
The Virial Theorem

In this lecture we will discuss the virial theorem, which relates the kinetic energy (or

temperature) of particles to their potential energy. This will give us, in a surprisingly simple

way, some deep insight into the average temperature of stars.

As initial motivation for the theorem, suppose that we consider particles that are non-

interacting and moving in circular orbits. What relation is there between the kinetic and

the potential energy? For a particle of mass m in a circular orbit of radius r around a mass

M , the potential energy is V = −GMm/r and the speed is v =
√
GM/r so that the kinetic

energy is K = 1
2
mv2 = 1

2
GMm/r. Therefore, 2K + V = 0, where K is the kinetic energy

and V is the potential energy. This means that the total energy is K + V = V/2 < 0.

As stated, this may not seem that interesting or relevant. For example, if we consider

instead an eccentric orbit then at most places in the orbit it is not true that 2K+V = 0, and

even if it were it’s not obvious what that would portend. But if we look a little deeper we find

that this already tells us something highly important about gravitation: when things lose

energy, they speed up and increase in kinetic energy, which you can think of as an increase

in temperature. That means that gravitationally bound systems have, in this sense, negative

specific heat! This is a fact of great importance to understanding such systems. This form of

the theorem can be shown to apply as a time average for any system with bounded motion

(see, e.g., Landau and Lifshitz).

But beyond that, what can we say about the relation between the kinetic and potential

energy? As derived in the appendix (from our textbook, but the result is from the 1800s), a

more general statement is that for any system in which the interaction force scales like 1/r2

for distance r (e.g., gravity), we have

2K + V =
1

2

d2I

dt2
, (1)

where I is the moment of inertia of the system, I =
∑

imir
2
i , for some collection (indexed

by i) of masses mi at positions ri. Those masses could be individual mass elements of a star,

or individual stars in a cluster, or anything like that.

But it probably still isn’t clear why this is a big deal, so let’s do the following. Instead

of worrying about the theorem at a particular instant, average the terms over a long time.

Here “long time” means “long relative to a characteristic dynamical time associated with

the system”. So, that could be the orbital time, or the free-fall time, or something like that.

Also, let’s assume that we have a system that is gravitationally bound and not exploding

or collapsing; thus, for example, we wouldn’t be thinking about a supernova. Then, over a

long time, the average of 1
2
d2I
dt2

has to be zero. Why? Because if it weren’t, then with time



the moment of inertia would increase or decrease without bound, and thus (since the mi are

fixed in the definition of I), the size of the system would go to infinity or zero.

This means in practice that the virial theorem implies 〈2K〉+ 〈V 〉 = 0, where the angle

brackets mean an average taken over many dynamical times.

Still not convinced that this is useful? Fine, then, let’s use it to calculate the average

temperature in the Sun.

We’ll do that by realizing that the thermal energy per particle takes the role of the

kinetic energy, and that the energy should be about kT per particle. The total gravitational

potential energy of the Sun, to a lowest-order approximation, is GM2
�/R�; as we noted in

the last class there is a correction factor because the Sun is actually centrally concentrated,

but that’s what we’ll take for our rough estimate. The number of particles in the Sun is

equal to the mass of the Sun divided by the average mass per particle, or M�/m. Again

doing a rough-and-ready calculation, let’s say that m = mp, the mass of the proton. Then

the time-averaged virial theorem becomes

GM2
�/R� + 2k〈T 〉(M�/mp) = 0 , (2)

where the angle bracket reminds us that this relates to the average temperature in the Sun.

Solving gives 〈T 〉 = 1.15 × 107 K, although to our level of precision we should really say

∼ 107 K.

But this is amazing! Detailed models of the Sun do indeed suggest that the interior has

a temperature around 107 K, and we got that answer by very basic considerations combined

with the virial theorem. Sure, our exact value is suspect, but given that the photosphere

has a temperature of about 6000 K it is very far from obvious that the interior, on average,

has to be more than 1000 times hotter. Similarly (and you can think about this), you can

figure out the gravitational potential of a galaxy by seeing how fast its stars move. You

can also apply the virial theorem to other systems. For example, here we assign the role of

kinetic energy to the thermal energy in the Sun. If the star is instead a white dwarf, then

the temperature is much less than what we would get from the theorem. That’s because it is

actually the degeneracy energy that matters, not the thermal energy, but using the theorem

tells us the properties of the interior matter.

However, now we need to ask: have we ignored important things? In our calculation, we

considered only gravitational forces. Are we being sloppy by not including other forces? Ask

class: what other contributions might come in? The other basic forces are the strong and

weak nuclear force, and the electromagnetic force. The strong and weak force are important

only on very small length scales (on the order of 10−13 cm, which is approximately the radius

of a proton). Thus these really can be ignored.

But what about the electromagnetic force? If we focus on electrostatic attraction or



repulsion, then the force scales with separation r like 1/r2, just as gravity does. Moreover,

the electrostatic force between an electron and a proton (for example) is overwhelmingly

greater than the gravitational force (by almost 40 orders of magnitude!). However, we can

have positive and negative electric charges; we cannot have positive and negative masses.

This means that all big things in the universe (say, the mass of an asteroid or larger) are

effectively electrically neutral in bulk. This means that it is usually okay to assume that

gravity dominates on large scales.

Under what conditions will the moment of inertia term in the virial theorem play a

significant role? It will only be significant when the bulk velocity is a significant fraction of

free-fall (if the velocity is ε times free-fall, the correction is of order ε). Do we have to worry

about this? Again, it depends on the accuracy you want. I = mr2 for single particle, so Ï =

2mṙ2 + 2mrr̈. For radial free-fall, ṙ = −
√

2GM/r, so 1
2
Ï = 2GM2/R−GM2/R = GM2/R,

which is comparable to V or K. Therefore, the moment of inertia term is only comparable

to the other terms if ṙ is comparable to free-fall.

For our next question, we can ask whether we have to worry about relativistic corrections,

given that so far we have used only Newtonian physics. Let’s think specifically about whether

we need such corrections for the outer portion of the Sun.

For this, we can recognize that special relativity comes in via the Lorentz factor γ =

(1− v2/c2)−1/2 = (1− β2)−1/2, where v is the speed of the particles, c is the speed of light,

and β ≡ v/c. γ = 1 is Newtonian, and we see that γ deviates from 1 by of order β2 to lowest

order. From the virial theorem, the characteristic thermal velocity will be about equal to

the Keplerian orbital velocity. That would be
√
GM/r, or v = 4.3 × 107 cm s−1. Since

c ≈ 3 × 1010 cm s−1, the ratio is then ∼ 10−3 and thus the fractional correction is ∼ 10−6,

which is also of the order kT/mc2 for particle mass m. That can be neglected for the Sun, but

if you do the same exercise for more compact stars it can be a larger correction; for example,

for neutron stars the equivalent speed (“equivalent” because we actually have degenerate

matter and quantum weirdness) is maybe half the speed of light. In the center of the Sun,

sharing of energy between electrons and protons means that T = 1.5×107 K for both, which

turns out to mean 0.3% corrections for electrons. This can be even higher for more massive

star late in their evolution, so you’d want to keep an eye out for such corrections if you need

a precise answer.

Mean Molecular Weights

Before proceeding further, we need to define a quantity called mean molecular weight,

which is often denoted by µ. It is simply the average mass per particle (or subset of particles),

in units of a proton rest mass. For example, suppose we have only neutral atomic hydrogen.

The mean molecular weight is essentially 1, because for each particle (an atom) there is



roughly one proton mass (the electron is negligibly massive). Now suppose we have fully

ionized atomic hydrogen. The number of particles is now doubled, since where before we

had just a single atom, now we have a proton and an electron. The mean molecular weight

is then 1/2. The mean molecular weight per electron is µe = 1, because for every electron

there is one proton. As yet another example, suppose we have pure neutral helium. Here

we have four proton masses (really two proton and two neutron masses, but that’s close)

per atom, so µ = 4. If the helium were completely ionized, we’d now have three times as

many particles (one nucleus plus two electrons), so µ = 4/3. The mean molecular weight

per electron is µe = 4/2 = 2.

The use of this comes in different ways: for example, at a given temperature each particle

contributes the same amount of pressure if it’s close to an ideal gas, because then P = nkT .

Thus, for a given pressure the required temperature is greater if there are fewer particles.

Consider fusion inside a main sequence star. Everything is fully ionized, and four protons

(plus four electrons) are converted into one helium nucleus plus two electrons. The net result

is a decrease of pressure, which thus requires that the core heat up.

A Simple Model

Now let’s think about a simple stellar model and see what it can tell us about stars. In

fact, let’s pick something stupidly simple: a star with constant density ρ = ρc(!) that has a

sharp cutoff at the stellar radius R. This is crazy, of course, but it’s easy to calculate and

gives some insight.

The mass interior to some radius r is then Mr = 4
3
πr3ρc. This is true all the way up to

the surface r = R, where Mr = M . Then

Mr =
r3

R3
M . (3)

We now insert this into the Lagrangian form of the equation of hydrostatic equilibrium:

dP

dMr

= −GMr

4πr4
= − GM

4πR4

(
Mr

M

)−1/3

. (4)

The pressure at the surface is zero, so with this as a boundary condition we can integrate to

get

P = Pc

[
1−

( r
R

)2]
(5)

where Pc = (3/8π)(GM2/R4) is the central pressure. This is actually a lower limit to what

the pressure can be in a hydrostatic star. One can also convince oneself that GM2/R4 is

the only combination of G, M , and R that gives units of pressure, so the central pressure



always has to be proportional to that. It is straightforward to verify the virial theorem for

this case. If the pressure is supplied by an ideal gas, P = nkT (where, remember, n ∝ 1/µ),

this implies a central temperature of

Tc = 1.15× 107µ(M/M�)(R/R�)−1 K . (6)

This is actually more reliable than what we got using the simple virial estimate, because

we’re thinking now about the central temperature instead of some “average” temperature.

Appendix: derivation of the virial theorem

So that our notes are self-contained, here we reproduce the derivation of the virial

theorem that is in our textbook.

We start by considering
∑

i pi ·ri, where there are i particles in the system and each has

a radial vector ri and a momentum vector pi relative to some frame of reference. Assuming

nonrelativistic mechanics (which is good for ordinary stars, as we saw above), the time

derivative of this quantity is

d
dt

∑
i pi · ri = d

dt

∑
imiṙi · ri

= 1
2

d
dt

∑
i

d
dt

(mir
2
i )

= 1
2

d2

dt2

∑
imir

2
i

= 1
2
d2I
dt2

,

(7)

because I =
∑

imir
2
i .

Now we consider the same time derivative as before but manipulate it differently. We

start with
d

dt

∑
i

pi · ri =
∑
i

dpi

dt
· ri +

∑
i

pi ·
dri
dt

. (8)

From Newton’s second law we know that dpi/dt = Fi, where Fi is the force on particle i. We

also know that since (again in Newtonian mechanics) pi = mivi, and generally dri/dt = vi,∑
i pi · (dri/dt) =

∑
imiv

2
i = 2K, where K is the total kinetic energy of the system. Putting

this together gives an intermediate result:

1

2

d2I

dt2
= 2K +

∑
i

Fi · ri . (9)

We therefore need to figure out what the last term is. As a first step, we realize that the

force on a given particle equals the sum of the forces from all of the other particles. Thus

we can write ∑
i

Fi · ri =
∑
i,j;i<j

(Fij · ri + Fji · ri) , (10)



where Fij is the force on particle i due to particle j. Newton’s third law says that Fij = −Fji,

so we can write this as ∑
i,j;i<j

Fij · (ri − rj) . (11)

If the force is given by Newtonian gravity, then

Fij = −Gmimj

r3ij
(ri − rj) , (12)

where rij = |ri − rj|, which means that∑
i

Fi · ri =
∑
i,j;i<j

Fij · (ri − rj) = −
∑
i,j;i<j

Gmimj

rij
. (13)

This is simply the total gravitational potential energy V , so we get finally

1

2

d2I

dt2
= 2K + V (14)

as promised.


