
Equations of state: interactions and high density

To this point in our discussions about the equation of state, we have assumed an ideal

gas. Yes, it might be weird (e.g., degenerate!), and we’ve taken quantum statistics into

account, but we haven’t worried about direct interactions between particles. In this lecture,

we’ll worry a little :)

Coulomb interactions: Back when you first learned about states of matter, you were

probably told that there are three: solid, liquid, and gas. The effect we’ve been ignoring that

leads to these states is electrostatic interactions between atoms or molecules. Ask class:

if we have defined some characteristic electrostatic energy Ec, what is a reasonable energy

with which to compare it in order to determine whether it is an important correction?

Since we have previously introduced two energies in this context (the thermal energy kT

and the Fermi energy EF ), these are good comparison energies. If we assume that the gas

is fully ionized and therefore consists, to a first approximation, of a uniform distribution

of electrons plus positive charges concentrated in individual nuclei of charge Z, then the

electrostatic energy between an electron and its nearest nucleus (assumed to be at a typical

distance 〈r〉) is approximately Ec = Ze2/〈r〉. At an electron number density ne, 〈r〉 ∼ n
−1/3
e ,

so Ec ∼ Ze2n
1/3
e . Therefore, the ratio of Coulomb (electrostatic) energy to thermal energy

is
Ec

kT
=
Ze2n

1/3
e

kT
(1)

and the ratio of Coulomb to Fermi energy (which we assume to be nonrelativistic) is

Ec

EF

=
Ze2n

1/3
e

p2F/2me

=

(
ne

Z3 × 6× 1022 cm−3

)−1/3

. (2)

This is not a major correction for most degenerate gases.

Wigner-Seitz approximation: Now we’ll try to do things a bit more carefully. We

will divide our system into spherical “cells”, which at number density n have volume 1/n =

4πr30/3 (where this defines the radius r0 of the cell) and assume that each cell is electrically

neutral because it contains a nucleus of charge +Ze and a uniform sphere of electrons of

total charge −Ze. The total electrostatic energy per electron is then the electrostatic energy

of the electrons with themselves (which is positive), plus the energy of the electrons with the

protons (which is negative). The total turns out to be

Ec/Z = − 9

10

(
4π

3

)1/3

Z2/3e2n1/3
e . (3)

As always we should ask: is this reasonable? For example, is it correct that the energy is

negative? Yes, because this configuration is bound; if the energy were positive it would cause



the system to fly apart. As another question, we could ask: is it correct that the energy

depends directly on density? Yes, because more tightly squeezed means greater electrostatic

binding energy.

Because electrostatic interactions add negative energy, they also decrease the pressure

compared with what it would be with no interactions. For example, in the nonrelativistic

limit,

P/P0 = 1− Z2/3

21/3πa0n
1/3
e

, (4)

where P0 is the degeneracy pressure without interactions and a0 = ~2/me2 ≈ 5× 10−9 cm is

the Bohr radius. We see that n
1/3
e is in the denominator, which means that as the density

becomes higher, the fractional correction becomes smaller. This might not initially make

sense, because from Equation 3 it is clear that higher densities mean larger electrostatic

energies. However, in the nonrelativistic limit, the Fermi energy increases more rapidly with

density than the electrostatic energy (EF ∼ n2/3), so the fractional correction is smaller.

When we do our usual sanity checks we run into trouble. For example, in the limit

ne → 0 we find that P/P0 → −∞. Not good! Another problem is apparent if you ask when

P = 0, which would be the equilibrium state of zero-pressure material. This formula would

predict that the pressure is zero (implying stable matter) at ρ0 = 0.4Z2 g cm−3, or 250 g cm−3

for iron instead of the correct 7.86 g cm−3! When we run into problems such as this it is

good to ask ourselves: how might our assumptions fail at low densities? One issue is that

we assumed uniformly spread negative charges. But for low densities, the electrons cluster

much more towards the nuclei and thus the charge distribution is not uniform. Accounting

for such effects is the basis of Thomas-Fermi or Thomas-Fermi-Dirac models, but that would

take us too far afield.

Formation of crystalline lattice: Ask class: what should we compare when trying

to determine whether a crystalline lattice will form? It is again an energetics issue; when

the lattice energy is large enough compared to the temperature and Fermi energy of the ions

(we’re not talking about electrons at this point), the matter can go from a liquid phase to

a crystalline, solid phase in which the Coulomb energy is minimized. Ask class: When

we’re talking about ions, would we expect the thermal energy or Fermi energy to dominate?

Usually thermal, because the Fermi energy is a factor me/mi lower than for electrons, and

for most densities is small. Therefore, we need to compare (Ze)2/ri, the Coulomb energy,

with kT , the thermal energy. The full calculation is complicated, but one can eventually get

an estimate of the critical ratio using Lindemann’s empirical rule that the lattice will melt

when the mean square fluctuations in the ion position become

〈(δri)2〉
r2i

∼ 1

16
(5)



or more. Full inclusion of lots of stuff shows that the critical ratio Γ between the Coulomb

energy and the thermal energy necessary to crystallize is Γ ≈ 170. This is important in the

late stages of white dwarf cooling; indeed, it delays cooling of white dwarfs because of the

energy released during crystallization.

Let’s use the Γ = 170 value to estimate the melting temperature of iron. For iron,

Z = 26, A = 56, and the typical density of solid iron is about 8 g cm−3. Thus n ≈ 8/(56×
1.7×10−24) ≈ 8×1022 cm−3, or about 10−23 cm3 per atom. That’s about r = 1.4×10−8 cm.

So, (Ze)2/r ≈ 10−8 erg per atom. Dividing this by 170, we get 6×10−11 erg, which when we

divide by Boltzmann’s constant k ≈ 1.38 × 10−16 erg K−1 gives us about 500,000 K! Wow!

What went wrong? The answer is that we used the full, bare charge Z = 26 of the iron

nucleus. In reality, the electrons in inner orbitals shield the iron, so the effective charge is

much less. Therefore, the Coulomb energy is a lot less as well, and the melting temperature

is more like 2,000 K. This is an example of the complexities that can enter into these kinds of

calculations. It’s always a good idea to start off simply, but sometimes you need to include

additional effects.

Magnetic fields: Magnetic fields can affect the equation of state or properties of the

matter in two ways. One is to make a contribution to the pressure: PB = B2/8π. For

example, in the center of the Sun, the ideal gas pressure nkT is about 1017 cgs, requiring

B ∼ 109 G to compete (the magnetic field is nowhere close to that strong). The other

possible effect of magnetic fields to change the opacities significantly. Zeeman splitting can

be seen in laboratories even with extremely weak fields, but to really make a big difference,

the cyclotron energy ~ωc = ~eB/mc has to be comparable to the binding energy of an

electron. This means B ∼ 109 G again for hydrogen, which is only true in neutron stars or

possibly some white dwarfs. Note that for more excited states, in which the atomic binding

energy is reduced, the threshold magnetic field is less.

Higher densities: Let us now think about what happens to the equilibrium compo-

sition of matter as the density increases. Consider a fully ionized gas of protons, neutrons,

and electrons (i.e., at this stage we are not including more complicated nuclei). Ask class:

at low density, what is the equilibrium composition? Just protons and electrons, because

neutrons are unstable. That’s because the neutron rest mass is greater than the sum of the

rest masses of the proton and electron. Ask class: energetically, when would one expect it

to be favorable for neutrons to exist? When the total energy of the electron becomes large

enough that mnc
2 ≤ mpc

2 + Ee, neutrons will be favored. This will occur when the Fermi

energy of the electrons plus their rest mass is large enough; c2(mn−mp−me) ≈ 1.2 MeV, so

that’s what EF needs to be. Ask class: given that electrons, with a mass-energy of 511 keV,

become relativistically degenerate at ρ ∼ 106 g cm−3, at approximately what density would

we expect their Fermi energy to be 1.2 MeV? In the relativistic regime, EF ∼ pF ∼ n1/3, so

the expected density is about ρ ≈ 106(1.2/0.511)3 ≈ 107 g cm−3.



On to neutron drip: But in reality, there are nuclei around instead of just pne.

At low densities, the equilibrium nucleus is 56Fe. As we may remember, this is explained

qualitatively by a competition between nuclear and electrostatic forces. At small distances

the nuclear strong force is much stronger than the electromagnetic force, so the binding

energy increases with more nucleons. However, the strong force has a tiny range (dropping

off exponentially with a typical distance ∼ 10−13 cm), whereas the electrostatic force drops

off only as 1/r2, without any exponential factor. Thus as the nucleus grows in size the

Coulomb energy grows in importance relative to the nuclear energy, and a balance is struck

in equilibrium with iron. We might wonder: since the nuclear force is short-range, why

couldn’t we just make large nuclei a lot denser? Because the (positive) Fermi energy grows

with decreasing separation, which is why there is a maximum density for nuclei (called

nuclear saturation density) when there is no significant external pressure.

Anyway, as the density increases, the increased Fermi energy of the electrons means that,

overall, it becomes energetically more favorable to have extra neutrons, so the equilibrium

nuclei become progressively more neutron-rich. The calculation of the equilibrium nucleus

at a given density is complicated, and revisions occur from time to time. At about ρ =

4 × 1011 g cm−3, when the equilibrium nuclei are things like 118Kr, the outermost neutrons

in the nucleus have zero total energy and hence can “drip” out of the nucleus, producing a

system of electrons, neutrons, and nuclei.

Note: Although it is possible to calculate the equilibrium nucleus at a given density

there is no guarantee that everything at that density will be in that state. That’s good for us,

because otherwise we’d all be lumps of iron! In principle the same is true at high densities,

where it could have important effects in certain circumstances. For example, impurities can

change the conductivity in white dwarfs or neutron stars substantially, although calculations

starting in the early 2000s have suggested that at the immense pressure of the inner crusts

of neutron stars, impurities and dislocations are squeezed out of the crusts and thus neutron

star crusts may be nearly perfect crystals.

Higher densities: Above neutron drip, as the density increases the composition be-

comes more and more neutron-dominated, with some nuclei in a sea of neutrons. When care

is taken to determine the energy of nuclei, including terms such as the surface tension, it is

found that as the density increases the shapes of the nuclei change. (Remember that nuclear

density is 2.7× 1014 g cm−3, so at neutron drip we’re still a factor of a few hundred away).

At the lowest densities of the inner crust we expect spherical nuclei in a tenuous(!) sea of

neutrons. At higher densities we expect elongated line-like nuclei. At yet higher densities,

2-D sheets of nuclei with gaps in between. Then with even higher densities the gaps between

the sheets shrink, then space is mostly nucleons with line-like “holes”, then mostly nucle-

ons with spherical “holes”. This is dubbed the “pasta-antipasta” sequence: meatballs (or

gnocchi), spaghetti, lasagna, anti-lasagna, anti-spaghetti, anti-meatballs (Swiss cheese?).



At about nuclear density, we expect mostly (>90%) neutrons plus equal numbers of

protons and (electrons+muons), where we remember that muons are leptons that are ef-

fectively heavy electrons. There might be additional particles that appear at a few times

nuclear density. At lowest order we might expect new particles when the Fermi energy of

neutrons plus the neutron rest mass-energy is greater than the rest mass-energy of a new

particle. For example, lambda hyperons (which have strange quarks) have a rest mass of

1116 MeV. When we estimate the density at which the total energetic cost of a neutron is

about 1116 MeV, it’s about 1015 g cm−3. That’s pretty high, but it might be reachable,

and the actual needed density will depend on interactions between the new particles and

neutrons/protons/themselves. Any such new components (strange matter, quark matter,

hyperons, kaons, pions, etc.) tend to soften the equation of state, which would mean that

the maximum mass is less than it would have been without the exotica. This, in turn,

means that measurements of the masses (and ideally the radii) of neutron stars can give

us valuable information about the state of the cores of neutron stars. I’m involved in one

project, NASA’s NICER (Neutron star Interior Composition ExploreR) mission, whose goal

and achievement is to measure the radii of some neutron stars with reliability as well as

precision.

Important point: When there is a density-induced phase transition such as this,

in which it is energetically favorable to change composition, the equation of state becomes

“soft”, meaning that the energy density (and hence the pressure) does not increase as rapidly

with increasing density as it had been, so it’s easier to squeeze (assuming that the new

form of matter doesn’t rise rapidly in pressure with increasing density). This has crucial

consequences for a number of systems. For example, in the early universe there was a QCD

phase transition; when matter went from being a quark-gluon soup to being nuclei, the

universe was extra squeezeable and black holes may have formed directly. In principle this

could mean that black holes of a few to a few hundred solar masses could comprise dark

matter in the universe; their formation occurred before big bang nucleosynthesis, so matter

in this form would not interfere with BBN. On the other hand, constraints are strong on

black holes as dark matter; at this stage, about the only window left open is that primordial

black holes with the masses of asteroids (∼ 1017 − 1023 g) could make up most to all of the

dark matter we infer, but outside that mass range the prospects are poor.


