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Extreme mass-ratio inspirals, in which a stellar-mass object orbits a supermassive black hole, are prime

sources for space-based gravitational wave detectors because they will facilitate tests of strong gravity and

probe the spacetime around rotating compact objects. In the last few years of such inspirals, the total phase

is in the millions of radians and details of the waveforms are sensitive to small perturbations. We show that

one potentially detectable perturbation is the presence of a second supermassive black hole within a few

tenths of a parsec. The acceleration produced by the perturber on the extreme mass-ratio system produces

a steady drift that causes the waveform to deviate systematically from that of an isolated system. If the

perturber is a few tenths of a parsec from the extreme mass-ratio system (plausible in as many as a few

percent of cases) higher derivatives of motion might also be detectable. In that case, the mass and distance

of the perturber can be derived independently, which would allow a new probe of merger dynamics.
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I. INTRODUCTION

Space-based gravitational wave detectors such as the
Laser Interferometer Space Antenna (LISA) are expected
to see a wide variety of sources in their�10�4 � 10�1 Hz
sensitivity band. Of these, extreme mass-ratio inspirals
(EMRIs), a stellar-mass compact object (SCO) spiraling
into a supermassive black hole (SMBH), are considered
particularly promising because they can probe strong grav-
ity over millions of radians of phase evolution in the last
few years of evolution. As a result, EMRI waveforms serve
as highly precise probes of strong gravity and of the space-
time around rotating SMBHs. Considerable study has been
devoted to astrophysical scenarios for EMRIs [1–3] as well
as to the analysis of their waveforms [4–10].

There has been less exploration of the possibility of
deviations from isolated EMRI waveforms that might oc-
cur due to environmental effects (see e.g. [2,11–14] for a
study of differences caused by an accretion disk around the
SMBH). Here we point out an effect that has not been
considered in this context: the acceleration of the EMRI
system by a nearby (distance of roughly a few tenths of a
parsec or less) secondary SMBH. As we demonstrate, this
acceleration leads to phase drifts of fractions of a radian
over a year of inspiral, which is potentially detectable from
EMRIs of plausible signal strength. Depending on the
fraction of galaxies that merge, and on the fraction of
time in such mergers that the secondary SMBH is within
a few tenths of a parsec of the primary, this could affect as
many as a few percent of EMRIs.

The detection of such an effect could yield a new probe
of galactic merger dynamics, providing a measure of the
ratio of the secondary SMBH’s mass and its distance to
the EMRI. If such effects are not present in a detected

gravitational wave (GW), then one can place an upper limit
on the density of SMBHs inside some radius of a few tenths
of a parsec. If this is the case, then one would confirm that,
as far as LISA is concerned, EMRIs occur in vacuum.
This paper is organized as follows: In Sec. II we do a

simple analysis of the acceleration effect as it would apply
to a signal of constant frequency and amplitude, which
we expand on in the Appendix. In Sec. III we explain how
to model real EMRI waveforms, for the particular case of
quasicircular, equatorial orbits, and explain how to imple-
ment modifications to model an acceleration effect. In
Sec. IV we extend the simple analysis of Sec. II to real
waveforms and perform a dephasing and an overlap study.
In Sec. V we explore whether some of these deviations can
be masked by adjustments of EMRI system parameters.
We present our conclusions in Sec. VI. In most of this
paper, we use geometric units with G ¼ c ¼ 1. For refer-
ence, in this system of units, one solar mass M� ¼
1:476 km ¼ 4:92� 10�6 s, while 1 pc ¼ 1:03� 108 s ¼
2:09� 1013M�.

II. SIMPLE MODEL

Here we present the basic effects of acceleration in a
simplified model. We assume that there is an EMRI of a
SCO into a (primary) SMBH with mass M� on the x̂-ŷ
plane, with orbital and spin angular momentum in the ẑ
direction. We further simplify the scenario by assuming
GWs of constant frequency and amplitude. Let us also
assume there is a secondary SMBH in a circular orbit about
the EMRI’s center of mass (COM). Suppose that the sec-
ondary SMBH has a mass MSec and the total mass of the
system MTot ¼ M� þMSec. Suppose also that the semi-
major axis of the circular orbit of the primary-secondary
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SMBH system is rSec, and that it is inclined to the line
of sight at an angle � (here � is zero for a face-on binary
and 90� for an edge-on binary). We depict this scenario
in Fig. 1.

If these systems are well-separated, then the EMRI’s
COM will move essentially at a constant velocity relative
to us, with a projection into our line of sight of

vlosðtÞ ¼
�
MSec

MTot

�
vNewt cosð!Newttþ �Þ sinð�Þ; (1)

where vNewt ¼ ðGMTot=rSecÞ1=2 is the Newtonian virial

velocity, !Newt ¼ ðGMTot=r
3
SecÞ1=2 is the Newtonian angu-

lar velocity for an object in a circular orbit, and � is an
initial phase, with ð!Newttþ �Þ the orbital phase of the
EMRI-secondary system. A constant relative speed is en-
tirely absorbed in a redefinition of the masses. As such,
constant relative velocities cannot enter any of our results.

If the EMRI’s COM is sufficiently close to the secondary
SMBH, then the former will experience an measurable
acceleration, which will produce a net Doppler phase drift
relative to the best-fit waveform. Note that the orbital
period forMTot ¼ 106�7M� and rSec ¼ 0:1–1 pc is at least
�103�5 years, so for the duration of a LISA observation
the binary will not change phase significantly. Tidal effects
on the EMRI system due to the perturber can be neglected,
as this acceleration scales as the inverse cube of rSec (see
Sec. III B for more details).

If the EMRI system is accelerated by an amount _v
relative to its original line of sight speed over a time t,
then the GW phase difference compared to the initial
frequency is ��GW ¼ 1

2
_vtN=c, where N is the number

of radians in the waveform (see the Appendix for a more
detailed explanation of this effect). Let us designate by �
the detectable fractional phase shift: � � ��GW;detect=N.

As a fiducial value, we will use � ¼ 10�7, or 0.1 radians
over �106 radians for a typical one-year inspiral. To
leading-order in a Taylor expansion about !Newtt ¼ 0,
we then have

1

2

_vt

c
¼ 1

2
ðsin�Þðsin�ÞMSec

rSec

t

rSec
¼ �; (2)

where we have here neglected a constant term that is non-
observable. Solving for the distance at which this is sat-
isfied gives

rSec � 0:26 pcðsin�Þ1=2ðsin�Þ1=2
�
MSec

106M�

�
1=2

�
�

t

1yr

�
1=2

�
�

10�7

��1=2
: (3)

The next-order term in the phase shift scales as

1

6

€vt2

c
¼ 1

6
ðsin�Þðcos�ÞMSec

rSec

ffiffiffiffiffiffiffiffiffiffi
MTot

rSec

s
t2

r2Sec
: (4)

Setting this equal to � and solving for r, we find

rSec � 0:025 pcðsin�Þ2=7ðcos�Þ2=7
�
MSec

106M�

�
2=7

�
�

MTot

2� 106M�

�
1=7

�
t

1yr

�
4=7

�
�

10�7

��2=7
: (5)

Additional corrections can be computed similarly.
Therefore, for secondary SMBH massesMSec * 106M�

and separations of a few tenths of a parsec or less, accel-
eration can cause a detectable shift in the simplified
waveform. As we find in Sec. IV, this shift is proportional
to the combination A � MSec=r

2
Sec. For separations of a

few hundredths of a parsec or less, higher-order derivatives
are measurable. In this case, the detectable shift in the
waveform is captured by the linear combination of A
and other higher-order derivative terms, such as B �
M3=2

Secr
�7=2
Sec . Given a sufficiently small rSec, one could then

measure both A and B and thus disentangle MSec

from rSec.
The range of masses and separations that could be

observed, given a sufficiently strong EMRI-perturber sys-
tem are depicted in Fig. 2. In this figure, we show with solid
lines the constraint given by Eq. (2), and with a dashed line
that of Eq. (4) (with M� ¼ MSec for simplicity), where the
black, red, and blue colors correspond to � ¼ 10�7, 10�6

and 10�5. A larger value of � corresponds to more con-
servative choices of what is detectable by LISA. The area
above the curves show the values of MSec and rSec that
could be measurable. For comparison, we also show the
region of ðMSec; rSecÞ space that fall in the pulsar-timing-
array (PTA) sensitivity band. Of course, for PTAs to indi-
vidually resolve such binaries, their distance to Earth
would have to be sufficiently small [15]. In principle,
however, this scenario allows for the possibility of coinci-
dent future detection of GWs with LISA and PTAs.

ι

x

y

z

MSMBH

MSec

rSec

JSec

FIG. 1 (color online). Schematic view of the EMRI system (in
the xy plane), the massive perturberMSec (at a distance rSec from
the EMRI system), and the line of sight. � is the inclination
between the primary-secondary SMBH’s orbital angular mo-
mentum vector and the line of sight.
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We now discuss the detectability of the changes dis-
cussed above for a realistic EMRI. In Sec. VI, we return to
the question of how common it will be to have a secondary
SMBH this close.

III. REALISTIC EMRI WAVEFORMS

A. Standard EOB Modeling

We employ the effective-one-body (EOB) formalism to
model waveforms with and without the acceleration cor-
rection. This formalism was initially developed in [16,17]
to model comparable-mass BH binary coalescences.
Improvements and extensions to other binaries were de-
veloped in [18–24,24–29] and compared to a set of nu-
merical relativity results in [30–32] and to self-force
calculations in [33,34]. Recently, [8–10] combined the
EOB approach with BH perturbation theory results to
model EMRI waveforms for LISA data analysis. We here
concentrate on the formulation of [10], as it is applicable to
EMRIs, the systems of interest in this paper.

We focus on quasicircular EMRI inspirals in the equa-
torial plane of a spinning BH because they are simpler to
model. We define the following orbital parameters: the
SCO’s mass m?, the SMBH’s mass M�, the total mass
M ¼ m? þM�, the reduced mass � ¼ m?m�=M, and the
symmetric mass-ratio � ¼ �=M. We also assume that the
EMRI’s orbital angular momentum is aligned with the
MBH’s spin angular momentum S� ¼ a�M� ¼ q�M2�,
where a� ¼ S�=M� is the MBH’s spin parameter and
q� ¼ a�=M� is its dimensionless spin parameter. We em-
ploy the adiabatic approximation, in which we assume that

the radiation-reaction time-scale is much longer than the
orbital one.
With this at hand, let us now describe the EOB approach

we employ. In the adiabatic approximation, the GW phase
can be obtained by solving

_! ¼ �
�
dE

d!

��1
F ð!Þ; (6)

_� ¼ !; (7)

where ! � _� is the orbital angular frequency, with � the
orbital phase, overhead dots stand for time derivatives, E is
the system’s total energy andF is the GWenergy flux. The
energy of the system is [35]

E ¼ M� þm?

1� 2M�=r	 q�M
3=2� =r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3M�=r	 2q�M
3=2� =r3=2

q ; (8)

where the 	 stands for prograde or retrograde orbits. In
this equation and all throughout the rest of this paper, we
ignore subleading corrections that are proportional to the
EMRI’s mass-ratio. In practice, this means we ignore con-
servative and second-order dissipative self-force effects,
i.e. the effect of the SCO on its own geometry, as well as
the SCO’s spin.
The GW flux can be written in the factorized form of

[10,24,27,28], which in the adiabatic regime is

F ð!Þ ¼ 1

8�

X8
‘¼2

X‘
m¼0

ðm!Þ2jh‘mj2; (9)

where the multipole-decomposed waveforms are

h‘mðvÞ ¼ h
Newt;�p
‘m S

�p
‘mT‘me

i�‘mð�‘mÞ‘; (10)

and where �p is the parity of the waveform (i.e., �p ¼ 0 if

‘þm is even, �p ¼ 1 if ‘þm is odd). The quantities

[S
�p
‘mðvÞ, T‘mðvÞ, �‘mðvÞ and �‘mðvÞ] in Eq. (10) can be

found in [24,27,28]. The Newtonian waveform is

h
Newt;�p
‘m � M�

R
n
ð�pÞ
‘m c‘þ�pv

‘þ�pY‘��p;�mð�=2; �Þ; (11)

where Y‘;mð	;�Þ are spherical harmonic functions, while

n
ð�pÞ
‘m and c‘þ�p are numerical coefficients [27].

We enhance the flux of Eq. (9) by linearly adding BH
absorption terms and calibration coefficients that are fitted
to a more accurate, numerical flux [10]. The first modifica-
tion is necessary as BHs lose energy due to GWs that both
escape to infinity and fall into BHs. The second modifica-
tion accounts for the fact that the bare fluxes written above
are built from low-velocity (post-Newtonian) expansions,
and as such, are not sufficiently accurate by themselves for
long evolutions, even after the resummations introduced.
The above differential system is solved with the

post-circular initial conditions of [17], enhanced with a

0.001 0.01 0.1 1 10

r
Sec

 [pc]

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

M
Se

c [
M

.]

ε=10
-7

, Leading Order

ε=10
-6

, Leading Order

ε=10
-5

, Leading Order

ε=10
-7

, Next Order

ε=10
-6

, Next Order

ε=10
-5

, Next Order
Observable by PTA 

FIG. 2 (color online). Range of secondary masses and separa-
tions that could be measurable by LISA given a sufficiently
strong EMRI. The region above the solid and dashed lines would
be observable. Measurement of the leading-order effect gives a
determination of the combination ðMSec sin�Þ=r2Sec, while mea-

suring the next-order effect gives a determination of the combi-

nation ðMSec sin�Þ3=2=r7=2Sec . Thus measuring both effects together

allows both MSec sin� and rSec to be determined.
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mock-evolution at 100M� (see e.g. [10]). The orbital phase
can then be used in the waveforms of Eq. (10), together
with the fact that for quasicircular orbits

r ¼ ½1� q1ðM�!Þ
2=3
ðM�!Þ2=3 ; (12)

where r is the EMRI’s separation and v ¼ ðM�!Þ1=3 by
Kepler’s third law. With the waves at hand, we then
compute the GW phase and its amplitude via

�‘m
GW ¼ =

�
ln

�
h‘m
jh‘mj

��
; A‘m

GW ¼ jh‘mj: (13)

The GW phase as defined above needs to be unwrapped
every 2�, so in practice it is simpler to define the time
derivative of this quantity and then obtain �‘m

GW via

integration.

B. Modifications to EOB modeling

How do we incorporate the effects of an external accel-
eration into GWmodeling within the EOB framework? Let
us first distinguish between wave generation and wave
propagation effects. By the former, we mean effects that
arise in the near-zone (less than a gravitational wavelength
away from the EMRI’s COM) and that generate GWs due
to the inspiral of the EMRI. By the latter, we mean effects
that arise after the system has generated a GW and it
propagates out to the wave-zone, where the observer is
located, many gravitational wavelengths away from the
source.

As is expected, all propagation effects, such as the
backscattering (or tails) of GWs off the metric of the
secondary SMBH, occur beyond Newtonian (leading)
order in post-Newtonian theory [36], and can be safely
neglected here. The presence of an external source, how-
ever, does introduce non-negligible modifications to the
generation of GWs. One could incorporate such effects
by introducing an external, vectorial force to Hamilton’s
equations in the direction of the perturber. This force would
simply be the product of the the total mass of the system
and the time derivative of the velocity of Eq. (1). The
modeling of this effect would require a nonadiabatic
evolution, i.e. the evolution of the full set of Hamilton’s
equations, without assuming circular orbits or using
Kepler’s third law. One expects that such force would
induce eccentricity and inclination in the inspiral, driving
the SCO out of the equatorial plane of the secondary
SMBH.

One can estimate the magnitude of this effect by con-
sidering the tidal force effect of the perturber on the COM
relative to the SCO’s acceleration due to the secondary
SMBH. Since the tidal force scales as FTidal ¼ MSec=r

3
Sec,

this effect is suppressed relative to the acceleration by a
factor of r=rSec � 10�4 for an EMRI with orbital separa-
tion of 30m� and a primary-secondary SMBH orbital
separation of 0.01 pc. The ratio is this small because the

perturber is assumed to be at parsec scales away from the
COM, and 1 pc translates to �1013M� in geometric units.
Since the tidal force scales as the inverse of the separation
cubed, any tidal effects are insignificant.
Given that this type of generation effects are suppressed,

are there any others that should be included? The dominant
generation effect is simply a Doppler shift in the frequen-
cies, which then leads to an integrated modification in
the GW phase (see the Appendix for a detailed explanation
of this Doppler effect). In this sense, such a correction is
similar to the integrated Sachs-Wolfe effect for GWs [37],
where here the perturbation to the potential is given by a
third body, instead of some cosmological background. The
implementation of this correction to an EOB evolution is
simple: divide the right-hand side of Eq. (7) by the appro-
priate Doppler factor

_� ¼ ! ! _� ¼ !½1þ vlosðt; � ¼ �=2Þ
: (14)

In this equation, we have not included the appropriate
Lorentz factor �, since vNewt=c � 1, and we can linearize
in this quantity. Moreover, we have removed the constant
velocity drift component of vlos by choosing � ¼ �=2, as
the former is not measurable.

IV. PERTURBING ACCELERATION EFFECT
ON RELATIVISTIC EMRI WAVEFORMS

A. Preliminary considerations

With the machinery described in Sec. III, we can con-
struct modified EMRI waveforms as a function of time, for
a given value of the second MBH mass and separation to
the EMRI’s COM. We consider the following two EMRI
systems, integrated for 1 yr each:
(i) System I: The primary SMBH has mass m� ¼

105M� and spin parameter q� ¼ 0:9, while the
SCO has mass and spin parameter m? ¼ 10M� and
q? ¼ 0. This system inspirals for �6� 105 rads of
orbital phase between orbital separations r=M 2
ð16; 26Þ. In this range the orbital velocities are
v 2 ð0:2; 0:25Þ and the GW frequencies are fGW 2
ð0:005; 0:01Þ Hz.

(ii) System II: The primary SMBH has mass m� ¼
106M� and spin parameter q� ¼ 0:9, while the
SCO has mass and spin parameter m? ¼ 10M�
and q? ¼ 0. This system inspirals for �3�
105 rads of orbital phase between orbital separa-
tions r=M 2 ð11; rISCOÞ. In this range the orbital
velocities are v 2 ð0:3; vISCOÞ and the GW frequen-
cies are fGW 2 ð0:001; fISCOGW Þ Hz.

System I exits the most sensitive part of the LISA band
at an orbital separation r� 16M, which is why we stop
the evolution there. In contrast, System II is stopped when
the SCO reaches the innermost stable circular orbit
(ISCO). For each of these systems, we explore a variety
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of secondary SMBH masses MSec ¼ ð105; 106ÞM� as well
as a variety of separations rSec ¼ ð0:01; 0:1; 1Þ pc. Larger
secondary masses are also possible; these would have
equivalent effects on the EMRI at correspondingly larger

distances r�M1=2. (For example, MSec ¼ 109M� at r ¼
30 pc would have equivalent effects to MSec ¼ 106M� at
r ¼ 1 pc.) All of this information is summarized in Table I,
including the orbital periods TOrb and the time to merger
due to GW emission TGW. In all cases we set sin� ¼ 1 and
� ¼ �=2, as this leads to the largest possible effect. The
reasoning behind this is that if this effect is not observable
with this choice of parameters, it will not be observable
with any other choice.

B. Dephasing study

Let us define the dephasing between waveforms as
follows:

��GW � �Acc
GW ��no: Acc

GW ; (15)

where �Acc
GW is the GW phase of an EMRI waveform with

an accelerated COM, while �no: Acc
GW is that of an inertial

COM. We have here aligned the waveforms in time and
phase before computing this dephasing. This alignment is
equivalent to minimizing the statistic in Eq. (23) of [31],
which in turn is the same as maximizing the fitting factor
over time and phase of coalescence in a matched filtering
calculation with white noise [31]. The alignment is done
here in the same way as in [8–10].

Figure 3 plots the dephasing of the dominant
ð‘;mÞ ¼ ð2; 2Þ GW mode as a function of time in
months for System I and System II. The different line
colors/shades correspond to different separations to the

perturber [rSec ¼ ð0:01; 0:1; 1Þ pc], while different line
styles correspond to different perturber masses [MSec ¼
ð105; 106ÞM�]. Observe that for both Systems, a dephasing
of order 0.1 rads is achieved for separations rSec & 0:1 pc
over less than 1 yr. This is consistent with the estimates of
Sec. II. Similarly, more massive perturbers enhance the
dephasing roughly by 1 order of magnitude.
The amplitudes of the waveforms are not shown in this

figure; they disagree at the level of 10�3 for System I and
10�4 for System II.
The magnitude and shape of the dephasing depends on

how far away and massive the perturber is. One can show
that the dephasing scales as ��GW / NMSecT=r

2
Sec, where

T is the observation time and N is the number of cycles.
Since there is a factor of 2 fewer GW cycles in System II
relative to System I, then the dephasing for the former is
also smaller by a factor of 2.

C. Overlap study

The dephasing study of the previous subsection is sug-
gestive, but not sufficiently quantitative to assess whether
such types of corrections are large enough to be measur-
able. Let us then perform a slightly more sophisticated data
analysis study here.
Given any time series AðtÞ and BðtÞ, one can construct

the inner-product

ðAjBÞ ¼ 4Re
Z 1

0

~AðfÞ ~B?ðfÞ
SnðfÞ df; (16)

where the overhead tildes stand for the Fourier transform,
the star stands for complex conjugation, and SnðfÞ is the
spectral density of noise in the detector. We choose here
the sky-averaged version of the noise curve presented
in [38,39].
With this inner-product, we can now construct some data

analysis measures. The signal to noise ratio (SNR) of
signal A is

TABLE I. Summary of System properties. All masses are in
units of M�, rSec is in units of parsecs and all time scales are in
units of years. The time to merger is here estimated as TGW ¼
r= _rGW, where _rGW is the rate of change of the orbital separation
due to GW emission and for r we take the values in the itemized
list. The star stands for quantities associated with the SCO-
SMBH system, while the solid dot stands for those associated
with the SMBH-SMBH system.

m? m� MSec rSec=pc T?
Orb T�

Orb T?
GW T�

GW

10 105 105 10�2 10�5 2:1� 102 5.6 1019

10 105 105 10�1 10�5 6:6� 103 5.6 1023

10 105 105 10þ0 10�5 2:1� 105 5.6 1027

10 105 106 10�2 10�5 8:9� 101 5.6 1018

10 105 106 10�1 10�5 2:8� 103 5.6 1022

10 105 106 10þ0 10�5 8:9� 104 5.6 1026

10 106 105 10�2 10�5 8:9� 102 18 1018

10 106 105 10�1 10�5 2:8� 103 18 1022

10 106 105 10þ0 10�5 8:9� 104 18 1026

10 106 106 10�2 10�5 6:6� 102 18 1018

10 106 106 10�1 10�5 2:1� 103 18 1022

10 106 106 10þ0 10�5 6:6� 104 18 1026
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FIG. 3 (color online). Dephasing for System I and System II as
a function of time in units of months, for a variety of separations
and masses of the perturber.
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�ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðAjAÞ

q
; (17)

while the overlap between signals a and b is

M ¼ max
ðAjBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAjAÞðBjBÞp (18)

with the mismatch MM ¼ 1�M. The max label in
Eq. (18) is to remind us that this statistic must be maxi-
mized over an event time (e.g., the time of coalescence of
the EMRI system) and a phase shift [26]. If the overlap is
larger than 97% (or equivalently, if the mismatch is lower
than 3%), then the difference between waveforms A and B
is sufficiently small to not matter for detection purposes
(see e.g. [40]). The minimum overlap quoted above (97%)
is mostly conventional, motivated by the fact that the event
rate scales as the cube of the overlap for a reasonable
source distribution. For an overlap larger than 97%, no
more than 10% of events are expected to be lost at SNRs of
Oð10Þ. Of course, for larger SNRs, one might not need
such high overlaps, although EMRI sources are expected to
have SNRs <100.

Whether the difference between waveforms A and B can
be detected in parameter estimation can be assessed by
computing the SNR of the difference in the waveforms
�h � A� B:

�ð�hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hj�hÞ

q
¼ 4Re

Z 1

0

~�hðfÞ ~�h?ðfÞ
SnðfÞ df: (19)

When this SNR equals unity, then one can claim that A and
B are sufficiently dissimilar that they can be differentiated
via matched filtering (see e.g. [41]).

We applied these measures to EOB waveforms with and
without acceleration of the COM. The results are plotted in
Fig. 4 as a function of observation time in months. The
vertical dotted lines correspond to observation times of

(0.5,2,4,6,9,12) months, and the numbers next to them, in
parenthesis, stand for the SNR of System I and System II
for that observation time. The different line styles and
colors correspond to mismatches and SNRs of the error
for different secondary systems. Observe that the mismatch
is always smaller than 0.03 (the solid black horizontal line),
suggesting that this effect will not affect detection. Observe
also that the SNR of the difference reaches unity (the
dashed black horizontal line) in between 6 and 12 months
of observation, and for the MSec ¼ 106M�, �ð�hÞ reaches
�10 after 1 yr. This suggests that given a sufficiently
strong EMRI with SNR� 50–100, the magnitude of this
effect is in principle detectable within 1 yr of coherent
integration.

V. DEGENERACIES

Now that we have determined that there exists a set of
plausible perturber parameters for which the magnitude
of the correction could be measurable, let us consider the
possibility of degeneracies. That is, let us investigate
whether we can mimic an acceleration of the COM by
changing the intrinsic parameters (the component masses,
the spin parameter, etc.) in the nonaccelerating waveform.
The simplest way to see whether this is possible is to study
the frequency dependence of the GW modification intro-
duced by the COM’s acceleration.
Let us then remind ourselves of how the frequency-

domain representation is constructed. For this, we employ
the stationary-phase approximation (see e.g. [42]), under
which, the frequency-domain waveform is simply

~hðfÞ ¼ Af�7=6eic ðfÞ; (20)

where the Newtonian (leading-order) amplitude is A ¼
��2=330�1=2M5=6D�1

L , with M ¼ 
3=5M, while the
phase is constructed from

c ðfÞ ¼ ��

4
þ 2�ftðfÞ � 2�ðfÞ; (21)

where the second term arises due to the Fourier transform
and the third term due to the oscillatory nature of the time-
domain waveform.
The phase of the frequency-domain waveform in

the stationary-phase approximation is then controlled by
these last two terms in Eq. (21). The first term can be
computed via

2�ftðfÞ ¼ 2�f
Z f=2 �ðF0Þ

F0 dF0; (22)

where f is the GW frequency, while the second term can be
calculated from

�ðfÞ ¼ 2�
Z f=2

�ðF0ÞdF0; (23)

where �ðFÞ � F= _F and F is the orbital frequency.
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FIG. 4 (color online). Mismatch as a function of time in units
of months for System I and System II and different perturber
masses, all at a separation of rSec ¼ 0:1 pc. SNRs for System I
and System II are given in parentheses for a source at 1 Gpc.
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The Doppler correction to the waveform comes in the
calculation of �ðfÞ, as this is simply the integral of
the frequency. For simplicity, we can reparametrize the
vlosðtÞ ! vlosðFÞ, by noting that, to Newtonian order,

2�FðtÞ ¼ 4�3=2

M

�



5M
ðtc � tÞ

��3=8
; (24)

which we can invert to obtain

tðFÞ ¼ tc � 5M

256

ð2�MFÞ�8=3; (25)

where tc is the time of coalescence of the EMRI system.
Taylor expanding Eq. (1) about !Newtt ¼ 0, we find

vlos � v0 þ v1ð2�MFÞ�8=3 þ v2ð2�MFÞ�16=3

þ v3ð2�MFÞ�8; (26)

where the vi coefficient are the following frequency-
independent functions:

v0 ¼
�
MSec

MTot

�
1=2

�
MSec

rSec

�
1=2

�
cos��

�
MTot

rSec

�
1=2 tc

rSec
sin�

� 1

2

MTott
2
c

r3Sec
cos�þ 1

2

�
MTot

rSec

�
3=2 t3c

r3Sec
sin�

�
sin�;

v1 ¼ 10

512

MMSec

r2Sec

�1ðsin�Þ

�
�
sin�þ

�
MTot

rSec

�
1=2 tc

rSec
cos�� 1

2

MTott
2
c

r3Sec
sin�

�
;

v2 ¼ 25

131072

M2MSec

r3Sec

�
�
�
MTot

rSec

�
1=2

cos�

þMTottc
r2Sec

sin�

�

�2 sin�;

v3 ¼ � 125

100663296

M3MSecMTot

r5Sec

�3 sin� sin�: (27)

Notice that v0 is of OðM1=2=r1=2SecÞ, v1 is of OðM2=r2SecÞ, v2

is of OðM7=2=r7=2SecÞ, and v3 is of OðM5=r5SecÞ.
With these relations at hand, we can now compute the

correction to the frequency-domain waveform phase in
the stationary-phase approximation. Denoting by �c ¼
c Acc�c no: Acc, we find that

�c ¼ �4�
Z f=2

�ðF0ÞvlosðF0ÞdF0;

�� 5�

24

M




Z f=2ð2�MF0Þ�8=3

� ½v0 þ v1ð2�MF0Þ�8=3 þ v2ð2�MF0Þ�16

þ v3ð2�MF0Þ�8
dF0; (28)

where in the second line we have used that to Newtonian
order

_F ¼ 48

5�M2
ð2�MFÞ11=3: (29)

Normalizing this phase correction by the Newtonian form
of the frequency-domain waveform phase, we find

�c ¼ 3

128
ð�MfÞ�5=3

�
8

3
v0 þ 40

39
v1


8=5ð�MfÞ�8=3

þ 40

63
v2


16=5ð�MfÞ�16=3 þ 40

39
v3


24=5ð�MfÞ�8

�
:

(30)

Setting � ¼ �=2 ¼ �, the above expression simplifies to

�c ¼ 3

128
ð�MfÞ�5=3

�
� 8

3

MSectc
r2Sec

þ 4

9

MSecMTott
2
c

r5Sec

þ
�
25

1248

MMSec

r2Sec
� 25

2496

MMSecMTott
2
c

r5Sec

�

� ð�MfÞ�8=3 þ 125

1032192

M2MSecMTottc
r5Sec

� ð�MfÞ�16=3 � 625

1094713344

M3MSecMTot

r5Sec

� ð�MfÞ�8

�
: (31)

Let us now discuss this result in more detail. The first
two terms inside the square bracket in Eq. (31) arise due to
a constant misalignment between the time of coalescence
of the EMRI system and the primary-secondary SMBH
system (we have implicitly set the latter to zero). This
effect can be absorbed via a redefinition of the chirp
mass, and thus, it is not observable. All other lines in
Eq. (31), on the other hand, contain a nontrivial frequency
dependence and they cannot be reabsorbed via a redefini-
tion of intrinsic parameters.
A physical way to think about this is the following.

Given a signal and a template without modeling a second-
ary perturber, one would like to maximize the phase co-
herence by shifting the template’s phase and frequency.
Such a shift corresponds to an adjustment of the total mass
and the chirp mass, which eliminates the first term in
Eq. (31). Once this shift is done, however, there are no
other template parameters that can be shifted, while the
frequency derivatives of the signal and template will con-
tinue to disagree.
The many terms that arise in the second, third and fourth

lines of Eq. (31) are due to the Taylor expansion in !Newtt,
which in frequency space has become an expansion in
inverse powers of ðMfÞ and ðrSec=MSecÞ. Clearly, the sec-
ond line Eq. (31) is dominant over all others as it scales
with r�2

Sec to leading order, while the third and fourth lines

scale as r�5
Sec. If MSec=rSec is large enough, however, one

might be able to measure the coefficients in front of both

the dominant f�8=3 term and the f�16=3 or f�8 term. This
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would then imply that one could break the degeneracy
between MSec and rSec in the leading-order term and mea-
sure both quantities.

Ignoring such possible acceleration effects could intro-
duce a bias in the extraction of parameters via matched
filtering [43,44]. Imagine, for example, that an EMRI GW
is detected with vacuum templates. One would then pro-
ceed to extract parameters from this detection, such as the
primary SMBH’s and SCO’s mass with some error bars.
Usually, the error estimate accounts for statistical error
plus possible systematics with the modeling. The accelera-
tion effect here would be one such systematic, whose
magnitude would have to be determined via a careful
Markov-Chain Monte-Carlo exploration of the likelihood
surface.

Notice also that in Eq. (31) we have kept only the
Newtonian contribution to an infinite post-Newtonian ex-
pansion. This is essentially because in Eqs. (24) and (29)
we have dropped all but the leading-order, Newtonian
term. Interestingly, the correction terms that arise at lead-
ing order are dominant over the Newtonian piece, as they
depend on high inverse powers of frequency (in particular,
higher than 5=3). This implies that if a detailed parameter
estimation study were to be carried out, these post-
Newtonian terms should be taken into account, as they
contribute at the same order as the Newtonian term in an
inertial frame.

The dependence of the correction in Eq. (31) on different
powers of the frequency suggests that these terms are
nondegenerate with the standard ones that appear in the
nonaccelerating GW phase. More precisely, the GW phase
in an inertial frame is given by (see e.g. [42]).

c ðfÞno:Acc¼2�ftc��cþ 3

128
ð�MfÞ�5=3

�
�
1þ

�
3715

756
þ55

9



�

�2=5ð�MfÞ2=3þ . . .

�
;

(32)

where�c is the phase of coalescence and the ellipses stand
for higher-order terms in the post-Newtonian series. Notice

that there are no powers of f�8=3, f�16=3, or f�8 in the
above equation. Thus, the correction computed in Eq. (31)
is weakly correlated to the GW phase in an inertial frame,
i.e. the off-diagonal elements of the Fisher matrix are small
for the MSec=r

2
Sec coordinate sector relative to the diagonal

term. Although these results are suggestive, a more de-
tailed analysis should be carried out to determine the level
of correlation between all parameters and the accuracy to
which MSec and rSec could be extracted.

Although the correction due to the acceleration of the
COM seems to be weakly correlated to other intrinsic
parameters, one might wonder whether it is degenerate
with other effects not included in vacuum GR waveforms.
Takahashi and Nakamura [45] have studied the effect of the

acceleration of the Universe in the frequency-domain form
of the waveform. They find that

�c ¼ 3

128
ð�MfÞ�5=3

�
25

768
M _zð�MfÞ�8=3

�
: (33)

One can clearly see that this cosmological effect is degen-
erate with the one computed here [the second line in
Eq. (31)]. However, the magnitude of Eq. (33) is much
smaller than that of Eq. (31), simply because H0 �
MSec=r

2
Sec for all relevant perturbers considered here. For

example, at small redshift, H0 � 10�23 km�1 in geometric
units, while at rSec ¼ 0:1 pc and for a 106M� perturber,
MSec=r

2
Sec � 10�19 km�1. The perturber separation at

which these effects become comparable is approximately

rSec � 11 pc½Msec=ð106M�Þ
1=2.
Another possible source of degeneracy could be if there

are corrections to general relativity that induce phase mod-
ifications with the specific frequency dependence found in
Eq. (31). In fact, we see that the result obtained here can be
mapped to the parametrized post-Einsteinian framework
[44] with the choice

� ¼ 0; 
 ¼ 25

1248

MSecM
rSec

; b ¼ � 8

3
; (34)

to leading order in MSec=rSec (see e.g. Eq. (1) in [44]). As
found in that paper, however, there are no known alter-
native theories to date that could potentially lead to the
frequency dependence found in Eq. (31).

VI. DISCUSSION AND CONCLUSIONS

We have shown that a�106M� secondary SMBHwithin
a few tenths of a parsec of the EMRI system can produce
detectable modifications in the waveform. A more massive
secondary SMBH at a correspondingly larger distance
would produce equivalent effects. It is not possible to say
with certainty how common this will be. A rough upper
limit can be obtained from the following observation.
Since a redshift of z ¼ 1 (corresponding roughly to 1010

years), tens of percent of MilkyWay-like galaxies have had
a major merger [46,47]. If the typical merger takes hun-
dreds of millions of years, then at most a few percent will
be involved in a merger at any stage. The fraction of time
spent at separations & 1 pc remains uncertain; although
there are well-understood dynamical processes that can
reduce the secondary SMBH’s separation to �1 pc and
gravitational radiation will bring the binary to merger from
�10�3 pc, the transition between the regimes is uncertain
(this is commonly called the ‘‘final parsec problem;’’ see
e.g. [48] for a discussion). It is therefore possible that the
system spends considerable time at roughly the detectable
separations.
We also note that when a secondary SMBH comes

within a few tenths of a parsec of the primary, various
dynamical effects temporarily increase the rate of close
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encounters of stellar-mass objects with both SMBHs [49].
As a result, it may be that a disproportionate number of
EMRIs occur with a secondary SMBH nearby. Indeed,
recently [50] estimated that more than 10% of all tidal
disruption events could originate in massive black hole
binaries, so if the EMRI fraction is similar it corresponds
to our rough estimate.

In these cases, measurement of an EMRI phase shift
affords a new way to detect the presence of a binary
SMBH. If the separation is close enough to measure an
additional derivative of the motion, then the degeneracy
between the secondary mass and its distance is broken. If
the EMRI-SMBH system is sufficiently close, then pulsar
timing measurements [15] might also be able to detect
gravitational waves from the SMBH-SMBH binary.
Alternatively, if no phase shift is detected, then this implies
that there are no secondary SMBH in a radius of a few
tenths of a parsec, thus implying an upper limit on the
density of BHs close to the detected EMRIs. In principle,
therefore, EMRIs have another astrophysical link in addi-
tion to their utility in testing general relativity.

The importance of the astrophysical environment in
EMRI GW modeling is a double-edged sword. Although
on the one hand, one could potentially extract some astro-
physical information, on the other, these effects could
make it difficult to test general relativity [44]. For such
tests to be possible, one must have complete control of the
waveforms within general relativity. If the astrophysical
environment needs to be included, then the modeling might
be dramatically more difficult. We note here, however, that
only a fraction of EMRIs would experience the astro-
physical environment effect discussed here. If deviations
from general relativity are present, on the other hand,
these should be present for all EMRIs. Thus, in principle,
a statistical analysis would allow us to disentangle devia-
tions in our waveforms to discern whether they have an
astrophysical or theoretical origin.
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APPENDIX A: ACCELERATION EFFECT

Here we explain in more detail how the Doppler correc-
tion to the waveform comes about. Let us consider the

effect of an acceleration on the COM position vector. For
simplicity, we consider the toy-model of a perfect circular
orbit with angular velocity !, whose position vector in the
COM can be parametrized as

~x ¼ bðcos!t; sin!t; 0Þ; (A1)

where b is the binary’s separation and we have erected a
Cartesian coordinate system, with the binary in the x̂-ŷ
plane. If an external force is present that causes an accel-
eration, this in turn will cause a displacement ~x ! ~x0 ¼
~xþ �~x. Let us parametrize the magnitude of this displace-
ment as j�~xj ¼ ð1=2Þ _vlost

2, which holds to Newtonian
order for a uniformly accelerated body. One can then
show that the shift in the magnitude of the COM velocity
vector is simply

j ~v0j ¼ j ~vj þ 1
2
_vlostðx̂ � �x̂Þ þOð _v2

lost
2Þ; (A2)

where _v ¼ _~x is the unperturbed velocity vector. Notice
that there is a factor of 1=2 here, just as in the estimates
of Sec. II.
Before proceeding, it is useful to concentrate on this

velocity shift. Choosing � ¼ �=2 ¼ �, one can easily
show that

vlos �MSec

MTot

vNewtð!NewttÞ
�
1� 1

6
!2

Newtt
2 þOð!4

Newtt
4Þ
�
;

(A3)

upon Taylor expanding about!Newtt � 1. We can take the
time derivative of vlos and then Taylor-expand again to find

_vlost��MSec

MTot

vNewtð!NewttÞ

�
�
1� 1

2
!2

Newtt
2 þOð!4

Newtt
4Þ
�
: (A4)

Obviously, this is the same as simply Taylor expanding vlos

to leading order.
One effect of the COM velocity drift is a Doppler shift to

the waveform. Special relativity predicts that if a frequency
source is moving with velocity v away from the observer at
an angle 	, then the frequency observed is

!0 ¼ !

�
ð1þ v cos	Þ�1;

�!

�
1� v cos	þ v2

�
cos2	� 1

2

�
þOðv4Þ

�
; (A5)

where ! is the frequency of the source, !0 is the fre-

quency the observer detects and � ¼ ð1� v2Þ�1=2 is the
usual special relativity factor. In the notation of Sec. II,
v cos	 ¼ vlos.
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The Doppler shift effect can also be understood in two
additional, complementary ways. The LISA response func-
tion naturally contains a Doppler shift term in the phase,
due to LISA’s motion about the Solar System barycenter.
The Doppler shift discussed above is identical to this, but
now it is the GW source that moves, as opposed to the
detector. Similarly, one could consider first the GW phase
emitted in the EMRI’s center of mass, and then map this to
that observed in the Solar System by shifting the phase’s
time-dependence by dt, corresponding to the light travel
time for a displacement j�~xj along the line of sight between
the center of mass of the EMRI system and the SMBH-
SMBH system. From this perspective, the maximum phase
shift that could accumulate in 1 yr is simply the product of
the EMRI orbital frequency and the light-crossing time of
the projection of 1 yr of SMBH binary evolution along the
line of sight.

We can then easily integrate Eq. (A5), assuming a
constant !, to recover the ��GW computed in Sec II.
Setting � ¼ �=2 ¼ �, we find

��GW ¼ �!
Z

vlosðtÞdt;�� N

2

�
MSec

MTot

�
vNewtð!NewtTÞ:

(A6)

Notice that by choosing � ¼ �=2, there is no leading-
order, unobservable constant velocity drift term. In the
second line, we have Taylor expanded about !Newtt ¼ 0
and used that �GW;Tot ¼ N ¼ !T, where T is the time of

integration, and that �GW;Tot ¼ N, where N is the total

number of radians in the nonaccelerating waveform.
Notice that this is the same ��GW correction described
in Sec. II.
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