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Overview of Neutron Stars

Neutron stars are extreme physics engines, and as such study of them can give us insight

into many frontiers of physics. In the four lectures on neutron stars, we will give an overview

of their properties (this lecture), X-ray binaries and magnetic accretion (next lecture), and

gravitational waves as applied to neutron stars (tomorrow’s two lectures). Here we will start

with an overall description of neutron stars, then discuss their high densities and strong

magnetic fields.

Summary of Neutron Stars

A typical neutron star has a mass of ∼ 1.2 − 2.2M� and a radius of ∼ 10 − 13 km.

It can have a spin frequency up to ∼1 kHz and a magnetic field up to perhaps 1015 G

or more. Its surface gravity is around 2 − 3 × 1014 cm s−2, so mountains of even perfect

crystals can’t be higher than < 1 mm, meaning that these are the smoothest surfaces in

the universe. They have many types of behavior, including pulsing (in radio, IR, opt, UV,

X-ray, and gamma-rays, but this is rarely all seen from a single object), glitching, accreting,

and possibly gravitational wave emission. They are the best clocks in the universe; the

most stable are more than a thousand times more stable in the short term than the best

atomic clocks. Their cores are at several times nuclear density, and may be composed of

exotic matter such as quark-gluon plasmas, strange matter, kaon condensates, or other weird

stuff. In their interior they are superconducting and superfluid, with transition temperatures

around a hundred million degrees Kelvin. All these extremes mean that neutron stars are

attractive to study for people who want to push the envelope of fundamental theories about

gravity, magnetic fields, and high-density matter.

High densities

Let’s start, then, with high densities. An essential new concept that is introduced in high

densities is Fermi energy. The easiest way to think about this is in terms of the uncertainty

principle,

∆p∆x > ~ . (1)

For you sticklers for accuracy: yes, the actual uncertainty principle is ∆p∆x ≥ ~/2, but here

we’re not worried about exact factors. If something is localized to a region of size ∆x, then its

momentum must be at least ~/∆x (I’m assuming you have taken basic quantum mechanics;

think about a particle in an infinite square well of width ∆x). That means that in a dense

environment, there is a momentum, and hence an energy, associated with the confinement.

Therefore, squeezing something increases its total energy, and this Fermi energy acts as a

pressure (sometimes called degeneracy pressure). The existence of this energy has a profound
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role in the structure of white dwarfs and neutron stars. For example, unlike main sequence

stars, which are larger if they are more massive, white dwarfs are smaller at higher masses.

We will begin with some basic numbers. If the energy and momentum are nonrelativistic,

then the Fermi energy EF is related to the Fermi momentum pF ∼ ~/∆x by EF ≈ p2F/2m,

where m is the rest mass of the particle. Since ∆x ∼ n−1/3, where n is the number density

of the particle, in this regime EF ∼ n2/3. At a high enough density, however, EF > mc2,

which means that the Fermi energy is relativistic. In the ultrarelativistic limit EF ∼ pF c,

so EF ∼ n1/3. For electrons, the crossover to relativistic Fermi energy happens at a density

ρ ∼ 106 g cm−3, assuming a fully ionized plasma with two nucleons per electron. For protons

and neutrons the crossover is at about 6×1015 g cm−3 (it scales as the particle’s mass cubed).

The maximum density in neutron stars is no more than ∼ 1015 g cm−3, so for most of the

volume of neutron stars electrons are highly relativistic but neutrons and protons are at best

mildly relativistic.

Let’s now think about what that means. Suppose we have matter in which electrons,

protons, and neutrons all have the same number density. For a low density, which of the

three has the highest Fermi energy? The electrons, since at low densities the Fermi energy

goes like the inverse of the particle mass. Given what we said before, what is the approximate

value of the electron Fermi energy when ρ = 106 g cm−3? That’s the relativistic transition,

so EF ≈ mec
2 ≈ 0.5 MeV. Then at 107 g cm−3 the Fermi energy is about 1 MeV, and each

factor of 10 doubles the Fermi energy because EF ∼ n1/3 in the relativistic regime. What

that means is that the energetic “cost” of adding another electron to the system is not just

mec
2, as it would be normally, but is mec

2 +EF . It therefore becomes less and less favorable

to have electrons around as the density increases.

Now, in free space neutrons are unstable. This is because the sum of the masses of an

electron and a proton is about 1.5 MeV less than the mass of a neutron, so it is energetically

favorable for a free neutron to decay. What happens, though, at high density? If mp +

me +EF > mn, then it is energetically favorable to combine a proton and an electron into a

neutron. Therefore, at higher densities matter becomes more and more neutron-rich. First,

many of the protons in atomic nuclei combine with electrons to make neutrons, so you get

nuclei such as 120Rb, with 40 protons and 80 neutrons. Then, at about 4 × 1011 g cm−3 it

becomes favorable to have free neutrons floating around, along with some nuclei and a sea

of electrons (this is called “neutron drip” because the effect is that neutrons drip out of the

nuclei). At even higher densities, the matter is essentially a smooth distribution of neutrons

plus a ∼ 5 − 10% smattering of protons and electrons. At higher densities yet (here we’re

talking about nearly 1015 g cm−3), the neutron Fermi energy could become high enough that

it is favorable to have other particles appear.

It is currently unknown whether such particles will appear, and this is a focus of much
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present-day research. If they do, it means that the energetic “cost” of going to higher density

is less than it would be otherwise, because energy is released by the appearance of other,

exotic particles instead of more neutrons. In turn, this means that it is easier to compress

the star: squashing it a bit doesn’t raise the pressure and energy as much as you would have

thought. Another way of saying this is that when a density-induced phase transition occurs

(here, a transition to other types of particles), the equation of state is “soft”.

Well, that means that it can’t support as much mass. That’s because as more mass is

added, the star compresses more and more, so gravity becomes more important. If pressure

doesn’t increase to compensate, the star collapses and forms a black hole (or, according

to some ideas, it might undergo a phase transition to a different type of compact object).

What all this means is that by measuring the mass and radius of a neutron star, or by

establishing the maximum mass of a neutron star, one gets valuable information about the

pressure-density relation (which is called the equation of state in this context), and hence

about nuclear physics at very high density. This is just one of many ways in which study of

neutron stars has direct implications for microphysics.

Comment: the extra “squishiness” of matter when it is near a density-induced phase tran-

sition may also have importance in the early universe. It’s been pointed out that when the

universe goes from being a quark-gluon plasma to being made of nucleons (at about 10−5 s

after the Big Bang), this is a density-induced phase transition, so it may be comparatively

easy to form black holes then. Perhaps this led to the formation of so many black holes that

they form dark matter; incidentally, because this event happened before big bang nucleosyn-

thesis, no baryon number constraints are violated. This is not the leading model for dark

matter, but it is thought-provoking and has received extra attention since the discovery of

many black hole binaries with ground-based gravitational wave detectors such as LIGO and

Virgo.

Huge Magnetic Fields

In addition to ultrahigh densities, another unique aspect of neutron stars is their mag-

netic fields. The most magnetic neutron stars have fields that are >∼ 107 times stronger than

any other fields in the known universe. The fields can therefore have extremely important ef-

fects on matter in ways not approached anywhere else. The range of magnetic field strengths

in neutron stars is enormous: from the B ∼ 108−9 G of millisecond pulsars (already stronger

than almost anything else in the universe!) to the B ∼ 1012 G that is typical of young

pulsars to the B ∼ 1015 G of many magnetars.

It is always useful, in astrophysics, to get a sense for the importance of an effect by

comparing it with something else. In the case of magnetic fields we can begin by computing

a characteristic energy: the cyclotron energy. The cyclotron energy is the energy of a photon
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at the cyclotron frequency

ωc =
qB

mc
, (2)

where q is the electric charge of a particle spiraling around the field, B is the strength of the

field, m is the mass of the particle, and c is the speed of light. This equation is in cgs units.

When we use q = e (the magnitude of the charge of an electron) and m = me (the

mass of an electron), and multiply by ~ to get an energy, we find that the electron cyclotron

energy is

~ωc =
~eB
mec

= 11.6 keV
(
B/1012 G

)
. (3)

This is a large energy! We can compare it with two other characteristic energies: the ground-

state binding energy of hydrogen, 13.6 eV, and the rest-mass energy of an electron, 511 keV.

These comparisons tell us that above ∼ 109 G magnetic fields have a nonperturbative effect

on atomic binding energies, and at fields comparable to or larger than 4.4 × 1013 G (where

~ωc = mec
2) other effects can come in. Indeed, at such large magnetic fields (and a bit

lower) there are multiple new quantum electrodynamic processes, including single-photon

pair production (γB → e−e+B), photon splitting (γB → γγB), and even weirder effects

such as the “vacuum resonance” in a plasma.

Yet another effect comes in when we simply compare photon energies to the electron

cyclotron energy. When we think about the scattering of a photon off of an electron, we can

think of it classically as having a wave oscillate an electron which, being thus accelerated,

radiates. But if the magnetic field is strong enough, then it is tougher to oscillate the electron

across the field than along the field. This extra resistance means that it is more difficult

to accelerate the electron across than along the field, and thus there is less radiation in

that polarization. This, in turn, tells us that the cross section for scattering is suppressed

when the field is strong enough and the polarization of the photon is perpendicular to the

field direction. The suppression factor is ∼ (ω/ωc)
2 for a photon with frequency ω < ωc,

and that polarization is called “extraordinary” in contrast with the “ordinary” polarization

that is aligned with the magnetic field (and for which the cross section is not suppressed

because the electron can move freely along the direction of the field). Because ordinary and

extraordinary photons can convert into each other, energy leaks out primarily in the low

cross section mode, and thus there is hope for seeing polarized X-rays from some neutron

stars.

Superconductivity and Superfluidity

Nature is lazy! This is why there is progressive neutronization of matter at higher and

higher densities: it’s a lower energy state than it would have with more protons and electrons.

In that same general spirit, we also can have superconductivity and superfluidity in neutron

stars.
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The general idea is that if there is an attractive pairing interaction between fermions,

they can couple to form a state with integral spin, and therefore can act like bosons. At a

low enough temperature, these “bosons” can form a condensate-like state in which all of the

bosons occupy the same quantum state and form a superfluid. If the component fermions

are charged, this forms a superconductor. In normal laboratory experience, the pairing

is electronic and happens only at very low temperatures (other than the ceramic high Tc
superconductors, which do their thing at liquid nitrogen temperatures or a bit above, almost

all laboratory superfluid or superconducting phenomena are observed at temperatures less

than 20 K). However, in the dense core of neutron stars, nucleonic pairing can happen.

As with all highly degenerate systems, pairing occurs between states near the Fermi

surface (recall that in the cores of NS, both protons and neutrons are degenerate, just

not relativistically so). Since there are many more neutrons than protons, neutrons and

protons can’t pair up easily because their momenta are substantially different. We can

therefore consider only n − n and p − p pairings. The first gives a superfluid, the second a

superconductor. The transition temperatures are extremely difficult to compute from first

principles, but the guess is that they are in the range of a hundred million to a billion K.

What are the effects of superconductivity and superfluidity? The evidence is pretty

indirect, but superfluidity has been invoked to explain glitches (sudden but small changes in

the spin frequency of pulsars) and the evolution of the temperature and magnetic fields of

neutron stars. It is also possible that superfluidity in magnetars has a significant impact on

quasi-periodic oscillations seen in especially large bursts.


