
Black Holes

In this lecture and the next one we will discuss the properties of the two types of objects

whose frequencies fall in the range of ground-based detectors: black holes and neutron stars.

Black holes are interesting for many reasons: they are one of only three possible end-

points of stellar evolution (the others being white dwarfs and neutron stars), they are the

powerhouses of the most luminous things in the universe (quasars and active galactic nuclei),

and they are the simplest macroscopic objects in the universe they only have two parameters

that are important for their astrophysical properties. They are also way cool. Their simplic-

ity means that it is possible to study them in a way impossible for any other object: with

mathematical rigor. There was, for example, a flurry of activity in the late 1960s and early

1970s about proving theorems related to black holes, something which is mightily difficult to

do with a star! However, our main interest is in astrophysics, and specifically in explaining

observed phenomena. We will therefore describe and use some of the derived results, but

will not derive them (this would take overwhelmingly too much time).

Let us start by defining “black hole”. A black hole is an object with an event horizon

instead of a material surface. Events inside that horizon cannot be seen by any external

observer. This is the fundamental property of black holes that distinguishes them from all

other objects. It should be noted that although there is compelling evidence for the existence

of black holes in the universe, never has the existence of the horizon itself been demonstrated.

An observation that unambiguously indicates the presence of a horizon would be a major

advance. From time to time there are press releases announcing proofs of event horizons

based on theoretical arguments, but so far these have not been rigorously convincing. There

is, however, hope that within the next few years high-resolution radio observations will resolve

the shadow of the event horizon of the black hole in the center of our Galaxy. In addition,

of course, there are differing points of view about whether gravitational wave detections of

black hole coalescences constitute strong evidence for horizons.

In the rest of this lecture we will (1) discuss some of the aspects of black holes by

themselves, then (2) talk about some of the astrophysics of black holes, including supernovae

(which might be the only way that black holes are produced in the universe), and accretion

disks (which allow electromagnetic radiation to be produced from near black holes). We

then list some current puzzles about black holes that have begun to be addressed using

observations of gravitational radiation. At the end we have some text about other issues

related to black holes that we don’t expect to be able to cover in the time allowed, but that

might be of interest.

Properties of the Schwarzschild Geometry



It could be reasonably said that what an average astrophysicist needs to know about

black holes is encapsulated by a few properties of the Schwarzschild and Kerr spacetimes (or,

equivalently, geometries). By the way, although it is a somewhat pedantic point, I note that

the metric is not the same thing as the geometry; the metric is a particular representation of

the geometry using specific coordinates. To be correct, you would talk about the spacetime

or the geometry when you mean the solution in general, and the metric when you have

particular coordinates in mind.

We’ll start with the Schwarzschild geometry, which is the uniquely correct geometry

outside of a spherically symmetric, nonrotating, uncharged, object. This geometry thus

describes the exterior spacetime around a nonrotating planet or star, not just a black hole.

The coordinates most used by astrophysicists to describe the Schwarzschild geometry

are the Schwarzschild coordinates. Written using these coordinates, the line element is

ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2(dθ2 + sin2 θdφ2) . (1)

Here we use geometrized units in which G = c = 1; written without that simplification, for

example, the dt2 term would be −(1− 2GM/(rc2))c2dt2. Note that you have a choice about

your “metric signature”, i.e., the sign of the dt2 term (which must be the opposite of the

sign of the spatial terms). Here we use the − + ++ signature, but others use the + − −−
convention. Just make sure you’re self-consistent.

ds2 is the square of the invariant interval; any observers will agree that two infinites-

imally separated spacetime events have a squared spacetime distance equal to ds2. If

the two events are along the worldline of a particular observer, then that observer sees

dr = dθ = dφ = 0 and therefore ds2 = −c2dτ 2, where dτ is the time interval seen by the

observer (τ is called the proper time).

In this line element θ and φ are the usual colatitude and azimuthal coordinate that we

normally use to describe a spherically symmetric system. r is the circumferential radius; if

you determined the circumference of a circle at a fixed r and divided by 2π, you would get

r. It is therefore different from the radius you would get by starting at the coordinate origin

and integrating straight out; that quantity (the “proper radius”) would be the integral of

(1− 2M/r)−1/2 times dr, which has the odd consequence that the circumference divided by

the proper radius is less than 2π. The coordinate t is the time at infinity, which means that if

two colocated events have Schwarzschild coordinate times that differ by dt, then an observer

at infinity would see them separated in time by dt. These coordinates therefore have the

nice property that many of the things measurable to us at infinity (say, the angular velocity

of a rotating star) are easily expressible using (t, r, θ, φ).

So what are the special properties of this spacetime?



• The event horizon. When r = 2M something odd obviously happens. Among other

things, contemplation of the line element above ultimately makes it clear that as seen

from infinity, a clock outside of but close to r = 2M runs very slowly, and would

actually stop at r = 2M . This means that you can never see something fall through

the event horizon from anywhere outside. Early on this was misinterpreted by most

people (including Einstein!) as meaning that stars wouldn’t collapse inside r = 2M ,

but in 1958 David Finkelstein showed otherwise: if you fall freely into a black hole you

will cross the event horizon and hit the central singularity in a time that will be all too

finite from your perspective!

Note, though, that the tidal acceleration does not become infinite at the horizon. We

can get a sense for this in the Newtonian limit, where the relative tidal acceleration

across an object of length ℓ a distance R ≫ ℓ from a mass M is ∆a ≈ 2GMℓ/R3.

Letting R = 2M gives ∆a ∼ M−2, which means that the tidal acceleration becomes

lower for larger black hole masses. You would be killed by the tides well outside a black

hole of mass M = 10 M⊙, but if M = 108 M⊙ (typical of the black holes that power

quasars) you wouldn’t even feel the tides at the horizon, although you’d still plummet

to your doom at the singularity. This is relevant to tidal disruption events: solar-type

stars can be disrupted outside the horizon if M <∼ 108 M⊙, but are swallowed whole if

the black hole is more massive.

• The innermost stable circular orbit, or ISCO. In Newtonian gravity, all circular orbits

are stable. This means that if such an orbit were perturbed slightly, the orbit would

just become somewhat elliptical but nothing else would happen. But in general rela-

tivity there is an innermost stable circular orbit. For the Schwarzschild geometry in

Schwarzschild coordinates, r = 6M is that innermost radius. Inside r = 6M , a circular

orbit is unstable; a slight perturbation inward leads to a rapidly-opening inspiral to the

hole. Thus it is common to assume that accretion disks of gas spiraling onto a black

hole are effectively truncated at the ISCO; there is gas inside the ISCO, but no longer

is there a disk which moves with slow inward radial motion. Gas pressure gradients

change somewhat the location of the ISCO (technically in the presence of gas there are

no stable circular orbits; see below), but this is a decent approximation that allows you

to compute approximately the radiative efficiency of a geometrically thin disk. For a

nonrotating star, the ISCO radius is rISCO = 8.85 km (M/M⊙). Neutron stars, which

have thus far measured masses between 1.25 M⊙ and 2.01 M⊙, are likely to be able

to fit inside the ISCO, especially at the higher-mass end. It is therefore possible that

signatures of the ISCO have been seen in some sources; indeed, my colleagues and I

have written several papers about this, but the implications would be important enough

that there is justified caution in the community about our suggestions.

From the standpoint of gravitational waves, the ISCO is a marker for when the co-

alescence of two black holes transitions from a slow inspiral to a more radially rapid



plunge. It is not, however, a clear line in spacetime! Radiation of gravitational waves

means that, strictly speaking, no circular orbit is really stable; such orbits decay. But,

in the order of magnitude sense, it does give us an idea of when the binary is close

to merger. The orbital frequency at the ISCO of a nonrotating black hole of mass

M is 2200 Hz (M⊙/M). The quadrupolar nature of gravitational waves means that

for a circular orbit we see twice the orbital frequency (for an elliptical orbit, all har-

monics of the orbital frequency contribute, peaking more or less at twice the orbital

frequency at the pericenter distance). Thus a rough measure, for nonrotating black

holes, of the gravitational wave frequency at the transition between inspiral and merger

is 4400 Hz (M⊙/M).

• Pericenter precession. Again using Newtonian gravity for comparison, we note that if

we have an elliptical orbit around a point source then the orbit exactly traces over itself

every time. In contrast, in the Schwarzschild spacetime the orbit precesses, in the same

direction as the orbit (thus this is prograde precession). The angle precessed per orbit

is

∆φ =
6πGM

ac2(1− e2)
(2)

for a semimajor axis a ≫ GM/c2 and eccentricity e. This was the first test of general

relativity: Einstein was able to explain the anomalous 43” per century precession of

Mercury, after the influences of the other planets had been taken out. At the ISCO,

the precession is formally infinite; another way of saying this is that the radial epicyclic

frequency (the inverse of the time needed for a radially perturbed orbit to cycle through

radii; this exactly equals the orbital frequency in Newtonian gravity) goes to zero at

the ISCO.

The Kerr-Newman Spacetime

It was discovered in 1963 that an exact spacetime exists for a black hole with just mass

and angular momentum (Kerr geometry), and in 1965 a solution including charge was found

(Kerr-Newman geometry). The most common coordinates used to express this spacetime

are generalizations of Schwarzschild coordinates called Boyer-Lindquist coordinates, and for

the record the metric line element is then

ds2 = −(∆/ρ2)[dt− a sin2 θ dφ]2 +(sin2 θ/ρ2)[(r2 + a2)dφ− a dt]2 +(ρ2/∆)dr2 + ρ2 dθ2 . (3)

There are several definitions here. The parameter a = J/M describes the angular momen-

tum, and it has dimensions of mass. ∆ = r2 − 2Mr + a2 + Q2, where Q is the electric

charge (in cgs units Q2 has the units of erg-cm, which can then be converted to grams in

the usual geometrized units way). Finally, ρ2 = r2 + a2 cos2 θ. As before, θ and φ are the

usual spherical polar coordinates and t is the time at infinity. However, r is no longer quite



the circumferential radius; we can see this by setting dt = dr = dθ = 0 and noting that at

θ = π/2 a full 2π in φ yields a distance of 2π(r2 + a2)/r.

The most important new feature of this geometry, compared to Schwarzschild, is the

dφdt terms. These indicate a relation between time and azimuthal angle, and correspond to

frame dragging: spacetime is “twisted” in the direction of rotation of the black hole.

This geometry has a horizon (and therefore descibes a black hole) only if Q2+a2 ≤ M2.

If equality holds, this is called an extremal black hole. If this condition is violated, centrifugal

acceleration or electrostatic repulsion will halt the collapse. You cannot, however, spin up a

black hole or feed charge to it so that it loses its horizon.

Let’s see if we even need the charge term, astrophysically. Ask class: how should we

determine whether Q can ever be gravitationally significant? Suppose that Q2 = M2, the

maximum possible. Converting M2 into erg-cm units means Q2 = (Mc2)(GM/c2) = GM2.

Suppose we compare the electrical and gravitational forces on a particle of mass m and

charge q at a distance r ≫ M , so that the Newtonian force law is accurate. The electrical

force is qQ/r and the gravitational force is GMm/r, so the ratio is fe/fg = qQ/(GMm) =

qG1/2M/(GMm) = q/(G1/2m). For example, for a proton fe/fg ≈ 1018 and for an electron

fe/fg ≈ 2× 1021. This shows that (as always!) the electromagnetic force is overwhelmingly

stronger than gravity if there is a lot of unbalanced charge. The result is that if Q is anything

remotely significant gravitationally, the black hole will sweep up every stray charge within

parsecs until it is almost electrically neutral. That’s why we can ignore the charge, and

consider just the mass and angular momentum when thinking about the spacetime. With

angular momentum but no charge this is called the Kerr spacetime. It is also common to

use the dimensionless quantity j = a/M instead of a.

Properties of the Kerr Spacetime

Unlike the Schwarzschild spacetime, which is the correct exterior spacetime for any un-

charged spherically symmetric matter, the Kerr spacetime is only the exact exterior space-

time for black holes. Thus, for example, rotating neutron stars have an exterior spacetime

that must be computed numerically.

As mentioned above, the major new component to this spacetime compared to Schwarzschild

is frame-dragging, which becomes more important as one gets closer to the hole. One of many

bizarre consequences is that if you were to drop a particle from infinity radially at the hole,

then as it got closer it would acquire a nonzero angular velocity even thought it would still

have zero angular momentum! The angular velocity of a zero angular momentum particle,

which can be considered to be the angular velocity of spacetime, is

ω =
2Mar

(r2 + a2)2 − a2∆sin2 θ
. (4)



For most applications of interest, the r4 term dwarfs the others and thus ω ≈ 2Ma/r3 =

2jM2/r3.

Frame-dragging has many implications. One is that, near enough to the hole, a particle

must orbit in the same direction as the hole. This is even true outside the horizon, so there

is a region, called the ergosphere, in which no static observers can exist; nonetheless, they

could escape from that region, so it isn’t like the horizon. The radius of the ergosphere is

rergo = M + (M2 − a2 cos2 θ)1/2. In addition, the black hole itself shrinks; the radius of the

horizon is r = M +
√
M2 − a2, so for an extremally rotating black hole (a = M), r = M .

The radius of the innermost stable circular orbit shrinks for prograde orbits (to a minimum

of rISCO = M for a = M) and increases for retrograde orbits (to a maximum of rISCO = 9M

for a = M). That means that if gas spirals in to the hole on prograde orbits, the energy

emitted and hence the accretion efficiency increases with increasing spin (from 5.7% for a = 0

to 42% for a = M , or 40% if you discount energy that goes down the hole; note, though,

that as Kip Thorne pointed out, when a black hole rotates close to its maximum, photons

with negative angular momentum that are captured by the hole slows down the rotation, to

an “astrophysical maximum” of a = 0.998 M at most). Yet another consequence is that a

particle in a circular orbit that is tilted with respect to the spin plane will precess in its orbit,

at the rate ω. This means that a nonaxisymmetric warp in an accretion disk has a tough

time surviving unless it is confined to a small radial range, because the strong dependence

of ω on r means that there would be a lot of shear otherwise. Also, a gyroscope with an

axis tilted from the spin axis will precess at ω. This is an effect which some people think

has already been seen from some neutron star and black hole sources (although I’m highly

skeptical). Finally, Kepler’s Third Law (angular velocity of a particle in a circular orbit at

r, as seen at infinity) takes the simple form

Ω = ±
M1/2

r3/2 ± aM1/2
(5)

where + is for prograde and − is for retrograde orbits.

I recommend that you read Bardeen, Press, and Teukolsky 1972 for more details about

the Kerr spacetime.

The Formation of Black Holes: Core Collapse of Massive Stars

Various other black hole origins are sometimes suggested, including collapses at special

times in the early universe, but there is only one way that we are confident that they can be

formed. This way involves the collapse of the core of a massive star, and it is also the way

that neutron stars are formed, so it deserves our attention.

The ultra-brief summary is:



1. Stars such as the Sun are on the “main sequence” of stellar lifetimes in which the

energy that helps support them against gravity is supplied by the fusion of hydrogen

into helium.

2. When enough of the core hydrogen has been used up, the star swells into a giant (with

∼ 100× its main-sequence radius). If the star is massive enough, it then settles into a

phase in which it fuses helium to carbon. However, because the difference in nuclear

binding energy per nucleon between carbon and helium is much less than it is between

helium and hydrogen, this phase lasts a much shorter time than the main sequence.

3. For sufficiently massive stars (ones that start their lives with >∼ 8 M⊙), this sequence

continues with shorter and shorter lifetimes in each phase: carbon to oxygen to neon

to magnesium to silicon and finally to 56Fe. At that stage, no further energy can be

derived from fusion; 56Fe isn’t quite at the peak of the binding energy curve for zero-

pressure matter (that honor belongs to 62Ni), but so little energy remains available that

it is primarily quantum degeneracy pressure, rather than thermal pressure, that has to

hold up the core.

4. But degeneracy pressure can’t hold the core up forever. As Chandrasekhar showed,

and as we will discuss in the next lecture, for cold matter with roughly two baryons

(i.e., neutrons or protons) per electron, electron degeneracy pressure can only hold the

star up to around a baryonic rest mass of 1.35− 1.4 M⊙ (plus up to a few tenths of a

solar mass from thermal support). After that, it collapses.

5. The fate of the star then depends on how much mass falls back. If the mass is less

than the limit for neutron stars, you get a neutron star. If the mass is greater than

that limit, you get a black hole. This limit is still being debated, and it depends on

the detailed and unknown properties of matter beyond nuclear density.

Accretion Disks

Black holes by themselves are nearly invisible loners. Their small size (a 5 M⊙ nonrotat-

ing black hole would fit inside São Paulo!) means that they are extremely difficult to detect,

and if they don’t accrete matter they don’t radiate. Thus evidence for black holes comes

from their effect on other things. One such effect is they way that supermassive black holes

at the centers of galaxies dictate the motion of the nearby stars. Another effect is the way

that gas spirals onto black holes and releases energy. By the way, it is worth pointing out

that although we expect that there are about 108 black holes in our Galaxy, only in ∼ 30

cases do we have clear evidence of specific black holes, and only in < 100 cases do we even

have suspicion of stellar-mass black holes. The circumstances that make a black hole visible

are rare!

There are too many details to go into depth, but suffice it to say that because most



matter in the universe has angular momentum, and black holes are small, the matter that

gets to black holes usually does so in a disklike arrangement (there are some exceptions that

we won’t address). The ultimate energy release is gravitational, but there is an interesting

surprise that is worth examining. To derive this, we’ll use an approach that is developed

in some of Roger Blandford’s notes, which focuses on three conserved quantities: rest mass,

angular momentum, and energy.

First, we assume the equation of continuity: the mass accretion rate is constant as a

function of radius, so

Ṁ = 2πrΣvr = const (6)

where Σ is the surface density and vr is the inward radial velocity.

Second, we treat angular momentum conservation. Assume for simplicity that the radial

velocity is small and that the Newtonian form for angular momentum holds. Assume also

that there is an inner radius rI to the disk, and that no more angular momentum is lost

inside that (for example, this might be thought to be a reasonable approximation at the

ISCO). Then angular momentum conservation implies that the torque exerted by the disk

inside radius r on the disk outside that radius is

N = Ṁ
[

(Mr)1/2 − (MrI)
1/2

]

. (7)

Third, energy conservation. The release of gravitational binding energy per unit time is

Ėg = −Ṁd(m/2r). In addition there is a term due to the transport of angular momentum.

At a radius r where the angular velocity is Ω = (M/r3)1/2, the rate of work done on the

inner surface of an annulus is −NΩ, and the net energy per time deposited in a ring is

Ėv = −d(NΩ). The sum of the two is the luminosity released in the ring, dL = Ėg + Ėv.

Evaluating this and replacing the Newtonian constant G we have

dL

dr
=

3GṀM

2r2

[

1−
(rI
r

)1/2
]

. (8)

Whoa! Hold on here! This is different than what we might have expected. Far away

from the inner edge rI , this means that the local energy dissipation rate is three times the

local release of gravitational energy. Where is the extra energy coming from? If we integrate

L(r) over the whole disk, we find that it gives GṀm/2rI , as expected if the matter ends up

in a circular orbit at radius rI . However, close to rI the energy dissipation rate is less than

the local gravitational release. Therefore, what is happening is that matter near the inner

part of the disk has much of its energy going into transport of angular momentum rather

than release of energy, and the extra energy is released further out. This factor of three was

missed at first, but was pointed out by Kip Thorne.

Note, by the way, that this expression does not specify the angular momentum transport



mechanism. It is thought that this mechanism is magnetic in nature, and indeed there are

many people around the world who are doing detailed simulations of this process.

Puzzles Related to Black Holes

Black holes remain largely mysterious despite decades of study. I expect that gravita-

tional wave observations will yield tremendous insight about these objects. Some of the ways

in which ground-based detections could help are:

• Is general relativity correct in strong gravity? This basic question is not yet answered.

General relativity works very well in the weak-gravity environments we’ve been able

to explore, and it has mathematical beauty that some consider to be another type of

confirming evidence, but direct strong-gravity tests don’t really exist. Imaging of the

event horizon of our Galactic center’s black hole might be possible in a few years, and

there are other electromagnetic tests out there (e.g., the evidence I mentioned of the

ISCO), but these involve extra assumptions about the behavior of the gas. In principle,

agreement of observed gravitational waveforms with what we see will be the best test. I

think a big challenge currently is that, understandably, people have not put in the huge

amount of effort that would be needed to determine what gravitational waveforms would

be expected in alternate theories of gravity. Thus although, for example, less than 4%

of the signal from GW150914 remains after the best general relativistic waveform is

subtracted, it’s not obvious how impressive that is.

• What is the mass distribution of black holes? We are sure that stellar-mass black holes

(∼ 5 − 15 M⊙) exist, and that supermassive black holes (∼ 106 − 1010 M⊙) exist.

GW150914 told us that ≈ 30− 35 M⊙ black holes exist, and the merger produced one

at ≈ 63 M⊙. What about the range in the middle? Do intermediate-mass black holes

exist? My opinion is that there is strong circumstantial evidence that they do, but the

evidence is not as direct as it is for the other mass ranges. LIGO and its friends could

detect gravitational waves from black holes up to a few hundred solar masses, so they

might be able to provide the first definitive evidence of this type of black hole.

• What is the spin distribution of black holes? It has been understood for probably three

decades that stellar-mass black holes are probably born with close to the mass and spin

magnitudes that they have now (the mass accreted from a stellar companion is likely

to be too little to do much). Spin measurements from accretion disk spectra have been

reported for several stellar-mass black holes, but these are usually continuum spectra,

which unfortunately means that there are no definite features to fit. Thus we have

to understand the possibility that the spin measurements could be systematically off.

Gravitational wave measurements will provide independent ways to estimate the spins,

which will give us new insight into the formation processes of black holes.



Black Hole Thermodynamics

There is a remarkable black hole analogy with thermodynamics. If one computes the

area of the horizon, it is

A = 8πM
[

M + (M2 − a2)1/2
]

. (9)

For Schwarzschild, a = 0, the area is A = 16πM2 as expected. Hawking proved that in any

interaction of a black hole or between black holes, the sum of the areas can never decrease.

This leads one to a possible computation of the maximum amount of energy that can be

radiated in a collision between black holes. For example, if two Schwarzschild black holes

of mass M hit head-on, then you know that 16πM2
tot ≥ 32πM2, so Mtot > M

√
2 and no

more than 29% of the total mass-energy can be radiated away. The best case would be two

extremal Kerr black holes of the same mass and opposite angular momentum, for which the

theoretical maximum is 50%. However, the actual amount radiated is much less than this,

and must be computed numerically. For head-on Schwarzschild the efficiency is more like

0.1%.

The area theorem is awfully reminiscent of the second law of thermodynamics. But

this would require that black holes have finite temperature, so that they radiate. When

Bekenstein suggested the thermodynamic analogy, most people (including Hawking) were

dubious, but then Hawking showed that black holes should radiate! This is expected to

happen because virtual pairs of particles and antiparticles can be made real by the tidal

acceleration near the event horizon, and on occasion one escapes while the other is sucked

in; the effect is that the black hole “radiates” even though nothing escapes from inside the

event horizon. This is an astrophysically unimportant effect because the effective tempera-

ture is T ≈ 10−7 K(M/M⊙), so a 10 solar mass black hole would last about 1070 years. We’ll

never see a black hole radiate unless tiny ones (mass of a mountain) were formed in the early

universe. Nonetheless, Hawking radiation does have importance in other ways. For example,

several years ago great excitement was produced when it was shown that the rate and spec-

trum of Hawking radiation from special black holes (Schwarzschild and extremally rotating)

could be reproduced in M-theory, which is a candidate for the theory of everything. Hawk-

ing radiation also brings up interesting semi-philosophical questions; for example, particles

and antiparticles have an equal likelihood of being emitted, whereas the star that formed

the black hole and almost anything that fell in it were formed of particles. Thus, lepton

and baryon number conservation seem to be violated by Hawking radiation. However, for

context, particles of nonzero rest mass can only be emitted in significant numbers when the

temperature is within a factor of a few of mc2/k, where m is the rest mass of the particle

(below those temperatures it is essentally photons). Maybe neutrinos could be emitted at

moderately low temperatures, but baryons only come out when M <∼ 10−19 M⊙.



Inevitability of Collapse

One astrophysically relevant result to be stated is that once a star has compacted within

a certain radius, formation of a black hole is inevitable. A basic reason for this is that in

general relativity, all forms of energy gravitate. This includes pressure in particular. In a

normal star, the pressure makes a tiny contribution to the total mass-energy, but in a very

compact star the pressure is substantial. Normally, hydrostatic balance is produced by the

offset of gravity by a pressure gradient, but in this case squeezing the star only increases

the gravity (by increasing the pressure), so in it goes. The minimum stable radius for a

spherically symmetric, nonrotating star is not the Schwarzschild radius Rs = 2M as you

might expect, but is rather 9
8
Rs.

No Hair Theorem

How relevant are the Schwarzschild and Kerr spacetimes? Ask class: thinking about

Newtonian gravity, what are some factors other than the total mass that could influence the

gravitational field outside a normal star? Quadrupole terms, fluid motions, asymmetries, et

cetera. What happens when collapse into a black hole occurs? An amazing set of theorems

proved in the early 1970’s shows that the final result is a black hole that has only three

qualities to it at all. These are mass, angular momentum, and electric charge. Everything else

(quadrupole terms, magnetic moments, weak forces, etc.) decays away. This is a remarkable

result that simplifies treatment of black holes greatly. One heuristic way to think about this

relates to what you would see if you dropped a lightbulb into the black hole. As the lightbulb

falls, light from it diminishes more and more in apparent intensity. Ask class: suppose we

have a lightbulb with rest-frame specific intensity Iν0 (the specific intensity is the energy per

area per frequency per solid angle per time in a bundle of photons). How do we compute

the specific intensity seen at infinity when the bulb is at radius r, if the bulb falls radially

from rest at infinity? The key here is to note that Iν ∝ ν3 (derivations exist in many places);

tracking the frequency thus allows us to compute the specific intensity. As seen by a distant

observer, as the light bulb falls into the hole, its frequency decreases because of the Doppler

redshift (it’s moving away from us) and because of the gravitational redshift.

Very soon, the intensity drops to undetectable levels; in fact, the luminosity seen by a

distant observer goes like

L ∝ exp

(

−
t

3
√
3M

)

. (10)

For a solar mass black hole the time constant is a few tens of microseconds. Therefore, in the

blink of an eye the black hole really does appear black. In a somewhat analogous fashion,

other properties of the infalling matter, such as magnetic field and lumpiness of the matter

distribution, decay away on a similar timescale. Only mass, angular momentum, and electric

charge are left.



Additional references: For more mathematical details, see “The Mathematical Theory of

Black Holes” by Chandrasekhar, or “Black Holes” by Novikov and Frolov.


