
Overview of Gravitational Radiation

As we contemplate the triumphant direct detection of gravitational radiation, it is useful

to consider what such detections will teach us about the universe. The first detection,

GW150914, was of course of immediate significance because it was a direct confirmation of a

dramatic prediction of general relativity: to paraphrase John Wheeler, that spacetime tells

sources how to move, and moving sources tell spacetime how to ripple. The first double

neutron star detection, GW170817, had even more to tell us, about gamma-ray bursts and

the origin of heavy elements.

Beyond the initial detections, gravitational wave science will pass into the realm of

astronomy, and will give us new observational windows onto some of the most dynamic

phenomena in the universe. These include merging neutron stars and black holes, supernova

explosions, and possibly echoes from the very early history of the universe as a whole. They

have also already provided the cleanest tests of predictions of general relativity in the realm

of strong gravity, with much more to come.

However, there are important differences from standard astronomy. In electromagnetic

observations, in every waveband there are sources so strong that they can be detected even if

you know nothing about the source. You don’t need to understand nuclear fusion in order to

see the Sun! In contrast, most of the expected sources of gravitational radiation are so weak

that we expect that usually sophisticated statistical techniques will be required to detect

them at all (with occasional happy exceptions such as GW150914 and GW170817, which

were so strong that they could be seen by eye after moderate bandpass and notch filtering of

the data). A standard technique involves matching templates of expected waveforms against

the observed data stream. Maximum sensitivity therefore requires a certain understanding

of what the sources look like, and thus of the characteristics of those sources. In addition, it

will be important to put each detection into an astrophysical context so that the implications

of the discoveries are evident.

As an aside, it is useful to remember that historically the most interesting sources

discovered with a new telescope or satellite have often been unexpected. This is also possible

with gravitational radiation. However, you can’t sell a large project by appealing entirely to

the unknown, so we should at least describe what we can imagine at this point!

Before discussing types of sources, though, we need to have some general perspective on

how gravitational radiation is generated and how strong it is. We will begin by discussing

radiation in a general context.

By definition, a radiation field must be able to carry energy to infinity. If the amplitude

of the field a distance r from the source in the direction (θ, φ) is A(r, θ, φ), the flux through a

spherical surface at r is F (r, θ, φ) ∝ A2(r, θ, φ). If for simplicity we assume that the radiation



is spherically symmetric, A(r, θ, φ) = A(r), this means that the luminosity at a distance r

is L(r) ∝ A2(r)4πr2. Note, though, that when one expands the static field of a source

in moments, the slowest-decreasing moment (the monopole) decreases like A(r) ∝ 1/r2,

which implies that L(r) ∝ 1/r2 and hence no energy is carried to infinity. This tells us

two things, regardless of the nature of the radiation (e.g., electromagnetic or gravitational).

First, radiation requires time variation of the source. Second, the amplitude must scale as

1/r far from the source.

We can now explore what types of variation will produce radiation. We’ll start with

electromagnetic radiation, and expand in moments. Suppose that we are far from some

distribution of electric charges, which could be in motion. For a charge density ρe(r), the

monopole moment is
∫
ρe(r)d

3r. We assume that the volume over which we perform the

integral encompasses the entire system; no charges can enter or leave. As a result, the

monopole moment is simply the total charge Q, which cannot vary, so there is no electro-

magnetic monopolar radiation. The next static moment is the dipole moment,
∫
ρe(r)rd

3r.

There is no applicable conservation law, so electric dipole radiation is possible. One can also

look at the variation of currents. The lowest order such variation (the “magnetic dipole”) is∫
ρe(r)r× v(r)d3r. Once again this can vary, so magnetic dipole radiation is possible. The

lower order moments will typically dominate the field unless their variation is reduced or

eliminated by some special symmetry.

Now consider gravitational radiation. Let the mass-energy density be ρ(r). The monopole

moment is
∫
ρ(r)d3r, which is simply the total mass-energy. This is constant, so there can-

not be monopolar gravitational radiation. The static dipole moment is
∫
ρ(r)rd3r. This,

however, is just the center of mass-energy of the system. In the center of mass frame, there-

fore, this moment does not change, so there cannot be the equivalent of electric dipolar

radiation in this frame (or any other, since the existence of radiation is frame-independent).

The counterpart to the magnetic dipolar moment is
∫
ρ(r)r × v(r)d3r. This, however, is

simply the total angular momentum of the system, so its conservation means that there is

no magnetic dipolar gravitational radiation either. The next static moment is quadrupolar:

Iij =
∫
ρ(r)rirjd

3r. This does not have to be conserved, and thus there can be quadrupolar

gravitational radiation.

This allows us to draw general conclusions about the type of motion that can generate

gravitational radiation. A spherically symmetric variation is only monopolar, so it does not

produce radiation. No matter how violent an explosion (even a supernova!) or a collapse

(even into a black hole!), no gravitational radiation is emitted if spherical symmetry is main-

tained. This is consistent with our understanding of Newtonian gravity: the gravitational

field outside a spherically symmetric collection of matter is just what it would be if all that

matter were concentrated in a point at the center, so we don’t expect the gravitational field

to change by spherically symmetric motion (the equivalent statement in general relativity



is called Birkhoff’s Theorem). This means that we do need to make one adjustment to our

quadrupolar argument above. Note that a spherically symmetric expansion or contraction

will change Iij. Thus we need to change the expression: it turns out that when we add a

component to Iij that makes the sum traceless, then the combination is what needs to vary

to produce gravitational radiation.

In addition, a rotation that preserves axisymmetry (without contraction or expansion)

does not generate gravitational radiation because the quadrupolar and higher moments are

unaltered. Therefore, for example, a neutron star can rotate arbitrarily rapidly without

emitting gravitational radiation as long as it maintains stationarity and axisymmetry and

rotates around the axis of symmetry.

This immediately allows us to focus on the most promising types of sources for gravita-

tional wave emission. The general categories are: binaries, continuous wave sources (e.g., ro-

tating stars with nonaxisymmetric lumps), bursts (e.g., asymmetric collapses), and stochas-

tic sources (i.e., individually unresolved sources with random phases; the most interesting of

these would be a background of gravitational waves from the early universe).

We can now make some order of magnitude estimates. What is the approximate ex-

pression for the dimensionless amplitude h of a metric perturbation, a distance r from a

source? Note, by the way, that because gravitational waves are perturbations in spacetime,

h is related to the fractional deviation of the spacetime from the Minkowski (flat) spacetime.

Thus h is of the order of the fractional change in length induced by a passing gravitational

wave, if the length in question is of order the gravitational wavelength.

We argued that the lowest order radiation has to be quadrupolar, and hence depends on

the quadrupole moment I. This moment is Iij =
∫
ρrirjd

3x (plus the trace-free modification

we mentioned), so it has dimensions MR2, where M is some mass and R is a characteristic

dimension. We also argued that the amplitude is proportional to 1/r, so we have

h ∼MR2/r . (1)

We know that h is dimensionless, so how do we determine what else goes in here? In GR we

usually set G = c = 1, which means that mass, distance, and time all have the same effective

“units”, but we can’t, for example, turn a distance squared into a distance. Our current

expression has effective units of distance squared (or mass squared, or time squared). We

note that time derivatives have to be involved, since a static system can’t emit anything.

Two time derivatives will cancel out the current units, so we now have

h ∼ 1

r

∂2(MR2)

∂t2
. (2)

Now what? To get back to physical units we have to restore factors of G and c. It is useful

to remember certain conversions: for example, if M is a mass, GM/c2 has units of distance,



and GM/c3 has units of time. Playing with this for a while gives finally

h ∼ G

c4
1

r

∂2(MR2)

∂t2
. (3)

Since G is small and c is large, the prefactor is tiny! That tells us that unless MR2 is large,

the system is changing fast, and r is small, the metric perturbation is minuscule.

Let’s make a very rough estimate for a circular binary. Suppose the total mass is

M = m1 +m2, the reduced mass is µ = m1m2/M , and the semimajor axis is a, so the orbital

frequency Ω is given by Ω2a3 = GM . Without worrying about precise factors, we say that

∂2/∂t2 ∼ Ω2 and MR2 ∼ µa2, so

h ∼ (G2/c4)(µ/r)(M/a) . (4)

This can also be written in terms of orbital periods, and with the correct factors put in we

get, for example, for an equal mass system

h ≈ 10−22

(
M

2.8M�

)5/3(
0.01 sec

P

)2/3(
100 Mpc

r

)
, (5)

which is scaled to a double neutron star system. This is really, really, small: it corresponds

to less than the radius of an atomic nucleus over a baseline the size of the Earth. That’s

why it is so challenging to detect these systems!

Remarkably, though, the flux of energy is not tiny. To see this, let’s calculate the flux

given some dimensionless amplitude h. The flux has to be proportional to the square of the

amplitude and also the square of the frequency f : F ∼ h2f 2. This currently has units of

frequency squared, but the physical units of flux are energy per time per area. Replacing

factors of G and c, we find that the flux is

F ∼ (c3/G)h2f 2 . (6)

Now the prefactor is enormous! For the double neutron star system above, with h ∼ 10−22

and f ∼ 100 Hz, this gives a flux of a few hundredths of an erg cm−2 s−1. For comparison,

the flux from Sirius, the brightest star in the night sky, is about 10−4 erg cm−2 s−1! That

means that if you could somehow absorb gravitational radiation perfectly with your eyes,

you would see hundreds to thousands of events per year brighter than every star except the

Sun. To put it another way, the energy per time emitted by the GW150914 event, during

the last part of its coalescence, was tens of times greater than the energy per time emitted

by every star in the visible universe combined during that same time (!!!). What this really

implies, of course, is that gravitational radiation interacts very weakly with matter, which

again means that it is mighty challenging to detect.

Let us conclude with an idea of the frequency range available for a given type of binary.

There is obviously no practical lower frequency limit (just increase the semimajor axis as



much as you want), but there is a strict upper limit. The two objects in the binary clearly

won’t produce a signal higher than the frequency at which they touch. If we consider an

object of mass M and radius R, the orbital frequency at its surface is ∼
√
GM/R3. Noting

that M/R3 ∼ ρ, we can say that the maximum frequency involving an object of density ρ

is fmax ∼ (Gρ)1/2. This is actually more general than just orbital frequencies. For example,

a gravitationally bound object can’t rotate faster than that, because it would fly apart. In

addition, you can convince yourself that the frequency of a sound wave that involves most of

the object can’t be greater than ∼ (Gρ)1/2. Therefore, ∼ (Gρ)1/2 is a general upper bound

on dynamical frequencies.

This tells us, therefore, that binaries involving main sequence stars can’t have frequencies

greater than ∼ 10−6−10−3 Hz, depending on mass, that binaries involving white dwarfs can’t

have frequencies greater than ∼ 0.1− 1 Hz, also depending on mass, that for neutron stars

the upper limit is ∼ 1000− 2000 Hz, and that for black holes the limit depends inversely on

mass (and also depends on the spin and orientation of the binary). In particular, for black

holes the maximum imaginable frequency is few× 104(M�/M) Hz at the event horizon, but

in reality the orbit becomes unstable at lower frequencies.

The net result is that for ground-based interferometers such as the two US-based LIGO

detectors, GEO-600, Virgo, KAGRA, and LIGO-India, which are sensitive to frequencies

∼ 10−2000 Hz, the only individual sources that will be detected are neutron stars and black

holes and their creation events (supernovae); some might argue that cuspy cosmic strings

might fall into this category, but there’s no evidence for such things.

For a rigorous derivation of the evolution of a well-separated binary under the influence

of gravitational radiation, see Peters 1964, Physical Review, 136, B1224. This classic paper

derives the rates of energy and angular momentum loss, and hence the rate of change of

the semimajor axis and angular momentum, for a binary which is imagined to move in a

Keplerian way over a full orbit. This paper also does a good job of providing the framework

in which other gravitational radiation calculations can be performed (e.g., of a lump on a

rotating star).


