
Fitting a Straight Line to Data

Thanks for your patience. Finally we’ll take a shot at real data! The data set in question

is baryonic Tully-Fisher data from http://astroweb.cwru.edu/SPARC/BTFR Lelli2016a.mrt,

which was suggested by Liz Tarantino and which is from Lelli, McGaugh, and Schombert

2016, ApJ, 816, L14 (you might want to read this paper – it’s just six pages long – to see

what the authors did). This will give us an opportunity to go through our recommended

procedure of deciding on a statistical approach in which each decision is conscious. The set

is given in full on the website, but to be self-contained we reproduce part of it here:

log10 Mbary(M⊙) σlog10 Mbary
log10 vrot(km s−1) σlog10 vrot

8.68 0.06 1.76 0.02

9.45 0.09 2.03 0.02

10.62 0.11 2.19 0.02

11.03 0.13 2.45 0.02

10.65 0.28 2.27 0.02

9.94 0.15 2.12 0.01

11.13 0.12 2.38 0.01

10.09 0.14 2.10 0.02

11.06 0.10 2.33 0.01

10.38 0.27 2.19 0.02

The columns are: (1) log10 baryonic mass (M⊙), (2) standard error on log10 of baryonic

mass, (3) log10 of the rotation speed (km s−1), and (4) standard error on log10 of the rotation

speed. Here the “standard error”s, represented by σs, mean a Gaussian uncertainty (not an

error!) in the measurement. Thus it seems like we’re ready to go: just toss this into some

kind of χ2 minimization and we’re set, right?

Nope. Remember that one of the guiding principles of this course is that we think about

what we are doing! Thus our first step will be to look at the data carefully to consider what

stands out to us. Then we’ll determine what we would do if we had unlimited time and

resources. Finally we’ll decide what we can do given our limited time, and in this case, the

limited data that we have.

So what stands out about these data? Here are some thoughts:

1. The data in the file are not the raw data. Instead, the baryonic mass and the rotation

speed are quantities derived from the raw data. Therefore, as certainly will happen

sometimes, we will not be able to perform the ideal analysis of raw data.

2. The derived data have uncertainties in both quantities! Moreover, the quantity that

we might be tempted to consider as the more fundamental, independent, quantity is



the baryonic mass, which has a fractional uncertainty that is greater than that of the

rotation speed (recall that these are logarithmic quantities). Often it is assumed that

the independent variable has no uncertainties at all, and thus that we can treat its

measurements as perfect. Clearly we can’t really do that here.

3. Those can’t be the actual uncertainties on log10 vrot. They’re quantized! This means

that the authors of the table decided to use only two significant figures, or maybe

something else was going on (for example, it could be that the actual measurements

have much smaller uncertainties, but that they add some rough estimate of systematic

errors). We’d have to check the original sources of the data to know for sure.

4. Because the uncertainties are in the logs of quantities, we have to wonder whether they

are really symmetric. For example, 100.28 = 1.9, so in the fifth row an assumption of

symmetry would mean that, for example, it is equally likely that the baryonic mass is

a factor of 1.9 below the best estimate, as it is that the baryonic mass is a factor of 1.9

above the best estimate. Is that true?

5. More generally, if we use χ2 on these data, we have to realize that we are making

the implicit assumption that the probabilities are Gaussian to arbitrary numbers of

standard deviations. This is almost never the case, and it could affect the analysis in a

large data set like this one because there could be points that are “3σ” off of the line

but are either more or less probable than they would be for a Gaussian.

Is there anything else you notice about the data?

Now let’s take another obvious simple step: we’ll look at the data, which we have plotted

in Figure 1.

We are thinking about fitting a straight line to these data. Because the data we have

involve the logs of two things, we are therefore considering the possibility that the two

quantities are related by a power law. From Figure 1, does it appear that a straight line

could more or less go through the data? Sure. If the lower left point weren’t in the set then

we might be tempted to try a fit with a quadratic, but even then it wouldn’t be silly to try

a straight line.

Now that our eyeball test tells us that a straight-line fit is plausible, we need to think

about how we should do our fit. As noted before, we can’t apply the ideal procedure (of

folding a model through the response of our detector and comparing the predictions with

the actual, raw, data). Therefore, we need to make some compromises.

As our first compromise, we’ll pretend that only one of the derived variables has uncer-

tainties, whereas the other is known perfectly. In the next class we’ll use this same data set

without that assumption, so that we can see the differences in our inferences. As we say

above, we might think of the baryonic mass as the independent quantity, but because the



Fig. 1.— Ten selected points from a baryonic Tully-Fisher data set, along with their quoted

standard uncertainties. Original data set from Lelli, McGaugh, and Schombert 2016, ApJ, 816,

L14, tabulated at http://astroweb.cwru.edu/SPARC/BTFR Lelli2016a.mrt



rotational speed has smaller fractional uncertainties it is more reasonable to treat that as the

independent variable, with no uncertainties.

Our next step as Bayesians is to make a conscious decision about whether we wish

to do parameter estimation, or to perform a model comparison. Let’s say that we want

to do parameter estimation, which means that we cannot say anything about whether the

straight-line fit (in log-log space) is preferred over other possible fits.

In our particular parameter estimation the model parameters we care about are the

slope and intercept in log10 Mbary − log10 vrot space. But another parameter in the model

is the rotation speed; remember, the data space we’re considering (which still isn’t the

true space of raw data, but it’s what we have) has two observables, the rotation speed and

the baryonic mass. Thus for our parameter estimation we need to (1) specify the prior

probability distribution for all three parameters (and note that in general we need to specify

the joint prior, because it will not always be the case that the three probability distributions

are independent), (2) perform our analysis using the data to get a normalized posterior

probability distribution in all three parameters, and then (3) marginalize over the rotation

speed to get our final joint posterior probability distribution for the slope and intercept.

What should we choose for our priors? We’ll begin with the rotation speed, which is our

nuisance parameter for this problem (because we don’t care about it directly). Should we

assume that all rotation speeds are, a priori, equally probable? Should we instead assume

that all logs of rotation speeds are, a priori, equally probable? Maybe we should take our

prior from observations. All would lead to different weightings. Our choices could, in fact,

lead to different results for our estimation of the slope and intercept if the prior for the

rotation speed depends on the slope and/or intercept.

This suggests a simplification that we can make consciously. We can assume that the

prior on the rotation speed, whatever it is, does not depend on either the slope or the

intercept. Thus if our model is log10 Mbary = a log10 vrot+ b, the assumption of independence

means that the prior p(a, b, vrot) becomes p(a, b)p(vrot). Then, because we are assuming in

our current analysis that vrot is measured without any uncertainty, the probability of vrot
given the model is something that does not depend on a or b, and so we don’t have to worry

about it.

This is what we need to assume to get to the point where many people would automat-

ically start: for a given a and b we can simply compute the likelihood, for each point in our

data set, that we would measure the observed Mbary given the Mbary that is expected in our

linear model at the exactly measured vrot. The product of those likelihoods, over all of the

points in our data set, is the probability of the data given the model. Because we have been

handed the data with uncertainties attached to the data (rather than having a probability

distribution for data given a particular model), and because we are for the same reason



forced to assume that the uncertainties are Gaussian to an unlimited number of standard

deviations, this means that our likelihood is the exponential of minus one half of the chi

squared.

Are we ready to do the calculation? Not yet. We still need to think about our priors

for a and b. First, we can choose b. We may not have good reason to restrict b particularly,

so as long as the prior is basically flat over the possible range then we’ll be fine. Looking at

our plot, maybe the prior could be that b is constant from b = −5 to b = +5 (remember, b

has units of log10Mbary).

But a is another story. Our first inclination might be to say that a could be anything,

with equal probability. That sounds great except that a could go to +∞ or −∞ if horizontal

lines are allowed in Figure 1. Thus if we allow a to be “anything, with equal probability”,

almost all of the weight of the prior will be on nearly horizontal lines, which would then

overwhelm any evidence we have from the data!

With that in mind, it would be more reasonable to, for example, have as a prior that the

line in question could make any angle with equal probability. Then our new parameterization

would be

log10 Mbary = tan θ log10 vrot + b (1)

where the prior is p(θ, b) = p(θ)p(b), where p(θ) = 1
π
from θ = 0 to θ = π and 0 otherwise

(because π to 2π would duplicate the lines we have from θ = 0 to θ = π), and p(b) = 1
10

from b = −5 to b = +5 and 0 otherwise. Note that in making this choice we have explicitly

assumed that the priors for the slope and intercept are independent of each other, but such

independence will not be the case in general.

With that in mind, we can compute the posterior probability distribution as a function

of θ and b:

P (θ, b) ∝
1

π

1

10

N∏
i=1

exp[−(mi − di)
2/2σ2

i ] , (2)

where 1
π

1
10

is the prior, di is the ith measurement of log10 Mbary, σi is the reported Gaussian

uncertainty in the ith measurement of log10 Mbary, and mi = tan θ log10 vrot,i + b, where vrot,i
is the ith measurement of the rotational speed. Note that the natural log (i.e., ln) of the

product is −χ2/2. We normalize the posterior probability density by multiplying it by a

constant factor such that ∫ π

0

∫ 5

−5

P (θ, b)dbdθ = 1 . (3)

We found earlier that even the probability distribution for a single parameter does not

give us a unique definition for (say) the 68.3% credible region, and as you’d expect the

situation is not improved for multiple parameters. For the moment, let’s do a standard χ2



thing and assume that for two parameters the “1σ” (68.3%) credible region includes all points

within ∆χ2 = 2.3 of the minimum, and that the “2σ” (95.45%) credible region includes all

points within ∆χ2 = 6.18 of the minimum. Because computers are fast, we’ll do this using

brute force: we will compute the total chi squared at each of 106 points in a grid: 1000 in

θ and 1000 in b. The results are shown in Figures 2 through 5 (which give the χ2 surfaces

for, respectively, 1, 2, 5, and all 10 points), and Figure 6 shows a zoomed-in version of the

10-point χ2 surfaces.

We can double-check that the ∆χ2 = 2.3 region has 68.3% of the total probability

by integrating the normalized posterior probability distribution in that region. Note that

because we have assumed a constant-probability prior, the posterior probability density is

proportional to the likelihood. When we do this, we find that 68.2% of the probability is

within ∆χ2 = 2.3 of the minimum. Similarly, we find that 95.4% of the probability is within

∆χ2 = 6.18 of the minimum. It is unsurprising that we get the expected probabilities;

this follows from our assumptions of Gaussianity in our probabilities. One way to convince

yourself of this is to reassign vrot randomly with Mbary in our data set and redo the analysis;

you should find that the fraction of the probability within ∆χ2 = 2.3 or ∆χ2 = 6.18 is very

similar to what it is in the real case.

What if we are interested in only one of our two parameters? Then, as we discussed in an

earlier class, we marginalize the posterior probability distribution over the other parameter.

Those distributions are displayed in Figure 7 and Figure 8. The peak probability density in

two dimensions has θ = 1.32088 and b = 1.758. The peak of the marginalized distribution in

θ is θ = 1.32088, but the peak of the marginalized distribution in b is b = 1.782, i.e., larger

by a small but significant amount than the value of b at the peak in the two-dimensional

distribution. It is, in fact, common that the peak in the marginalized distribution is not the

same as the peak in the two (or larger) dimensional distribution. The reason in our case is

that the two-dimensional region bends. In particular, at larger b there is a larger range of θ

that gives a good fit, which means that when we integrate over θ the integrated probability

is larger at large b. This is clearer in the two-point analysis Figure 3, but also applies to

the less obviously curved posterior probability distribution for ten points. Sometimes people

will assume that the peak in the full distribution coincides with the peak in the marginalized

distribution, but in general they won’t be the same.

In any case, this is all looking pretty good! Just one last check: we can compute the

total χ2, and compare it with what we would expect given the number of degrees of freedom.

This procedure is non-Bayesian; we should really just compare precisely specified models,

but as I said before I think it’s useful to get a sense for whether our fit is okay. The number

of degrees of freedom (abbreviated as dof) is the number of data points minus the number

of model parameters, so dof=10−2=8 in our case. Thus we expect that for a good fit, the

minimum χ2 would be around 8. Instead, it’s 25.9. Looking this up in a χ2 table we find



Fig. 2.— Representation of the posterior probability density in θ − b space using only the first

point in our data set. The model we employ is that log10Mbary(M⊙) = tan θ log10 vrot(km s−1)+ b,

and we do our analysis assuming that log10 vrot is measured with no uncertainty. The red points

indicate where in our θ − b grid the χ2 is within 2.3 of the minimum (which corresponds to 1σ, or

the 68.3% credible region, for two parameters if χ2 analysis is valid). Similarly the blue points are

where χ2 is within 6.18 of the minimum, which corresponds to 2σ, or the 95.4% credible region, for

two parameters. With only one point there are obviously an infinite number of lines that go straight

through the point, which means that there is a strong correlation between the two parameters.



Fig. 3.— Same as Figure 2, but using the first two points in our data set. Now there is a unique

line that goes perfectly through both points, so the range of decent fits is finite.



Fig. 4.— Same as Figure 2, but using the first five points in our data set. Now the constraints

are obviously much tighter. Note that there are parts of the 68.3% credible region that are well

outside the corresponding region in the two-point plot. This is reasonable and expected; we still

don’t have many points, so fluctuations play a big role.



Fig. 5.— Same as Figure 2, but using all ten points in our data set (which is a subset of the

whole data set). The constraints have improved further, but at this stage our grid is too coarse to

represent the region well.



Fig. 6.— Same as Figure 5, but using a finer grid to focus on the best-fit region.



that we’d expect χ2 ≥ 25.9 for dof = 8 only 0.1% of the time.

Oops! Maybe we just got one-in-a-thousand unlucky, but more likely something is wrong.

In our particular case we have a good candidate for what that is: we ignored the uncertainties

in vrot. But in other cases, we’d have to pause here and recognize that our model does not

describe the data as well as would be expected if we had chosen the correct model. What

would we do then? A common hack is to arbitrarily multiply all the uncertainties by a large

enough factor that χ2 ≈ dof. However, this isn’t justified. Among other things, in our actual

data set, how do we know that all uncertainties are underestimated by the same factor?

Another variant of this approach is to assume that there is an intrinsic scatter in the

relationship. Phrased in a Bayesian way, we would say that if there is some intrinsic linear

relationship between log10 vrot and log10 Mbary, then the probability of measuring an actual

vrot andMbary depends on true deviations from the linear relationship as well as measurement

uncertainties. That is, even if we had absolutely perfect measurements of vrot and Mbary,

they would not fall on a perfect log-log relationship. This is the approach adopted by Lelli

et al. (2016). The challenge here is to determine how to combine the intrinsic scatter

with the measurement uncertainties. A standard approach is to assume that the intrinsic

scatter as well as the measurement uncertainties are (1) both Gaussian, and (2) add “in

quadrature”, which means that if the measurement variance is σ2
meas and the intrinsic variance

is σ2
int, then the total variance is σ2

tot = σ2
meas + σ2

int (this fundamentally assumes that the

measurement uncertainty and the intrinsic scatter are uncorrelated). Neither assumption

(1) nor assumption (2) need be correct. In addition, even if the assumptions are correct, it

would make sense that the intrinsic scatter depends on, say, the rotation speed, whereas a

typical analysis would make the simpler assumption that the intrinsic scatter, in log space, is

a constant. A better approach, in general, is to look at a formally poor fit as an opportunity

to evaluate your fit: is the model actually a poor description of the data?

This comes back to the philosophy of this course. There is a right way to do things,

but in practice it may not be possible to realize that ideal. All I ask is that you think

carefully about what you’re doing, understand the consequences of your compromises as

best as possible, and report those compromises and their likely consequences honestly in the

papers you write.

So there it is! Even an apparently simple task such as fitting a straight line to data

actually involves many choices. Now it’s your turn: look at the whole data set, which is

given on the website, and do the analysis we’ve discussed here. What do you learn?



Fig. 7.— Marginalized posterior probability density for θ alone. Recall that the probability density

can be anything; it is the total probability that must integrate to unity.



Fig. 8.— Marginalized posterior probability density for b alone. The peak in the marginalized

posterior for b is not the same as the peak in the two-dimensional θ − b distribution. It’s close,

but not identical. This is, in fact, the most general case; strict agreement between the value of a

parameter at the peak of a multidimensional distribution, and the value of that parameter at the

peak of its marginalized distribution, only happens in idealized cases.


