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Orthonormal Tetrads

Let’s now return to a subject we’ve mentioned a few times: shifting to a locally

Minkowski frame. In general, you want to take a metric that looks like gαβ and shift into a

frame such that locally the metric is ηαβ = (−1, 1, 1, 1). It is conventional to represent the

new coordinates with hats (e.g., t̂, r̂, θ̂, φ̂), so that

ds2 = −dt̂2 + dr̂2 + dθ̂2 + dφ̂2 . (1)

The transformation from the local to the global coordinates is done with the transformation

matrices eα̂β and eα
β̂
. For example, uα = eα

β̂
uβ̂. The components of the transformation

matrices come from the transformation of the metric tensor:

ηα̂β̂ = eµα̂e
ν
β̂
gµν . (2)

The inverse transformation matrices are computed similarly:

gµν = eα̂µe
β̂
νηα̂β̂ . (3)

This is especially easy for the Schwarzschild metric, because the metric is diagonal. Then,

for example, et
t̂
= 1/

√
−gtt = (1 − 2M/r)−1/2 and eφ

φ̂
= 1/

√
gφφ = r−1. One can get

the inverse matrices similarly, and the special diagonal nature of Schwarzschild means that,

unsurprisingly, you get the reciprocals: et̂ t =
√
−gtt = (1 − 2M/r)1/2 and eφ̂φ =

√
gφφ = r

(here, as usual, we implicitly assume that we have chosen the orbital plane to be at θ = π/2,

which the spherical symmetry allows us to do).

Note that even after having transformed into a reference frame in which the spacetime is

as Minkowski as possible (i.e., first but not second derivatives vanish), there is still freedom to

choose the coordinates. Also, remember that there is always freedom to have Lorentz boosts;

that is, having found a frame in which the spacetime looks flat, another frame moving at a

constant velocity to the first also sees flat spacetime. This means that your choice of frame

(“orthonormal tetrad”) is based to some extent on convenience. Around a spherical star, a

good frame is often the static frame, which is the frame that is unmoving with respect to

infinity.

Something you may have noticed is that although the new coordinates are called t̂, r̂, θ̂,

and φ̂, the last two are not actually angular coordinates. In fact, we have sneakily switched

into a Cartesian system; in fact, this is an orthonormal tetrad because gαβ = ηαβ. The

“angular-looking” coordinates θ̂ and φ̂ are therefore normal linear coordinates that happen,

at that particular location, to be along the unit vectors parallel to θ and φ.

With this in mind, it is important to note the following: Velocities measured by local

observers in this frame are not the four-velocities (e.g., ur̂ = dr̂/dτ), but are instead the
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derivatives relative to the local time t̂, e.g., vr̂ = dr̂/dt̂ = ur̂/ut̂. This is sometimes a point of

confusion because it is often productive to think of the four-velocity uα or uα̂ as somehow a

more fundamental quantity. However, on reflection it should make sense because the speed

measured by any observer is computed by the distance that observer saw something move

divided by the time the observer measured the movement to take. This is neither more nor

less than dx/dt, where x and t are measured locally.

Now let’s see some additional examples. Suppose a particle moves along a circular arc

with a linear velocity in the φ direction vφ̂ as seen by a static observer at Schwarzschild

radius r. What is the angular velocity as seen at infinity? The Schwarzschild time t is the

time at infinity, and the angle φ has a unique meaning everywhere, so the angular velocity as

seen at infinity is just Ω = dφ/dt. In order to relate this to the locally measured quantities,

we note that vφ̂ = dφ̂/dt̂ = uφ̂/ut̂. But this is eφ̂φu
φ/
[

et̂ tu
t
]

. Since Ω = dφ/dt = uφ/ut, then

Ω = (et̂ t/e
φ̂
φ)v

φ̂ =

(

vφ̂

r

)

(1− 2M/r)1/2 . (4)

This makes sense; it’s just the same as one would calculate in the Newtonian limit, except

that the frequency is less because of redshifting.

Equation of Motion and Geodesics

So far we’ve talked about how to represent curved spacetime using a metric, and what

quantities are conserved. Now let’s see how test particles move in such a spacetime. To do

this, we need to take a brief diversion to see how derivatives are changed in curved spacetime.

First, let’s simplify and go back to thinking about a flat two-dimensional plane. Consider

a scalar quantity. Define that quantity to be Φ. Let’s think in terms of a Cartesian coordinate

basis. The derivative along the x direction is ∂Φ/∂x, and along the y direction is ∂Φ/∂y. We

will adopt the notation that a comma denotes a partial derivative, so these become Φ,x and

Φ,y, respectively. If we want the directional derivative along some vector v with components

vx and vy, that derivative is ∂vΦ = Φ,xv
x+Φ,yv

y = Φ,αv
α. Similarly, if we have a vector field

A, its gradient is the rank 2 tensor ∇A = Aα
,β and its directional derivative along v is the

rank-1 tensor Aα
,βv

β. As always, the geometric objects formed (e.g., gradient or directional

derivative) have coordinate-free reality, but we express them here in terms of components

for concreteness. A particle moving in free space (no forces on it) simply continues moving

along in a straight line. That means that the directional derivative of the velocity, along the

velocity, is zero (this comes from, e.g., conservation of momentum and energy). Therefore,

uα
,βu

β = 0 is the equation of motion for a free particle. All these results are also true for free

motion in flat spacetime.
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But what happens when the spacetime is curved? Then the coordinates themselves

twist and turn. One must take this into account by adding another term to the equation for

a derivative (you can think of this as a chain rule, if you like; the derivative of a quantity

contains one term for the partial derivative of that quantity, and another for the partial

derivative of the coordinates themselves). A result that we’ll simply have to state is that the

correction terms involve the connection coefficients. For a coordinate basis, these are

Γα
βγ =

1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) . (5)

The actual derivative itself is represented by a semicolon. The connection coefficients come

in with a + sign when the index to be “corrected” is up, and a − sign when the index is

down. Some examples:

Φ;α = Φ,α vα;β = vα,β + Γα
µβv

µ

vα;β = vα,β − Γµ
αβvµ T β

α;γ = T β
α,γ + Γβ

µγT
µ
α − Γµ

αγT
β
µ .

(6)

Note that for scalar fields there is no correction.

What about “straight lines” in curved spacetime? These are called geodesics, and are

simply extensions of what we found in flat spacetime. That is, the directional derivative of the

velocity along itself is zero, or ∇uu = 0, so uα
;βu

β = 0. If one defines some affine parameter λ

along the geodesic (the proper time τ is a good choice for particles with nonzero rest mass),

then this comes out to
d2xα

dλ2
+ Γα

µγ

dxµ

dλ

dxγ

dλ
= 0 . (7)

From the definition of the four-velocity, uα = dxα/dλ, we can also write this

duα

dλ
+ Γα

µγu
µuγ = 0 . (8)

We’ll explore some consequences of this in a second, but first a quick check that this is

reasonable. This is the equation of motion. So,Ask class: what kind of path should it give in

flat space? It should give a straight line, meaning that the acceleration duα/dλ = 0. Is it so?

Let’s look at the connection coefficients again. Ask class: what is the Minkowski metric?

ηαβ = (−1, 1, 1, 1). So, Ask class: what are the derivatives of the components of ηαβ? The

derivatives are all zero. Ask class: what does that imply for the connection coefficients?

They’re related to derivatives of the metric coefficients, so the connection coefficients are

zero. Therefore, Ask class: what is the equation of motion in flat spacetime? It becomes

just duα/dλ = 0, a straight line, as required.

For a Schwarzschild spacetime, let’s consider motion in the rφ plane (i.e., no θ motion,

which one can always arrange in a spherically symmetric spacetime just by redefinition of
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coords). Then the radial equation of geodesic motion is (here we use the proper time τ as

our affine parameter)
d2r

dτ 2
+

M

r2
− (1− 3M/r)u2

φ/r
3 = 0 . (9)

In deriving this we’ve used the fact that the specific angular momentum uφ = gφαu
α =

gφφu
φ = r2(dφ/dτ). Let’s think about what all this means. First, let’s check this in the

Newtonian limit. In that limit, M/r ≪ 1 and can be ignored, and at low velocities dτ 2 ≈ dt2

so we get the usual expression
d2r

dt2
= −M

r2
+ u2

φ/r
3 . (10)

In particular, that means that for a circular orbit, d2r/dt2 = 0, the specific angular momen-

tum is given by u2
φ = Mr.

What about in strong gravity? First consider radial motion, uφ = 0. Then d2r/dτ 2 =

−M/r2. This has the same form as the Newtonian expression, but remember that the

coordinates mean different things, so you have to be careful. Now consider circular orbits.

Again we set d2r/dτ 2 = 0, to find u2
φ = Mr2/(r− 3M). But wait! Something’s strange here.

That r−3M in the denominator means that the specific angular momentum goes to infinity

at r = 3M , but the horizon is at r = 2M . Have we reached a contradiction of some sort?

No, but we have happened upon one of the most important features and predictions of

general relativity. As you will demonstrate in the problem set, all of this implies that the

specific angular momentum has a minimum at a radius well outside the horizon. This is also

the minimum radius of a circular orbit that is stable to small perturbations, hence is called

the innermost stable circular orbit (ISCO).

Ask class: what does this mean for gas spiraling close to a black hole or neutron star?

It means that even if the gas was moving in almost circular orbits at larger distances, then

(neglecting other forces) when it reaches this critical radius it’ll go right in without having to

lose more angular momentum. This radius is called plays a fundamental role in the physics

of accretion disks around very compact objects.

Qualitatively, one can think of it like this. A fundamental feature of the Schwarzschild

geometry is the so-called “pit in the potential”. That is, near a compact object gravity

is “stronger” than you would have expected based on an extrapolation of the Newtonian

law. To compensate for this, the angular velocity has to be higher than it would have been

otherwise, so the angular momentum is higher than it would have been in the Newtonian

limit, and eventually uφ reaches a minimum and then increases as the radius is decreased

further. This predicted behavior is an example of a phenomenon that only occurs in strong

gravity, and so can only be tested by observing compact objects.
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If we plug the uφ for a circular orbit into the formula for specific energy we found earlier,

we find

−ut(circ) =
r − 2M

√

r(r − 3M)
. (11)

At the ISCO, −ut =
√

8/9, so 5.7% of the binding energy is released in the inspiral to this

point.

Now let’s do another sample calculation. We argued above that to compensate for the

stronger gravity, particles have to move faster near a compact object. That would suggest

that the angular velocity observed at infinity would be higher than in Newtonian gravity.

However, there is also a redshift, which decreases frequencies. Let’s calculate the frequency

of a circular orbit observed at infinity, to see which effect wins.

We said a while back that the Schwarzschild time coordinate t is simply the time at

infinity, and the azimuthal coordinate φ is also valid at infinity (in fact, unlike t, φ has

constant meaning at all radii). Therefore, the angular velocity is Ω = dφ/dt. To calculate

this, we relate it to components of the four-velocity: dφ/dt = (dφ/dτ)/(dt/dτ) = uφ/ut.

Now, we express this in terms of our conserved quantities uφ and ut:

uφ

ut
=

gαφuα

gαtuα

=
gφφuφ

gttut

=
uφ/r

2

−ut/(1− 2M/r)
. (12)

Then

Ω =
1− 2M/r

r2
uφ

−ut

=
1− 2M/r

r2

√

Mr2/(r − 3M)

(r − 2M)/
√

r(r − 3M)
=
√

M/r3 . (13)

This is exactly the Newtonian expression! By a lovely coincidence, in Schwarzschild coor-

dinates the angular velocity observed at infinity is exactly the same as it is in Newtonian

physics.

We’ve taken a long diversion here to discuss the radial component of the equation of

geodesic motion and some of its implications. Let’s briefly consider the azimuthal component,

specifically uφ;αu
α = 0. This can be expressed as

duφ

dτ
+??? = 0 . (14)

We can certainly go through the same procedure of calculating the connection coefficients.

But here is a place where we should apply our intuition to shortcut those calculations.

Recalling that uφ is the specific angular momentum, and that we are considering geodesic

motion (no nongravitational forces), Ask class: what should the “???” be in this equation

for the Schwarzschild spacetime? It should be zero! Angular momentum is conserved for
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Schwarzschild geodesics, so duφ/dτ had better vanish. You can confirm this explicitly if you

want.

One last note about geodesics is that they represent extrema in the integrated path

length ds2 between two events. The reason for this is extremely deep and ultimately comes

down to the same reason that optical paths are extrema in length. Basically, if you represent

light as a wave, then two paths with different lengths will have different numbers of cycles and

hence different phases along the way. With different phases, there is destructive interference

and the amplitude is small. Only near an extremum, where nearby paths differ in path

length by a small second-order quantity, are the phases close to each other, so only there

is the interference constructive and the amplitude high. For massive particles the principle

is the same, according to quantum mechanics. Again, a particle can be represented by a

wave (or a wave function), and again if nearby paths have significantly different phases the

interference will be destructive. Only near an extremum is the amplitude high. For this case,

however, it isn’t simply the length of the path, but instead the integral of the Lagrangian

that matters (this integral is called the action). Extremization of the action is one of the

unifying principles of physics, and provides (for example) a different way of looking at general

relativity than the geometric approach we’ve taken.

We can write the four-acceleration aα as aα = uα
;βu

β, so that the geodesic equation of

motion is aα = 0. If there is a force fα on a particle of rest mass m, the resulting equation

of motion (and the fully general one, in general relativity) is aα = fα/m, which is a nice

return to good old F = ma!

Additional references: You guessed it: go to Misner, Thorne, and Wheeler, Gravitation,

for more details.


