5)

aHor;S6 ¼ 0; (B6)

aHor;S7 ¼ � �q� 33 �q3

16
; (B7)

aHor;S8 ¼ � 1

2
þ 35

6
�q2 � 3

12
�q4

þ
�
1

2
þ 13

2
�q2 þ 3 �q4

�
ð1� �q2Þ1=2

þ i �qð1þ 3 �q2ÞÞfc ð0Þ½3� 2i �qð1� �q2Þ�1=2�
� c ð0Þ½3þ 2i �qð1� �q2Þ�1=2�g; (B8)

aHor;S9 ¼ � 43 �q

7
� 4651 �q3

336
� 17 �q5

56
; (B9)

aHor;S10 ¼ �2þ 433

24
�q2 � 95

24
�q4

þ
�
2þ 163

8
�q2 þ 33

4
�q4
�
ð1� �q2Þ1=2

� 3

24
i �qð4� 3 �q2Þfc ð0Þ½3þ i �qð1� �q2Þ�1=2�

� c ð0Þ½3� i �qð1� �q2Þ�1=2�g � 3i �qð1þ 3 �q2Þ
� c ð0Þ½3þ 2i �qð1� �q2Þ�1=2� þ 3i �qð1þ 3 �q2Þ
� c ð0Þ½3� 2i �qð1� �q2Þ�1=2�; (B10)

where aHor;S<5 ¼ 0 and where the polygamma function

c ðnÞðzÞ � ðdn�ðzÞ=dzÞ�ðzÞ�1 is the n-th derivative of the

Gamma function. The coefficients ðaHor;S11 ; aHor;S12 Þ are also

known, but we do not write them out here as they are
lengthy and unilluminating (e.g., see Appendix J in
Ref. [24]). Notice that the BH absorption coefficients in
the spinning case are nonzero starting at 2.5 PN-order,
which is to be contrasted with the nonspinning BH absorp-
tion terms that start at 4 PN-order.
An ambiguity exists when incorporating these BH ab-

sorption contributions into the flux. As one can observe, the

spin-dependent coefficients aHor;Sn depend on the spin pa-
rameter of the background �q, for which one could choose
the real spin parameter �q ¼ q1 or the effective spin pa-
rameter �q ¼ q, defined in Appendix C. Since q ¼ q1 þ
Oðm2=m1Þ, these choices are identical in the test-particle
limit, when we calibrate to Teukolsky fluxes. For lack of
better guidance, we here choose �q ¼ q.

APPENDIX C: SPIN EOB HAMILTONIAN

In Sec. VI we have investigated how the analytical
results calibrated to the Teukolsky-based waveforms
change when we switch on the PN conservative self-force
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and the second-order radiation-reaction effects, and when
we include the spin of the small object. This study em-
ployed the spin EOB Hamiltonian of Ref. [41], which was
derived from Ref. [58], building also on results of
Ref. [40]. As we shall review below, the Hamiltonian of
Ref. [41] reproduces the known spin-orbit (spin-spin) PN
couplings through 2.5 PN (2 PN) order for comparable
masses, and all PN couplings linear in the spin of the small
object in the test-particle limit. We shall here restrict
attention to circular, equatorial orbits, and assume that
the spins are aligned with the orbital angular momentum.

The motion of a spinning test particle in a generic curved
spacetime is described by the Papapetrou equation
[81–83]. Reference [58] derived a Hamiltonian whose
Hamilton equations are equivalent to the Papapetrou equa-
tion. This Hamiltonian therefore describes the motion of a
spinning particle in a generic curved spacetime, and
Ref. [41] computed it in the particular case of the Kerr
spacetime in Boyer-Lindquist coordinates. Denoting with
S1 and m1 the spin and mass of the background BH, and
with S2 andm2 the spin and the mass of the smaller BH, the
Hamiltonian of a spinning test particle in Kerr has the
generic form [41]

H ¼ HNS þHS; (C1)

where HNS is the Hamiltonian of a nonspinning test parti-
cle in Kerr, given by Eq. (2), while HS depends on S1 and

S2 and, if PN expanded, generates all PN terms linear in the
small object’s spin S2.
In Ref. [41] the authors constructed the spin EOB

Hamiltonian by mapping the PN Hamiltonian of two
BHs of masses m1;2 and spins S1;2 into the effective

Hamiltonian of a spinning test particle of mass � ¼
m1m2=ðm1 þm2Þ and spin S� moving in a deformed-
Kerr spacetime with mass M ¼ m1 þm2 and spin SKerr,
� ¼ �=M being the deformation parameter. Note that the
deformed-Kerr spin parameter q � jSKerrj=M2 � q1, but
instead q � q1ð1� 2m2=m1 þ . . .Þ when m2=m1 � 1.
The effective Hamiltonian is [41]

Heff ¼ HNS þHS � �

2Mr3
S2�; (C2)

where HNS is the Hamiltonian of a nonspinning effective
particle in the deformed-Kerr background,

HNS ¼ p�

~!fd

�t

þ�r
ffiffiffiffiffiffi
�t

p ffiffiffiffi
Q

p
ffiffiffiffiffiffi
�t

p ; (C3)

which differs from Eq. (9) in that the Kerr potentials � and
!fd have been replaced by their deformed forms�t and ~!fd

(and also m1 ! M, q1 ! q, m2 ! �). Furthermore, HS in
Eq. (C2) is linearly proportional to the effective particle’s
spin S� and reads

HS ¼ S�
2�M

ffiffiffiffiffiffi
�t

p
�5=2

t ð ffiffiffiffi
Q

p þ 1Þ ffiffiffiffi
Q

p
r2

f2� ffiffiffiffiffiffi
�t

p
�tð

ffiffiffiffi
Q

p þ 1Þ � ð ffiffiffiffiffiffi
�t

p
p�r

3 þ�
ffiffiffiffiffiffiffiffiffiffi
�tQ

p
~!fdÞr2

þ ffiffiffiffiffiffi
�r

p ½��t;r

ffiffiffiffiffiffi
�t

p
p�ðð2

ffiffiffiffi
Q

p þ 1Þðr2 þM2q2Þ2 ��tð
ffiffiffiffi
Q

p þ 1ÞÞr3

þ 2��t

ffiffiffiffiffiffi
�t

p
p�ð2

ffiffiffiffi
Q

p þ 1Þð�t � 2r2ðr2 þM2q2ÞÞr2

þ ffiffiffiffiffiffi
�t

p ðp2
�r

2 þ�2�t

ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞÞð�t ~!fd;r ��t;r ~!fdÞ�g; (C4)

where we denote with a comma the derivative with respect
to r. The term proportional to S2� in Eq. (C2) is added to
reproduce known spin-spin results at 2 PN order. The
quantities (C3) and (C4) depend on the Kerr-deformed
potentials �t, �r, �t, ~!fd, while

Q ¼ 1þ p2
�r

2

�2�t

: (C5)

In particular, we have [41]

�t ¼ ðr2 þM2q2Þ2 �M2q2�t; (C6)

and

~! fd ¼ 2qM2rþ!fd
1 �

qM4

r
þ!fd

2 �
q3M4

r
; (C7)

where !fd
1 and !fd

2 are two adjustable parameters regulat-
ing the frame dragging strength. Although precise values

for !fd
1 and !fd

2 can only be determined by calibrating the
model against NR simulations of comparable-mass spin-
ning BHs, a preliminary comparison of the final spin
predicted by the EOBmodel to NR results [84,85] suggests
that !fd

1 � �10 and !fd
2 � 20.

The deformed-Kerr potential �t is given at 3 PN order
by

�t ¼ r2½AðuÞ þ q2u2�; (C8)

AðuÞ ¼ 1� 2uþ 2�u3 þ �

�
94

3
� 41

32
�2

�
u4: (C9)

When setting � ¼ 0, �t reduces to the Kerr expression (7)
(with m1 ! M, q1 ! q) � ¼ �t ¼ r2 � 2Mrþ q2M2. In
order to guarantee the presence of deformed horizons
(which correspond to the zeros of �t), Ref. [41] suggested
rewriting Eq. (C8) as (u � M=r)
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�t ¼ r2
�
1� 2uð1� K�Þ

ð1� K�Þ2 þ q2u2
�
� (C10)

�
1þ ��0 þ � log

�
1þX4

i¼1

�iu
i

��
; (C11)

with

K ¼ K0 þ 4ðK1 � K0Þ�; (C12)

and

�0 ¼ Kð�K� 2Þ; (C13)

�1 ¼ �2ð�K � 1ÞðK þ �0Þ; (C14)

�2 ¼ 1
2�1ð�4�K þ�1 þ 4Þ � q2ð�K � 1Þ2�0; (C15)

�3 ¼ 1
3½��3

1 þ 3ð�K � 1Þ�2
1 þ 3�2�1 � 6ð�K� 1Þ

� ð��K þ�2 þ 1Þ � 3q2ð�K � 1Þ2�1�; (C16)

�4 ¼ 1
12f6q2ð�2

1 � 2�2Þð�K � 1Þ2
þ 3�4

1 � 8ð�K � 1Þ�3
1 � 12�2�

2
1

þ 12½2ð�K � 1Þ�2 þ �3��1 þ 12ð943 � 41
32�

2Þ
� ð�K � 1Þ2 þ 6½�2

2 � 4�3ð�K � 1Þ�g: (C17)

When expanding Eq. (C10) through 3 PN order, one re-
covers Eq. (C8). The quantity (C10) depends on two
parameters K0 and K1. K0 is fixed to the value 1.4467 in
order to reproduce the results of Ref. [25] for the shift of
the ISCO frequency due to the conservative part of the self
force. Also, recent comparisons of the EOB model with
numerical simulations of nonspinning comparable-mass
BHs have suggested K1 � 3=4.

The deformed-Kerr potential �r is given by [41]

�r ¼ �tf1þ log½1þ 6�u2 þ 2ð26� 3�Þ�u3�g; (C18)

which reduces to the Kerr-potential � in the limit � ¼ 0
(with m1 ! M, q1 ! q).
Finally, the spins SKerr and S

� in the effective description
are not equal to S1 and S2, but are instead given by

S� ¼ S1
m2

m1

þ S2
m1

m2

þ 1

c2
�S� ; (C19)

SKerr ¼ S1 þ S2; (C20)

where

�S� ¼ �

12

�
2M

r

�
7

�
S1

m2

m1

þ S2
m1

m2

�
� 4ðS1 þ S2Þ

�

þ ðQ� 1Þ
�
3ðS1 þ S2Þ þ 4

�
S1

m2

m1

þ S2
m1

m2

���
:

(C21)

With all of this at hand, the EOB Hamiltonian used in
Sec. VI is

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
: (C22)

A few final observations are due at this point. When the
smaller BH has zero spin S2 ¼ 0 and mass m2 � m1, at
lowest order in m2=m1 the EOB Hamiltonian of Eq.
(C22) reduces to the Hamiltonian of a nonspinning test
particle in Kerr. This is because both S� and the defor-
mations of the Kerr potentials are Oðm2=m1Þ. However,
at the next-to-leading order in the mass ratio, the EOB
Hamiltonian presents corrections with respect to the
Hamiltonian of a nonspinning test particle in Kerr,
(i) because of the deformations of the Kerr potentials;
(ii) because of the effective spin S�, which is not zero;
(iii) because of the higher-order terms in � that one
obtains expanding Eq. (C22). These corrections encode
the conservative part of the self-force in the EOB frame-
work [41].
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