
Hydrodynamics

Although most fluid in the universe is not dramatically out of equilibrium per se (in the

sense that the fluid will change its properties dramatically in a dynamical time scale), there

are many cases in which the fluid is not static (i.e., in which the fluid is moving). The study

of moving fluids is hydrodynamics.

There are a small number of equations that form the basis of hydrodynamics, and

that’s what we’ll focus on in this lecture. Before giving the equations, however, here is their

physical meaning. Note that we are assuming nonrelativistic fluids, so matter and energy

are conserved separately.

• The mass of a fluid element is conserved.

• The energy of a fluid element is conserved.

• Fluid elements move in response to forces on them: a = F/m. This is the conservation

of momentum.

When we talk about “fluid elements”, we are imagining that for short times and

distances we can figuratively slice up the fluid into little chunks and examine their motion.

The motion of the fluid as a whole is then composed of the motion of the chunks, in the

same way that in calculus a curve is built up of infinitesimal segments.

Since we’re thinking about the motion of individual fluid elements, we have to be a little

careful when we think about their motion. If one talks about the velocity field of a fluid, it

is the velocity at a given instant of every point in the fluid. That is, this is the velocity as

related to some fixed coordinate system in space. However, we are following fluid elements,

which move in space. Therefore, when we think about the velocity of fluid elements, we

must include both the changes in the velocity due to forces at a given location and the

changes in velocity due to the fact that in some time dt the fluid element has moved, so the

velocity field changes with the change in location. Specifically, this means that the total

derivative in time of the velocity (which is the one relevant for comparison with F/m, for

example) is

dv/dt = ∂v/∂t + (v · ∇)v . (1)

In Cartesian coordinates, this says

dv/dt = ∂v/∂t + vx(∂v/∂x) + vy(∂v/∂y) + vz(∂v/∂z) . (2)

This kind of change from a fixed frame to a moving one (or, an Eulerian description to

a Lagrangian description) also enters when describing the change in other quantities, such

as the entropy.



Now let’s turn the three conservation principles into equations. I’m following Landau

and Lifshitz, Fluid Mechanics, here.

Conservation of mass.—In order to show you how a derivation like this proceeds, we’ll

give details. Consider some volume V0 of the fluid. We will think here about a volume

that is fixed relative to a system of coordinates. Ask class: if the density is ρ, which may

depend on position, what is the mass of fluid in V0? It’s simply
∫

ρ dV , over the volume

V0. Now suppose that we define an element of surface area bounding the volume by dS,

where dS is positive along the outward normal to the surface element. Let the fluid velocity

at that point be v. Ask class: what is the rate (mass per unit time) flowing through this

surface element? It’s ρv · dS, defined so that this is positive if fluid flows out of the volume,

and negative if fluid flows into the volume. Ask class: what, then, is the total mass flowing

out of the volume V0 in unit time? It is

dM/dt =
∮

ρv · dS , (3)

where the integral is over the whole surface. Now, the decrease per unit time in the mass is

−
∂

∂t

∫

ρ dV . (4)

Setting these two equal we have

∂

∂t

∫

ρ dV = −

∮

ρv · dS . (5)

Ask class: how can we transform the surface integral into a volume integral by Green’s

formula? It’s the integral of a divergence over the volume, so
∮

ρv · dS =
∫

∇ · (ρv)dV (6)

and therefore
∫

[

∂ρ

∂t
+ ∇ · (ρv)

]

dV = 0 . (7)

This must be true for any volume, so the integrand must be zero and we end up with

∂ρ

∂t
+ ∇ · (ρv) = 0 . (8)

This statement of mass conservation is called the equation of continuity. What does it

mean? It simply says that the change in the mass of a volume in space equals the net

amount of mass that flows into or out of the volume! Pretty straightforward. You can

write something similar for any quantity that is conserved. For example, suppose you want

to know how the total energy in a fixed volume changes. The change must equal the net

amount of energy that flows into or out of the volume. Mathematically, this is expressed as

the divergence of a quantity (you can think of any nonzero divergence as a source or sink



of the appropriate quantity). Note, however, that if a quantity is not conserved then you

cannot write an equation of this form. For example, consider the number of photons in a

volume. This can change spontaneously: think of an atom in an excited state emitting a

photon. Therefore, the number of photons in a volume can change even if no photons flow

into or out of the volume. If a quantity is conserved, then the flow is called a current, and

the general form is
∂quantity

∂t
+ ∇ · (current) = 0 . (9)

For fluid flow, ρv is called the mass current, or mass flux density.

Conservation of momentum.—This is the a = F/m bit. Consider a particular element

of fluid. As it moves it is subjected to accelerations because of interactions with the fluid

around it. When we discussed hydrostatic equilibrium, we argued that this acceleration

would be caused by pressure gradients:

ρdv/dt = −∇p . (10)

Ask class: how can we check if the negative sign is correct? It says that the acceleration

should be opposite to the direction of the gradient of the pressure, i.e., the fluid should

accelerate away from higher pressures. That makes physical sense.

Ask class: should this equation refer to changes in velocity at a fixed position in

space, or changes in the velocity of a moving fluid element? This refers to a moving fluid

element, which makes sense when you compare F = ma for, say, a falling object, which

clearly follows the object. Therefore, to relate it to the velocity field fixed in space, we need

to make a transformation:

∂v/∂t + (v · ∇)v = −(∇p)/ρ . (11)

This is called Euler’s equation. Note that this is just the fluid component of the acceleration,

which must be added to any other contributions to the acceleration. For example, if there

is a gravitational field g, this must be added to the right hand side. You can confirm that

the condition dv/dt = 0 (no acceleration) gives the equation of hydrostatic equilibrium in

this case.

In writing the equation like this we have sneakily introduced a simplification. We

have assumed that there are no processes of energy dissipation or transfer in the fluid.

Therefore, we have assume that there is no viscosity and no conduction. We also assume

that there are no particles exchanged between fluid elements. These assumptions constitute

the assumption of an ideal fluid, and we’ll stick to them unless forced to do otherwise :).

The reason that, say, viscosity could make a difference is that, colloquially, it introduces

“friction” between fluid elements that changes the acceleration. Putting this in gives the

Navier-Stokes equation instead of the Euler equation.



Ask class: if there is no heat exchange and no particle exchange, what can be said

about the entropy of a fluid element? It’s constant; well, it’s constant if we assume that each

fluid element is in thermodynamic equilibrium at any given moment, which is a standard

assumption and is correct if thermodynamic processes are fast compared to fluid motion.

Motion with constant entropy is called adiabatic motion. Therefore, we have in adiabatic

motion that

ds/dt = 0 . (12)

Here we let s represent the entropy per unit mass.

Now let’s go on to our final equation.

Conservation of energy.—Assuming no transfer of energy or particles, the energy of a

fluid element remains constant. Since the mass is also conserved, the energy per mass also

remains constant. Ask class: if we ignore internal structure of the molecules that comprise

the fluid, what are the contributors to the energy? Kinetic energy, or bulk motion, is one,

and internal energy is another. If the fluid is in a gravitational field, then potential energy

is another contributor. Ask class: what is the kinetic energy per unit mass? It’s 1

2
v2

(non-relativistic, as always). Call the internal energy per unit mass w, the enthalpy. Then

if the fluid is not in a gravitational field, or is always at the same gravitational potential,

we find that along the path of a particle

1

2
v2 + w = constant. (13)

If instead the fluid is in a gravitational field,

1

2
v2 + w + Φ = constant (14)

where Φ is the gravitational potential energy per unit mass. For example, in a constant field

with acceleration g in the −z direction, 1

2
v2 + w + gz =constant. These energy conservation

equations are called Bernoulli’s equation.

An alternate way that Bernoulli’s equation is sometimes phrased is in terms of

streamlines. Suppose that the flow is steady, meaning that dv/dt = 0 at any point in the

flow. Now define a streamline as a curve that is everywhere in the direction of the velocity

vector at that point. You can represent this by

dx/vx = dy/vy = dz/vz . (15)

In steady flow, streamlines correspond to the paths of fluid elements. Therefore, for steady

flow, we have 1

2
v2 + w + Φ=constant along a streamline (the constant typically takes

different values for different streamlines, though). If the flow isn’t steady, then streamlines

don’t necessarily correspond to the path taken by an individual fluid element. Streamlines

can’t cross each other in steady flow; if they did, there would be strong interaction and

time-dependence in the fluid.



Let’s conclude by discussing an astrophysical application of fluid dynamics: convection.

Convection involves the large-scale motion of fluid and transport of energy by that motion

(as opposed to energy transport by motion of individual photons or electrons).

Suppose you have some element of fluid at a higher temperature than the surroundings.

Ask class: for pressure balance with its surroundings, what does this mean about the

density? Density is less, so buoyancy effects cause it to rise. Now it’s up further, so the

density and pressure of the surrounding medium is less. Ask class: if the pressure is less,

what happens to the fluid element? It expands until the pressure is in equilibrium with its

surroundings. So, Ask class: what happens to its density? The density drops. Ask class:

what is the condition for the element to keep rising? The new, adjusted density needs to

still be less than the density of the surroundings, so that buoyancy effects continue to cause

the fluid element to ascend. Ask class: what does that mean about the new temperature

of the element compared to the temperature of its new surroundings? It means that the

temperature of the element has to be greater than the temperature of the surroundings.

Now let’s think about what this means for energy transport. Suppose that the fluid

element rises much more slowly than the speed of sound, so that pressure balance is

maintained, but much more rapidly than the time necessary to have heat leak out of (or

into) the fluid element. Then the total heat in the fluid element is conserved, and if we can

ignore viscosity (which we usually can for this purpose), it means that the element moves

adiabatically. This means that the entropy is conserved, so that the temperature gradient is

fixed for a given pressure gradient. Call this gradient ∇Tad. Thus, for a given fluid element

with an initially small perturbation, we know how its temperature will change as it rises.

Given this, Ask class: what is the condition on the gradient of the temperature of

the surrounding medium such that the fluid element will continue to rise once perturbed

upwards? Since the surrounding temperature has to continue to be smaller than the

temperature of the fluid element, it has to drop with increasing height faster than the

temperature of the element drops. Therefore, the temperature gradient ∇T must satisfy

∇T > ∇Tad. This is the Schwarzschild criterion for convection, brought to you by the same

person who came up with the Schwarzschild spacetime for uncharged, nonrotating black

holes. Another way to phrase this criterion is that for convection to occur the entropy

per unit mass must decrease in the outward direction (against gravity), because if a fluid

element has higher entropy than its surroundings it will rise. This occurs until enough heat

can diffuse out of the element, at which point energy transfer has occurred. In real stars,

when convection occurs it is so efficient that the temperature distribution in the star adjusts

itself so that convection barely occurs.


