
Black Holes

We now embark on the study of black holes. Black holes are interesting for many rea-

sons: they are one of only three possible endpoints of stellar evolution (the others being

white dwarfs and neutron stars), they are the powerhouses of the most luminous things in

the universe (quasars and other types of active galactic nuclei), and they are the simplest

macroscopic objects in the universe, with only two parameters important for their astro-

physical properties. They are also way cool. Their simplicity means that it is possible to

study them in a way impossible for any other object: with mathematical rigor. There was,

for example, a flurry of activity in the late 1960s and early 1970s about proving theorems

related to black holes, something which is mightily difficult to do with a star, for example!

However, our main interest is in astrophysics, and specifically in explaining observed phe-

nomena. We will therefore describe and use some of the derived results, but will not derive

them (this would take overwhelmingly too much time).

Let us start by defining “black hole”. A black hole is an object with an event horizon

instead of a material surface. Events inside that horizon cannot be seen by any external

observer. This is the fundamental property of black holes that distinguishes them from all

other objects. It should be noted that (as we’ll get to later) although there is compelling

evidence for the existence of black holes in the universe, never has the existence of the horizon

itself been demonstrated. An observation that unambiguously indicates the presence of a

horizon would be a major advance. From time to time there are press releases announcing

proofs of event horizons based on theoretical arguments, but so far these are unconvincing.

Inevitability of Collapse

One astrophysically relevant result to be stated is that once a star has compacted within

a certain radius, formation of a black hole is inevitable. A basic reason for this is that in

general relativity, all forms of energy gravitate. This includes pressure in particular. In a

normal star, the pressure makes a tiny contribution to the total mass-energy, but in a very

compact star the pressure is substantial. Normally, hydrostatic balance is produced by the

offset of gravity by a pressure gradient, but in this case squeezing the star only increases

the gravity (by increasing the pressure), so in it goes. The minimum stable radius for a

spherically symmetric star is not the Schwarzschild radius Rs = 2M as you might expect,

but is 9
8
Rs.

Nonsingularity of Rs

When looking at the Schwarzschild geometry in Schwarzschild coordinates, one has the

line element

ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2(dθ2 + sin2 θdφ2) . (1)



This sure looks pathological at r = 2M . But you have to be careful. Perhaps it isn’t the

spacetime, but the coordinates that are at fault. For example, if you think about a sphere

in normal (r, θ, φ) spherical coordinates, you might think that the North pole (θ = 0) is

a real problem, because the dφ2 coefficient goes to zero. But we know that this is just

the coordinates; on a sphere, nothing at all is special about θ = 0, as you can see by just

redefining where your North pole is!

Now, r = 2M is a special place; it’s the location of the event horizon. But are things

really singular there? In particular, is the curvature of the spacetime there finite or infinite,

and would a freely falling observer feel finite or infinite tidal forces? Ask class: without

actually computing the curvature, what is the right machinery in GR to use? The way

to compute this is to define a local orthonormal frame and compute the components of

the Riemann tensor (which, remember, tell you everything you need to know about the

curvature). Then, boost into the freely falling observer’s frame and figure out the tidal

acceleration there. The net result is that all the components of tidal stress are ∼ M/r3,

which is perfectly finite at r = 2M . In fact, the acceleration ∼ M−2 at the horizon, meaning

that for a large enough black hole you could fall in without realizing it! You’d still be

doomed, though. In contrast to this coordinate singularity at r = 2M , there is a real

singularity at r = 0. There the tidal stresses are infinite, and anything that falls in gets

munched regardless.

Ask class: What happens to the coordinates as you fall in to r < 2M? Looking at

the line element with r < 2M , you see that the sign of the dr2 term becomes negative,

and the sign of the dt2 term becomes positive. This means (as it turns out) that inside the

event horizon the radius becomes a timelike coordinate, and the time becomes a spacelike

coordinate. Specifically, that means that once inside 2M , you must go to smaller radii, just

as now you must go forward in time. You can’t even move a centimeter outwards once you’re

inside, and avoiding the singularity at r = 0 is just as impossible as avoiding Monday.

This is a major difference between the modern conception of black holes and the pre-GR

ideas sometimes linked to it. In 1783 John Michell realized that a star with 250 times the

radius of the Sun that had an average density equal to that of the Earth would be dark

according to Newton’s theory. That’s because the escape velocity would be the speed of

light, so he imagined light climbing up, slowing down, and falling back. He would, however,

have thought it possible to escape from such a star in a rocket. Not so in the modern

conception. Ask class: for fun, how would we compute the radius of an object of mass

M with an escape velocity equal to the speed of light, in the Newtonian limit? The escape

velocity is v2 = 2GM/r, so v2 = c2 means r = 2GM/c2, just the same as the Schwarzschild

radius!

No Hair Theorem



So far we’ve spent a lot of time with the Schwarzschild geometry, due to its simplicity.

But how relevant is it, really? Ask class: thinking about Newtonian gravity, what are

some factors other than the total mass that could influence the gravitational field outside

a normal star? Quadrupole terms, fluid motions, asymmetries, et cetera. What happens

when collapse into a black hole occurs? An amazing set of theorems proved in the early

1970’s shows that the final result is a black hole that has only three qualities to it at all.

These are mass, angular momentum, and electric charge. Everything else (quadrupole terms,

magnetic moments, weak forces, etc.) decays away. This is a remarkable result that simplifies

treatment of black holes greatly. One heuristic way to think about this relates to what you

would see if you dropped a lightbulb into the black hole. As the lightbulb fell, light from it

diminishes more and more in apparent intensity. Ask class: suppose we have a lightbulb

with rest-frame specific intensity Iν0. How do we compute the specific intensity seen at

infinity when the bulb is at radius r, if the bulb falls radially from rest at infinity? The

key here is to remember the Iν ∝ ν3 law; tracking the frequency will allow computation of

the specific intensity. There are two components to the frequency shift. One is the ordinary

Doppler shift as seen by a local static observer, the other is the gravitational redshift from

there to infinity. One must then trace the rays to get the final intensity.

Very soon, nothing more is left; in fact, the luminosity seen by a distant observer goes

like

L ∝ exp

(

−
t

3
√
3M

)

. (2)

For a solar mass black hole the time constant is a few tens of microseconds. Therefore, in the

blink of an eye the black hole really does appear black. In a somewhat analogous fashion,

other properties of the infalling matter, such as magnetic field and lumpiness of the matter

distribution, decay away on a similar timescale. Only mass, angular momentum, and charge

are left.

It was discovered in 1963 that an exact spacetime exists for a black hole with just mass

and angular momentum (Kerr geometry), and in 1965 a solution including charge was found

(Kerr-Newman geometry). The most common coordinates used to express this spacetime

are generalizations of Schwarzschild coordinates called Boyer-Lindquist coordinates, and for

the record the metric line element is then

ds2 = −(∆/ρ2)[dt− a sin2 θ dφ]2 +(sin2 θ/ρ2)[(r2 + a2)dφ− a dt]2 +(ρ2/∆)dr2 + ρ2 dθ2 . (3)

There are several definitions here. The parameter a = J/M describes the angular momen-

tum, and it has dimensions of mass. ∆ = r2− 2Mr+ a2+Q2, where Q is the electric charge

(in cgs units Q2 has the units of erg-cm, which can then be converted to grams in the usual

geometrized units way). Finally, ρ2 = r2 + a2 cos2 θ.

The most important new feature of this geometry, compared to Schwarzschild, is the



dφdt terms. These indicate a relation between time and azimuthal angle, and correspond to

frame-dragging: spacetime is “twisted” in the direction of rotation of the black hole.

This geometry has a horizon (and therefore describes a black hole) only if Q2+a2 ≤ M2.

If equality holds, this is called an extremal black hole. If this condition is violated, centrifugal

acceleration or electrostatic repulsion will halt the collapse. You cannot, however, spin up a

black hole or feed charge to it so that it loses its horizon.

Let’s see if we even need the charge term, astrophysically. Ask class: how should we

determine whether Q can ever be gravitationally significant? Suppose that Q2 = M2, the

maximum possible. Converting M2 into erg-cm units means Q2 = (Mc2)(GM/c2) = GM2.

Suppose we compare the electrical and gravitational forces on a particle of mass m and

charge q at a distance r ≫ M , so the Newtonian force law is accurate. The electrical

force is qQ/r and the gravitational force is GMm/r, so the ratio is fe/fg = qQ/(GMm) =

qG1/2M/(GMm) = q/(G1/2m). For example, for a proton fe/fg ≈ 1018 and for an electron

fe/fg ≈ 2× 1021. This shows that (as always!) the electromagnetic force is overwhelmingly

stronger than gravity if there is a lot of unbalanced charge. The result is that if Q is anything

remotely significant gravitationally, the black hole will sweep up every stray charge within

parsecs until it is almost electrically neutral. That’s why we can ignore the charge, and

consider just the mass and angular momentum when thinking about the spacetime. With

angular momentum but no charge this is called the Kerr spacetime. It is also common to

use the dimensionless quantity j = a/M instead of a.

Properties of Kerr Spacetime

The Kerr spacetime is a lot more complicated than the Schwarzschild spacetime, but

because it can be written in closed form it is still simple enough for fairly rigorous math-

ematical analysis. First of all, though, let’s see what quantities are conserved in the Kerr

spacetime. Ask class: will the squared four-velocity change? No, this is completely general,

so we always have u2 = −1 for massive particles, u2 = 0 for photons. What else, though?

Ask class: is the geometry spherically symmetric? No, because there is a preferred axis

(the axis of rotation). Looking at the metric coefficients, Ask class what variables never

appear? t and φ, so this is a stationary and axisymmetric spacetime. Ask class make a

guess about which two conserved quantities result from these symmetries. Energy and angu-

lar momentum, respectively. There is also a fourth quantity, called Carter’s fourth constant

of motion, that is conserved, but it is more complicated than is worth writing down.

As said before, the major new component to this spacetime compared to Schwarzschild

is frame-dragging, more as one gets closer to the hole. One of many bizarre consequences

is that if you were to drop a particle from infinity radially at the hole, then as it got closer

it would acquire a nonzero angular velocity (but still have zero angular momentum!). The



angular velocity of a zero angular momentum particle, which can be thought of as the angular

velocity of spacetime, is

ω =
2Mar

(r2 + a2)2 − a2∆sin2 θ
. (4)

For almost all applications of interest, the r4 term dwarfs the others and ω ≈ 2Ma/r3 =

2jM2/r3.

Frame-dragging has many implications. One is that, near enough to the hole, a particle

must rotate in the same direction as the hole. This is even true outside the horizon, so there

is a region, called the ergosphere, in which no static observers can exist; nonetheless, they

could escape from that region, so it isn’t like the horizon. The radius of the ergosphere is

rergo = M + (M2 − a2 cos2 θ)1/2. In addition, the black hole itself shrinks; the radius of the

horizon is r = M+
√
M2 − a2, so for an extremally rotating black hole (a = M), r = M . The

radius of the innermost stable circular orbit shrinks for prograde orbits (to a minimum of

rISCO = M for a = M) and increases for retrograde orbits (to a maximum of rISCO = 9M for

a = M). That means that if gas spirals in to the hole on prograde orbits, the energy emitted

and hence the accretion efficiency increases with increasing spin (from 5.7% for a = 0 to 42%

for a = M , or 40% if you discount energy that goes down the hole). Yet another consequence

is that a particle in a circular orbit that is tilted with respect to the spin plane will precess

in its orbit, at the rate ω. This means that a nonaxisymmetric warp in an accretion disk

has a tough time surviving unless it is confined to a small radial range, because the strong

dependence of ω on r means that there would be a lot of shear otherwise. Also, a gyroscope

with an axis tilted from the spin axis will precess at ω. Finally, Kepler’s Third Law (angular

velocity of a particle in a circular orbit at r) takes the simple form

Ω = ±
M1/2

r3/2 ± aM1/2
(5)

where + is for prograde and − is for retrograde orbits.

Black Hole Thermodynamics

There is a remarkable black hole analogy with thermodynamics. If one computes the

area of the horizon, it is

A = 8πM
[

M + (M2 − a2)1/2
]

. (6)

For Schwarzchild, a = 0, the area is A = 16πM2 as expected. Hawking proved that in any

interaction of a black hole or between black holes, the sum of the areas can never decrease.

This leads one to a possible computation of the maximum amount of energy that can be

radiated in a collision between black holes. For example, if two Schwarzschild black holes

of mass M hit head-on, then you know that 16πM2
tot ≥ 32πM2, so Mtot > M

√
2 and no

more than 29% of the total mass-energy can be radiated away. The best case would be two



extremal Kerr black holes of the same mass and opposite angular momentum, for which the

theoretical maximum is 50%. However, the actual amount radiated is much less than this,

and must be computed numerically. For head-on Schwarzschild the efficiency is more like

0.1%.

The area theorem is awfully reminiscent of the second law of thermodynamics. But this

would require that black holes have finite temperature, so that they radiate. When Beken-

stein suggested the thermodynamic analogy, most people (including Hawking) were dubious,

but then Hawking showed that black holes do radiate! This happens because virtual pairs of

particles and antiparticles can be made real by the tidal acceleration near the event horizon,

and on occasion one escapes while the other is sucked in; the effect is that the black hole

“radiates” even though nothing escapes from inside the event horizon. This is an astrophys-

ically unimportant effect because the effective temperature is T ≈ 10−7 K(M/M⊙)
−1, so a

ten solar-mass black hole lasts about 1070 years. We’ll never see a black hole radiate unless

tiny ones (mass of a mountain) were formed in the early universe. Nonetheless, Hawking

radiation does have importance in other ways. For example, a decade great excitement was

produced when it was shown that the rate and spectrum of Hawking radiation from spe-

cial black holes (Schwarzschild and extremally rotating) could be reproduced in M-theory,

which is the best current candidate for the theory of everything. Hawking radiation also

brings up interesting semi-philosophical questions; for example, particles and antiparticles

have an equal likelihood of being emitted, whereas the star that formed the black hole and

almost anything that fell in it were formed of particles. Thus, lepton and baryon number

conservation seem to be violated by Hawking radiation.

Additional references: For more mathematical details, see “The Mathematical Theory of

Black Holes” by Chandrasekhar, or “Black Holes” by Novikov and Frolov.


