
Bound-Bound and Bound-Free Transitions

Initial questions: What is the role of atomic lines and edges in astronomy? What

are some of the subtleties involved in identifying lines and edges, and drawing physical

inferences from them?

From general issues of transition rates we’ll move to specifics. As before, we’ll start out

with qualitative issues, then we’ll actually do a derivation of the bound-bound oscillator

strength for hydrogen, to see how things work in detail.

There are two types of atomic transition: one in which an electron moves from one

bound state to another (bound-bound transitions), and one in which an electron moves

from a bound state to an ionized state (a bound-free transition). Ask class: qualitatively,

what effect does this have on a spectrum, say if these transitions absorb a background

continuum? A bound-bound transition is between two sharply defined states of energy,

hence it is significant only over a small range of energies. Thus, bound-bound transitions

give lines: potentially large changes in the specific intensity, but over a narrow energy

range. A bound-free transition is not sharply defined in energy, since in principle the ionized

electron can have anywhere from zero energy (if it was barely ionized) to a large energy (if it

was ejected with a large kinetic energy). There is a minimum energy, that required to ionize

the electron in the first place. Therefore, the characteristic of a bound-free transition in a

spectrum is an edge: no absorption below some energy, then a sharp onset in the absorption

above that critical energy. As we’ll see, the absorption decreases above the critical energy.

Ask class: why, do they think, is it that lines and edges have such a fundamental role

in the understanding of astronomy, whereas although continuum spectra are useful they give

much less certain interpretations? The key is that line and edge spectra have very precisely

defined special energies and their interpretation is clearly atomic (or molecular in some

cases). Therefore, the starting place is known, and deviations (redshifts, line broadening,

etc.) can be interpreted in terms of the astrophysics. It is amusing that in 1835, Augustus

Comte (a positivist philosopher) used the composition of stars as an example of something

that could never be known. In his lifetime, however, spectroscopy was already being used

for that very purpose.

In practice, however, there are difficulties to surmount. Ask class: If handed a

spectrum that has a number of lines and edges, how would they go about learning things

from it? The first step is to identify the transitions responsible for those lines and edges.

Ask class: how can this be done? In principle, one has a list of rest-frame line and edge

energies, then one “simply” shifts these until they match the spectrum. This is even done in

practice, but sometimes there are complications. For example the spectrum of absorption

lines from a quasar (typically at high redshift) can include lines from intervening clouds at



several redshifts, so there is a blend one must disentangle. In addition, when high redshifts

are involved or there are lots of lines, the correct identification isn’t always obvious. One

reason that, e.g., the doublet line for Mg II is often used is that it has specific line ratios

that make its identification more secure.

Anyway, suppose that you’ve managed to identify the elements and transitions

responsible for each line and edge. Ask class: how do you then proceed to deriving

physical information about the system? This is where the information content of the lines

and edges is remarkable. In the next class we’ll go over line broadening in particular, but

the point is that if you know the energies, then the line strength give you lots of clues as to

the temperature, density, composition, magnetic field strengths, and many other things.

You do have to be careful. In the early part of the 20th century, people looked at stars,

particularly the Sun, and were tempted to conclude that it was mainly made of heavy

metals such as iron. After all, most of the lines were due to metals. However, in her thesis

work Cecilia Payne showed that it isn’t so; the Sun and other stars are primarily made up

of hydrogen and helium. Ask class: if so, why do we mainly see metal lines? It’s because

hydrogen and helium are often ionized in stars; in addition, the lowest-energy transitions

are usually high enough in energy that it isn’t easy to excite them in stellar photospheres.

Only by careful modeling was Payne able to conclude correctly that light elements dominate

the composition of stars.

For most lines or edges, the complications are sufficient that it is best to measure

the properties in a laboratory. For the simplest atoms, though, numerical calculations do

pretty well, and for single-electron (hydrogen-like) atoms one can even do the calculations

analytically. We’re going to do an example now in detail, because it is helpful to see how

such a calculation is carried out in its full glory.

Collecting some formulae from previous lectures, we get
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Let’s compute the electric dipole transition strength from the n = 1 state of hydrogen to

the n = 2 state of hydrogen. Ask class: What does this mean about the initial quantum

numbers (n, l,m) and the final quantum numbers (n′, l′,m′)? For some value of n, the

quantum number l can take on values from 0 to n − 1, so the initial state must have l = 0.

The final state can in principle have l = 0 or l = 1, but for an electric dipole transition

∆l = ±1 so the final state must have l = 1. Finally, the azimuthal quantum number m



takes on values from −l to +l, so in the initial state m = 0 and in the final state m =-1,

0, or 1. Therefore, the transition is from (1,0,0) to (2,1,-1), (2,1,0), or (2,1,1). The wave

functions are
ψ100 = π−1/2a

−3/2

0 e−r/a0

ψ21−1 = r−1R21Y1−1

ψ210 = r−1R21Y10

ψ211 = r−1R21Y11 .

(3)

Here R21 = 2−3/2a
−5/2

0 3−1/3r2e−r/2a0 and Ylm are the spherical harmonics. Note a property

of the radial wavefunctions: for l = 0, there is a peak at r = 0, but for l > 0 the probability

of r = 0 is zero. That makes sense; if in classical physics a particle in a central potential

has nonzero angular momentum, it can’t be at the origin, and the same is true in quantum

mechanics.

What about |rfi|2? In classical physics one would think about this as x2 + y2 + z2. You

could also write this as 1

2
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2
|x− iy|2 + z2, and in quantum mechanics this becomes
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It is convenient to do it this way because those particular combinations are expressible in

terms of spherical harmonics:

x ± iy = r(8π/3)1/2Y1±1

z = r(4π/3)1/2Y10 .
(5)

Since the wavefunction is separable into radial and angular factors, one can do the integrals

separately. Thus, the position matrix element can be written
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Ask class: what do we know about the properties of spherical harmonics? We know

that they are orthonormal; therefore, for a given m, only one of the three terms above

contributes, and that integral is 1. If we now perform the sum over m = −1, 0, 1 and

multiply by 2 (the degeneracy of the original state), we get
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Ask class: what is ωif? It’s the frequency of the transition, which is Eif/h̄, and the

energy of the transition is 3/4 of the ionization energy from the ground state. Numerically,

ωif = (3/8)me4/h̄3, so finally

gifif =
214

39
= 0.8324 . (10)

Note that Table 10.1 in our book gives just f , which is 0.4162 because gi = 2 for the 1s

state.

Ask class: given this example, lead us through the steps to compute the oscillator

strength from 1s to 2s. If we did this blindly, we would find that we came up with integrals

like
∫

Y10dΩ, which vanish. This is simply a restatement of the electric dipole selection rule

∆l = ±1.

What do we do if the final state is a continuum state, as in bound-free absorption?

Instead of a final, precisely defined stationary state, we have an infinitude of them. We

therefore have to consider a differential transition rate, from the bound state i to the

continuum state f , for a free electron in the momentum range dp and solid angle dΩ.

Therefore, we need to take our original formula for the transition rate and multiply it by

the number of states, which is equal to the density of states times dpdΩ:
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For a hydrogen-like atom (one electron) of nuclear charge Z, the total bound-free cross

section (i.e., integrated over directions) from a state of principal quantum number n is

σbf =
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where ωn = α2mc2Z2/(2h̄n2) is the ionization frequency and g(ω, n, l, Z) is the Gaunt

factor. The form of the bound-free cross section is an abrupt rise at ωn followed by a decline

that is ∼ ω−3 near threshold, but ∼ ω−7/2 far from the threshold. Incidentally, in practice

the ISM has bound-free edges from many different elements and species. This means that

the overall bound-free opacity decreases a little slower than ω−3, given that at high energies

other contributions come in.

Recommended Rybicki and Lightman problem: 10.4


