
Equations of state, introduction

Our next three lectures will be on another aspect of the microphysics of stars: the

equation of state. In general, the equation of state tells us the pressure as a function of

quantities such as the density, temperature, and composition. The direct utility of the

equation of state comes in the equation of hydrostatic equilibrium: dP/dr = −ρGM/r2 if

we assume spherical symmetry. But as we will discuss, we can also understand more about

the gas in a star, including the ionization fraction, which in turn has important implications

for how energy is transported.

Throughout our discussion we will assume that the matter is in equilibrium. As we

recall from the first lecture, this has many meanings and we won’t, for example, demand

that the matter is in nuclear equilibrium because that would preclude fusion! But we will

assume that locally matter is in pressure equilibrium, thermal equilibrium, and ionization

equilibrium, for example.

Before we go into details it’s useful to check our understanding of everyday states of

matter. Consider in particular air versus water. If you squeeze a container of air you can

reduce the volume easily. That is, the pressure does not increase a lot with increasing

density. Indeed, if you think about an ideal gas, then P = nkT for number density n and

temperature T . In contrast, water is very difficult to compress. In fact, hydraulic lifts are

based on the principle that water is essentially incompressible. Thus for water, the pressure

increases dramatically with increasing density (or if you like, to increase the density of water

you need a lot of pressure).

We will now start considering our equation of state through the lens of thermodynamics.

Our starting point for this will be the chemical potential:

µi =

(
∂E

∂Ni

)
S,V

. (1)

Here Ni is the number of the ith species, and the subscript S, V means that for this com-

putation the entropy S and the volume V are held constant. Thermodynamic and chemical

equilibrium require that if there are reactions that might change the Ni, then
∑

i µidNi = 0.

Photon number is not conserved, which means that µγ = 0. Note that here we’re interested

in reactions that take place fairly rapidly, so things like nuclear reactions (which usually

take years to billions of years) aren’t included. Technically, these reactions mean that the

system is not in equilibrium (as we noted earlier), but this is another example of how we

simplify by dropping small terms. However, we should remember that it is possible to get

to a lower-energy state via these reactions, and that at some point if the reactions are fast

compared to chemical reactions then they must be included.



The dNi are related to each other by particular reactions, so that means we can also

write
∑

i µiνi = 0, where νi are the stoichiometric coefficients. For example, consider the

two-way reaction by which water can be formed or dissociated: 2H2O ↔ 2H2 + O2. This

implies that in equilibrium 2µH2O = 2µH2 + µO2 , which means that 2µH2 + µO2 − 2µH2O = 0

in equilibrium.

From thermodynamics we will now move to quantum statistical mechanics. Suppose

that we have some species of particle (e.g., an electron, or an ion, or a photon, or whatever).

Assume thermodynamic equilibrium at temperature T , and say that the particle has chemical

potential µ, momentum p and kinetic energy at that momentum E(p), and that if the particle

has internal structure (e.g., an atom with different electronic configurations) that the internal

energy of the particle relative to a reference point (e.g., the ground state) is E(state). Then

the distribution function, which is the number of particles expected per volume in six-

dimensional phase space (three dimensions for the coordinate and three dimensions for the

momentum), is

n(p) =
1

h3

∑
states

1

eEtot(state)/kT ± 1
. (2)

Here h is Planck’s constant and Etot = −µ + E(state) + E(p). Note that the energy level

relative to which one determines Estate is a free parameter, but −µ+ Estate isn’t, which can

lead to varying definitions for µ (beware!). For degenerate energy states (meaning states with

the same energy) the distribution function is sometimes written with a gj in the numerator,

which is the number of states having the same energy Ej.

The ±1 in the denominator indicates whether the particle obeys Fermi (for +) or Bose

(for −) statistics. The point is that Fermi wavefunctions (for half-integral spin particles) are

antisymmetric, so they avoid each other and the “occupation number” (the 1/[exp(blah)+1]

bit in the distribution function) is always less than 1 because two identical fermions can’t be

in the same state. Electrons are examples of fermions, as are protons or neutrons or quarks.

Bose wavefunctions (for integral spin particles) are symmetric, and can have occupation

numbers from 0 to infinity. Photons are the best known bosons among the elementary

particles, but there are other examples including the Higgs boson and, more prosaically, any

nucleus with an even number of nucleons (such as helium-4).

The distribution function is in (cm-momentum)−3 units. We usually assume that mo-

mentum space is spherically symmetric (i.e., isotropic), which means that the physical num-

ber density is

n =

∫
p

n(p)4πp2 dp . (3)

In general, the kinetic energy is E(p) = (p2c2 +m2c4)1/2 −mc2. For an isotropic system the



pressure is

P =
1

3

∫
p

n(p)pv4πp2 dp (4)

where the velocity is v = ∂E/∂p, and the internal energy density is

E =

∫
p

n(p)E(p)4πp2 dp . (5)

We will now use this formalism to revisit some system with which we are already familiar,

but from a different standpoint. Our first application will be to “perfect” noninteracting

particles, for simplicity, and we will continue to assume isotropy.

Blackbody radiation. For photons, µ = 0, g = 2 (because there are two polarizations),

E(state) = 0 (because there are no excited states), E(p) = pc, and we use the minus in the

denominator because photons are bosons. The photon number density is then

nγ =
8π

h3

∫ ∞
0

p2 dp

exp(pc/kT )− 1
≈ 20T 3 cm−3 . (6)

The radiation pressure is aT 4/3 and the energy density is aT 4, where a = 8π5k4/15c3h3 =

7.6× 10−15 erg cm−3 K−4.

Monatomic ideal gas. Now let’s think about an ideal gas. Ideal means that the

gas is sparse (i.e., the gas molecules don’t encroach on each other), and we’ll make the gas

monatomic with no internal structure to make things simple. Since the gas is sparse, the

occupation number must be 1/[exp(Etot(state)/kT ) ± 1] � 1, so exp(Etot(state/)kT ) � 1

and thus Etot(state) � kT , where we recall that Etot(state) = −µ + E(state) + E(p). The

assumption of no internal structure means that E(state) = 0, and if the motion of the

particles is drawn from a thermal distribution then the kinetic energy E(p) is typically of

the order of kT rather than being much larger than kT . This means that for an ideal gas

−µ� kT , or µ� −kT . The chemical potential is therefore very negative for an ideal gas.

What?!? How can that make sense? I used to think that the chemical potential for a

given type of particle was the change in energy of a system when you added a particle of that

type. Then µ � −kT would be nonsensical. But what I had missed is that the chemical

potential is the change in energy of a system when you add a particle of your given type and

you keep the entropy and the volume constant. The entropy is proportional to the log of the

number of equivalent microphysical ways to make the same macroscopic system. But if you

add a particle to a sparse system, the number of microphysical states in the system increases

a lot, just because now you have more particles and thus more states. To keep the entropy

the same as it was before the addition of the particle, while also fixing the volume, you have

to decrease the temperature of the system so that there are fewer momentum states for the



particles. This reduction in temperature also reduces the energy of the system, which is how

the chemical potential can be very negative for ideal gases. Just another physics subtlety...

In any case, given that µ� −kT , the ±1 in the denominator of the distribution function

can be neglected. We will assume a nonrelativistic gas for starters, so E(p) = p2/2m and

v = p/m. The number density is then

n =
4π

h3
g

∫ ∞
0

p2eµ/kT e−p
2/2mkT dp . (7)

This can be integrated to find the relation between µ and n, the total number density. This

relation is

eµ/kT =
nh3

g(2πmkT )3/2
. (8)

If you have a state with an energy Ej relative to the reference energy, then with this sim-

plification the equation above would have to be multiplied by eEj/kT on the rhs. Similar

integrations show that P = nkT (big surprise!) and E = 3
2
nkT .

Saha equation. This is thermal ionization. Consider a hydrogen atom with a single

energy level (i.e., it only has a ground state rather than also having excited states), and

consider the ionization reaction

H+ + e− ←→ H0 + χH , (9)

where χH=13.6 eV is the ground state binding energy. The question posed by Meghnad

Saha is then: in equilibrium, what can be said about the abundance of neutral hydrogen

atoms versus ionized hydrogen? In this case, let the reference energy (E = 0) be for the

free electron and proton. The statistical weights are 2 for the hydrogen atom (one when the

electron and proton spins are in the same direction, and when when they are opposite to

each other), and two combined for the proton and electron (again, one where the spins are

in same direction, and when when they are in opposite directions). The number densities

are then

ne =
2[2πmekT ]3/2

h3
eµ

−/kT , (10)

n+ =
[2πmpkT ]3/2

h3
eµ

+/kT , (11)

and

n0 =
2[2π(mp +me)kT ]3/2

h3
eµ

0/kT eχH/kT . (12)

If we were being really accurate, would the actual mass in the third equation be mp + me?

(No, because we’d have to subtract the binding energy. But this is only a correction of

magnitude 13.6/511,000, and can thus be ignored. In the same spirit, the electron mass is

only a 1/1,800 correction and can be ignored here.)



Forming the product n+ne/n
0, we find

n+ne
n0

=

(
2πmekT

h2

)3/2

e(µ
−+µ+−µ0)/kTe−χH/kT . (13)

Given our assumption of equilibrium, µ− + µ+ − µ0 = 0. The numerical factor is about

2.4×1015T 3/2 cm−3. But this equation by itself is not sufficient to determine the abundances

of electrons, protons, and neutral hydrogen, because we have only one equation for three

unknowns. What are reasonable auxilliary conditions? Charge balance implies n+ = n−,

and conservation of nucleons means that n0 + n+ = n, where n is the total number density.

With these extra conditions, the degree of ionization y ≡ n+/n = ne/n is, numerically,

y2

1− y
=

4× 10−9

ρ
T 3/2e−1.6×10

5/T , (14)

where as usual quantities such as ρ and T are referenced to the appropriate cgs unit.

When we look at this equation we see that the ionization fraction for a fixed temperature

goes up when the density goes down. Why is that? This is thermal ionization, so you can

imagine some radiation field pervading the region. The ionization rate per volume, therefore,

just goes like the number density. However, the recombination rate involves two particles,

and hence must go as the product of their densities. Therefore, the recombination rate

increases more rapidly than the ionization rate when the density goes up, and the resulting

ionization fraction goes down.

We always must make sure to use equations only in their domain of applicability! As an

example using the Saha equation, let’s compute the ionization fraction in the center of the

Sun. Using T = 1.5× 107 K and ρ = 100 g cm−3, we find that y2/(1− y) = 2.3. This has a

solution of y = 0.75, so the center of the Sun is 25% neutral (!). This is nonsense, of course.

The resolution is that at such densities, the separation between atoms is much less than the

size of an individual free atom, so the electrons get squeezed up to continuum states and

pressure ionization dominates.

Returning to the Saha equation, and assuming that only thermal ionization matters, we

run into what appears to be a big problem. What we really should have included was all

energy states of the atom. This sum would diverge because there are in principle an infinite

number of finite terms that would have to be summed in this way. This would mean that

all atoms are neutral, all the time. What is the resolution of this apparent paradox?


