
Equilibrium

When last we left off, we had discussed thermodynamics and statistical mechanics.

From these, we can distill two important principles. One is conservation of energy, which

can be expressed in the following way for a gas with pressure P , temperature T , and

chemical potential µ:

dU = −PdV + TdS + µdN , (1)

where dV is the change in volume, dS is the change in entropy, and dN is the change in

the number of particles. Note that this assumes that, prior to the changes indicated by

the differentials (i.e., prior to changing the volume, entropy, or number of particles), the

gas was in equilibrium. Clearly, the internal energy of a gas doesn’t change if you just let

it sit in an isolated container, but the formula above would predict that it does if the gas

velocities were initially ordered, because the entropy would change. Therefore, only if the

gas is initially in equilibrium does this apply. For that matter, strictly speaking, assigning

a single temperature T to a gas out of equilibrium is troubling!

The second principle is that, again in equilibrium, the classical formula for the

population of a state (including position, velocities, and internal energies) is

N(state) ∝ exp(−Etot/kT ) . (2)

For both these results, it is obviously crucial that the systems be in equilibrium. Indeed,

there are many situations in astrophysics when one makes the assumption of equilibrium.

We now need to delve deeper into what this means.

Ask class: what does it mean that a system is in equilibrium? This is not a trivial

question! One try might be to say that a system is in equilibrium if, in some time-averaged

sense, the properties of the system are time-independent. Or, you could say that a system

is in equilibrium if over a long haul all processes and their reverses are in balance. There

are, however, many different forms of equilibrium, so we should think about some specific

examples. The point of all of this is that analyses are simplified dramatically when

equilibrium can be assumed, so we’ll save ourselves a lot of effort if we can establish that a

system is in equilibrium.

Let’s try an example. Ask class: is a rock on a table in equilibrium? More precisely,

we can ask the ways in which it can be in equilibrium, then determine if it is. Ask class:

what are specific ways in which the rock could be in equilibrium? One is the question of

whether it is moving. It isn’t. Another would be whether it is at a constant temperature.

It may or may not be, but we know that if we wait long enough it will acquire room

temperature, then it won’t change its temperature. A third type of equilibrium is chemical.

If, for example, the rock has a lot of iron in it, then we know if we wait for a very long time



that iron will rust, so in fact the rock is not in chemical equilibrium until that happens.

Yet another type of equilibrium is nuclear. It happens that at low pressures (such as in

everyday life!), the atomic nucleus with the greatest amount of binding energy per nucleon

is 56Fe. Nuclei lighter than 56Fe can fuse to release energy, and heavier nuclei can split apart

to release energy. A typical rock is certainly not in nuclear equilibrium. It contains silicon

and oxygen, which are lighter than iron. In principle, if we were to wait for unfathomable

amounts of time (much more than a googol years!) then the rock’s nuclei would gradually

fuse with each other to form iron, by quantum tunneling, but this ain’t gonna happen any

time soon.

Ask class: is the Sun in equilibrium? It is again helpful to break this down in terms

of different processes that might balance or be time-dependent. For example, Ask class:

is the Sun collapsing or exploding? No, of course! That means it isn’t dramatically out

of hydrostatic equilibrium, which is the balance between gravity and pressure gradients

(and we’ll treat it in more detail later in this lecture). Ask class: is the Sun completely

still? No, there are prominences and flares, and the Sun also vibrates with millions of

modes. Therefore, the Sun is not far out of hydrostatic equilibrium, but it isn’t in perfect

equilibrium either. Ask class: what about temperature equilibrium? The Sun is about

6,000 K at the surface, radiating into a 3 K blackbody, and is about 1.5×107 K in its center.

These temperature differences mean that energy has a one-way flow from hot to cold, so

this is clearly an nonequilibrium situation. Ask class: what about nuclear equilibrium?

Nope, the Sun fails that as well, since it isn’t made primarily of iron!

Our net conclusion is that the Sun is absolutely not in equilibrium. However, we also

know that the Sun isn’t far from equilibrium in some ways. For example, its temperature

doesn’t randomly change by a factor of two over a few seconds! Thus, for some purposes, we

can assume that it is close to equilibrium, and the error is small. This leads to a question

that one should always ask (at least implicitly) when trying to model an astrophysical

system:

What fractional error is introduced by assuming different types of equilibrium?

For example, suppose we assume that for the purposes of figuring out how energy is

transported in the Sun, the Sun is in thermal equilibrium in small regions. One way to

evaluate this is to ask how great a temperature change is sampled by a typical photon

between two successive interactions. In most places in the Sun, a photon goes less than

1 cm before it scatters or is absorbed. If you assume a constant temperature gradient of

about 107 K over the ∼ 1011 cm radius of the Sun, this suggests that the temperature

changes by only 10−4 K in that distance. This is much less than even the 6,000 K surface

temperature of the Sun, so the change in temperature is tiny. Thus, to an awfully good

approximation, the interior of the Sun is in thermal equilibrium. This means that the laws

of thermodynamics work well. However, if you want to know how energy is transported from



the hot interior of the Sun to the cold exterior, it is precisely that temperature gradient

that matters, so you can’t ignore it. If you ask about the corona or chromosphere of the

Sun, photons can travel freely in them (that’s why we see the deeper photosphere), so the

changes in temperature sampled by photons are huge.

These are merely specific examples of a much more general principle of astrophysical

modeling. Remember: all equations you’re likely to use contain implicit assumptions. You

need them to make progress. You therefore need to strike a balance between simplifications

(required so things are simple enough to solve analytically or on a computer) and realism.

Therefore, any time you use an equation or a physical picture, you must know its domain

of applicability and the likely errors you will make by not fully solving the Dirac equation

for everything :). Folded in with this is the fact that measurements of objects are imprecise

and incomplete, and if those uncertainties are greater than the error you make in using a

simplification, then going beyond that simplification is pointless. Astrophysical intuition

is developed gradually, through experience, but some of it consists of calculations of when

you are justified in ignoring certain complications. Eventually, you do enough of these

calculations that when a similar situation arises you don’t have to do the same checks from

scratch.

With that in mind, we will now examine a particular assumption, that of hydrostatic

equilibrium, that is a starting point for the modeling of many astronomical objects.

Dynamic, or hydrostatic, equilibrium.—This means that the object as a whole stays

put. Said another way, the forces acting on any given parcel of gas balance each other.

First Ask class: what would happen if the Sun were far away from this balance? Answer:

it would collapse or expand on the dynamic time scale, which to a decent approximation is

just the free-fall time scale. That, in turn, is roughly 1/
√

GM/R3, or about 1/
√

Gρ. For

the Sun, the average density ρ is about 1 g cm−3, so that’s 1 hour. Since we don’t see

dramatic changes in the Sun on 1 hour time scales, and indeed not on scales of millions of

years (Ask class: how do we know? Fossil, geologic record.), we know that this overall

balance holds to extreme accuracy. Not a good approximation for supernovae, of course,

but even for most pulsators the bulk of the star is in hydrostatic equilibrium.

Now need to quantify what is balancing what. For a given parcel of gas, gravity pulls

down. Ask class: what could oppose gravity? If the pressure gradient (not just the

pressure) is in the same direction of gravity (i.e., more pressure farther down), then this

opposes gravity. Let’s say that we have a parcel of gas with area perpendicular to r̂ of A

and thickness dr. If the density is ρ, then the gravitational force on this is −GMρAdr/r2,

where the negative sign indicates a downward force. This can be written as gρAdr, where

g = −GM/r2 should really be a vector, and of course M is really Mr, the mass interior

to r. The force due to the pressure gradient is P (r)A − P (r + dr)A = dr(dP/dr)A. The

sum of the two has to be zero for force balance, so dr(dP/dr)A + gρAdr = 0, or finally



dP/dr = −ρg (more generally, when spherical symmetry doesn’t apply, ∇P = ρg; in the

previous case, g = −gr̂). Ask class: does this have the right units, limits? This is the

equation of hydrostatic equilibrium, and is one of the four fundamental equations of stellar

structure. Ask class: how would this be modified if a star were rotating rapidly? Have

to include centrifugal terms. In general, need force balance for dynamic equilibrium. In

the case of stars (and most other things in the universe), this translates to gravity vs.

everything else, because gravity is universally attractive and hence other forces are needed

to balance it.

It is often helpful to write such equations in terms of the mass instead of the radius.

This formulation, in which we follow the mass, is called the Lagrangian formulation. Then,

since the mass in a spherical shell is dMr = 4πr2ρdr, the equation of hydrostatic equilibrium

is dP/dMr = −GMr/4πr4.

In the next several classes we will examine a number of aspects of gas physics and fluid

dynamics. It is helpful to remember that many equations in fluid mechanics are really

expressions of a single master equation, that many of you may have seen:

F = ma . (3)

Yep! It’s just Newton’s law. At first glance, the particular equation may look a lot different

from this. For example, the Navier-Stokes equation (which we will not, repeat not use in

this class!) is

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇P + η∇2v + (ζ +
1

3
η)∇(∇ · v) . (4)

This looks thoroughly nasty and not at all related to F = ma! However, that’s misleading.

If you wanted to figure out the acceleration of a parcel of gas, you would of course want to

add up all of contributions to the force. This might include pressure gradients, divergences

in the velocity field, the effects of viscosity, and so on, and that’s what all the terms on

the right are doing. You also have a choice about whether to evaluate F = ma in a frame

moving with the fluid (the Lagrangian formulation) or in a frame fixed in a coordinate

system (the Eulerian formulation). A key in astrophysics is being able to decipher the

physical meaning of equations, rather than just memorizing them or running away in terror

:), and in this case the equation just says that fluids move based on the forces on them.

Anyway, let’s now consider an applications of hydrostatic equilibrium. First, let’s think

of the Earth’s atmosphere. The air has a nonzero temperature, so it has a pressure. If the

air is roughly an ideal gas (our first approximation) then its pressure is P = nkT . Let’s

assume that the temperature is constant (our next approximation). We’d like to know how

the density of the atmosphere varies with height. We therefore ignore variations in other

than the vertical direction (our third approximation). In the vertical direction, the equation



of hydrostatic equilibrium becomes

dP/dr = −ρg(r) . (5)

Here ρ = n〈m〉, where 〈m〉 is the average mass of an air molecule. Ask class: what

reasonable approximation can we make about g(r)? We can assume it is constant. That’s

because there is little mass in Earth’s atmosphere, and because we are most interested in

heights much smaller than the radius of the Earth. Then we have

d(nkT )/dr = −n〈m〉g
(1/n)dn/dr = −〈m〉g/kT

n ∝ exp(−〈m〉gh/kT ) ,

(6)

where h is the distance above the reference height. If we put in T = 300 K and

〈m〉 = 5 × 10−23 g, roughly the mass of nitrogen or oxygen, we find that the density drops

to 1/e of its maximum in a height h ≈ 8 km (this is called a scale height), which is about

right. Our approximations were justified. If we tried to extend this too far, however, we

would find that the temperature is not constant because of solar particle heating of the

upper atmosphere. Still, it’s not bad.

Ask class: suppose we were to apply this analysis to the scale height of hydrogen on

the Moon. Would we have to adjust it in any way? Yes, because the Moon has 1/6 of the

surface gravity of the Earth, and hydrogen has a mass 1/16 of oxygen, so the scale height

would be roughly 800 km, too close to the 2000 km radius of the Moon for the assumption

of constant gravity to be correct.


