
What can we learn about neutron stars from gravitational waves?

For our final lecture we will talk about gravitational waves from neutron stars, focusing

on binaries.

Suppose that we have a well-separated binary, so that the components can be treated as

points and we only need take the lowest order contributions to gravitational radiation. Tem-

porarily restricting our attention to circular binaries, how will their frequency and amplitude

evolve with time?

Let the masses be m1 and m2, and the orbital separation be R. We argued in the

previous lecture that the amplitude a distance r � R from this source is h ∼ (µ/r)(M/R),

where M ≡ m1 + m2 is the total mass and µ ≡ m1m2/M is the reduced mass. We can

rewrite the amplitude using the relation f ∼ (M/R3)1/2 between the orbital frequency f and

the mass and radius, to read
h ∼ µM2/3f 2/3/r

∼M
5/3
ch f 2/3/r

(1)

where Mch is the “chirp mass”, defined by M
5/3
ch = µM2/3. The chirp mass is named that

because it is this combination of µ and M that determines how fast the binary sweeps,

or chirps, through a frequency band. When the constants are put in, the dimensionless

gravitational wave strain amplitude (which, remember, is roughly the fractional amount by

which a separation changes as a wave goes by) measured a distance r from a circular binary

of masses M and m with a binary orbital frequency fbin is (Schutz 1997)

h = 2(4π)1/3
G5/3

c4
f
2/3
GWM

5/3
ch

1

r
, (2)

where fGW is the gravitational wave frequency. Redshifts have not been included in this

formula.

The luminosity in gravitational radiation is then

L ∼ 4πr2f 2h2

∼M
10/3
ch f 10/3

∼ µ2M3/R5 .

(3)

The total energy of a circular binary of radius R is Etot = −GµM/(2R), so we have

dE/dt ∼ µ2M3/R5

µM/(2R2)(dR/dt) ∼ µ2M3/R5

dR/dt ∼ µM2/R3 .

(4)
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Again using f ∼ (M/R3)1/2, this implies

df/dt ∼M
5/3
ch f 11/3 . (5)

This confirms what we said earlier: to lowest order, the rate of frequency evolution depends

only on the chirp mass. An important implication is that to this order, we can determine

only the chirp mass rather than both masses separately. Only at the next order in the

post-Newtonian expansion does another quantity (the mass ratio) enter.

What if the binary orbit is eccentric? The formulae are then more complicated, because

one must average properly over the orbit. This was done first to lowest order by Peters

and Matthews (1963) and Peters (1964) by calculating the energy and angular momentum

radiated at lowest (quadrupolar) order, and then determining the change in orbital elements

that would occur if the binary completed a full Keplerian ellipse in its orbit. That is, they

assumed that to lowest order, they could have the binary move as if it experienced only

Newtonian gravity, and integrate the losses along that path.

We can understand one qualitative aspect of the radiation when the orbits are elliptical.

From our derivation for circular orbits, we see that the radiation is emitted much more

strongly when the separation is small, because L ∼ R−5. Consider what this would mean for

a very eccentric orbit (1− e)� 1. Most of the radiation would be emitted at pericenter, so

this would have the character of an impulsive force. With such a force, the orbit will return

to where the impulse was imparted. That means that the pericenter distance will remain

roughly constant, while the energy losses decrease the apocenter distance. As a consequence,

the eccentricity decreases. In general, gravitational radiation will decrease the eccentricity of

an orbit. More quantitatively, to the order that Peters and Matthews did their calculation,

ae−12/19(1− e2)
(

1 +
121

304
e2
)−870/2299

(6)

is constant throughout the inspiral. If we ignore the final factor (which is always between

0.88 and 1), we can write this as a(1− e)(1 + e)e−12/19 ≈ const. For high eccentricities such

that 1−e� 1, 1+e and e−12/19 are roughly constant, so a(1−e) = rp ≈ const, which means

that the pericenter distance rp is roughly constant as promised. For low eccentricities such

that 1− e2 ≈ 1, we get ae−12/19 ≈ const. The orbital frequency (which is half the dominant

gravitational wave frequency when e � 1) is f ∝ a−3/2, which means that f ∝ e−18/19, or

roughly e ∝ f−1. Thus for low eccentricities, the eccentricity roughly scales as the reciprocal

of the frequency. This means that binary sources at the high frequencies detectable using

LIGO can usually be considered to be effectively circular.

How compact binaries can merge
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The basic ways that compact binaries can come together break down to two major

categories:

1. Evolution of an isolated massive binary. That is, we start with a pair of massive stars

that both evolve into black holes, and merge, without any other stars coming close

enough to do anything.

2. Dynamical processes. Examples include single-binary interactions, the Kozai-Lidov

resonance, and direct dynamical capture.

Isolated massive binaries.—The fine line that must be walked to result in a compact

object merger is that the stars must begin far enough apart that they do not merge before

both are compact objects, but close enough together that the final double compact object

binary can then merge within a few billion years under the influence of gravitational radi-

ation alone. The study of the evolution of massive binaries is particularly difficult because

observational evidence is tough to obtain: massive stars are rare and short-lived, and the

most critical evolutionary phases for compact object mergers occupy very small fractions of

the short lives of these systems.

We are therefore largely dependent on theory to tell us what is likely to happen. Massive

stars will under most circumstances expand out to be giants after they run out of hydrogen in

their cores (an exception might be if they rotate rapidly enough to continue to cycle hydrogen

into the core; this can lead to the so-called “chemically homogeneous” path of evolution).

Thus it is possible that a pair of massive stars that are initially much too far separated to

spiral in via gravitational wave emission can, in the “common envelope” phase (where the

envelope of a giant encompasses its companion), be dragged much closer together. If the

pair begins too close together, it might merge; if one of the stars was already a compact

object, it could then reside in the center of the other star and thus form a hypothesized

“Thorne-Żytkow object”, but it will not produce a compact binary. Thus binaries need to

start their lives far enough apart to avoid merger, but not so far apart that common envelope

drag is insufficient to reduce the separation to a few tenths of an astronomical unit (which

is needed for the inspiral to take a few billion years or less).

Unfortunately, the common envelope phase is very difficult to understand from a purely

theoretical point of view, and given that no binary has ever been seen in a common envelope

state, the uncertainties are huge. In fact, over the last decade plus there have been times

when different treatments of common envelopes have given rate estimates (say, for double

black hole binaries) that differ by more than two orders of magnitude! There are other

problems in our understanding as well. For example, both neutron stars and black holes are
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produced by core-collapse supernovae. When we look at neutron stars it is clear that many

of them have received kicks (i.e., net linear momentum) because of the core collapse. There

is also evidence of supernova kicks for some black holes. However, the origin of these kicks

is not known, and neither are the kick direction or the kick magnitudes as a function of the

compact object mass.

Dynamical processes.—If a binary does have significant interactions with other stars and

compact objects, then there are additional channels for mergers that open up. For example:

1. In globular clusters or nuclear star clusters, the stellar number density can be a million

or more times higher than the ∼ 0.15 stars per cubic parsec in our Solar vicinity.

This still isn’t enough to have stars collide directly with each other very often, but it

does mean that binary systems, which act as if their collision cross sections are the

sizes of the orbits, can have collisionless three-body (or four-body) encounters. The

interactions are chaotic, but computer simulations show that when a binary and single

interact, the binary that emerges from the interaction tends to contain the two most

massive of the three original objects. Moreover, when the binary is hard (meaning that

its binding energy is greater than the average kinetic energy of a star), interactions

harden them further and drive them closer to merger.

2. Careful observations of massive binaries in our Galaxy suggest that 10% or more of

them could actually be triples, quads, or higher-order multiple systems. This opens

up the possibility of Kozai (or Kozai-Lidov) resonances. Kozai and Lidov discovered

independently in the early 1960s that if a binary is orbited by a third object in a hi-

erarchical triple (such that the system has long term stability), and the binary orbital

axis is strongly tilted with respect to the orbit of the tertiary, then over many orbits

of both the binary and the tertiary, the relative inclination of the binary to the ter-

tiary cycles between low and high values, while conserving the semimajor axis. Most

importantly for merger possibilities, when the inclination goes down the eccentricity

goes up and vice versa. Thus in the right range of orientations the binary could be

driven to such a high eccentricity that gravitational radiation grinds it down to merger

(although if the system is susceptible to such evolution it is likely that it would be

driven to collisions on the main sequence or giant branch rather than when the ob-

jects become compact). In dense stellar systems such as globular clusters, hierarchical

Kozai-susceptible triples can be created after evolution to compact objects, for example

as an outcome of binary-binary interactions.

Dense stellar systems are expected to be far more efficient per stellar mass than isolated

binaries in producing mergers. However, only 10−4−10−3 of stars are in dense stellar systems,
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and that seems to tilt the balance in favor of binaries. Binaries in multiple systems, with

their additional possibilities of mergers, might be the best compromise.

What we learned from GW170817

Most people expected double neutron star coalescences to dominate the overall LIGO

event rate, but nature gifted us with a large rate of double black hole events (these can

be seen over a much larger volume than the double neutron star mergers; it is probable

that double neutron stars are more common per volume than double black holes). There

was, however, one double neutron star coalescence that has been reported in detail, from 17

August 2017. Another double neutron star event was seen in the ongoing O3 run, but the

report for that is likely to be in September 2019.

So what did we learn from GW170817? One thing we learned is that we are very lucky;

just as the first direct detection of gravitational waves, GW150914, occurred even before

Advanced LIGO was to make its first science data run, the first double neutron star event

occurred soon after Virgo began its first science data run. Also, the event was much closer

(just ∼ 40 Mpc) than expected.

Astrophysically, the event yielded quite a bounty. Just ∼ 2 seconds after the gravita-

tional wave event, the Fermi satellite caught a gamma-ray burst that was consistent with

being off-axis (i.e., we were some tens of degrees away from the jet direction). The subsequent

ultraviolet, optical, and infrared development was consistent with ideas about “kilonovae”

(emission from radioactive decay in ejecta) that had been suggested before the event. Indeed,

the observations support the hypothesis that most of the elements much heavier than iron

come from such mergers (although new supernova-related ideas have emerged since). Later

radio emission helped us understand the jet. And from the standpoint of neutron stars, the

lack of a clear signature in the gravitational waves of tides raised on the neutron stars meant

that there is an upper limit on how big they can be (although that limit, R <∼ 13− 13.5 km,

does not exclude the equations of state favored by nuclear physicists).

Other implications are intriguing but not completely robust. For example, it has been

argued that if the remnant stayed as a stable “supramassive” neutron star (one held up

against collapse by uniform rotation) then it would spin down and inject ∼ 100× as much

energy into the system as we saw. If that argument is correct, then it seems necessary that the

merger produced a metastable remnant that collapsed after tens to hundreds of milliseconds.

This, in turn, suggests an upper limit on the mass of neutron stars that, borrowing from work

from several groups (including ours at Maryland!) on gamma-ray bursts prior to GW170817,

might be as low as ∼ 2.15− 2.2 M�.

What can we expect in the future? Close events such as GW170817 will be rare, so
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we can’t expect a high rate of such golden mergers. If double neutron star mergers with

especially low (or high) chirp masses are found, that could be interesting. After enough

events are seen, we will get better constraints on the equation of state of the dense matter

in neutron star cores.

Mainly, though, as always we await the unexpected! Very low or very high neutron star

masses? Mergers between black holes and neutron stars? Something we can’t anticipate?

The universe has been good to us so far; let’s hope it keeps on giving!


