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Poisson Likelihood and Chi Squared

In the several lectures following this one we will go over some aspects of Bayesian statis-

tics. To set that up we will do two things in this lecture: first, we will discuss the Poisson

distribution and Poisson likelihood, given their importance in astronomy, and second, we

will talk about the calculation and use of χ2, which is often used in astronomy without a

proper consideration of whether it applies in a given circumstance.

The Poisson Distribution

In the Poisson distribution, if the expected number of discrete “events” is m (which

can be any positive real number), then the probability of observing a non-negative integer

number d of events is

Prob(d|m) =
md

d!
e−m , (1)

where Prob(d|m) means “the probability of d given m”. Here “events” are things that come

in discrete packages, such as photons arriving at a detector, radioactive decays, calls to a

radio show, or a host of other examples. The Poisson distribution is the correct distribution

if the following conditions hold (see https://en.wikipedia.org/wiki/Poisson distribution for

more details):

1. Events can be counted as integers: there can be 0, 1, 2, . . . events, but not 0.7, 12.2,

or other non-integer numbers of events. Thus measurements of continuous quantities

(say, the maximum temperature in a given location on a sequence of days) could not

be treated using the Poisson distribution, but numbers of radioactive decays could if

they satisfy the next criterion.

2. The events are independent of each other. Thus, for example, having a photon arrive in

one time interval cannot make it more or less likely that another photon arrives in the

next time interval if the Poisson distribution is to be correct. This is often the case,

but not always; for example, given that a detector takes a finite amount of time to read

out a photon, if the photons arrive so frequently that the time to the next photon is

comparable to or less than the readout time, the readouts will not be independent of

each other even if the actual photon arrival times really are independent.

Sometimes, as in the Wikipedia page, there is another assumption listed: that the rate of

events is constant. This, however, is for a slightly different application, which is the question

of the distribution of event totals in many consecutive intervals of the same length. Here we

ask only about the probability distribution of the event totals in a given segment of data.

Figure 1 plots the probabilities for a Poisson distribution for different expectation val-

ues (also known as arithmetic means) 〈x〉 (for a Poisson distribution, 〈x〉 = m), and against
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Fig. 1.— Poisson distributions (solid red lines) versus Gaussians with the same mean and variance

(dotted black lines). In each case, the vertical axis is normalized to the peak probability in the

Poisson distribution, and the horizontal axis is normalized to the expectation value 〈x〉. Top left:

〈x〉 = 0.5. Top right: 〈x〉 = 4. Bottom left: 〈x〉 = 32. Bottom right: 〈x〉 = 256. We see that for

larger 〈x〉, the Poisson distribution is closer to a Gaussian.
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Gaussians of the same expectation value and variance (which is also m for a Poisson distri-

bution). We see that for small 〈x〉 = m, the Poisson distribution differs significantly from

a Gaussian, but for larger 〈x〉, the distributions become progressively more similar to each

other near the peak.

Given the assumptions of discreteness and independence, the Poisson distribution can

be derived as a limiting case of a binomial distribution. We do this in the appendix at the

end of the lecture, for the mathematically curious.

Chi squared

We now turn to the χ2 statistic, which is ubiquitous in astronomy. It has almost magical

properties: when it is applicable, use of χ2 is advertised as being able to tell you (1) whether a

model is a good fit to data in an absolute sense, (2) whether one model is better than another

model, at least when the models are nested (i.e., one model is a special case of the other),

and (3) the best values and uncertainties in each of the parameters of the model. With such

power and the ease of use that we will describe, no wonder it is such a favorite! But as

always, we need to think carefully about whether χ2 is applicable in any given circumstance.

First, we’ll describe it. There are actually some variants in the way to calculate χ2,

but we’ll use the most common one (Pearson’s χ2). Suppose that we have i bins of data.

These might be bins in wavelength, or time, or something different. Suppose that we observe

di counts in bin i, and our model predicts that there will be mi counts in that same bin.

Summing over all bins, then

χ2 =
∑
i

(di −mi)
2

σ2
i

, (2)

where σ2
i is a variance. In Pearson’s formulation, σ2

i = mi, because an important implicit

assumption in the whole χ2 formalism is that di and mi are both large enough that a Gaussian

distribution is appropriate.

Suppose we consider a single bin, so that χ2 = (d − m)2/m. If the actual probability

distribution of d given m is a Poisson distribution, so that

Prob(d|m) =
md

d!
e−m , (3)

then because
∑∞

d=0 Prob(d|m) = 1 (i.e., the Poisson distribution is normalized properly),

then the expectation value of any function f(d) is given by

〈f〉 =
∞∑
d=0

f(d)Prob(d|m) . (4)
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For example, the expectation value of χ2 is

〈χ2〉 =
∞∑
d=0

(d−m)2

m

md

d!
e−m = 1 , (5)

where the sum can be evaluated using, e.g., Wolfram Alpha. Thus the arithmetic mean of

χ2 for a single bin is always 1, regardless of the value of m! That’s a surprise.

Similarly, we find that

〈(χ2)2〉 =
∞∑
d=0

[
(d−m)2

m

]2
md

d!
e−m = 3 + 1/m , (6)

where again the final evaluation can be obtained from a symbolic manipulation program.

This means that the variance in χ2 is 〈(χ2)2〉 − 〈χ2〉2 = 2 + 1/m. The chi squared tables

you see are all constructed in the limit m → ∞; in such tables, you look up the number

of bins minus the number of parameters (this difference is called the number of degrees of

freedom), and then from the tables you can judge how probable it would be, if the model is

correct, that you would by chance have a value of χ2 as large or larger than what you found

for that number of degrees of freedom. Therefore, if you blindly compute χ2 and look up

the probability in the table, but m isn’t big enough, you’ll mislead yourself.

This, as I say, is how χ2 should be used: by using the variance of the model in the

denominator. But in most cases I’ve seen in astronomy, it is the variance of the data that is

put in the denominator! For example, in the manual for XSPEC (the default fitting program

in astronomy for X-ray data) we read: “...in general, we do not know the true variance and

have to estimate it... The default option (weight standard) is to use the observed number

of counts as an estimator for the underlying variance (equals the underlying mean).” This

is incorrect! The authors of XSPEC realized this, so they followed with “It is important

to realize that this introduces a bias. Downward fluctuations will be weighted more heavily

than upward fluctuations because, while the numerator of chi-squared for the bin will be the

same, the denominator will be smaller for the downward fluctuation. An obvious alternative

to try is to use the predicted counts from the model as an estimator for the Poisson variance

(weight model). This does not have the bias problem of the standard method however in

practice it turns out to be unstable and can drive the fit away from the best parameters.”

Unpacking this, it means that unless you specify otherwise, in XSPEC (and, as it turns

out, in a lot of other astronomy data analysis packages) you implicitly assume that the data

have variance; this is not the way the test was designed, and it produces bias. Even if you

are alert enough to correct this and use the model variance, you have problems. Note, by

the way, that for data that do not come in numbers of counts (e.g., galaxy observations are

more likely to be in magnitudes), astronomers will often make a separate estimate of the

uncertainty, which they usually associate with the data rather than the model.
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If you swallow hard and ignore these potential problems, how should you use χ2?

Let’s suppose that your model (which produces the expected values mi for each bin)

has some number of parameters; call that number k. Suppose also that there are n total

bins. Then as we say above the number of degrees of freedom, or dof, of the data is n − k.

Adjusting the parameter values in your model to minimize χ2 gives you the best fit. If the fit

is good, then you expect the minimum chi squared to be approximately equal to the number

of degrees of freedom.

What if your minimum χ2, χ2
min, is not close to n− k? Then:

1. If χ2
min � n− k, then you have a bad fit. Something is missing from your model.

2. If χ2
min � n − k, it does not mean that you have a fantastic model. Instead, it means

that you have overestimated the uncertainties (i.e., your σ2
i are too large).

Many astronomers do not appear to understand the second point: I’ve had discussions

with researchers who think it’s fine to have a tiny χ2. No, it’s an indication of another

problem.

It is, of course, possible to be more quantitative than simply comparing χ2 with n− k.

There are tables you can check, and websites that compute the probability that if the model

is right you will have a χ2 as large or larger than what you saw (and even relatively simple

formulae). A decent rule of thumb, if both χ2 and n − k are large enough, is that
√

2χ2 is

distributed roughly as a normal distribution with a mean of
√

2(n− k)− 1 and unit variance

(result proven by R. A. Fisher in 1922).

But you can do even more with χ2. Suppose you have two models that are nested, in

the sense that one contains the other. For example, maybe you are fitting a spectrum. One

model of the spectrum is that it is just flat, but in the other model the spectrum is flat

except for a small portion that has a Gaussian emission line. The line model contains the

flat model (because the amplitude of the Gaussian could be zero), but it has three extra

parameters (the amplitude, centroid, and variance of the Gaussian). Clearly the minimum

χ2 of the line model can’t be any larger than the minimum χ2 of the flat model, but how

much smaller does it be so that you will accept the more complicated model?

Swallowing caveats for the moment (and there are plenty!), the answer is that you take

the difference ∆χ2 between the minimum chi squared of the flat model, and of the line model,

and then compare that difference with a number of degrees of freedom that in this case is

the number of extra parameters. In our case, we could look up that table to find that for

three degrees of freedom, an improvement of 6.251 in χ2 would cause us to favor the more

complicated model at the 90% confidence level, and an improvement of 11.34 in χ2 would

cause us to favor the more complicated model at the 99% confidence level.
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This all sounds very straightforward and easy. Indeed, this is a reason why χ2 is a

workhorse of astronomical data analysis. As long as you take care not to have too few

counts in your bins, you’re set!

Or are you? Remember, our goal in this course is to think about our results and meth-

ods rather than just applying recipes blindly. If you’re very alert, you might have noticed

that when we considered the problem of determining whether there is good evidence for a

Gaussian line, we said nothing about the range of parameter values we plan to consider.

But, intuitively, that should matter. If we would be happy for our line to be anywhere in the

vast range of wavelengths that we have in our spectrum, it should be easier for some random

bump in the spectrum to be interpreted as a line than if we instead focused our attention

only on a very narrow portion of the spectrum. But the ∆χ2 approach we described doesn’t

take that into account at all. That’s a pretty significant flaw in the method!

Another flaw is more insidious. Many methods such as χ2 implicitly assume that you

have so many counts in bins (or whatever you’re measuring) that you can treat the statistics

as locally Gaussian (in our case above, that means that we can ignore 1/m compared with

2 in the variance). Lots of astronomical data analysis packages are arranged using those

assumptions. But sometimes you have enough resolution in your data that many bins have

only a few, or even no, counts. Then, you can’t use methods that assume Gaussians.

The right thing to do is to then use other methods. But I’ve had countless conversations

with astronomers who try to convince me that the proper thing to do is to group the bins

until the bins each have lots of counts. They want to do this because it means that their

Gaussian-based methods (such as χ2) can work in that limit. But as we said before, grouping

in this way loses information. Perhaps the information isn’t important, but you should not

make specious arguments to justify incorrect assumptions!

With all of that as background, we will now, in the next several lectures, talk about a

more rigorous way to make statistical inferences: Bayesian statistics.

Appendix: Derivation of the Poisson distribution from the binomial distri-

bution

In the first part we follow closely a nice derivation posted by Andrew Chamberlain at

https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-

binomial-distribution-840cc1668239.

Suppose that we have n very narrow contiguous intervals (of time, or wavelength, or ...)

that together make up the bin of interest. The total expected number of events in the n

intervals combined is m. Suppose for this derivation we assume a constant rate as well as

independence. Then, as a result, the expected number of events in any one of the intervals

is p = m/n. We are interested in the limit n → ∞; that is, we take a bin of observation
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(e.g., one second, or 100Å) and divide it into a very large number n of observations. In that

limit, p = m/n → 0 because m is fixed while n → 0. Thus we can assume that in a given

interval, there can be one event, with probability p, or zero events, with probability 1− p.

What is the probability that, in those n intervals, we will see d � n events? If we

cared about the order (e.g., if event, no event, no event, event was different from no event,

event, event, no event and similar combinations), then the probability would be pd(1−p)n−d
(i.e., the probability that those particular d intervals had events while the other particular

n− d intervals did not have events). However, we don’t care about the order; we only care

about the total. There are, in fact,
(
n
d

)
= n!

d!(n−d)! ways to have d events in n intervals. Thus

the probability that we would observe d events in the n intervals is given by the binomial

distribution:

Prob =

(
n

d

)
pd(1− p)n−d . (7)

We now expand this out, starting with
(
n
d

)
:(

n

d

)
=

n!

(n− d)!d!
=
n× (n− 1)× . . .× (n− d+ 1)

d!
≈ nd

d!
. (8)

In the last step above, we take advantage of our limit n→∞ to realize that because n� d,

all the factors in the numerator (n, n− 1, ..., n− d+ 1) are very close to n.

Thus the first two factors in Equation (7),
(
n
d

)
pd, become(

n

d

)
pd ≈ nd

d!
pd =

nd

d!
(m/n)d =

md

d!
. (9)

For the last factor, and using the substitution x ≡ 1/p, we get

(1− p)n−d ≈ (1− p)n =

(
1− 1

x

)n

=

(
1− 1

x

)m/p

=

[(
1− 1

x

)x]m
= e−m . (10)

Here we use the identity that as x→∞, (1− 1/x)x → e−1.

Thus, putting everything together, we find

Prob→ md

d!
e−m (11)

in the limit n→∞.

This proves that the Poisson distribution is the limit of the binomial distribution, but

we need to think about what we have shown. We have shown that if we expect m counts

(where, again, m is a positive real number), the probability that we observe d counts (where

d is a non-negative integer) is (md/d!)e−m. This does not require that we have infinitely
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fine resolution! The supposition of infinitely fine resolution, and the use of the binomial

distribution, were only intermediate steps along the way to our derivation.

We have also, as part of our derivation, assumed that the rate of events is constant, but

this is not necessary. As is shown formally in, e.g., http://www.randomservices.org/random/

poisson/Nonhomogeneous.html, if the rate of events varies with time (or wavelength or

whatever your independent variable is), it is straightforward to do a transformation of the

independent variable such that the system obeys Poisson statistics, if the discreteness and

independence of events still hold. Thus the Poisson formula holds in that circumstance.


