
Stellar Modeling

Okay, let’s solve a star. We will proceed from microphysics to macrophysics, and will

continue to rely on spherical symmetry and lack of rotation.

In principle, to construct a full stellar model we need to specify the total mass and

the composition as a function of a coordinate such as radius (or total mass). Note also

that we are still restricting ourselves to spherical, nonrotating models; we’ll talk in a later

lecture about some of the complexity introduced by rotation. We therefore need to know

the microphysical relations

P (ρ, T,X), E(ρ, T,X), κ(ρ, T,X), ε(ρ, T,X) (1)

(pressure, energy per gram, opacity, and energy generation rate, as a function of the density

ρ, the temperature T , and the composition X). We also need some derivatives of these

quantities. The relations to be satisfied are the fundamental equations of stellar physics.

The structural equations are
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ρ ,
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or their Lagrangian equivalents
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In addition, we need to know the run of temperature with pressure, or
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If the run of temperature assuming radiative transfer
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is less steep than the adiabatic value, ∇rad < ∇ad, then ∇ = ∇rad. If instead ∇rad > ∇ad,

then ∇ = ∇ad. Ask class: why is this true? Because convection brings any super-adiabatic

gradient very close to adiabatic.

Now we need to solve for the structure. We have four first-order differential equations.

For our independent variable we can take either mass or radius, but mass is often more

convenient. We also need to specify the composition. Ask class: how many boundary

conditions do we need to close the equations? Four, for our four first-order ODEs. This is

conveniently expressed as two boundary conditions at the center, and two at the surface.

Ask class: if we take Mr as the independent variable, what are our four dependent variables?

They are r, Lr, P , and T . Ask class: what are boundary conditions at the center? We



have r = 0 and Lr = 0 at the center. The first is obvious. The second occurs because Lr

is the total luminosity generated inside r, which is therefore zero at r = 0 even though the

energy generation rate is maximal there. How about at the surface? ρ = 0, and to a good

approximation T = 0.

Now that we have this setup, can we always solve for structure corresponding to a real

star? No, as it turns out. Consider for example a 10M� star that is composed entirely

of iron. There is no equilibrium solution, because it cannot hold itself up against gravity

(iron doesn’t generate energy by fusion, and this mass is in excess of the Chandrasekhar

limit, so the star would collapse). For that matter, how about a 1 M� star composed of

pure plutonium? That’s not so stable either! Ask class: If there is a solution, is it unique?

No again. The reason turns out to be that the opacity and equation of state of matter is

complicated enough that multiple solutions are possible. However, in practice the solution is

unique, in the sense that only one of the possibilities is realistic. So we’ll assume “practical

uniqueness”.

Therefore, in principle if you’re armed with detailed microphysics then you can construct

a whole star and, for that matter, see it evolve. This is what stellar specialists do (see the

MESA code, for Modules for Experiments in Stellar Astrophysics). But for our purposes we

are more interested in the general structure, so we’ll look at something a bit easier.

Polytropes

Before embarking on full stellar modeling, let’s use a simplification and see how far that

gets us. Let’s assume that the equation of state is polytropic, meaning that the pressure is

a power-law function of the density:

P (r) = Kρ1+1/n(r) . (6)

We talked about this approach in an earlier lecture. The difficulty is that the equation of

state and run of pressure versus density don’t have to satisfy this relation, so in introducing

it we are guaranteeing that we will be self-inconsistent with the full set of stellar structure

equations. Yikes! If we stick to just the hydrostatic and mass equations we’re okay, so we

can just ignore the others. That’s a massive approximation. However, I hope I’ve convinced

you in this course that many times such approximations give us pretty good insight anyway.

This is such a case.

When the polytropic function is put into the equation of hydrostatic equilibrium and

dimensionless parameters are introduced, we end up with the Lane-Emden equation:
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= −θn . (7)

Here the dimensionless coordinates θ and ξ are defined by ρ(r) = ρcθ
n(r) (ρc is the central

density) and r = rnξ, where rn is the scale length, r2n = (n + 1)Pc/4πGρ
2
c . The boundary



conditions reflect the physical constraints. If ρc is the central density, then θ(ξ = 0) = 1.

Spherical symmetry means that dP/dr = 0 at r = 0, so θ′ = dθ/dξ = 0 at ξ = 0. Finally,

if we define the surface as where the pressure vanishes, then the surface must be at the first

zero of θ(ξ). Calling this ξ1, the last condition is θ(ξ1) = 0. Therefore, the total dimensional

radius of the surface is

R = rnξ1 =

[
(n+ 1)Pc

4πGρ2c

]1/2
ξ1 . (8)

Analytic solutions are possible for n=0, 1, and 5, and are given in the book. However,

our primary interest is in n = 3 (a 4/3 power law) and n = 3/2 (a 5/3 power law). Since

neither of those is on our list of analytical solutions, we therefore need to appeal to numerical

solutions.

Numerical solutions

WARNING! WARNING! DANGER WILL ROBINSON! We are now about to discuss

how to solve the Lane-Emden equation numerically. The techniques discussed in our text-

book are generally useful, but remember that the point is to solve the equations quickly and

accurately. If this can be done by a simple, easily-coded algorithm, great! In particular,

you can solve the LE equation easily by the crude technique of solving for d2θ/dξ2, then

updating dθ/dξ and θ as a function of ξ. It works. However, some of the other techniques

are generally useful and can be applied in more complicated circumstances. I know that

there is a strong tendency to simply import your favorite routine from the Web and pound

away at an equation like this, but regardless of how you do it the most important thing is

that it WORKS CORRECTLY! The way you test this is to look at limits, to compare with

analytic solutions, and so on. Here, in the realm of numerics, is a place where you can easily

go slack-jawed and drooling as you gaze vacantly at the screen of scrolling numbers, without

understanding what to expect (I did this for ∼ 2 years while working on my thesis before

finally getting it together!).

So, before looking at some specific methods, let’s brainstorm about how we will know

that our numerical solution is correct. The Lane-Emden equation is simple enough that

much of this will be overkill, but in real applications you can easily get bitten by apparently

minor errors. A good approach is to think of any problem as a cockroach; it probably isn’t

the only one around, and if you ignore it you’ll have much bigger problems later! Some ways

to check are:

(1) Compare with exact analytical solutions. If these exist (as for the L-E equation), this is

a powerful check. When you do this, make sure that the level of agreement is in line with

what you expect. If you expect 0.01% agreement and you get 0.1% agreement, maybe the

difference is benign or maybe it’s an indication of a deeper problem.



(2) Look at limiting expansions. For example, you can get a ξ → 0 expansion for θ. Similarly,

you can go through more general central expansions for Mr, P , Lr, and T . Even when an

exact analytical solution is impossible, first order expansions are often easy.

(3) Check the results against your intuition. When you increase x, should y go up or down

(even if you don’t know by how much)? Should there be a limit to a particular quantity,

and does your numerical answer fit within that? Is the dependence likely to be y ∝ x2 or

y ∝ x3? Any deviation from your expectations should be tracked down carefully.

(4) If possible, use visualization software to look at the results. This may allow you to see

things you can’t from tables of numbers.

(5) Double or halve your resolution to see whether the results change significantly. If not,

at least you’re numerically stable. If so, you may be dealing with a resolution effect. When

changing resolution and checking against a known answer, make sure that your convergence

is as you expect. For some methods, the error should go as your step size squared; for others,

as the step size to another power. If the convergence is different than you expect, find out

why!

(6) Check with previous numerical results. Depending on your problem, many people may

have looked at variants before. No doubt they lacked your brilliance and deep intuition, but

at least you can see if they got the same answer you did!

Now let’s talk about some general categories of numerical solution approaches to differ-

ential equations.

Shooting methods.—These methods (generally, but also in our specific case) involve

starting at one end of a domain where the solution is known, then integrating to the other

end where the solution is not known. The simple integrator I mentioned above does this,

and it is the basis of Runge-Kutta integrators as well. If you apply RK integration to our

problem, then you have as an independent variable ξ and as dependent variables θ, θ′, and

θ′′. Then, you integrate away with some step size h and weightings as determined in the RK

method. The fourth-order RK method is the most commonly used, but others are available.

A comment on this. RK integrators are fast, stable ways to solve many differential

equations. However, whether you want to use them depends on the circumstance. Just as

you wouldn’t use an adaptive Reimannian routine to integrate a simple, smooth function

(where a trapezoidal rule or even a rectangular integrator will do just as well and be easier

to code), you shouldn’t necessarily stampede straight for an RK. The reason is that the

complexity of coding, although not much, introduces a small but finite error probability,

which you have to weigh against the gains.

A last comment about shooting methods is that if the equations to be solved are some-

what unstable, shooting methods can err grievously. A place to be careful about that in



the LE case is at the surface of the star, where the mass and density are small and larger

errors are the result. It’s not that bad, really, but some stiff differential equations are not

amenable to shooting methods for this reason. Numerically, one way to tell if your shooting

methods are good or bad is to try very slightly different initial conditions, or to change your

resolution somewhat. If the solution at some point changes drastically, you’ve got problems.

Fitting methods.—One way around this potential problem is to start a solution at both

ends of the region, then try to match them in the center. This is called a fitting method,

and it has similarities to root-finding using the Newton-Raphson method. Recall that in

that circumstance, you guess at the location of the root, then correct using the value of the

function and its first derivative. Here, suppose that we define x ≡ ξ, y ≡ θ, and z ≡ dθ/dξ.

Integrate outward from x = 0 and inward from some x = xs, which is your first guess as

to where the surface is (therefore y(xs) = 0, and you also need to compute zs). Compare

the two solutions at some fitting radius xf . Barring supernaturally good intuition on your

part, the solutions won’t match at xf . The idea, then, is to correct one’s guess in the way

described in the book.

In more detail, let us define Y (xs, zs) = yi(xf )− yo(xf ) and Z(xs, zs) = zi(xf )− zo(xf ).

Continuity will eventually demand that Y = Z = 0. Now see what happens when xs is varied

by δxs (keeping zs constant) and when zs is varied by δzs (keeping xs constant). This will

produce changes in both Y and Z. You can therefore calculate numerical partial derivatives:

∂Y/∂xs, for example. You then expand a first-order Taylor expansion for Y (xs + ∆xs, zs +

∆zs) (and similarly for Z). Since you want Y = Z = 0, you set this Y (xs + ∆xs, zs + ∆zs)

to zero, getting finally two linear equations for ∆xs and ∆ys(
∂Y

∂xs

)
∆xs +

(
∂Y

∂zs

)
∆zs = −Y (xs, zs) (9)

and (
∂Z

∂xs

)
∆xs +

(
∂Z

∂zs

)
∆zs = −Z(xs, zs) (10)

Solving for xs + ∆xs and zs + ∆zs, you iterate to a solution. The same principle can be

applied to the real equations, in which (since it’s a fourth-order differential system), four

quantities must be specified (e.g., P and ρ at both the center and the surface). In this case,

again you want to ensure continuity of quantities that must be continuous. This includes the

pressure (otherwise you get infinite acceleration) and mass, but not density, because having,

e.g., air on lead is fine!

Relaxation (“Henyey”) schemes.—Another approach, which is in a sense a logical ex-

tension of the previous one, is a relaxation scheme. As a particular example, suppose you

have the second-order system

dy

dx
= f(x, y, z) ,

dz

dx
= g(x, y, z) (11)



with boundary conditions on y and z specified at the endpoints of an interval x1 ≤ x ≤ xN :

b1(x1, y1, z1) = 0 , bN(xN , yN , zN) = 0 . (12)

In the usual case we assume all the xi are specified (this is different from the Lane-Emden

case where ξ1 had to be determined, but we’ll get to that in a second). The differential

equations can then be replaced by difference equations

yi+1 − yi
xi+1 − xi

=
1

2
(fi+1 + fi) ,

zi+1 − zi
xi+1 − xi

=
1

2
(gi+1 + gi) . (13)

We then make guesses at the correct yi and zi. These won’t satisfy the equations, so we

make corrections yi −→ yi + ∆yi, zi −→ zi + ∆zi, plug these into the equations again, and

expand to first order (see book for the result). We then end up with equations for each of

the i grid points, and can put these in the form of a matrix equation

M ·U = R , (14)

where U has the desired quantities ∆yi, ∆zi, R contains the boundary conditions, and M

is the coefficient matrix that comes from linearizing the difference equations. Details about

this are in the book. As with the fitting methods, after one round the yi and zi are corrected,

hopefully we’re closer to the answer than we were before, and the scheme is iterated. This

can be a fast and rigorous way to solve equations, but nothing is guaranteed: in particular,

if the initial guess is far enough off, the subsequent corrections may land the solution into

some local minimum instead of the true solution.

If you don’t know one end of the grid (as in the Lane-Emden problem), a way to deal

with this is to define a variable x = ξ/ξ1 = ξ/λ, so that the grid now goes from x = 0 to

x = 1. This introduces another variable (λ), but also increases the number of boundary

conditions (now θ = 0 at x = 1 in addition to y = 1, z = 0 at x = 0), so the system of

equations is closed.


